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Simplified Continuous High-Dimensional Belief
Space Planning With Adaptive Probabilistic

Belief-Dependent Constraints
Andrey Zhitnikov and Vadim Indelman

Abstract—Online decision making under uncertainty in partially
observable domains, also known as Belief Space Planning, is a
fundamental problem in Robotics and Artificial Intelligence. Due
to an abundance of plausible future unravelings, calculating an
optimal course of action inflicts an enormous computational bur-
den on the agent. Moreover, in many scenarios, e.g., Information
gathering, it is required to introduce a belief-dependent constraint.
Prompted by this demand, in this article, we consider a recently
introduced probabilistic belief-dependent constrained partially ob-
servable Markov decision process (POMDP). We present a tech-
nique to adaptively accept or discard a candidate action sequence
with respect to a probabilistic belief-dependent constraint, before
expanding a complete set of sampled future observations episodes
and without any loss in accuracy. Moreover, using our proposed
framework, we contribute an adaptive method to find a maximal
feasible return (e.g., Information Gain) in terms of Value at Risk
and a corresponding action sequence, given a set of candidate
action sequences, with substantial acceleration. On top of that, we
introduce an adaptive simplification technique for a probabilisti-
cally constrained setting. Such an approach provably returns an
identical-quality solution while dramatically accelerating the on-
line decision making. Our universal framework applies to any
belief-dependent constrained continuous POMDP with parame-
teric beliefs, as well as nonparameteric beliefs represented by
particles. In the context of an information-theoretic constraint,
our presented framework stochastically quantifies if a cumula-
tive Information Gain along the planning horizon is sufficiently
significant (for e.g., Information Gathering, active simultaneous
localization and mapping (SLAM)). As a case study, we apply our
method to two challenging problems of high dimensional belief
space planning: active SLAM and sensor deployment. Extensive
realistic simulations corroborate the superiority of our proposed
ideas.

Index Terms—Active simultaneous localization and mapping
(SLAM), autonomous robotic exploration, belief space planning
(BSP), belief-dependent probabilistic constraints, belief-dependent
rewards, constrained belief-dependent partially observable
Markov decision process (POMDP).
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I. INTRODUCTION

A COMPREHENSIVE approach to craft many online
decision-making problems, characterized by the agent

situated in an environment and acting under uncertainty, is
the partially observable Markov decision process (POMDP).
For most such problems, it is sufficient to assume that the
belief-dependent reward is merely the expectation of a state-
dependent reward with respect to belief. This assumption
is the case in classical POMDP formulations. In contrast,
numerous problems in robotics, such as informative plan-
ning tasks [1], active simultaneous localization and mapping
(SLAM) [2], and sensor deployment (SD) problem [3] are
explicitly concerned with decreasing uncertainty, thereby raising
the need for planning with general belief-dependent reward
functionals.

General belief-dependent operators were examined in the
context of reward but hardly so in the context of the constraint.
In the robotics community, continuous POMDP with belief-
dependent information-theoretic rewards is known as belief
space planning (BSP) [4], [5]. Oftentimes the belief in BSP is
over a high-dimensional state. In this article we focus on such a
setting.

One of the embodiments of high-dimensional BSP, and
also the subject of our interest, is active SLAM. Further we
sometimes omit word “active.” In SLAM, the environment
where the robot operates is unknown and shall be revealed by
the robot. Such a map can be represented, for instance, as a
discrete occupancy grid [6] or continuous landmarks [5]. In the
latter setting, typically the robot’s state comprises the robot’s
pose trajectory and the map to be estimated. In the landmark-
based SLAM the previous robot poses are not marginalized out
but kept to preserve the sparse structure of the belief. Another
related problem is SD. In this problem, a robot shall decide where
to deploy sensors to measure some spatially dispersed continu-
ous phenomenon, e.g., temperature. The map is represented by
a grid, such that the number of grid cells is the dimension of the
quantity of interest.

Both of these problems have a high-dimensional state. In the
SD problem, the state is of the dimension of the grid alongside
the robot pose. The number of grid cells can be arbitrarily
large. In the SLAM problem, in the case of a binary grid map,
the dimension is large since, typically, a satisfactory resolution
is desired. In the case of continuous landmarks representation,
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the robot gradually reveals more and more landmarks making
the state increasingly large.

Since the belief is to be maintained over a high-dimensional
state, it is not an easy task for an online operating robot. This
computational challenge in the context of planning is known as
curse of dimensionality. Moreover, with an increasing planning
horizon, the number of possible measurements and candidate
action sequences grows exponentially, assembling the computa-
tionally intractable decision making problem. This phenomenon
is usually regarded as the curse of history. Many research efforts
have targeted both curses.

Since typical high-dimensional BSP problems hold an enor-
mous computational burden, many methods exist to reduce
computational complexity and find an approximately optimal
solution. Let us mention a few. In robotics, the abundance of
possible future observations within the planning phase is often
resolved by the maximum likelihood (ML) assumption. Origi-
nally suggested for low-dimensional BSP by Platt et al.[7], it was
adopted to active SLAM [8], [9]. Yet, while widely used, taking
into account merely the most likely measurements episode is
highly unrealistic, particularly in the presence of significant
uncertainty. It is possible that the largest available reward is
not the most likely one, resulting in a substantial error in the
objective estimate and, consequently, a suboptimal autonomous
behavior. Stachniss et al. [10] sampled a single episode of
possible future observations. One standing-out approach to use
a number of sampled observations builds upon the reuse of
calculations between successive planning sessions, alleviating
the computational burden [11], [12]. Another approximation
in a high-dimensional BSP setting done by [11] and [12] is to
consider predefined static action sequences instead of policies.
Interestingly, this approximation is also implicitly done by all
methods utilizing ML observations or a single sample of the
future observations episode. This is because under a single future
observations episode assumption the candidate policy and prede-
fined static action sequence are the same. One more method [3]
along these lines leverages the structure of the belief over a high-
dimensional state to speedup BSP and does not compromise
performance at all. Notably, while the authors of [3] used ML
assumption, it is not an inherent limitation of the approach. An
additional example [13] is finding approximate POMDP solu-
tions through belief compression. This approach was designed to
reduce computational complexity for high-dimensional beliefs
and policies, but works with expected state-dependent rewards
and the extension to general belief-dependent rewards requires
clarification.

The artificial intelligence (AI) community is also engaged
in augmenting the classical POMDP formulation with belief-
dependent rewards. The journey started from ρ-POMDP [14]
and significantly advanced through time [15], [16], [17]. Com-
monly, these approaches seek to find an optimal policy instead
of predefined static action sequence.

Recent methods, merging both worlds, build upon the sim-
plification paradigm [18], [19], [20]. These simplification-based
methods finally relax limiting assumptions, e.g., Gaussian belief,
piecewise linearity, or Lipschitz continuity of the reward, and

permitted universal belief-dependent rewards, such as differen-
tial entropy of general beliefs. Since the differential entropy
operator acts over the belief, which can be parameterized in
various ways, e.g., Gaussian or set of particles, questions of
piecewise linearity, or Lipschitz continuity are vague and well
defined only when the state is discrete and the number of
possible state realizations is finite. In a continuous setting, they
shall be approached individually for each belief parameteriza-
tion. This fact discards many early approaches [14], [15] to
include belief-dependent rewards within POMDP. Another line
of simplification works alleviate the curse of dimensionality
in the setting of multivariate Gaussian distributions utilizing
sparsification [21], [22] and topological [23], [24] aspects. The
simplification paradigm was also applied with Gaussian-mixture
distributed beliefs [25], [26], [27].

Adaptivity is another important mechanism to identify re-
dundancies in the decision making problem and reduce the
computational effort [28].

All decision-making methods discussed above are concerned
with selecting the best action and disregarding the actual amount
of profit or risk entirely. However, the latter is essential, since
preventing the robot from performing unnecessary or self-
destructive operations is highly important. This gap can be filled
by introducing constraints into the decision-making formula-
tion. Some attempts to do so in the context of safe POMDPs
include chance constraints [29].

A general belief-dependent constraint, however, has not re-
ceived proper attention so far except in our previous work [30],
where we focused on safety and comparison to chance con-
straints, and not on the Information gathering tasks. Note
that chance constraints do not accommodate general belief-
dependent operators such as Information Gain (IG).

In this article, we continue to investigate the facets of
our proposed earlier framework [30] of belief-dependent
probabilistically constrained continuous POMDP. Motivated by
Information gathering, also called informative planning tasks,
we focus on the cumulative form of the constraint in the realm of
high-dimensional BSP. This is in contrast to the multiplicative
form as in our previous article. One of the specific applications
of our framework is stopping exploration. Moreover we
provably extend the simplification framework to both forms of
the constraints in our novel probabilistically constrained setting.
The first form is cumulative and the second is multiplicative.

There are attempts to use differential entropy gain as a
constraint to halt exploration in the problem of active SLAM [9],
[31]. However, it was only partially investigated since
algorithms solving BSP typically assume single observations
episode [1], [3], [9], [10] to alleviate the computational
burden. Stopping exploration is still regarded as an open
problem [31]. Importantly, we did not find any works relaxing
single observations episode assumption in the context of SD
problem [3], [22], [32] and informative planning [1].

Our probabilistic belief-dependent constraint of cumulative
form, which will become apparent later, generalizes previous
approaches. The naive way to threshold a belief-dependent
operator under partial observability is to do expectation with
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respect to observations. However, even this has gained less
attention so far and has not been done to the best of the
authors’ knowledge, due to the reason discussed above, single
observations episode assumption. In contrast to expectation
with respect to future observations, we propose a probabilistic
condition. Our proposed variant is sensitive to the distribution of
the belief-dependent constraint, which we call inner constraint,
while averaging with respect to future observations is not.

As opposed to a threshold on expectation with respect to
observations, we propose two conditions. Interior condition
thresholds using δ the belief-dependent operator (return) for
given sequence of possible future observations. The exterior
condition verifies that the interior one is satisfied with confidence
level of at least 1−ε. To rephrase it, we require that the frac-
tion of the observation sequences samples fulfilling the interior
condition will be at least 1−ε. In due course, we consider two
different problem formulations. In the first problem, δ is speci-
fied externally by the user. We coin this problem as optimality
under a probabilistic constraint. In the second problem, that
we name maximal feasible return, δ is a free parameter to be
maximized. In turn, our formulation and approach enable fast
adaptive maximization of value at risk (VaR) on top of a general
belief-dependent return. This problem is highly challenging due
to the fact that VaR is not a coherent functional [33].

Our contributions are fourfold. Below we list them down in
the same order as they are presented in the manuscript.

1) First, we utilize our probabilistically constrained belief-
dependent POMDP in the context of an information-
theoretic constraint. We focus on the IG, however, our
theory supports any other belief-dependent operator, e.g.,
difference between traces of covariance matrices of two
consecutive-in-time beliefs. We analyze the mutual infor-
mation (MI) constraint and ML observation approach ver-
sus our novel probabilistic constraint. Notably, we did not
find any works shifting the MI from the reward operator
to the constraint.

2) Second, we rigorously derive a theory of simplifica-
tion in the constrained setting. We emphasize that the
simplification paradigm has not been considered in this
setting before. Given a monotonically converging to
the belief-dependent constraint or/and reward bounds,
depending on context, our approach can be simplified,
gaining substantial speedup without any loss in perfor-
mance quality.

3) Third, we present an algorithm to maximize VaR adap-
tively utilizing the suggested theory. As we unveil in
this article, this enables the decision maker to save time
by adaptively expanding the lowest required number of
observation episodes without compromising the quality
of the solution.

4) Fourth, we apply our technique to a high-dimensional BSP.
In particular, our case studies are active SLAM and SD
problems.

The rest of this article is structured as follows. We start from
background and notations in Section II. Section III presents
our next step, that is, the in-depth discussion of the problem
formulation and our approach. In Section IV, we then present an

application of our methods. Section V presents the simulations
and results. Finally, Section VI concludes this article.

