Sort publications chronologically or by type . You are also welcome to browse slides from talks .
[2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007]
2024
- A. Kitanov and V. Indelman, “Topological Belief Space Planning for Active SLAM with Pairwise Gaussian Potentials and Performance Guarantees,” International Journal of Robotics Research (IJRR), no. 1, 2024.
- A. Zhitnikov and V. Indelman, “Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints,” IEEE Transactions on Robotics (T-RO), 2024.
- I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” in 38th AAAI Conference on Artificial Intelligence (AAAI-24), Feb. 2024.
- T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief
Space Planning with Inconsistent Beliefs: An
Action-Consistent Approach,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2024.
- A. Zhitnikov, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification,” International Journal of Robotics Research (IJRR), 2024.
- M. Shienman, O. Levy-Or, M. Kaess, and V. Indelman, “A Slices Perspective for Incremental Nonparametric
Inference in High Dimensional State Spaces,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2024.
- Y. Pariente and V. Indelman, “Simplification of Risk Averse POMDPs with Performance Guarantees,” 2024.
- T. Yotam and V. Indelman, “Measurement Simplification in ρ-POMDP with Performance Guarantees,” IEEE Transactions on Robotics (T-RO), 2024.
2023
- R. Mor and V. Indelman, “Probabilistic Qualitative Localization and Mapping,” Feb. 2023.
- M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE Robotics and Automation Letters (RA-L), no. 8, Aug. 2023.
- J. Placed et al., “A Survey on Active Simultaneous Localization and Mapping: State of the Art and New Frontiers,” IEEE Transactions on Robotics (T-RO), no. 3, Jun. 2023.
- V. Tchuiev and V. Indelman, “Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning,” Artificial Intelligence, Special Issue on Risk-Aware Autonomous Systems, 2023.
- M. Shienman and V. Indelman, “Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints,” in Robotics Research, Springer, 2023.
- A. Zhitnikov and V. Indelman, “Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains,” in International Joint Conference on Artificial Intelligence (IJCAI), journal track, Aug. 2023.
- M. Barenboim, I. Lev-Yehudi, and V. Indelman, “Data Association Aware POMDP Planning with Hypothesis Pruning Performance Guarantees,” IEEE Robotics and Automation Letters (RA-L), no. 10, Oct. 2023.
- T. Yotam, “Measurement Simplification in ρ-POMDP with Performance Guarantees,” Master's thesis, Technion - Israel Institute of Technology, 2023.
- M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” in Conference on Neural Information Processing Systems (NeurIPS), Dec. 2023.
2022
- O. Shelly and V. Indelman, “Hypotheses Disambiguation in Retrospective,” IEEE Robotics and Automation Letters (RA-L), no. 2, Apr. 2022.
- I. Zilberman, E. Rivlin, and V. Indelman, “Incorporating Compositions in Qualitative Approaches,” IEEE Robotics and Automation Letters (RA-L), no. 2, Apr. 2022.
- M. Shienman and V. Indelman, “D2A-BSP: Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints,” in IEEE International Conference on Robotics and Automation (ICRA), *Outstanding Paper Award Finalist*, May 2022.
- K. Elimelech and V. Indelman, “Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning,” in Robotics Research, Springer, 2022.
- O. Shelly, “Hypotheses disambiguation in retrospective for robust perception in ambiguous environments,” Master's thesis, Technion - Israel Institute of Technology, 2022.
- M. Barenboim and V. Indelman, “Adaptive Information Belief Space Planning,” in the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI), Jul. 2022.
- E. Farhi and V. Indelman, “Bayesian Incremental Inference Update by Re-using Calculations from Belief Space Planning: A New Paradigm,” Autonomous Robots, Aug. 2022.
- K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” International Journal of Robotics Research (IJRR), no. 5, Jun. 2022.
- I. Zilberman, “Belief Space Planning using Qualitative Spatial Relationships,” Master's thesis, Technion - Israel Institute of Technology, 2022.
