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Introduction
Uncertainty

• Imprecise actions
• Imprecise measurements
• Changing environment
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An uncertain agent



Introduction
Challenges

• Solving problems online
• Computational limitations
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Planning Framework
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Agent belief

• Agent cannot directly observe the state, 
so it must maintain a belief over its state

• The current agent belief is used as the 
initial belief for the planner



Probabilistic Inference

• Prediction step:
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• Update step:



POMDP Formulation
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Belief Space Planning

• We wish to find a policy/action sequence that
minimizes the value function:

• The general reward 𝜌 may be either state dependent:

• Or belief dependent:
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All these expectations require 
some method to calculate them 
(analytically, Monte Carlo, etc.)



Belief Tree

• A data structure created to assist in reasoning about 
the optimal action

• Expands actions and observations via an algorithm of 
choice up to the defined horizon
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Challenges

• Finding a globally optimal solution is intractable
• Many prior works try to find asymptotically optimal solutions

10

Simplification with guarantees!
What can we do?



Simplification with Guarantees

• Find a simpler problem that is tractable to calculate
• Use known bounds to bound the difference between the simplified and unsimplified

results
• Uses:

• Quantify the suboptimality of an algorithm
• Anytime guarantees on an algorithm (deterministic bounds)
• If the bounds are tight enough, the optimal actions can still be selected

• When using probabilistic bounds, simplification comes with probabilistic guarantees
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Probability Theory Bounds

• Markov Inequality:

𝑃 𝑺 ≥ 𝑎 ≤
𝐸 𝑺
𝑎

• Hoeffding’s Inequality:

𝑃 𝐸 𝑓 𝑺 −
∑!"#$ 𝑓(𝑺!)

𝑛 ≤
Δ%&

2𝑛 log
2
𝛿 ≥ 1 − 𝛿
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ContribuHons

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar belief topologies when calculating conditional entropy
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Partial Expectation

• What if we could simplify the problem by only calculating the expectation on part of the 
support?

• Normal expectation ( ) requires integration
over the entire support

• Partial expectation ( ) requires integration
over part of the support
• Support is split into 
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Contributions

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar topologies when calculating conditional entropy
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Markov Bound Generalization

• Lower bound:

• Upper bound:

• can be further split into multiple subsets for a more
general bound 
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Measure of the subset



Markov Bound Generalization

• Assume 𝑓 𝑆 ≥ 0 →
• This quickly leads to the Markov inequality:

17

≥ 0



Markov Bound Generalization

• Properties:
• Convergence to the expected value
• Partial incrementality, reuse loose bounds to get tighter 

bounds
• Monotonicity of the difference between expectation and 

partial expectation
• Beneficial for planning algorithms
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Contributions

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar topologies when calculating conditional entropy
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Hoeffding Bound Generalization

• Blending Hoeffding’s inequality with our novel inequality yields two novel probabilisSc 
bounds

• If we sample from 𝑆 and then select a subset of samples:

• If we sample from a subspace:

• ̂ indicates empirical esSmator
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Hoeffding Bound Generalization

• Conditions exist that guarantee improvement upon Hoeffding’s inequality
• i.e the bound gap (upper bound – lower bound) is smaller

• These conditions depend not only on the measure of  ℬ but on the actual choice.
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Planning
Challenges

• Non-parametric beliefs
• Belief dependent rewards
• High dimensional problems
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Planning

• How do these bounds apply to planning?
• Value function and expected reward:

• Both have expectations we can calculate partially
• Can be done to the state or observation space, depending on our choice
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Reward Bounds

• Directly applying our primary bounds:

• Just like we would bound any function
• The above is with respect to the observation space
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Value Function Bounds

• Value function bounds:

• We immediately arrive a cumulative reward bound:
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Infimum with respect to all 
past observations, opaque



Value Function Bounds

• Value function bounds:

• A recursive form:

26

Still a bit opaque, 
needs to be 
calculated online



Value Function Bounds

• Complete branch pruning
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Contributions

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar topologies when calculating conditional entropy

28



Value Function Bounds

• Value function bounds:

• An easier recursive form:

• The tree is unchanged
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Contributions