II. BACKGROUND AND NOTATIONS

By the bold symbols, we denote time vector quantities; by
�a:b, we mark series annotated by the time discrete indices run-
ning froma to b inclusive. The letterP symbolizes the probability
density function (PDF) andP the probability. By lowercase letter
we denote the random quantities or the realizations depending
on the context. For brevity, we sometimes replace E�[·|·] by
E�|·[·].

A. High-Dimensional BSP

Let us introduce the POMDP with belief-dependent rewards
named ρ-POMDP alias to BSP. The ρ-POMDP is a tuple
〈X,A,Z, T,O, ρ, γ, b0〉 where X,A, and Z denote state, ac-
tion, and observation spaces with x ∈ X, a ∈ A, and z ∈ Z
the momentary state, action, and observation, respectively.
T (x′, a, x)=PT (x

′|x, a) is a stochastic transition model from
the past state x to the subsequent x′ through action a. Further,
γ ∈ (0, 1] is the discount factor, b0 is the belief over the initial
state (prior), and ρ(b, b′) is a general belief-dependent reward
depending on two consecutive in time beliefs. For conciseness,
let us denote interchangeably �k+ and �k:k+L−1, as well as
�(k+1)+ and �k+1:k+L. This article deals with static action
sequences of variable horizon L. Namely, our action space
is A � {aik:k+Li−1}|A|i=1. Our actions along a particular action
sequence are of different lengths. We also can think about such an
action sequence as a path P comprising motion primitives. Yet,
the action sequence is a much more general notion. So far, we
have described the classical components of POMDP. However,
in BSP, the observation model O(·) undergoes a customization
that will be apparent later. For now, we leave it undefined.

An autonomous robot deployed in an environment (possibly
unknown) repeatedly performs acting, sensing, and planning
sessions, up until it reaches the required goal or fails to do so as
we further formulate. In the planning phase, the robot relies on
the entire action-observation history. Let ht � {b0, a0:t−1, z1:t}
be the history, i.e, the set comprising the performed by the agent
actions a0:t−1 and obtained observations z1:t in an interleaving
manner up to time instant t, and the prior belief b0. To clarify,
we denote by t an arbitrary time instant and by k the time instant
of the current planning session. Such that if t ≥ k, the subscript
t regards to future time. Another representation of history is the
posterior belief. We define the posterior belief bt as a shorthand
for the PDF of the POMDP state, given all information up to
time instant t. The state is denoted by xt and the belief is
bt(xt) � P(xt|ht). In this article the belief converts the history
to a more convenient form, bt and can be used interchangeably
with ht, as opposed to our previous work [19].

Frequently, in BSP problems, the robot’s map is unknown
and therefore regarded as a random quantity. This allows the
robot to operate in unfamiliar environments. For the SLAM
problem we opt for landmarks map representation, so the robot’s
state is xt � (x0:t, {�j}M(k)

j=1 ), where x0:t are the robot poses,
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(a) (b) (c)

Fig. 1. Possible belief trees in continuous setting given βk+1:k+2. By purple and teal colors, we denote possibly different dimensionality of the observation as
explained in Section II-B. Thick yellow lace illustrates the observation sequence zk+1:k+2 (Section III-E). (a) Visualization of the belief tree given the realization
of βk+1:k+2 for action sequence ak+. Here, we show two samples of observations per propagated belief. Superscript designates the child number. This belief
tree supports policies and Bellman update. (b) In this belief tree the observation superscript designates the lace. (c) One possible realization of configuration is
β = (01011)T .

{�j}M(k)
j=1 are the landmarks and M(k) is the number of land-

marks the robot has observed until time instant k inclusive.
These landmarks represent the unknown robot’s environment,
specifically the map, to be estimated. To emphasize that j is not
a time index, we denote it by a superscript instead of a subscript.
Commonly, in SD problem the map is known. The robot moves
over the known map divided into cells. Many works assume
a deterministic transition model [1], [3], [22]. In contrast we
do not make this assumption and formulate the SD problem as
a complete POMDP with state comprising the robot position
xt ∈ R2 and the phenomenon of interest, vector ξ ∈ RN . Over-
all, the POMDP state is xt � (xt, ξ) = (xt, ξ

1:N ). Note that for
clear notation, cells in state are linearly indexed. The conversion
from a Cartesian index to linear does not pose a problem. Let
LinInd(·) be the function doing that.

B. Observation Configuration Random Vector and Model

In this section, we rigorously define a customized observation
model in BSP. The dimension of the observation in BSP planning
can vary in time. A typical reason for this variability is the
finite visibility radius or sensing range of the robot. In a SLAM
problem, the robot observes a subset of landmarks, whereas in
a SD problem, the robot’s position defines the observed cells,
a subset of sensors yielding the reading of the phenomenon of
interest. We denote by vector β the configuration of observed
landmarks or cells. Let us start from SLAM.

1) β for Active SLAM: Let βt ∈ {0, 1}M(k) be a random
vector of Bernoulli variables, statistically independent given
robot’s pose xt and a landmark, as will be shortly displayed
by (1) and (2). Its dimensionality is the number of landmarks
present in the belief. Each realization of βt defines a subset of
visible landmarks. Such a realization has ones at the indexes
of visible landmarks and zeros else, such that [β]j = 1∀j ∈
{jν}n(β)

ν=1 , where n(β) =
∑

j [β]
j . (By [·]j we indicate the co-

ordinate j of a vector.) The superscript ν defines a subsequence
of indices jν of visible landmarks [Fig. 1(c)]. Let us clarify,
j1, j2, . . . represent, strictly increasing with ν, values of indexes
of enumerated landmarks resulting in a random set {jν}n(β)

ν=1 ,
such that jν = j(ν).

The mapping from the Boolean vector β to the random finite
set of indices {j1, j2 . . .} is invertible. Therefore, one can define
a probability over the random finite sets [34] instead of Boolean
vectors.

One way to define a probabilistic model for visible landmarks
configuration is as follows:

Pβ

(
[βt]

j = 1|xt, �
j
)
= 1{‖xt−�j‖≤r}

(
xt, �

j
)

Pβ

(
[βt]

j = 0|xt, �
j
)
= 1− 1{‖xt−�j‖≤r}

(
xt, �

j
)

(1)

where r is a visibility radius. Our approach is not limited to
this specific model and supports any other model; for instance,
in more complex scenarios (1) would imitate a camera field of
view. Equation (1) portrays that each landmark deterministically
has a visibility radius. If the robot is close enough, it receives a
signal from the landmark. Overall we arrive at the following:

Pβ

(
βt

∣∣xt, {�j}M(k)
j=1

)
=

M(k)∏
j=1

Pβ

(
[βt]

j |xt, �
j
)
. (2)

Here, we assumed that t ≥ k and the planner does not reveal
new landmarks in a planning session, that is, M(k) depends on
the present time k but not the future time t. We define now a
customized observation model for n(β) > 0 as

O(z,x,β) � P(z|x, {�j}M(k)
j=1 ,β) =

n(β)∏
ν=1

PZ

(
zν |x, �jν) .

(3)

where x is the last robot pose in x.
2) β for SD: As we mentioned above, in SD problem the

variability of the dimension of observation stems from another
source. The dimension of β is the number of cells. Vector β
has one at the coordinates corresponding to the linear indexes
(converted from Cartesian index) of the grid where active sensors
yield an observation. The simplest model for β is as follows:

Pβ([βt]
j = 1|xt) = 1{LinInd(Cell(xt))==j}(xt)

Pβ([βt]
j = 0|xt) = 1− 1{LinInd(Cell(xt))==j}(xt) (4)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 16,2024 at 17:23:42 UTC from IEEE Xplore.  Restrictions apply. 



1688 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

describing that the observation is received from a single sensor
at the cell of the robot location. The Cell(xt) function returns
Cartesian indices of the cell there the robot is located. Overall
we have that

Pβ

(
βt

∣∣xt

)
=

N∏
j=1

Pβ([βt]
j |xt). (5)

The observation model for n(β) > 0 materializes as

O(z,x,β) � P(z|x, ξ,β) = PZ(z
x|x)

n(β)∏
ν=1

PZ(z
ν |x, [ξ]jν ).

(6)

Now, we turn to the BSP objective to be maximized.

C. Objective

A common BSP objective is given by the following:

U(bk, ak+; ρ) = Eβ(k+1)+

[U β(k+1)+(bk, ak+; ρ)
∣∣bk, ak+]

(7)

where U β(k+1)+(bk, ak+; ρ) is

Ez(k+1)+

[
k+L−1∑
t=k

ρ(bt, bt+1)
∣∣bk, ak+,β(k+1)+

]
(8)

and where t is the running time index and k is the present
time instant. The inner expectation U β(k+1)+(bk, ak+; ρ) [see
possible belief trees in Fig. 1(a) and (b)] corresponds to the utility
given a static set of visible landmarks (SLAM problem) or active
sensors (SD problem), or another constellation of parameters
depending on the considered problem. Therefore, conditioned
on a sequence β(k+1)+, per time index, the dimension of the
observation is fixed (It can be different, however, for different
time indices). Thus, the expectation operator is well defined. The
outer expectation performs an average of such values, weighted
in terms of β(k+1)+ [Fig. 1(c)]. Note that while it is appealing
to fold the conditional expectations in (8) using the law of
total expectation, we cannot do that since the dimension of the
observation zt depends on each specific realization of βt.

To summarize this section, BSP accommodates continuous
spaces and varying dimension of observation conditioned on
state. To verify our algorithms in different scenarios we will
simulate both trees depicted in Fig. 1(a) and (b).

III. PROBLEM FORMULATION AND APPROACH

In this work, we define and tackle two novel problems. Both
problems are explicitly aware of the distribution stemming from
future observations and, therefore, are risk-aware.

A. Introducing Distribution Awareness into BSP

Our first problem formulation is the optimality under a prob-
abilistic constraint

a∗ ∈ arg max
ak+∈A

U(bk, ak+; ρ) subject to

P(c(bk:k+L;φ, δ) = 1|bk, ak+) ≥ 1− ε (9)

where c is the indicator variable over inner condition, as we will
shortly see, φ is the general belief-dependent operator, and δ and
0 ≤ ε<1 are scalars. The utility U in (9) conforms to (7). The
parameters δ and ε are supplied by the user.

The inner expression c(bk:k+L;φ, δ) in (9) can be of two
forms. The first (cumulative) form is as follows:

c(bk:k+L;φ, δ) � 1{(k+L−1∑
t=k

φ(bt,bt+1)

)
> δ

}(bk:k+L) (10)

and the second (multiplicative) is

c(bk:k+L;φ, δ) �
k+L∏
t=k

1{φ(bt)≥δ}(bt). (11)

Note, the strict inequality marked by the red color
in (10). Further, let us refer to the inner inequality
as the inner constraint and correspondingly the outer
inequality (9) as the probabilistic (outer) constraint. From
now on, let us denote constraining return and the actual
return operators as s(bk:k+L;φ)�

∑k+L−1
t=k φ(bt, bt+1) and

s(bk:k+L; ρ)�
∑k+L−1

t=k ρ(bt, bt+1), respectively. To encapsu-
late both cases ρ and φ we will denote s(bk:k+L; ·).

Now, we contemplate what will happen, if δ is a free parameter
and not predetermined as before. In this case we would like to
select action sequence corresponding to largest maximal feasible
return [actual or constraining s(bk:k+L; ·)] with probability of
at least 1−ε. That is, maximal δ yielding that, at most, a single
action sequence is feasible. With this insight in mind, we arrive
at our second problem formulation, which we named maximal
feasible return defined as follows:

a∗ ∈ arg max
ak+∈A

V(bk, ak+; ε) (12)

where the VaR expressed byV(bk, ak+; ε) = VaRε(s(bk:k+L; ·)|
bk, ak+) defined by

sup{δ : P(s(bk:k+L; ·) ≥ δ|bk, ak+) ≥ 1− ε}. (13)

It is noteworthy that in (13), we have nonstrict inner inequality
≥ δ (marked by the red color). We will need it further in our
approach. In contrast, in (10) the inequality involving δ is strict.
This aspect will be clear in the sequel. Moreover, inclusion
to or exclusion from the set in (13) of the δ that satisfies
P(s(bk:k+L; ·) = δ|bk, ak+) ≥ 1−ε does not impact the out-
come of supremum operator in (13).