- I. Zilberman and V. Indelman, “Qualitative Belief Space Planning via Compositions,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022.
- O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022.
- T. Lemberg and V. Indelman, “Hybrid Belief Pruning with Guarantees for Viewpoint-Dependent Semantic SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022.
- M. Shienman and V. Indelman, “Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints,” in International Symposium on Robotics Research (ISRR), Sep. 2022.
- A. Zhitnikov and V. Indelman, “Simplified Risk Aware Decision Making with Belief Dependent Rewards in Partially Observable Domains,” Artificial Intelligence, Special Issue on “Risk-Aware Autonomous Systems: Theory and Practice", Aug. 2022.
- G. Rotman, “Efficient Informative Planning with High-dimensional Non-Gaussian Beliefs by Exploiting Structure,” Master's thesis, Technion - Israel Institute of Technology, 2022.
- A. Zhitnikov and V. Indelman, “Risk Aware Belief-dependent Constrained Simplified POMDP Planning,” Sep. 2022.
- G. Rotman and V. Indelman, “involve-MI: Informative Planning with High-Dimensional Non-Parametric Beliefs,” Sep. 2022.
- R. Mor, “Probabilistic Qualitative Localization and Mapping,” Master's thesis, Technion - Israel Institute of Technology, 2022.
- Y. Feldman, “Semantic Perception under Uncertainty with Viewpoint-Dependent Models,” PhD thesis, Technion - Israel Institute of Technology, 2022.
2021
- E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” 2021.
- Y. Feldman and V. Indelman, “Towards Self-Supervised Semantic Representation with a Viewpoint-Dependent Observation Model,” in International Conference on Computational Photography (ICCP), May 2021.
- M. Shienman, A. Kitanov, and V. Indelman, “FT-BSP: Focused Topological Belief Space Planning,” IEEE Robotics and Automation Letters (RA-L), no. 3, Jul. 2021.
- K. Elimelech and V. Indelman, “Efficient Modification of the Upper Triangular Square Root Matrix on Variable Reordering,” IEEE Robotics and Automation Letters (RA-L), no. 2, Apr. 2021.
- E. Farhi, “Joint Incremental Inference and Belief Space Planning for Online Operations of Autonomous systems,” PhD thesis, Technion - Israel Institute of Technology, 2021.
- A. Zhitnikov and V. Indelman, “Probabilistic Loss and its Online Characterization
for Simplified Decision Making Under Uncertainty,” 2021.
- Y. Feldman and V. Indelman, “Autonomous Semantic Perception in Uncertain Environments,” in RSS Pioneers Workshop, Jul. 2021.
- V. Tchuiev, “Autonomous Classification Under Uncertainty,” PhD thesis, Technion - Israel Institute of Technology, 2021.
- K. Elimelech, “Efficient Decision Making under Uncertainty in High-Dimensional State Spaces,” PhD thesis, Technion - Israel Institute of Technology, 2021.
- O. Sztyglic, “Online Partially Observable Markov Decision Process Planning via Simplification,” Master's thesis, Technion - Israel Institute of Technology, 2021.
- K. Elimelech and V. Indelman, “Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic,” 2021.
- O. Sztyglic, A. Zhitnikov, and V. Indelman, “Simplified Belief-Dependent Reward MCTS Planning with Guaranteed Tree Consistency,” May 2021.
2020
- K. Elimelech and V. Indelman, “Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations,” in Robotics Research, Springer, 2020.
- V. Tchuiev and V. Indelman, “Distributed Consistent Multi-Robot Semantic Localization and Mapping,” IEEE Robotics and Automation Letters (RA-L), no. 3, Jul. 2020.
- Y. Feldman and V. Indelman, “Spatially-Dependent Bayesian Semantic Perception under Model and Localization Uncertainty,” Autonomous Robots, 2020.