• ParBal expectaBon bounds

• Hoeffding like bounds

• Value funcBon bounds via reward simplificaBon
• CondiBonal entropy bounds

• Boer’s esBmator bounds with greater computaBonal efficiency than previous works
• Reuse of informaBon between similar topologies when calculaBng condiBonal entropy
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Conditional Entropy

• Assumes actions are independent of observations
• Given with respect to the observation space

• Assumes model infimums greater than zero
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Contributions

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar topologies when calculating conditional entropy
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Boer’s EsHmator

• A common estimator for entropy is given by the Boer’s estimator1

• Prior works have provided bounds with 𝑶 𝒏𝑵 2, 𝑛 ≤ 𝑁
• We provide 𝑶 𝒏𝟐 bounds:
• Simplification is with respect to the state space
• Assumes that the model infimums are greater than zero

1) Y. Boers, H. Driessen, A. Bagchi, and P. Mandal. Particle filter based entropy. In 2010 13th International Conference on Information Fusion, 
pages 1–8, 2010.

2) Sztyglic, O., Indelman, V.: Speeding up online pomdp planning via simplification. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems 
(IROS) (2022)
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Data Association

• Without reasoning about data association, observation dimensionality can change
• Multiple landmarks may be observed at a given time
• We must reason which landmarks are observed
• Captured via the binary random vector 𝜷
• Example: Give the 6 landmarks available, only

landmarks 2, 5, and 6 return an observation, thus
𝛽 = 0 1 0 0 1 1 (
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Topology

• Many problems can be described using a factor 
graph (a bipartite graph representing the 
relationship between the variables)

• Commonly seen in high dimensional problems
(e.g. SLAM)

• Given a realization of data association, a 
specific factor graph topology is specified

• We augment the traditional belief tree with 
the addition of DA nodes (triangles)

• Resulting topologies are not true factor graphs 
at this point as the observations are still 
random (indicated by the filled squares)
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Topology EliminaHon

• Similar topologies share many of the same 
variables.

• We reason that we can simplify calculations of 
one topology by utilizing a neighboring 
topology
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Original topologyReference topology



Contributions

• Partial expectation bounds

• Hoeffding like bounds

• Value function bounds via reward simplification
• Conditional entropy bounds

• Boer’s estimator bounds with greater computational efficiency than previous works
• Reuse of information between similar topologies when calculating conditional entropy
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Condi)onal Entropy for Data Associa)on (DA)

• Bound the conditional entropy of a specific DA 
realization (𝛽) with respect to data from a 
similar DA realization ( A𝛽).
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Q-Function Bounds

• Utilizing the previous bounds as bound on the expected reward when the reward is 
entropy

• Utilizing over the planning horizon allows for bounds on the Q-function
• Can be used with Bellman optimality to:

• Provide bounds on the optimal value function
• If the bounds are tight enough can be used for optimal action selection
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Scenario

• Information gathering task in 𝑅& with 9 landmarks
• Landmarks are uncertain, part of the belief
• Planning horizon of 1
• Action space = cardinal directions
• Smoothing problem, past poses are added to state
• Simplification is performed with respect to the DA 

space
• We bound an estimator of the conditional entropy
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Scenario

• Green is starting point
• Red line is the ground truth trajectory
• Blue intensity indicates landmark success 

probability
• Yellow intensity indicates prior landmark certainty
• Black arrows are 

𝑎𝑟𝑔𝑚𝑎𝑥) 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
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Results

• 𝜅: approximate fraction of DA space that is 
calculated

• 𝜅 directly proportional to runtime
• 𝜅 directly proportional to bound tightness
• Each 𝜅 run is calculated from different particles 

resulting in a different estimator
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Open Questions

• How to select the best subset of a given size for the tightest bounds
• How to efficiently select a subset for online use
• How to select 𝛽*+%%
• Implementation of a full adaptive planning algorithm than can select the optimal action
• Incorporation of our Hoeffding like bounds into planning
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Summary

• Generalization of Markov inequality
• Generalization of Hoeffding’s inequality
• Simplification of rewards and value functions for planning
• Bounds on the conditional entropy via observation space simplification
• Bounds on the Boers estimator via state space simplification
• Conditional entropy bounds for problems with topology and data association 
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