Due to noncompliance to Bellman form of (13) computing
(12) is notoriously challenging.

B. Averaging With Respect to Observations

Another way to introduce a belief-dependent constraint to
POMDP would be by averaging with respect to observations.
Namely, the probabilistic constraint in (9) is replaced by the
condition C(bk, ak+;φ) > δ (Note also here that the inequality
is strict) given by

C(bk, ak+;φ)=Eβ(k+1)+

[Cβ(k+1)+(bk, ak+;φ)
∣∣bk, ak+]>δ

(14)
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where Cβ(k+1)+(bk, ak+;φ) equals to

Ez(k+1)+

[
k+L−1∑
t=k

φ(bt, bt+1)
∣∣bk, ak+,β(k+1)+

]
. (15)

However, if one transfers the utility (7) to the constraint, in
other words, when ρ(·)≡φ(·) such a constraint appears to be
problematic. If U(·)≡C(·), we can always maximize the utility
and ask if the optimal utility is larger than δ (i.e.,U∗ > δ). In case
that maxak+∈A U(bk, ak+; ρ) ≤ δ, no feasible action sequence
exists in A. In general, this is the question of what one verifies
first, optimality or feasibility. As we shall further see, in some
cases the order does matter and we can save time by a fast
feasibility check and cancellation of action sequences.

One important operator related to the averaging with
respect to observations is MI. Assume that we can de-
duce β from the corresponding observation z. In this
case bt(xt) = P(xt|ht,β1:t). We shed light on this fact in
Section IV-A. Using this assumption, we can write (15)
as
∑k+L−1

t=k E
zk+1:t

[ E
zt+1|bt,at,βt+1

[φ(bt, bt+1)]
∣∣bk, ak+,βk+1:t].

Assume also that the belief is over the last robot pose and some
static-in-time random term, e.g., map in SLAM or phenomenon
of interest in SD. Let’s call this static-in-time random term χ.
Recall, that in our formulation of SLAM the robot does not reveal
new landmarks in a planning session, so the map is static-in-time
within planning. In SD the map is known and, therefore, is not
part of the state. Suppose a myopic setting and define

E
zk+1|bk,ak+,βk+1

[φ(bk, bk+1)] � MI(xk+1, χ; zk+1|bk, ak+,

βk+1) = E
zk+1|bk,ak+,βk+1

[−h(bk+1)]

+ h(P(xk+1, χ|bk, ak+,βk+1))
(16)

where the differential entropy of the belief h(b) is given by

h(b) � −
∫
x

b(x) log b(x)dx. (17)

We see that (16) is always nonnegative due to MI(·) ≥ 0. In
addition, differential entropy does not have units. At this point,
we arrive to the question of selecting a meaningful δ. Thanks
to the strict inequality in (14), we can set δ = 0 and catch
and discard the action sequences where the observations are
statistically independent from the state. This is highly unlikely,
however, that all the candidate action sequences will be not
feasible. Therefore, such a constraint hardly can serve as a
stopping exploration criterion.

If the robot is fully observable and the belief is solely over the
fixed-in-time-term χ as in SD, by defining φ as IG in the most
common sense

φ(b, b′) = IG(b, b′) = −h(b′) + h(b) (18)

we obtain a telescopic series in (15) and (15) equals to

E
z(k+1)+|bk,ak+,β(k+1)+

[−h(bk+L)+h(bk)]=MI(χ; zk+1|bk, ak+,β(k+1)+). (19)

We again observe that to define a meaningful δ besides δ = 0
and stop to explore will be problematic also here.

Let us now consider the belief is over the whole robot trajec-
tory and the fixed-in-time random term χ. If we utilize (18), we
obtain a telescopic series in (15), which becomes

Ez(k+1)+
[−h(bk+L) + h(bk)|bk, ak+,β(k+1)+]

= MI
(
x0:k+L, χ; z(k+1)+

∣∣bk, ak+,β(k+1)+

)
+ h

(
P(x0:k+L, χ|bk, ak+,β(k+1)+

)
. (20)

Here, with δ = 0 the robot can stop to explore if all candidate ac-
tions yield E

z(k+1)+|bk,ak+,β(k+1)+

[−h(bk+L)+h(bk)] ≤ 0. This

is because of the additional to MI(·) term in (20).
Now, we see the purpose of the strict inequality in (10).

This is to allow the robot to explore only if the cumulative
IG is nonnegative (δ = 0). We continue to debate the matter
of selecting δ in Section IV-C.

C. Single Observation Sample Approximation

Another option would be to use a ML episode of observations
zML
k+1:k+L and check (

∑k+L−1
t=k φ(bt, at, z

ML
t+1, bt+1))>δ, where

the ML observation zML
t+1 is obtained as follows. We start from

a ML state xML
t+1∈arg maxxt+1

P(xt+1|bt, at), and then find

βML∈arg maxβt+1
Pβ(βt+1|xML

t+1) (see Appendix A). This, in

turn, results in zML
t+1 ∈ arg maxzt+1

P(zt+1|xML
t+1,β

ML
t+1). The

ML assumption approximates the observations episode likeli-
hood as

P
(
z(k+1)+|bk, ak+

)
= δ

(
z(k+1)+ − zML

(k+1)+

)
(21)

where δ(·) is Dirac delta function. Note that the probability in
(13) can be written as∫

z(k+1)+

P
({s(bk:k+L; ·) ≥ δ}|bk, z(k+1)+, ak+

) ·
P(z(k+1)+|bk, ak+)dz(k+1)+ =

∫
z(k+1)+

1{s(bk:k+L;·)≥δ}(bk+)

P(z(k+1)+|bk, ak+)dz(k+1)+. (22)

Plugging (21), this in turn yields the degeneration of the
probability in (13) to 1{s(bk:k+L;·)≥δ}(bML

k:k+L). In this case,
the set in (13) is {δ : 1{s(bk:k+L;·)≥δ}(bML

k:k+L) ≥ 1−ε}, so if
0 ≤ ε<1 the set above is {δ:δ ≥ s(bML

k:k+L; ·)} and sup{δ:δ ≤
s(bML

k:k+L; ·)} = s(bML
k:k+L, ·). We conclude that under the ML

assumption the expected return is equivalent to VaR with any
confidence level ε ∈ [0, 1). In fact, this applies for any single
sample approximation. We can conclude that using single sam-
ple approximation prevents the application of distribution aware
operators, such that VaR or conditional VaR (CVaR).

D. Comparison

Now we are back to our distribution aware setting. We can
interpret the difference between expected constraint (15) and
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our probabilistic risk-aware constraint (9) as follows. The con-
ventional constraint is unaware of the distribution of the cumu-
lative values of operator φ. It decides whether the constraint is
fulfilled or not solely using the expected value. The constraint’s
expected value may fail to represent the underlying distribution
adequately. In contrast, our formulation is distribution aware.
We explicitly regard the distribution of future laces of the beliefs
using parameters ε and δ.

In the following sections, we develop a universal theory to
evaluate the sample approximation of our proposed probabilis-
tic inequality (9) adaptively. On top of that, we expedite the
evaluation process even more by extending the simplification
paradigm to our setting, enjoying the substantially improved
celerity versus baseline approaches.

E. Adaptive Belief Tree

In reality to evaluate our probabilistic constraint in (9)
we shall marginalize over observation episodes, leverage that
P(c(bk:k+L;φ, δ) = 1|bk, ak+, z(k+1)+) = c(bk:k+L;φ, δ) and
solve∫

z(k+1)+

c(bk:k+L;φ, δ)P(z(k+1)+|bk, ak+)dz(k+1)+. (23)

The integral in (23) is not accessible in a general setting. One way
to approximately evaluate the (23) is to sample from observation
likelihood P(z(k+1)+|bk, ak+). We assume that we have a fixed
budget m of samples of observation laces. Our aim is to use
the fact that we have a particular structure of the probabilistic
condition (23) and to address its evaluation while constructing
the belief tree, thereby saving valuable running time or providing
a more accurate solution.

Imagine a candidate action sequence ak:k+L−1. To approxi-
mate the utility and the probabilistic constraint (9), an online
algorithm at the root (for each candidate action sequence)
expands upon termination m laces appropriate to the drawn
observations {zl

k+1:k+L}ml=1. Through the article we label the
laces in the belief tree by the superscript l [yellow thick lace
in Fig. 1(a) and (b)]. Each lace l corresponds to a particular
realization of the sequence of the beliefs, return s(bk:k+L; ρ) or
constraining return s(bk:k+L;φ). The sample approximation of
(23) from m laces is

P̂(m)(c(bk:k+L;φ, δ) = 1|bk, ak+) = 1

m

m∑
l=1

c(blk:k+L;φ, δ)

(24)

and the outer constraint in (9) becomes

1

m

m∑
l=1

c(blk:k+L;φ, δ) ≥ 1− ε. (25)

We employ an already expanded part of the belief tree with m̃
laces to bound the expression of the probabilistic constraint (24)

from each end using the following adaptive lower bound

1

m

m̃∑
l=1

c(blk:k+L;φ, δ)︸ ︷︷ ︸
lb(1)

≤ 1

m

m∑
l=1

c(blk:k+L;φ, δ) (26)

and the upper bound

1

m

m∑
l=1

c(blk:k+L;φ, δ) ≤

ub(1)︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑
l=1

c(blk:k+L;φ, δ)

(27)

where, the algorithm already expanded m̃ ≤ m laces. By adap-
tivity, we mean the expanding lowest number of laces m̃ to
accept or discard the candidate action sequence.

F. Adaptive Simplified Constraint Evaluation

As introduced in [18], [19], [21], and [25], the simplification
paradigm seeks to ease the computational burden in the decision
making problem, while providing performance guarantees. The
latter is achieved by applying bounds over various quantities in
the decision making problem (e.g., bounds over a reward func-
tion). In this section, we extend this concept to our probabilistic
belief-dependent constrained POMDP setting (9) and (12).

Suppose we have adaptive deterministic bounds over φ,
i.e., these bounds hold for any realization of the beliefs. Further,
evaluating these bounds is computationally cheaper than the
operator φ. One example of such bounds can be found in [18]
and [20]. Let us present the main theorem of this section, which
will shed light on how these bounds can be utilized, propagating
their adaptivity further to the adaptive probabilistic constraint
evaluation.

Theorem 1 (Simplification machinery): Imagine a sampled
set of the observations laces {zl

k+1:k+L}ml=1. Assume that ∀l

φ
(
bl�+1, b

l
�

) ≤ φ
(
bl�+1, b

l
�

) ≤ φ
(
bl�+1, b

l
�

)
. (28)

Let two forms of sampled inner constraint bounds variants be

c
(
blk:k+L;φ, δ

)
� 1{(k+L−1∑

t=k

φ(bt+1,bt)

)
> δ

} (blk:k+L

)
(29)

c
(
blk:k+L;φ, δ

)
� 1{(k+L−1∑

t=k

φ(bt+1,bt)

)
> δ

} (blk:k+L

)
(30)

for cumulative form (10) and

c(blk:k+L;φ, δ) �
k+L∏
t=k

1{φ(bt)≥δ}(blt) (31)

c(blk:k+L;φ, δ) �
k+L∏
t=k

1{φ(bt)≥δ}(blt) (32)

for multiplicative (11). Equation (28), in turn, implies that the
following inequalities are satisfied without dependency on the
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(a) (b)

Fig. 2. (a) Conceptual visualization of our simplification approach
(Section III-F). For clarity we show a myopic setting. Gradient displays the
PDF, i.e., a larger number of samples lands in the area of greater intensity. Using
the bounds, we want to assess whether the fraction of the sampled observation
laces above δ is at least 1−ε. As we see, we can invalidate the bottom sample φ
using solely the upper bound φ. In a similar manner, we can validate the upper
sample φ using solely the lower bound φ. Note that the width of the vertical
strip has no role in this visualization. (b) Simplification approach in this article
delegates the bounds over φ to the second layer bounds lb(2) and ub(2).

form and for any m:
m∑
l=1

c
(
blk:k+L;φ, δ

) ≤
m∑
l=1

c
(
blk:k+L;φ, δ

) ≤
m∑
l=1

c
(
blk:k+L;φ, δ

)
.