- Y. Feldman and V. Indelman, “Towards Self-Supervised Semantic Representation with a Viewpoint-Dependent Observation Model,” in Workshop on Self-Supervised Robot Learning, in conjunction with Robotics: Science and Systems (RSS), Jul. 2020.
- R. Mor and V. Indelman, “Probabilistic Qualitative Localization and Mapping,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2020.
- O. Asraf and V. Indelman, “Experience-Based Prediction of Unknown Environments for Enhanced Belief Space Planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2020.
- D. Kopitkov and V. Indelman, “Neural Spectrum Alignment: Empirical Study,” in International Conference on Artificial Neural Networks (ICANN), Sep. 2020.
- O. Asraf, “Experience-Based Prediction of Unknown Environments for Enhanced Belief Space Planning,” Master's thesis, Technion - Israel Institute of Technology, 2020.
- D. Kopitkov, “General Probabilistic Surface Optimization and Log Density Estimation,” PhD thesis, Technion - Israel Institute of Technology, 2020.
2019
- E. Farhi and V. Indelman, “iX-BSP: Belief Space Planning through Incremental Expectation,” in IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- D. Kopitkov and V. Indelman, “General Probabilistic Surface Optimization and Log Density Estimation,” 2019.
- A. Kitanov and V. Indelman, “Topological Information-Theoretic Belief Space Planning with Optimality Guarantees,” 2019.
- A. Kitanov and V. Indelman, “Focus on What Matters: Topological Aspects in Information-Theoretic Belief Space Planning,” in Workshop on Topological Methods in Robot Planning, in conjunction with the IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- K. Elimelech and V. Indelman, “PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning,” in Workshop on Toward Online Optimal Control of Dynamic Robots, in conjunction with the IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- E. Farhi and V. Indelman, “Tear Down that Wall: Calculation Reuse Across Inference and Belief Space Planning,” in Workshop on Toward Online Optimal Control of Dynamic Robots, in conjunction with the IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- D. Kopitkov and V. Indelman, “General Purpose Incremental Covariance Update and Efficient Belief Space Planning via Factor-Graph Propagation Action Tree,” 2019.
- K. Elimelech and V. Indelman, “Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning,” in International Symposium on Robotics Research (ISRR), Oct. 2019.
- V. Tchuiev, Y. Feldman, and V. Indelman, “Data Association Aware Semantic Mapping and Localization via a Viewpoint Dependent Classifier Model,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 2019.
- D. Kopitkov and V. Indelman, “General Purpose Incremental Covariance Update and Efficient Belief Space Planning via Factor-Graph Propagation Action Tree,” International Journal of Robotics Research (IJRR), no. 14, Sep. 2019.
- K. Elimelech and V. Indelman, “Efficient Decision Making and Belief Space Planning using Sparse Approximations,” 2019.
- K. Elimelech and V. Indelman, “Efficient Belief Space Planning using Sparse Approximations,” in RSS Pioneers Workshop, 2019.
- D. Kopitkov and V. Indelman, “Neural Spectrum and Gradient Similarity,” in DeepMath - Conference on the Mathematical Theory of Deep Neural Networks, Nov. 2019.
2018
- V. Indelman, “Towards Cooperative Multi-Robot Belief Space Planning in Unknown Environments,” in Robotics Research, Springer, 2018.
- X. Yan, V. Indelman, and B. Boots, “Incremental Sparse GP Regression for Continuous-Time Trajectory Estimation and Mapping,” in Robotics Research, Springer, 2018.
- T. Regev and V. Indelman, “Decentralized Multi-Robot Belief Space Planning in Unknown Environments via Identification and Efficient Re-Evaluation of Impacted Paths,” Autonomous Robots, Special Issue on Online Decision Making in Multi-Robot Coordination, no. 4, 2018.