(33)

Importantly, this result holds with strict inequality in (10), (29),
and (30) denoted by the red color and nonstrict.

We provide a detailed proof of Theorem 1 in Appendix B.
Let us now show how to speed up the process of evaluation of

the probabilistic constraint from (9). The key component of the
acceleration is that the adaptivity of the bounds (28) is delegated
to adaptivity of the probabilistic constraint bounds (33). Assume
the bounds from (28) are adaptive, using insights provided by
Theorem 1, we first check if

1

m

m∑
l=1

c
(
blk:k+L;φ, δ

) ?︷︸︸︷
≥ 1− ε. (34)

If the above relation holds (marked by ?), we declare that the
outer constraint is fulfilled. Else, we probe if

1

m

m∑
l=1

c
(
blk:k+L;φ, δ

) ?︷︸︸︷
< 1− ε. (35)

If yes, we declare that the outer constraint is violated. In case
we are not able to say anything (both relations do not hold), we
tighten the bounds. In other words, we make the bounds closer to
the actual value of φ (e.g., by utilizing more particles [19], [20]
or mixture belief components [25]). We presented a visualization
of our simplification approach in Fig. 2.

Now our goal is to merge the insights gained in Section III-E
with the simplification. Clearly, from (26) and by substituting
m by m̃ in the left-hand side (LHS) of (33) we have that

1− ε

?︷︸︸︷
≤ 1

m

m̃∑
l=1

c(blk:k+L;φ, δ)︸ ︷︷ ︸
lb(2)

≤ 1

m

m̃∑
l=1

c(blk:k+L;φ, δ)︸ ︷︷ ︸
lb(1)

.

(36)

Similarly from (27) and right-hand side (RHS) of (33) the
following holds:

ub(1)︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑
l=1

c(blk:k+L;φ, δ) ≤

ub(2)︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑
l=1

c(blk:k+L;φ, δ)

?︷︸︸︷
< 1− ε. (37)

By a question mark, we denote the inequalities that shall be
fulfilled online to check whether the outer constraint is met
(36) or violated (37). If we cannot incur the status of the
outer constraint we shall add more laces (adapt the first layer
bounds lb(1), ub(1)) or/and tighten the bounds from (28) (adapt
the second layer bound lb(2), ub(2)). Such an approach permits
adaptive evaluation of the sample approximation of probabilistic
constraint in (9) manifested by (24) before expanding the m
laces of the belief sequences bk:k+L. After a finite number of
adaptation steps and smaller than or equal to m we guaranteed
to evaluate (25) in the exact way. Specifically, only one of the
inequalities (36) and (37) will be satisfied with some m̃. We
validate (25) using the lower bound (36) or invalidate it using
the upper bound (37). Using lb(1), ub(1), we save time that would
be spent on the m− m̃ laces that would be expanded if one
continues to sample the observation episodes (laces) up until
the budget of samples is reached, namely, m laces. In addition,
using lb(2), ub(2), we save time required to calculate the actual
operator φ instead of the bounds (28) for the expanded m̃ laces.

G. Adaptation

It occurs that the proposed bounds have riveting properties. To
describe a pair of lower (lb(1), lb(2)) and a pair of upper bounds
(ub(1), ub(2)) simultaneously, we omit the superscript. The lower
bound is bounded by zero 0 ≤ lb from below and the upper
bound is bounded by one ub ≤ 1 from above. When we adapt
the bounds, we add at most a single lace to the appropriate sum.
Therefore, the step of adaptation of the bounds is at most 1/m.
When we expand a single lace m̃← m̃+1, the lower bound
makes a step if c(blk:k+L;φ, δ) = 1, otherwise, the upper bound
makes a step if c(blk:k+L;φ, δ) = 0. Alternatively, when we
increase the simplification level, some already expanded laces
possibly switch from 0 to 1 (c(blk:k+L;φ, δ) for some l), con-
tracting the lower bound, and some from 1 to 0 (c(blk:k+L;φ, δ)
for some l), tightening the upper bound.

Importantly, when we expand a single observation lace and
calculate c(blk:k+L;φ, δ) we will obtain one with probability at
most P(c(bk:k+L;φ, δ) = 1|bk, ak+). Similarly, we will obtain
c(blk:k+L;φ, δ) = 0 at the new expanded lace with probability
at mostP(c(bk:k+L;φ, δ) = 0|bk, ak+). Both these probabilities
are not accessible.

Further, we have four scenarios illustrated in Fig. 3. By
analyzing these scenarios, we can speculate about anticipated
speedup. In Fig. 3 we show by the red vertical line several
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(a)

(b)

(c)

(d)

Fig. 3. Visualization of adaptation from Section III-G. Note, in all scenarios
the value of dashed line is unknown. Red line represents the confidence level
1− ε to be satisfied with probabilistic constraint. (a) Conceptual illustration of
a challenging scenario. To accept such an action the lower bound shall go a long
way. (b) Conceptual illustration of an easy scenario, with a few contractions of
the upper bound, the action is discarded. (c) Another interesting situation, here
the upper bound shall go a long way to discard the action sequence. (d) With a
few shrinkage iterations the lower bound accepts the action sequence.

positions of the outer threshold 1−ε from (9). The first scenario,
shown in Fig. 3(a), is challenging. The value of (24) [shown
by green dashed vertical line in Fig. 3(a)] is unavailable to us
before the expansion of the m laces; therefore, no matter how
many iterations we perform, invalidation using the calculated
ub and (37) is not possible before reaching the budget of the
m laces; only validation using lb and (36) will eventually be
possible. As we observe, many contractions of the lb would
be required, as we see in Fig. 3(a) up until lb becomes larger
than 1−ε according to (36). Conversely, if with a large margin
the outer constraint is violated, as we see in Fig. 3(b), we discard
the action sequence with a few tightening iterations using ub
and (37). Note, the P(c(bk:k+L;φ, δ) = 0|bk, ak+) is large in
this case. We contemplate a similar behavior in reciprocal cases
[Fig. 3(c) and (d)]. To conclude the adaptation can be challenging
in cases described in Fig. 3(a) and (c).

The fact that we have a pair of lower (lb(1), lb(2)) and a pair
of upper bounds (ub(1), ub(2)) raises the question, which bound
from a pair shall we adapt if a pair is inconclusive. When we
cannot incur whether the outer constraint from (25) is fulfilled,
we shall decide to refine the bounds (lb(2), ub(2)) or add more
laces of observation episodes (refine lb(1), ub(1)). Luckily for

us, these two operations are parallelizable via multithreading.
We simultaneously refine the simplification levels, as in [18] of
the bounds, and add more laces up until the decision is possible.
Note that it will be problematic to parallelize (25) with respect
to m laces. Due to the high dimensionality of the belief it
will require an enormous memory capacity to hold all the m
laces of the beliefs simultaneously. In fact, even taking into
account sparsity aspects in SLAM, the number of variables is
extremely large in real world applications. In the SD problem,
the Information matrix is not anticipated to be sparse due to prior
belief. Let us also mention that m shall be as large as possible
due to the fact that larger m will increase the quality of sample
approximation pictured by (24).

To conclude this section, we proposed a two-layered approach
to ease the computational burden. The first layer expresses
adaptivity in terms of the number of observation laces. The
second layer permits utilization of the adaptive deterministic
bounds on realizations of φ.

One example of using our technique is to save time in open
loop planning or spend more time on the action sequences which
fulfill the probabilistic constraint. With such an approach, we are
able to cut down on the cost of exhaustively validating candidate
action sequences without any sacrifice in performance. Another
example is the closed loop setting, where we deal with policies.
This is, however, out of the scope of this article.

Thus far, we presented general theory, and now we specifically
address the second formulated problem (12).

H. Maximal Feasible Return

In this section, we develop an adaptive approach to identify an
action sequence and δ maximizing (25) for both flavors of the
inner constraint, i.e., cumulative (10) and multiplicative (10).
Yet, in this article we focus on maximizing the cumulative
form, which is motivated by IG along the planning horizon.
Our goal is to solve the sample approximation from m laces of
the formulated problem we named maximal feasible return (12).
Picture in your mind that you guess the δ and the step size Δ.
For clarity we drop the dependence of s on bk:k+L. However,
we shall remember that a single realization of s corresponds to
a single lace in the belief tree [Fig. 1(a) and (b)]. Observe the
following pair of relations:

P̂(m) (s ≥ δ|bk, ak+) ≥ P̂(m) (s ≥ δ +Δ|bk, ak+) (38)

P̂(m) (s ≥ δ|bk, ak+) ≤ P̂(m) (s ≥ δ −Δ|bk, ak+) (39)

where P̂(m)(s ≥ δ|bk, ak+) = 1
m

∑m
i=1 1{s>δ}(si). These re-

lations hold several interesting properties. Suppose, we ful-
fill the probabilistic inequality with δ0 for a subset of can-
didate action sequences, that is, P̂(m)(s ≥ δ0|bk, ak+) ≥ 1−ε
for {a2, a3} in Fig. 4(a). We shall increase δ0 to invalidate
more candidate action sequences up until a single candidate
action sequence is left. Before δ0 is increased to δ1, currently
invalidated candidate action sequences can be discarded for
eternity [{a1} in Fig. 4(a)], they will never fulfill the outer
constraint with δ2 > δ0 due to the never increasing step size
in our approach of alternating increases and decreases of δ.
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(a)

(b)

(c)

Fig. 4. Visualization of Algorithm 3. We never increase the step size. There-
fore, as we see, each candidate action sequence in the bottom visualization (c)
is shifted to the left relative to the situation displayed in the top (a). The action
sequence a1 can be safely discarded in the top illustration (a) (Section III-H).
The middle visualization marked by (b) portray the situation when Δ1 was too
large.

Now, suppose all action sequences violate the probabilistic
inequality with δ1, that is, 1−ε > P̂(m)(s ≥ δ1|bk, ak+) for all
the candidate action sequences [{a1, a2, a3} in Fig. 4(b)]. We
shall decrease the δ1 (but in a smaller amount) to render more
candidate action sequences feasible. If we will obtain δ2, such
that all the candidate action sequences besides the single one
are invalidated, we know that this candidate action sequence
maximizes (13). This happens in Fig. 4(b) with δ2. Crucially, all
the evaluations of the probabilities above we do using our adap-
tive simplification from Section III-F before actually expanding
the m laces.

This is the underlying principle of Algorithm 3. See visu-
alization in Fig. 4. As we see in Fig. 4, δ2 > δ0 so P̂(m)(s ≥
δ0|bk, ak+) ≥ P̂(m)(s ≥ δ2|bk, ak+). To the step size, we em-
ploy the bisection principle. To rephrase it, we adaptively solve

a∗k+, δ
∗ = arg max

{ak+}
max

δ
δ

s.t. ∃ak+ ∈ A : P̂(m)(c(bk:k+L;φ, δ) = 1|bk, ak+)≥1−ε
s.t. δmin < δ ≤ δmax(bk) (40)

actually evaluating m laces of observations only in worst case
scenario. The δmin and δmax shall be supplied externally. Further,
we extensively debate how to set these parameters for informa-
tion gathering tasks. Crucially, in (40) we recognize why we need
nonstrict inequality for δ in (13). The candidate action sequences
satisfying the outer constraint with δmax must be accepted. Let us

highlight that δ∗�V̂aR
(m)

ε (bk, a
∗
k+), the sample approximation

Algorithm 1: Optimality Under Probabilistic Constraint (9)
ρ(·) ≡ φ(·).

of (13) for the optimal action sequence a∗k+ in (12) utilizing (24).
The formulation (40) is generalization of solving the maximal
feasible return problem portrayed by (12) for two forms of inner
constraints (10) and (11).