- M. Chojnacki and V. Indelman, “Vision-based Dynamic Target Trajectory and Ego-motion Estimation Using Incremental Light Bundle Adjustment,” International Journal of Micro Air Vehicles, Special Issue on Estimation and Control for MAV Navigation in GPS-denied Cluttered Environments, no. 2, 2018.
- V. Ovechkin and V. Indelman, “BAFS: Bundle Adjustment with Feature Scale Constraints for Enhanced Estimation Accuracy,” IEEE Robotics and Automation Letters (RA-L), no. 2, 2018.
- V. Ovechkin, “Bundle Adjustment with Feature Scale Constraints for Enhanced Estimation Accuracy,” Master's thesis, Technion - Israel Institute of Technology, 2018.
- Y. Feldman and V. Indelman, “Bayesian Viewpoint-Dependent Robust Classification under Model and Localization Uncertainty,” in IEEE International Conference on Robotics and Automation (ICRA), May 2018.
- Y. Feldman and V. Indelman, “Towards Robust Autonomous Semantic Perception,” in Workshop on Representing a Complex World: Perception, Inference, and Learning for Joint Semantic, Geometric, and Physical Understanding, in conjunction with IEEE International Conference on Robotics and Automation (ICRA), May 2018.
- A. Kitanov and V. Indelman, “Topological Multi-Robot Belief Space Planning in Unknown Environments,” in IEEE International Conference on Robotics and Automation (ICRA), May 2018.
- S. Pathak, A. Thomas, and V. Indelman, “A Unified Framework for Data Association Aware Belief Space Planning and Perception,” International Journal of Robotics Research (IJRR), no. 2-3, 2018.
- V. Tchuiev and V. Indelman, “Inference over Distribution of Posterior Class Probabilities for Reliable Bayesian Classification and Object-Level Perception,” IEEE Robotics and Automation Letters (RA-L), no. 4, 2018.
- D. Kopitkov and V. Indelman, “Bayesian Information Recovery from CNN for Probabilistic Inference,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018.
- D. Kopitkov and V. Indelman, “Deep PDF: Probabilistic Surface Optimization and Density Estimation,” 2018.
2017
- X. Yan, V. Indelman, and B. Boots, “Incremental Sparse GP Regression for Continuous-time Trajectory Estimation and Mapping,” Robotics and Autonomous Systems, 2017.
- V. Indelman, “Cooperative Multi-Robot Belief Space Planning for Autonomous Navigation in Unknown Environments,” Autonomous Robots, Special Issue on Active Perception, 2017.
- D. Kopitkov and V. Indelman, “Computationally Efficient Belief Space Planning via Augmented Matrix Determinant Lemma and Re-Use of Calculations,” IEEE Robotics and Automation Letters (RA-L), no. 2, 2017.
- E. Farhi and V. Indelman, “Towards Efficient Inference Update through Planning via JIP - Joint Inference and Belief Space Planning,” in IEEE International Conference on Robotics and Automation (ICRA), May 2017.
- K. Elimelech and V. Indelman, “Consistent Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces,” in IEEE International Conference on Robotics and Automation (ICRA), May 2017.
- S. Pathak, A. Thomas, and V. Indelman, “Nonmyopic Data Association Aware Belief Space Planning for Robust Active Perception,” in IEEE International Conference on Robotics and Automation (ICRA), May 2017.
- K. Elimelech and V. Indelman, “Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017.
- Y. Ben-Elisha and V. Indelman, “Active Online Visual-Inertial Navigation and Sensor Calibration via Belief Space Planning and Factor Graph Based Incremental Smoothing,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017.
- D. Kopitkov and V. Indelman, “No Belief Propagation Required: Belief Space Planning in High-Dimensional State Spaces via Factor Graphs, Matrix Determinant Lemma and Re-use of Calculation,” International Journal of Robotics Research (IJRR), no. 10, 2017.
- K. Elimelech and V. Indelman, “Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations,” in International Symposium on Robotics Research (ISRR), Dec. 2017.