Note that depending on the scenario, it is possible that for

many candidate actions, but not all, the V̂aR
(m)

ε (bk, ak+) is close
to one of the edges of the bounds over δ. If it is a lower bound
δmin, we will be able to easily discard a candidate action ak+
(with appropriate ε regime) using Algorithm 3 as visualized in
Fig. 3(b). Conversely, if it is the upper bound δmax, it will be
easy to accept a candidate action as in Fig. 3(d).

Before we continue, to algorithms let us emphasize the impor-
tant points. In Appendix C, we discuss sample approximations
used in our proposed algorithms. To remove unnecessary clutter,
we formulate our algorithms for the first level bounds (26)
and (27). However, given the monotonically converging to φ
bounds as in (28), adjusting the algorithms does not pose a
problem. In addition, the approach described in this section
works also for solving (40) for a multiplicative form of the inner
constraint (10). This, however, is outside the scope of this article,
since in this article we focus on cumulative flavor (11). We are
ready for the next section, where we formulate algorithms to
tackle both of our formulated problems.

I. Algorithms

In this section, we present four algorithms. All the algorithms
receive as input the set of candidate action sequences. For both
our formulated problems, we propose our technique and describe
the baseline.
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Algorithm 2: Optimality of (7) Under Averaged Constraint
(14) (Baseline) ρ(·) ≡ φ(·), U(·) ≡ C(·).

1) Optimality Under Probabilistic Constraint: For the first
formulated problem (9), we adaptively check the feasibility of
all the action sequences and select the optimal one from the set of
feasible action sequences in Algorithm 1. If the condition in line
7 or 10 is not satisfied, it means that the Algorithm 1 will jump
to the next iteration of the loop in line 4 and expand one more
lace. This is in agreement with the explanation in Section II-
I-F. Sooner or later, for m̃(ak+) ≤ m, one of these conditions
will be met and Algorithm 1 will move to the next candidate
action. The competing approach is finding the optimal action
sequence and verifying feasibility afterward, see Algorithm 2.
Since Algorithm 2 uses expectation for constraint as in (15) and
Algorithm 1 uses our probabilistic constraint the selected best
action sequence can differ for two algorithms.

2) Maximal Feasible Return: Here, we propose our adaptive
method described in Section III-H and summarized in Algo-
rithm 3 and evaluate/compare it versus the brute force maxi-

mization of V̂aR
(m)

ε by Algorithm 4. Importantly, Algorithm 3
is formulated for both flavors of the inner constraint, i.e., cu-
mulative (10) and multiplicative (11). Algorithm 3 requires two
parameters δmin and δmax. The former, δmin, is a requirement.
The latter, δmax, has to be supplied externally for a particular
operator φ. In subsequent sections we extensively debate on
how to do that. If no candidate action sequence ak+ fulfills the
constraint with δmin we declare that no feasible solution exists.
For exploration purposes (in SLAM and SD problems) we only
care to select an optimal candidate action sequence maximizing
(40) and that δ∗ ≥ δmin. To save valuable time we will not
engage the optional hibiscus colored part of the Algorithm 3. In
this case the Algorithm 3 selects a∗k+ as in (40), but returned

δ∗ ≤ V̂aR
(m)

ε (bk, a
∗
k+). Note also that we need to expand a

single lace in line 3 of Algorithm 3 in order to try to verify
the (25) with a new value of δ before adding a lace in line 31.

Having introduced the algorithms we shall discuss possible
drawbacks and overhead.

Algorithm 3: Maximal Feasible Return (Bisection method).

J. Adaptation Overhead

In Algorithm 3 we shall evaluate the inner constraint and
sum up

∑m̃(ak+)
l=1 cl(bk:k+L;φ, δ) for multiple values of δ. This

necessitates to store
∑k+L−1

t=k φ(blt, b
l
t+1), in case of (10), and

{φ(blt)}k+L
t=k , in case of (11), for every expanded l. Accordingly,

the memory consumption is elevated, however, it does not re-
quire much memory, since these are one dimensional values.
Nevertheless, as we believed and verified by the experiments,
this overhead is neglectable compared with the time saved on
skipped laces due to loop closures in SLAM or determinant
calculation of a large matrix in SD, as we will further witness.
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Algorithm 4: Baseline Maximizing V̂aR
(m)

ε .

1: Input: A
2: a∗k+ ← undef, V̂∗(m) ← −∞
3: for each ak+ ∈ A do

4: Expand m laces and approximate V̂aR
(m)

ε

5: if V̂∗(m) < V̂aR
(m)

ε then

6: a∗k+ ← ak+, V̂∗(m) ← V̂aR
(m)

ε

7: end if
8: end for
9: Return a∗k+, V̂∗(m)

Furthermore, these additional operations can be easily paral-
lelized via multithreading.

We can, however, encounter a worst-case scenario. Imagine
the ε is close to 1 from the left. Many action sequences will
satisfy the probabilistic constraint. In general, we can say that
a more accurate precision of δ will be required to differentiate
between the action sequences since the working area is closer
to zero and the interval [0, 1−ε) is shorter. Therefore, more
iterations in Algorithm 3 will be required. Moreover, a pair
of action sequences may be extremely close to each other in

terms of V̂aR
(m)

ε , requiring a tremendous amount of iterations
of the Algorithm 3. To solve this issue, we shall introduce a final
precision.

In addition, adaptation of the bounds (28) can take some toll
in terms of time. This is out of the scope of this article.

K. Limitations and Drawbacks

Besides the drawbacks due to the adaptation and bookkeeping,
our approach requires knowledge of the number of laces to
be expanded m. We can fix that if ε = 0 (see [30]). Further,
the second layer bounds lb(2), ub(2) require externally supplied
adaptive bounds for the operator φ as in (28).

IV. APPLICATION TO BELIEF SPACE PLANNING

In this section, we apply our suggested theory to informative
planning. We focus on SLAM and SD, two problems with a
high-dimensional state under the umbrella of BSP. We express
the exploration problem with our framework (9) as well as
distributional aware high-dimensional BSP with (12).

A. Belief Structure

Let us delve into the mechanics of maintaining and up-
dating high-dimensional belief on top of a stochastic pro-
cess, sequential decision making. In this work we assume that
the data association is solved. Namely, in general, the belief
P(xk|b0, a0:k−1, z1:k) would be (see, e.g., [35] and [36])

∑
β1:k

P(xk|b0, a0:k−1,z1:k,β1:k)
P(β1:k|b0, a0:k−1,z1:k)∑

β1:k
P(β1:k|b0, a0:k−1,z1:k)

(41)

where the summation is over β1:k appropriate to dimension
of the corresponding observation z1:k. The dimension of ob-
servation always conveys the knowledge of number of visible
landmarks resulted to such an observation in SLAM or num-
ber of sensors producing an observation in SD. For example,
suppose the dimension of zk is 2. We shall only cover βk with
two ones in the summation. Moreover, as we will further see the
conditional PDFP(xk|b0, a0:k−1,x1:k,β1:k) is not defined well
if z1:k and β1:k disparate in terms of dimensions and number of
ones reciprocally.

In this work we, however, (as done in many works) assume
that the realization of the corresponding β is inferred exactly
from the given observation (emphasized by the red color in the
next equation). This simplifies the belief structure as such

P(xk|b0, a0:k−1, z1:k) = P(xk|b0, a0:k−1, z1:k,β1:k). (42)

With this insight in mind we define the belief as, bk(xk) �
P(xk|b0, a0:k−1, z1:k,β1:k). A standard and widely used tool
to maintain a high-dimensional belief in case of (42) is a factor
graph [37]. Its building blocks are the probabilistic motion and
observation models. These models induce probabilistic depen-
dencies over the state variables. The models are the factors that
comprise the factor graph. Below we separately elaborate on
specific aspects of belief structure for each considered problem.

1) Active SLAM: Applying Bayes rule to the belief, we get

bk(xk) ∝ b0(x0)
k∏

i=1

(
PT

(
xi

∣∣xi−1, ai−1
) ·

Pβ

(
βi

∣∣xi, {�j}M(i)
j=1

) n(βi)∏
νi=1

PZ

(
zνi
i

∣∣xi, �
jνi
))

. (43)

In this article, the stochastic motion and observation models for
SLAM are described by the following dependencies involving
Gaussian-distributed sources of stochasticity

xt+1 = f(xt, at;wt), wt ∼ N(0,Wt) (44)

zνt
t = g(xt, �

jνt ; vt), vt ∼ N(0, Vt) (45)

where Wt and Vt are covariance matrices. The landmarks con-
figuration model is as in (1) and (2). The prior belief b0(x0)
is assumed to be Gaussian. Similar to many other works [38],
to model the belief as a multivariate Gaussian we omit the∏k

i=1 Pβ(βi

∣∣xi, {�j}M(i)
j=1 ) terms and remain with

bk(xk) ∝ b0(x0)
k∏

i=1

⎛
⎝PT

(
xi

∣∣xi−1, ai−1
) n(βi)∏

νi=1

PZ

(
zνii

∣∣xi, �
jνi

)
⎞
⎠ .

(46)

Equation (46) can be illustrated as a factor graph [39]. All in all,
the overall belief (46) is modeled as a multivariate Gaussian and
such a representation is exact for linear models since we have a
quadratic function inside the exponent.

2) Sensor Deployment: In the SD problem the overall state
xk is a mix of a robot state xk and a state of the phenomenon of
interest ξ. The belief (givenβ1:k) in this case takes the following
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form:

bk(xk)∝
(∏n(βk)

νk=1 PZ(z
νk

k |xk,[ξ]
jνk )
)
Pβ(βk|xk)PZ(z

x
k |xk)·∫

xk−1

((∏n(βk−1)
νk−1=1 PZ(z

νk−1
k−1 |xk−1,[ξ]j

νk−1 )
)· (47)

Pβ(βk−1|xk−1)PZ(z
x
k−1|xk−1)PT (xk|xk−1, ak−1)·(∫

xk−2

. . .
(∫
x0

b0(ξ, x0)PT

(
x1

∣∣x0, a0
)
dx0

)
. . . dxk−2

))
dxk−1.

Suppose that individual sensor observation model does not
depend on the robot state. Moreover, typically there is no reason
to assume that the prior of the quantity of interest ξ will be
statistically dependent on the initial robot position x0. In this
case b0(ξ, x0) = b0(ξ)b0(x0). This fact allows us to decompose
also (47) as bk(ξ, xk) = bk(ξ)bk(xk). Both beliefs bk(ξ) and
bk(xk) are given β1:k. Note that in general, if the belief is as in
(41), such a decomposition does not hold. Equation (47) splits
into two multiplicands bk(ξ) and bk(xk) as follows:

bk(ξ) ∝
∏k

i=1

(∏n(βi)
νi=1 PZ(z

νi
i |[ξ]j

νi )
)
b0(ξ) (48)

bk(xk)∝ Pβ(βk|xk)PZ(z
x
k |xk)· (49)∫

xk−1

(
Pβ(βk−1|xk−1)PZ(z

x
k−1|xk−1)PT (xk|xk−1, ak−1)·

(
∫
xk−2

. . .
∫
x0
b0(x0)PT (x1|x0, a0)dx0. . . dxk−2)

)
dxk−1.

Importantly, the decomposition of bk(ξ, xk) into bk(ξ) and
bk(xk) and the dependence of each on different observations
from independent models (6) allows us to update the belief
separately for the quantity of interest ξ and robot pose xk. In
this work, the probabilistic models for SD problem adhere to

xt+1 = f(xt, at;wt) (50)

zνt
t = g(ξj

νt
; vt), vt ∼ N(0, Vt) (51)

zxt = xt. (52)

The noise of observation model (51) remains Gaussian as in
SLAM problem. If, in addition, b0(ξ) is a Gaussian, this enables
us to use standard well-researched solvers [38] to maintain the
belief displayed by (48).

Further, for clarity of the explanation and in order to focus on
the uncertainty of the quantity of the interest ξ, we will assume
that the robot state is discrete xt ∈ N2. In due course, the noise
wt in motion model (50) is also discrete. We will describe it
in depth in simulations section. In addition, for simplicity we
assume that the robot state is fully observable (52). This is not
an inherent limitation but only the choice to simplify simula-
tions. Another representation of (52) is PZ(z

x|x)�δ(zx−x).
The sensors configuration model is as in (4) and (5). The initial
robot position is also known, namely, b0(x0) = δ(xgt

0−x0). This
fact, alongside the deterministic model for β (4) significantly
simplifies (49). Specifically, we have that bk(xk) = δ(zxk−xk).
We model the prior belief for quantity of interest b0(ξ) as
Gaussian. This fact and the Gaussian noise in (51) yield that (48)

Fig. 5. New Information measure.

has another representation as a Gaussian since after linearization
inside the exponent we have a quadratic function [and this
representation is exact with linear g(·) in (51)]. We will need
this fact in the following section.

B. Information Measures

The forming point of informative planning is an information
measure. We first delve into well-known such measures for
Gaussian beliefs and, then, define our novel information measure
for general beliefs.

1) Gaussian Beliefs: One possibility to define such a mea-
sure is to utilize trace of the covariance matrix of the marginal
belief over the variables of interest. In such a case, commonly
the information is defined (known as minus T-criterion [9]) as
minus arithmetic mean of appropriate eigenvalues

I(b) = −1

d

d∑
i=1

λi(b) (53)

whered is the dimension of corresponding subset of the variables
of interest. Another possibility is to utilize differential entropy
h(b) given by (17). Differential entropy (17) was widely re-
searched by robotics community [40] in the context of mul-
tivariate Gaussian beliefs and led to the formulation of the
D-optimality criterion being the geometric mean of relevant
eigenvalues of the covariance matrix of the belief (the volume
of d-dimensional parallelepiped proportional to the volume of
a hyperellipse manifested by the covariance matrix). The infor-
mation becomes

I(b) = − d

√√√√ d∏
i

λi(b) (54)

where d is the dimension of the subset of the variables selected
from the Gaussian belief. Observe that when Information is
defined as in (53) or (54) it holds that I(b) ≤ 0 due to nonnegativ-
ity of eigenvalues of covariance matrices. Whereas differential
entropy (17) is unbounded. As we will further see to define
δmax for Algorithm 3 we will need that Information is bounded
from above. Motivated by this requirement we define a novel
Information measure for general beliefs.

2) General Beliefs: For general beliefs one possibility that is
common in AI community [41], [42] is to define the Information
as I(b) = −h(b).Let us restate that multivariate Gaussian beliefs
are not genuine limitation of our approach. The true requirement
is upper bound on the Information measure. We can easily
generalize for differential entropies on top of general beliefs by
defining the Information measure as I(b) = −eh(b).This way we
again obtain I(b) ≤ 0. Observe a visualization in Fig. 5. Further,
we assume that I(b) ≤ 0.
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C. Information Gain

Having defined above the Information we are ready to define
IG. Similar to [9], we define the operator φ as follows:

φ(b, b′) � IG(b, b′). (55)

There are various ways to define the IG over a pair of the
successive beliefs. One option is

IG(b, b′) � I′(b′)︸︷︷︸
≤0

−I(b) ≤ −I(b). (56)

Another possibility is to define relative IG as such

IG(b, b′) � I′(b′)− I(b)

−I(b) ≤ 1. (57)

Let us elaborate on subsets of variables of interest for the
calculation of (55). In a SLAM problem, since our focus is on
the uncertainty of the environment surrounding the robot, we
select all the landmarks as such a subset alongside the current
robot pose, {xt, {�j}M(k)

j=1 }. Since we do not add landmarks in
the planning session, the same dimensionality is preserved. With
Gaussian beliefs and (53) and (54) this is not necessary, however.
In the SD problem, we should take the belief over robot pose
and the quantity of interest {xt, ξ} (complete state). However,
since we assumed perfect observability for the xt, we take {ξ}.

D. Deciding δ, δmin, δmax, and ε

In this section, we elucidate the sense of parameters of
our approach separately for two of our problem formulations
(9) and (12). We start from optimality under a probabilistic
constraint (9).

1) Optimality Under a Probabilistic Constraint (Information
Gathering Tasks): This problem formulation requires that the
values of δ and ε are externally supplied. The ε, for example,
can be close to one from the left. In this regime the practitioner
enforces fulfilling the inner constraint with very high probability.
Another case is ε very close to zero from the right. In this regime
if there is a small chance of fulfilling the inner constraint, the
robot will take it. For instance, if there is a small chance of
decreasing uncertainty the robot will explore and will not stop.
We now turn to an in-depth explanation of a meaningful δ in
Information gathering tasks. For both problems under consid-
eration, SLAM and SD, the one meaningful inner threshold is
δ=0 since it is not profitable to continue exploration or deploy
the robot to operate online at all if it actually loses Information
(with probability of at least 1−ε). Then, the robot has already
deployed the candidate actions, with probability of at least 1−ε,
leading to negative cumulative IG are redundant. Using our
formulation (9) and (10) with δ = 0 the robot can recognize
to stop to explore the terrain (SLAM problem) or stop to deploy
and make the readings from the sensors (SD problem). Recall the
importance of the strict inequality in (10). The cumulative IG
(55) can be nonpositive due to following reason. When the robot
is active, at each time step, it increases the uncertainty due
to a stochastic robot motion and decreases it by obtaining an
observation. Note, however, that perfect robot observability in
the SD problem makes (55) always positive. It will be clearly
seen from the belief update discussed in Section V-C. If we

use (57) we can set δ to be the desired fraction of the initial
Information.

2) Maximal Feasible Return: The problem formulation (12)
requires only manually set ε. Here, the value 1−ε is a confidence
level of VaR for each candidate action sequence ak+. In other
words, the fraction of sampled laces that yield return larger than
VaR shall be at least 1−ε. To employ Algorithm 3 we require
to supply minimal (δmin) and maximal (δmax) threshold. Let us
unveil how we do that for the cumulative flavor of the inner
constraint (10) and the formulation of the problem of maximal
feasible return (12). In light of the previous discussion, we set
δmin = 0. Further, assume for the moment a myopic setting (L =
1). If (55) is in accord with (56), we elicit that the maximal
feasible δ is δmax(b) � −I(b). This means the uncertainty has
been reduced to zero in the resulting belief. To rephrase that, the
maximal Information has been reached. In this case robot can
cease to operate. Whenever (55) is in accord with (57), δmax�1.

In practice our approach (Algorithm 3) requires δmin and δmax

for the whole return s(bk:k+L; ·) for any L. With our definition
(56) this is not a problem since we obtain telescopic series. If
one uses (57) or deals with infinite horizons approximated by L
steps ahead, where IG(b, b′) = γI(b′)−I(b) [41], [42], δmax has
to be adjusted accordingly. Alternatively, we can define relative
IG for the terminal belief

IG(bk, ak+, z(k+1)+, bk+L) �
I(bk+L)− I(bk)

−I(bk) ≤ 1 = δmax.

(58)

Having untangled these aspects, we are keen to demonstrate the
superiority of the proposed approach in the following section.

V. SIMULATIONS AND RESULTS

The previous discussion leads us to the actual implementation
and simulations of the proposed in Section III-I methods. It shall
be noted that in this article we simulate only the first layer prob-
abilistic constraint bounds (lb(1), ub(1)). Moreover, we address
in simulations only the cumulative form of the inner constraint
(10). To demonstrate the advantages of the approach, we applied
it on two incarnations of BSP. The first problem, we tackle, is
the active SLAM while navigating in unknown environments
to the goal. The simulation of this problem involves a highly
realistic SLAM scenario using the GTSAM library [43]. On
top of GTSAM wrapped for Python we use Julia language. Our
second problem under consideration is SD. We implemented the
simulations for SD purely in Julia language. In both problems
under consideration the belief is multivariate Gaussian and the
Information conforms to (54). Importantly, in our approach
(Algorithms 1 and 3) and the baselines (Algorithms 2 and
4), we use an identical sampling method (see Appendix C).
We also use the same seed per candidate action sequence in
the comparisons with the baselines. This is needed to simulate
identical sampling operations in baselines versus our methods
according to our theory presented in Sections III-E and III-F.
Before we proceed to simulations and results, let us present our
measures of acceleration.
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(a) (b)

Fig. 6. SLAM problem. (b) Separate, algorithmically selected paths to the goal
on top of (a) PRM. We show the path number on the vertex, which is removed
for finding the subsequent diverse paths. The last’s path number is shown at its
final vertex (the goal). Paths start from the vertex closest to the mean value of
the belief in the end of the preliminary mapping session. (a) PRM. (b) Obtained
diverse paths.

A. Acceleration Measures

The advantage of our proposed methods is acceleration with-
out compromising the solution quality. We calculate the speedup,
that is saved time relative to baseline time, using the following
equation:

tbaseline − tour

tbaseline
. (59)

We also do the same calculation in terms of laces. Namely,
number of skipped laces relative to the number of laces expanded
by the baseline

ntotal − nexpanded

ntotal
. (60)

Note that maximal values of (59) and (60) are 1. This means
that our approach skipped all the laces [nexpanded = 0 in (60)]
and run in zero time [tour = 0 in (59)]. Moreover, the toll due
to adaptation and added operations (added time divided by the
baseline running time) will be the difference of (60) and (59).

B. Active SLAM While Navigating to the Goal

The generation of candidate paths is not the focus of this
article. Therefore, we create candidate paths following a similar
procedure to [44]. First, we employ a well-studied probabilistic
road MAP (PRM) method [45]. Then, on top of PRM, to obtain
diverse shortest paths, we remove a single vertex from the
previous path and utilize breadth-first search on the reduced
PRM. The path generation requires only the boundaries of an
unknown map. In such a way, we obtain |A| diverse paths to
the goal of various lengths. These paths constitute the space of
action sequences A (Fig. 6b). To avoid confusion, we recite
that any other method for generating candidate paths would
be applicable to evaluate our proposed techniques. We illustrated
the described above in Fig. 6. Let us emphasize that the paths
generation depends on the starting vertex of PRM. For such a
vertex we select the closest in terms of �2 norm vertex to the
mean value of the belief (bk) in the beginning of the planning
session.

To keep the examination clear, we do not perform replanning
sessions. Instead, we have a preliminary mapping session with
manually supplied to the robot action sequence of unit length
motion primitives. In the preliminary session, the robot starts

from b0, detects the landmarks, incorporates them into its state,
and obtains the belief bk. This belief serves as input to the
planning session. After a single planning session, the robot
follows the chosen best path.

As mentioned in Section IV-A, we assume Gaussian sources
of stochasticity. The robot is described by a 2-D pose (posi-
tion and bearing angle), and the landmark is a 2-D point. Our
motion model (44) is a standard GTSAM odometry factor with
f(xt, at;wt) = xt ⊕ at+wt (where⊕ is a pose composition op-
erator) withWt = ‖a‖2 · diag(0.015, 0.015, 0.015). Our actions
are desired pose displacement, such that at = x̂t+1 � xt, where
x̂t+1 is a nominal subsequent robot pose and� is the difference
on manifold. Note that we need to multiply the motion model
covariance matrix by the action length since our actions are of
variable length. The observation (45) model is the bearing range
GTSAM factor with Vt = diag(0.001, 0.001). The boundaries
of our map are [0, 5]× [0, 5].