- S. Har-Nes, “Belief Space Planning for Autonomous Navigation while Modeling Landmark Identification,” Master's thesis, Technion - Israel Institute of Technology, 2017.
- A. Thomas, “Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation,” Master's thesis, Technion - Israel Institute of Technology, 2017.
- M. Chojnacki, “Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment,” Master's thesis, Technion - Israel Institute of Technology, 2017.
- D. Kopitkov, “Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use,” Master's thesis, Technion - Israel Institute of Technology, 2017.
- Y. Ben-Elisha, “Cooperative Multi-Robot Belief Space Planning for Visual-Inertial Navigation and Online Sensor Calibration,” Master's thesis, Technion - Israel Institute of Technology, 2017.
2016
- E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses,” in Experimental Robotics, The 14th International Symposium on Experimental Robotics, Springer, 2016, pp. 323–338.
- V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE Robotics and Automation Letters (RA-L), no. 1, 2016.
- V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” in IEEE International Conference on Robotics and Automation (ICRA), submission via IEEE Robotics and Automation Letters (RA-L), May 2016.
- V. Indelman, E. Nelson, J. Dong, N. Michael, and F. Dellaert, “Incremental Distributed Inference from Arbitrary Poses and Unknown Data Association: Using Collaborating Robots to Establish a Common Reference,” IEEE Control Systems Magazine (CSM), Special Issue on Distributed Control and Estimation for Robotic Vehicle Networks, no. 2, 2016.
- S. Pathak, A. Thomas, A. Feniger, and V. Indelman, “Towards Data Association Aware Belief Space Planning for Robust Active Perception,” in AI for Long-term Autonomy, workshop in conjunction with IEEE International Conference on Robotics and Automation (ICRA), May 2016.
- S. Pathak, A. Thomas, A. Feniger, and V. Indelman, “DA-BSP: Towards Data Association Aware Belief Space Planning for Robust Active Perception,” in European Conference on Artificial Intelligence (ECAI), accepted for short paper presentation, Sep. 2016.
- S. Pathak, S. Soudjani, V. Indelman, and A. Abate, “Formal and Data-association aware Belief Space Planning,” in Eighth European Starting AI Researcher Symposium (STAIRS), co-located with European Conference on Artificial Intelligence (ECAI), Sep. 2016.
- S. Pathak, A. Thomas, A. Feniger, and V. Indelman, “Robust Active Perception via Data-association aware Belief Space Planning,” 2016.
- D. Kopitkov and V. Indelman, “Computationally Efficient Active Inference in High-Dimensional State Spaces,” in AI for Long-term Autonomy, workshop in conjunction with IEEE International Conference on Robotics and Automation (ICRA), May 2016.
- V. Indelman, L. Carlone, and F. Dellaert, “Towards Planning in Generalized Belief Space,” in Robotics Research, The 16th International Symposium ISRR, Springer, 2016, pp. 593–609.
- D. Kopitkov and V. Indelman, “Computationally Efficient Decision Making Under Uncertainty in High-Dimensional State Spaces,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2016.
- T. Regev and V. Indelman, “Multi-Robot Decentralized Belief Space Planning in Unknown Environments via Efficient Re-Evaluation of Impacted Paths,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2016.
- T. Regev, “Multi-Robot Decentralized Belief Space Planning in Unknown Environments,” Master's thesis, Technion - Israel Institute of Technology, 2016.
2015
- V. Indelman and F. Dellaert, “Incremental Light Bundle Adjustment: Probabilistic Analysis and Application to Robotic Navigation,” in New Development in Robot Vision, Springer Berlin Heidelberg, 2015, pp. 111–136.
- V. Indelman, L. Carlone, and F. Dellaert, “Planning in the Continuous Domain: a Generalized Belief Space Approach for Autonomous Navigation in Unknown Environments,” International Journal of Robotics Research (IJRR), no. 7, 2015.