We utilize the popular incremental solver ISAM2 [38] to
maintain the belief. Noticeably, loop closures impose a com-
putational challenge even with such a sophisticated incremental
solver. Especially, since we need to perform inference for each
posterior node in the constructed belief tree. This fact makes
early eliminating or accepting actions highly important for effi-
cient robot’s operation.

The robot constructs a belief tree of the form presented in
Fig. 1(a) for each candidate path within planning session. With
each promotion of the depth of the belief tree, we reduce the
number of observations at each belief node by factor two, up to
a possible single observation at the lowest levels. Once the max-
imal number of observations of the belief node is expanded, we
maintain a circular slider that selects the subsequent observation
with the following arrival at this belief node. The IG in SLAM
problem is of the form of (56).

1) Optimality Under a Probabilistic Constraint: Following
the previous discussion, we continue with the experiments.
We start from our first problem (9) (optimality under a prob-
abilistic constraint) and study Algorithm 1 versus Algorithm 2.
In Algorithm 2 as opposed to Algorithm 1 we do not have
a mechanism for early action dismissing until we expand
all the observation laces per action sequence. In both Al-
gorithms ρ(·)≡φ(·). We examine a scenario with four land-
marks (Fig. 7). Our prior belief is Gaussain over the robot’s
pose b0∼N(μ0,Σ0) with the parameters μ0 = (5.0, 5.0, 0.0)T ,
Σ0 = diag(0.001, 0.001, 0.001). We show the preliminary map-
ping session with goal at (0.0, 0.0, 0.0)T in Fig. 7(a). We elicit
that, as anticipated, the uncertainty over the belief grows until the
robot makes a full square and starts to experience loop closures.
The path number 14 is highly likely to be optimal from an infor-
mation perspective since this path lies closest to the landmarks.
We employ Algorithm 1 with m = 300 laces per path from
Fig. 6(b), δ = 0.0 and various values of ε. We show a rigorous
comparison versus Algorithm 2 with same parameters besides ε
in Table I. Our resolution in terms of ε isΔε = 1/m. Empirically
we found that for ε ∈ [0, 0.023], without dependency on m
as expected, all the paths were discarded as unfeasible (seven
from 300 laces given path 14 violated the inner constraint).
Meaning, no path is present with the fraction of the sampled laces

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 16,2024 at 17:23:42 UTC from IEEE Xplore.  Restrictions apply. 



ZHITNIKOV AND INDELMAN: SIMPLIFIED CONTINUOUS HIGH-DIMENSIONAL BSP 1699

TABLE I
OPTIMALITY UNDER PROBABILISTIC CONSTRAINT

(a) (b)

Fig. 7. (a) Robot’s first preliminary mapping session, by transparent gray
circles, we depict landmarks’ visibility radius. The robot starts at the top right
corner and moves toward the bottom left corner making two full squares. As we
can see, the robot passed inside the visibility radius of the landmarks, detected
them and incorporated them to its state. We show covariance ellipses for current
robot poses. The landmarks visibility radius is 0.8. By the dashed line we connect
estimated robot pose with ground truth. (b) Algorithm 2 and Algorithm 1 both
selected path number 14 from Fig. 6(b) as optimal. We recognize that a pair of
landmarks nearest to starting position (5, 5) of preliminary mapping session in
Fig. 7(a) greatly contribute to uncertainty diminishment since the robot twice
made a loopclosure there.

larger than1−0.023 fulfilling inner constraint. For ε ≤ 0.023our
probabilistic constraint discards all candidate action sequences,
but expected IG is larger than 0. This means that the expected
IG is positive, whereas not all the laces yield positive IG. Our
formulation is able to catch that. In Fig. 7(b), we display the robot
following the identified best path. Note that with Algorithm 1,
we do not accelerate decision making when we cannot discard
action sequences. We shall note that due to internal GTSAM
multithreading, measuring the time speedup is a challenging
task. To alleviate that we repeat each run in Table I five times
with identical set of seeds for candidate action sequences and
report averaged running time and the speedup obtained from it.
Remarkably, from the bottom line of Table I we observe that
with extremely loose probabilistic constraint (ε = 0.9) we do
not eliminate any action sequence but the running time is not
larger than the baseline. This fact indicates that the overhead
from adaptation is so small that it was consumed by differences
in running time along the trials. For more experiments with
Algorithm 2, please refer to the Appendix E.

2) Maximal Feasible Return: We continue to our second
problem (maximal feasible return (12)). As explained in Sec-

tion IV-D, we set δmin = 0 and δmax(bk)=
d

√∏d
i λi(bk). We set

the final precision of Algorithm 3 to δmax(bk) · 10−6. Let us
increase the number of landmarks to obtain more informative
candidate paths for Information gathering. We show our second

(a) (b)

Fig. 8. (a) Robot second preliminary mapping session, by transparent gray
circles encapsulated in dashed lines we depict landmarks’ visibility radius. As
we can see that robot detected the landmarks and incorporated to its state. The
landmarks visibility radius is 0.8. We also show ellipses of the beliefs over
corresponding to the time robot pose and the final landmarks uncertainty. The
shaded ellipses correspond to one standard deviation. Note that if the ellipse
for the landmark is not shown, this means that the robot has not seen this
landmark, and such a landmark is not a part of the state. (b) Illustration of
the third preliminary mapping session with randomly drawn landmarks. At each
trial we draw randomly the landmarks positions.

preliminary mapping session, with the same parameters as the
previous one, in Fig. 8(a). Here we need many paths with
nonegative IG to examine using Algorithm 3 early acceptance
as well and not only early invalidation as was done in previous
section. With a second preliminary mapping session [Fig. 8(a)],
the starting vertex for path generation did not change. Thus, we
received the candidate paths identical as in Fig. 6(b). Impor-

tantly, the paths with V̂aR
(m)

ε ≤ δmin are discarded for eternity

(if exist at least single path with V̂aR
(m)

ε > δmin) with the first
arrival of Algorithm 3 to line 7. So, more demanding for the
Algorithm 3 simulation in terms of acceleration would be to

come up with as many candidate paths with V̂aR
(m)

ε > δmin as
possible. Our baseline is Algorithm 4, which calculates VaR in
a straightforward way. We report results in Table II, again using
same set of seeds for candidate action sequences per trial. In
Fig. 9(a) we visualize the execution of the optimal path and in
Fig. 9(b) we display the robot trajectories sampled in planning
session. Both these figures correspond to the configuration of
ε = 0.3 in Table II. In addition, note in Table II that δ∗ returned
with Algorithm 3 is slightly less than one returned with Al-
gorithm 4, except when ε=0.5. This is an expected result as
we explained in Section III-I. We did not engage customary
part of Algorithm 3. The fact that when ε = 0.3, our approach
(Algorithm 3) returned larger δ∗ we think is a result of the
accuracy of Julia language library sample approximation of

V̂aR
(m)

ε used in baseline method (Algorithm 4).
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TABLE II
SOLVING MAXIMUM FEASIBLE RETURN PROBLEM (12) FOR SLAM ON TOP OF 30 CANDIDATE PATHS [FIG. 6(b)] WITH SCENARIO PRESENTED IN FIG. 8(A)

TABLE III
ANALYSIS OF THE BEHAVIOR WITH RANDOMLY DRAWN LANDMARKS

(a) (b)

Fig. 9. This figure corresponds to the first row of the Table II, namely, ε = 0.3.
(a) Algorithm 4 and Algorithm 3 both selected path number 8 from Fig. 6(b) as
optimal. (b) Here by the thick green line we show the candidate path sequence.
Note that here we show actual candidate path from Fig. 6(b). This path is
converted to candidate action sequence of increments. By the thin lines of various
colors we visualize the robot trajectories in planning session.

We also have an additional simulation with randomly drawing
landmarks. In this simulation each trial has different set of
seeds for candidate actions. For GTSAM stability purposes we
add random landmarks uniformly on the square [2, 5]× [2, 5].
We also slightly changed the preliminary action sequence
[Fig. 8(b)]. Results are presented in Table III. As we witness
from Tables II and III, we mostly obtain a significant speedup.
Yet, early action elimination appears to be more prominent than
early accept. The reader can find the explanation why this is
happening at the end of Section III-H.

Fig. 10. Visualization of the scenario for verifying that ML observation
assumption can be destructive. Robot starts to plan from b0. Each landmark
has prior shown by light green circle and the visibility radius shown by gray
circle with dashed line.

3) Maximum Likelihood Observation: Successively, we
shall verify that m observation laces are needed and we indeed
loose quality of decision making using a single ML observation.
Note that this was already shown by [12]. Toward this end,
we simulate the scenario presented in Fig. 10. The robot does
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TABLE IV
SOLVING MAXIMUM FEASIBLE RETURN PROBLEM (12) FOR SENSOR DEPLOYMENT WITH SCENARIO PRESENTED IN FIG. 13

(a) (b)

Fig. 11. (a) Execution of the optimal action sequence number 30 selected by
Algorithm 4 with ε = 0.5 and m = 728. (b) Execution of the optimal action
sequence number 14 selected by Algorithm 4 with ε = 0.5 and ML assumption.

not do any preliminary actions, but each landmark has a prior.
The belief for planning bk is prior belief b0 with parameters
μ0 = (0.0, 0.0, 0.0)T , Σ0 = diag(0.001, 0.001, 0.001). The
starting vertex for paths generation was identical as in Fig. 6(b),
so the obtained candidate paths are also as in Fig. 6(b).

We apply Algorithm 4 for planning with ε = 0.5 and compare
m = 728with an ML assumption. As we recognize in Fig. 11(a)
and (b), the two settings result in different optimal paths. With
an ML assumption, Algorithm 4 identified the path number 14

as the best with V̂aR
ml

0.5 = 0.036, whereas for path number 30

the objective was V̂aR
ml

0.5 = 0.032. In contrast, using m = 728
observation laces, Algorithm 4 selected the path number 30 as

the best, with V̂aR
(728)

0.5 = 0.032, whereas for path number 14 the

objective was V̂aR
(728)

0.5 = −0.014. We witness that for path 14
the ML observation fails to adequately represent the underlying
distribution.

C. Sensor Deployment

There are up to L sensors that should be scattered in a larger
area. For the sake of simplicity, we discretize the area into an
n×n grid. The robot takes a path of length ofL cells. In each cell,
it can deploy the sensor and make a reading or just make a reading
if there is already a sensor there, or do nothing if the sensor
can not be deployed in this cell. We still want to measure the
quantity of interest in this cell leveraging statistical dependence
between the cells. Using linear indices, all random variables of
interest from an n×n field are combined to a random vector of
size N . Our prior belief b0(ξ) has covariance Σ0 ∈ RN×N with
N�n2. For simplicity, we assume that a single sensor at the
robot sighting contributes to the observations. Meaning, β has

(a) (b)

Fig. 12. (a) Conceptual illustration of our scenario and the transition model
structure for SD problem. In time index t− 1 the robot take an action ↑ and
by time t, the robot can be in one of the purple cells. The intensity designate
the chance to be there. The red cells are not suitable for deploying the sensors.
(b) Example of candidate paths for SD problem. By red opaque color we mark
cells which are nonsuitable for deploying a sensor. However, we still desire to
measure the quantity of interest in these cells using statistical dependence of the
cells.

(a) (b)

Fig. 13. ξ ∈ R1600 (a) Covariance of b0(ξ); (b) Zoom in.

single 1 in the cell of the robot’s current location if there is a
sensor in this cell and all the rest zeros. Our observation model is

PZ(z|ξ,β) � N(z;βT · ξ, σ2). (61)

If no sensor is located in a cell, the β is all zeros, such a cell
will not produce an observation and the robot will perform next
action. With the observation model (61), the belief update is
exact, as we describe in Appendix D. We implemented the belief
update by ourselves and not used GTSAM library [43]. As we
witness in (70) of Appendix D, the Information (covariance)
matrix does not depend on the actual observation but only
depends on the robot pose, which yielded the corresponding
observation through dependence of the observation model on
β, so that the IG in this case also depends only on the robot
pose. This is happening since our observation model (61) is
linear and noise variance σ2 does not depend on the state (ξ).

In this problem solely for simplicity we utilize the relative
IG and select (58) as a return. Our action space of motion
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primitives consists of nine possible actions A = {a1, . . . , a9},
such that a1 = (1, 0)T , a2 = (−1, 0)T , a3 = (0, 1)T , a4 =
(0,−1)T , a5 = (1, 1)T , a6 = (−1, 1)T , a7 = (1,−1)T , a8 =
(−1,−1)T , and a9 = (0, 0)T . The agent is fully observable
with the following motion model xt+1 = xt+at+wt. At the
places far enough from the fringes of the map the wt follows
P(wt) =

∑9
i=1 P

iδ(wt−ai), where Pi can be any probabilities
[see Fig. 12(a)]. Close to the fringes of the map we leave only
allowed actions and renormalize the above PDF accordingly.
One possibility is to take a weight as a value of Gaussian
with covariance matrix Σt, and the mean μt = 0. We have that
P(wt) =

∑9
i=1

N(ai;0,Σ)∑9
i=1N(ai;0,Σ)

δ(wt−ai), where by N(�;μ,Σ)

we denote Gaussian distribution evaluated at the point�. For the
candidate path creation we sample uniformly actions from our
action space [see an example in Fig. 12(b)]. The belief tree in
this problem is as in Fig. 1(b). In Fig. 13, we show the covariance
of the prior belief b0(ξ). We select n = 40, thereby our grid is of
the dimension 40×40, resulting in ξ ∈ R1600. We present results
for the maximal feasible return problem (12).

1) Maximal Feasible Return: We set δmin = 0, δmax = 1 and
compare Algorithm 3 versus Algorithm 4. With perfect robot
observabiltiy in SD the uncertainty can only decrease as we
observe from the belief update (70). Therefore, the IG is always
nonnegative. We present results in Table IV. We observe sub-
stantial speedup in all configurations. The best speedup of 0.81
was obtained with ε = 0.9 since many candidate paths yielded

V̂aR
(100)

0.9 = 1.0 due to very low noise in observation model. In
baseline approach Algorithm 4 it is impossible to catch such a
situation. Note that since we simulate a new covariance matrix
each trial, we obtain a different best path and δ∗. We do not
show these values in Table IV, however, as in SLAM, typically δ∗

returned by Algorithm 3 is slightly smaller than the one returned
by Algorithm 4. This is a direct result of not engaging customary
part of our approach (Line 11 in Algorithm 3) as explained in
Section III-I-2.

D. Technical Details

We used four computers with the following characteristics:
1) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50 GHz with 80 GB of RAM;
2) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50 GHz with 64 GB of RAM;
3) 16 cores 11th Gen Intel(R) Core(TM) i9-11900 K working

3.50 GHz with 64 GB of RAM; and
4) 32 hardware threads AMD Ryzen 9 7945HX with 32 GB

of RAM.

VI. CONCLUSION

We presented a novel adaptive technique for two problems,
BSP with probabilistic belief-dependent constraints and BSP
with VaR as an objective. Both problems are relevant in the
context of Information gathering tasks. On top of that, we prov-
ably extended the simplification paradigm of decision making
problems to our setting. Our rigorous theory is summarized
by two novel adaptive algorithms, solving optimality under a

probabilistic constraint problem and the maximal feasible return
problem where we adaptively maximize VaR. Our algorithms are
guaranteed to return an identical-quality solution in a fraction of
the baseline running time. In addition, our framework provides
a mechanism for stopping exploration, which would happen
either when all candidate action sequences do not satisfy the
constraint (25) in Algorithm 1, or, in the second considered
problem (Algorithm 3), when the upper bound of a maximum
feasible return is achieved (δmax). Extensive simulations show
the superiority of our methods. In the exceptionally challenging
problems of active SLAM and SD, both with a high-dimensional
state, we obtained a typical speedup of 30%. In the SD prob-
lem we obtained maximal speedup of 81% when the noise of
observation model is very small. Our acceleration is entirely
harmless regarding the quality of the decision making. The same
action is always calculated as the corresponding, not accelerated,
approach. Future work includes applying our approach to finding
a maximal feasible multiplicative inner constraint.

APPENDIX A
THEORETICAL OBSERVATION LIKELIHOOD

To express the observation in terms of probabilistic models
available to our disposal we marginalize over the xt+1

P(zt+1|bt, at,βt+1)P(βt+1|bt, at)

=

∫
xt+1

P(zt+1|bt, at,βt+1,xt+1)· (62)

P(xt+1|bt, at,βt+1)P(βt+1|bt, at)dxt+1

=

∫
xt+1

P(zt+1|bt, at,βt+1,xt+1)·

P(xt+1|bt, at)Pβ(βt+1|xt+1)dxt+1. (63)

All quantities in (63) are available. Such a representation enables
us to draw the observations in look-ahead step t+ 1.

APPENDIX B
PROOF OF THEOREM 1 (SIMPLIFICATION MACHINERY)

We first provide the proof for the strict inequality in (10)
and then explain changes that need to be done for the nonstrict
inequality (10) to support our adaptive approach for problem
(12) as stated after (40). It is sufficient to show that the following
holds for every sample zlk+1:k+L:

c(blk:k+L;φ, δ) ≤ c(blk:k+L;φ, δ) ≤ c(blk:k+L;φ, δ). (64)

Let us start from the left inequality of (64). We shall prove that
c(blk:k+L;φ, δ)−c(blk:k+L;φ, δ) ≤ 0. Assume in contradiction
that ∃blk:k+L, φ(·), φ(·), δ, such that

c(blk:k+L;φ, δ)− c(blk:k+L;φ, δ) > 0. (65)

The fact that c, c ∈ {0, 1} implies that this is equivalent to
c(blk:k+L;φ, δ) = 1 and c(blk:k+L;φ, δ) = 0. For the inner con-
straint of the form (10), this can happen if and only if
(
∑k+L−1

t=k φ(blt+1, b
l
t)) > δ and (

∑k+L−1
t=k φ(blt+1, b

l
t)) ≤ δ. We
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behold a contradiction to the LHS part of (28), namely, the
contradiction to the fact that φ(·) ≤ φ(·).

Subsequently, for the multiplicative flavor (11), inequality
(65) is equivalent to the existence of t, such that φ(blt) < δ (to
render c = 0). In the same time ∀t it must hold that φ(blt) ≥ δ
(to render c = 1) producing again a contradiction to the LHS
part of (28).

To prove the right inequality of (64), we shall prove that
c(blk:k+L;φ, δ)−c(blk:k+L;φ, δ)≤ 0. We can bear out the desired
result by switching the roles of c(blk:k+L;φ, δ) to c(blk:k+L;φ, δ)

and c(blk:k+L;φ, δ) to c(blk:k+L;φ, δ) in (65) and arguing in
a similar manner using φ and the RHS part of (28). To fix
the proof for the nonstrict inequality as in (13), one needs to
change the inequalities marked by the red color from strict to
nonstrict and vice versa. This concludes the proof. Note that
we also land at an identical result (convergence almost surely)
for theoretical counterparts of following probabilities and not
sample approximations by taking the limits:

lim
m→∞

1

m

m∑
l=1

c(blk:k+L;φ, δ) ≤ lim
m→∞

1

m

m∑
l=1

c(blk:k+L;φ, δ)

(66)

lim
m→∞

1

m

m∑
l=1

c(blk:k+L;φ, δ) ≤ lim
m→∞

1

m

m∑
l=1

c(blk:k+L;φ, δ).

(67)

�

APPENDIX C
SAMPLE APPROXIMATIONS

The core of our sample approximations is sequential sam-
pling the observations from P(zt+1|bt, at,βt+1) using previ-
ously sampled βt+1∼P(βt+1|bt, at). Following the theoretical
derivation presented in Appendix A, we leverage the structure
verified by (63) in the following way.

1) SLAM: First, we sample the last pose and the landmarks
from the corresponding marginal of the belief. Our belief is
Gaussian, thus, we just pull the appropriate portion of the
covariance matrix and the mean value followed by sampling
from (xt+1, {�j}M(k)

j=1 )o∼P(xt+1, {�j}M(k)
j=1 |bt, at). Afterward,

we sample βt+1 using (2) and draw samples of the observation
lace from the observation model (3).

2) Sensor Deployment: In SD problem we have that

P(xt+1|bt, at) =
∫
xt

P(xt+1|xt, bt, at)P(xt|bt)dxt

=

∫
xt

PT (xt+1|xt, at)δ(xt − zxt )dxt = PT (xt+1|zxt , at).
(68)

Having sampled the state from (68), we can sample βt+1 from
(5) and the observation from (6).

Finally, the sample approximation of U and C are denoted by

Û(m)
and Ĉ(m)

, respectively, and calculated by sample means of

{s(blk:k+L)}ml=1; V̂aR
(m)

ε is obtained by sample quantile.

(a) (b)

Fig. 14. SLAM problem. (b) Algorithmically selected paths to the goal on top
of denser (a) PRM. We show the path number on the vertex, which is removed
for finding the subsequent diverse path. The last’s path number is shown at its
final vertex (the goal). (a) PRM (b) Obtained diverse paths.

APPENDIX D
SENSOR DEPLOYMENT BELIEF UPDATE

For completeness of this article, in this section, we develop
an exact belief update for SD problem with observation model

as in (61), namely,PZ(z|β · ξ) = exp(− 1
2 ‖σ−1(βT ·ξ−z)‖22)
σ
√

(2π)
,where

vector β has one at the linear index of coordinate of the cell that
resulted in this observation. Now, we need to update the belief
with an action a and the observation z. Without loosing general-
ity, suppose we have Gaussian bk−1(ξk−1) with mean μk−1 and
covariance Σk−1. Our goal is to update it with observation. We
have that bk(ξk) ∝ PZ(z|βT · ξ)bk−1(ξk−1). As we explained
in Section IV-A-2, the above expression will be an another
Gaussian with mean ξ∗, which is a unique solution to ξ∗ =
argminξ ‖σ−1(βT ξ − z)‖22+‖Σ−1/2k−1 (ξ − μk−1)‖22. Rearrang-
ing the terms, the previous equation becomes

ξ∗ = argmin
ξ
‖Ăξ − b̆‖22 (69)

where Ă =
(
σ−1βT

Σ
−1/2
k−1

)
, b̆ =

(
σ−1z

Σ
−1/2
k−1 μk−1

)
and Ă has a full col-

umn rank with number of rows larger than number of
columns. Solving the least squares problem (69), we have that
ξ∗ = (ĂT Ă)−1Ăb̆ and

Λk = ĂT Ă = Λk−1 + βσ−2βT (70)

whereΛk = Σ−1k is the unique Information matrix of the desired
Gaussian. From (70), we see that at each time, we increase the
diagonal value of Λk−1 corresponding to the active sensor.

APPENDIX E
ADDITIONAL SIMULATIONS

In this section, we show additional simulations of Algorithm
2 applied to the problem of active SLAM. The prelimiary robot
mapping section is as in Fig. 7(a).

We first experiment with Algorithm 2 on top of the PRM as in
Fig. 6(a) and paths from Fig. 6(b). From Table V, we infer that,
indeed, the sensitivity to the number of samples is low. Using
only ten observation laces, Algorithm 2 identified path 14 as
optimal. Note that we can not recognize such a behavior before
planning with m = 200 observation laces. The reason for such
good decision making using a tiny amount of the samples of
the observation episodes is that the best candidate path is far in
terms of the objective from other paths. To verify this claim, we
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TABLE V
IN THIS SIMULATION THE δ = 0 AND NUMBER OF CANDIDATE PATHS IS 30

TABLE VI
IN THIS SIMULATION THE δ = 0 AND NUMBER OF CANDIDATE PATHS IS 50

make PRM denser, as shown in Fig 14(a), and find 50 candidate
diverse paths (Fig. 14(b)). We present results in Table VI. As
we see in Table VI, increasing the number of sampled laces m
changes the selected optimal path.
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