- J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “Distributed Real-time Cooperative Localization and Mapping using an Uncertainty-Aware Expectation Maximization Approach,” in IEEE International Conference on Robotics and Automation (ICRA), May 2015.
- S. Choudhary, V. Indelman, H. I. Christensen, and F. Dellaert, “Information-based Reduced Landmark SLAM,” in IEEE International Conference on Robotics and Automation (ICRA), May 2015.
- V. Indelman, “Towards Information-Theoretic Decision Making in a Conservative Information Space,” in American Control Conference (ACC), Jul. 2015.
- V. Indelman, R. Roberts, and F. Dellaert, “Incremental Light Bundle Adjustment for Structure From Motion and Robotics,” Robotics and Autonomous Systems, 2015.
- V. Indelman, “Towards Multi-Robot Active Collaborative State Estimation via Belief Space Planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2015.
- V. Indelman, “Towards Cooperative Multi-Robot Belief Space Planning in Unknown Environments,” in International Symposium on Robotics Research (ISRR), Sep. 2015.
- X. Yan, V. Indelman, and B. Boots, “Incremental Sparse GP Regression for Continuous-time Trajectory Estimation and Mapping,” in International Symposium on Robotics Research (ISRR), Sep. 2015.
- V. Indelman, “On Decision Making and Planning in the Conservative Information Space - Is the Concept Applicable to Active SLAM?,” in The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM, workshop in conjunction with Robotics Science and Systems (RSS) Conference, Jul. 2015.
- V. Indelman, “On Multi-Robot Active Collaborative Inference in Unknown Environments via Belief Space Planning,” in Principles of Multi-Robot Systems, workshop in conjunction with Robotics Science and Systems (RSS) Conference, Jul. 2015.
- X. Yan, V. Indelman, and B. Boots, “Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping,” in The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM, workshop in conjunction with Robotics Science and Systems (RSS) Conference. *Best workshop poster award*, Jul. 2015.
- V. Indelman, “Distributed Perception and Estimation: a Short Survey,” in Principles of Multi-Robot Systems, workshop in conjunction with Robotics Science and Systems (RSS) Conference, Jul. 2015.
- V. Indelman, E. Nelson, N. Michael, and F. Dellaert, “Distributed Navigation with Unknown Initial Poses and Data Association via Expectation Maximization,” in 56th Israel Annual Conference on Aerospace Sciences, Mar. 2015.
2014
- L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Eliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective based on Smart Factors,” in IEEE International Conference on Robotics and Automation (ICRA), Jun. 2014.
- V. Indelman, L. Carlone, and F. Dellaert, “Planning Under Uncertainty in the Continuous Domain: a Generalized Belief Space Approach,” in IEEE International Conference on Robotics and Automation (ICRA), Jun. 2014.
- V. Indelman, E. Nelson, N. Michael, and F. Dellaert, “Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative Poses via Expectation Maximization,” in IEEE International Conference on Robotics and Automation (ICRA), Jun. 2014.
- E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses,” in International Symposium on Experimental Robotics (ISER), Jun. 2014.
- S. Williams, V. Indelman, M. Kaess, R. Roberts, J. Leonard, and F. Dellaert, “Concurrent Filtering and Smoothing: A Parallel Architecture for Real-Time Navigation and Full Smoothing,” International Journal of Robotics Research (IJRR), Oct. 2014.
- V. Indelman, N. Michael, and F. Dellaert, “Incremental Distributed Robust Inference from Arbitrary Robot Poses via EM and Model Selection,” in RSS Workshop on Distributed Control and Estimation for Robotic Vehicle Networks, Jul. 2014.
- X. Yan, V. Indelman, and B. Boots, “Incremental Sparse GP Regression for Continuous-time Trajectory Estimation and Mapping,” in NIPS Workshop on Autonomously Learning Robots, Dec. 2014.
2013
- A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping,” in IEEE International Conference on Robotics and Automation (ICRA), May 2013.
- A. Cunningham, K. Ok, J. Antico, V. Indelman, and F. Dellaert, “Aerial Robot Experimental Design for Decentralized Visual SLAM,” in Unmanned Systems Technology XV - SPIE Defense, Security and Sensing, Apr. 2013.
- V. Indelman, A. Melim, and F. Dellaert, “Incremental Light Bundle Adjustment for Robotics Navigation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 2013.
- V. Indelman, L. Carlone, and F. Dellaert, “Towards Planning in Generalized Belief Space,” in International Symposium on Robotics Research (ISRR), Dec. 2013.
- V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert, “Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing,” Robotics and Autonomous Systems, no. 8, Aug. 2013.
- V. Indelman, R. Roberts, and F. Dellaert, “Probabilistic Analysis of Incremental Light Bundle Adjustment,” in IEEE Workshop on Robot Vision (WoRV), *best poster award*, Jan. 2013.
2012
- V. Indelman, R. Roberts, C. Beall, and F. Dellaert, “Incremental Light Bundle Adjustment,” in British Machine Vision Conference (BMVC), Sep. 2012.
- V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert, “Factor Graph Based Incremental Smoothing in Inertial Navigation Systems,” in International Conference on Information Fusion, Jul. 2012.
- A. Cunningham, V. Indelman, and F. Dellaert, “Consistent Decentralized Graphical SLAM with Anti-Factor Down-Dating,” in 10th IEEE International Symposium on Safety Security and Rescue Robotics (SSRR), Nov. 2012.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Graph-Based Distributed Cooperative Navigation for a General Multi-Robot Measurement Model,” International Journal of Robotics Research (IJRR), no. 9, Aug. 2012.
- V. Indelman, “Bundle Adjustment Without Iterative Structure Estimation and its Application to Navigation,” in IEEE/ION Position Location and Navigation System (PLANS) Conference, Apr. 2012.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Graph-Based Cooperative Navigation Using Three-View Constraints: Method Validation,” in IEEE/ION Position Location and Navigation System (PLANS) Conference, Apr. 2012.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Distributed Vision-Aided Cooperative Localization and Navigation Based on Three-View Geometry,” Robotics and Autonomous Systems, no. 6, Jun. 2012.
- M. Kaess, S. Williams, V. Indelman, R. Roberts, J. J. Leonard, and F. Dellaert, “Concurrent Filtering and Smoothing,” in International Conference on Information Fusion, Jul. 2012.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Real-Time Vision-Aided Localization and Navigation Based on Three-View Geometry,” IEEE Transactions on Aerospace and Electronic Systems, no. 3, Jul. 2012.
2011
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Distributed Vision-Aided Cooperative Localization and Navigation based on Three-View Geometry,” in IEEE Aerospace Conference, Mar. 2011.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Graph-based Distributed Cooperative Navigation,” in IEEE International Conference on Robotics and Automation (ICRA), May 2011.
- V. Indelman, “Navigation Performance Enhancement Using Online Mosaicking,” PhD thesis, Technion - Israel Institute of Technology, 2011.
2010
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning,” AIAA Journal of Guidance, Control and Dynamics, no. 6, 2010.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Mosaic Aided Navigation: Tools, Methods and Results,” in IEEE/ION Position Location and Navigation System (PLANS) Conference, May 2010.
2009
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Real-Time Mosaic-Aided Aerial Navigation: I. Motion Estimation,” in AIAA Guidance, Navigation and Control Conference, Aug. 2009.
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Real-Time Mosaic-Aided Aerial Navigation: II. Sensor Fusion,” in AIAA Guidance, Navigation and Control Conference, Aug. 2009.
2008
- V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Navigation Aiding Using On-Line Mosaicking,” in IEEE/ION Position Location and Navigation System (PLANS) Conference, May 2008.