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This document provides supplementary material to Online POMDP Planning with Anytime Determin-
istic Guarantees [1] and should not be considered a self-contained document. Throughout this report,
all notations and definitions are in compliance with the ones presented in the main body of the paper.
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1 Mathematical Analysis

We start by restating the definition of the simplified value function,

V̄ π(b̄t) , r(b̄t, πt) + Ē
[
V̄ (bt)

]
(1)

=
∑
xt

b̄(xt)r(xt, πt) +
∑
zt

P̄(zt+1 | H−t+1)V̄ (b̄(zt+1)), (2)

1.1 Theorem 1

Theorem 1. Let bt belief state at time t, and T be the last time step of the POMDP. Let V π(bt) be
the theoretical value function by following a policy π, and let V̄ π(bt) be the simplified value function,
as defined in (1), by following the same policy. Then, for any policy π, the difference between the
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theoretical and simplified value functions is bounded as follows,

∣∣V π(bt)−V̄ π(bt)
∣∣ ≤Rmax

T∑
τ=t+1

1−
∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 , επz (bt).

(3)

Proof. For notational convenience, we derive the bounds for the value function by denoting the prior
belief as b0,

V π0 (b0) = Ez1:T

[
T∑
t=0

r(bt, at)

]
(4)

applying the belief update equation,

V π0 (b0) =
∑
z1:T

T∏
τ=1

P
(
zτ | H−τ

) T∑
t=0

[∑
xt

P(zt | xt)
∑
xt−1

P(xt | xt−1, πt−1)bt−1

P
(
zt | H−t

) r(xt, at)

]
(5)

=
∑
z1:T

T∏
τ=1

P
(
zτ | H−τ

) T∑
t=0

[∑
x0:t

∏t
k=1 P(zk | xk)P(xk | xk−1, πk−1)b(x0)∏t

τ=1 P
(
zτ | H−τ

) r(xt, at)

]
(6)

=

T∑
t=0

∑
z1:T

∑
x0:T

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt, at) (7)

which applies similarly to the simplified value function,

V̄ π0 (b0) =

T∑
t=0

∑
z1:T

∑
x0:T

t∏
k=1

P̄(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt, at). (8)

We begin the derivation by focusing on a single time step, t, and later generalize to the complete
value function.

|Ez1:t [r(bt)]− Ez1:t [r(bt)]| (9)

=|
∑
z1:t

∑
x0:t

[

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt)−
t∏

k′=1

P(zk′ | xk′)P(xk′ | xk′−1, πk′−1)b(x0)r(xt)]|

(10)

≤
∑
z1:t

∑
x0:t

∣∣∣∣∣r(xt)
[

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1

b(x0) P(zk′ | xk′)P(xk′ | xk′−1, πk′−1)

]∣∣∣∣∣
(11)

=
∑
z1:t

∑
x0:t

|r(xt)|

[
t∏

k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1

b(x0) P(zk′ | xk′) P(xk′ | xk′−1, πk′−1)

]
(12)

where the second transition is due to triangle inequality, the third transition is equality by the
construction, i.e. using the simplified observation models imply that the difference is nonnegative.
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We add and subtract, followed by rearranging terms,

=
∑
z1:t

∑
x0:t

|r(xt)| (13)

[

t∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)−
t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)

+

t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)−
t∏

k′=1

b(x0)P(zk′ , xk′ | xk′−1, πk′−1)]

=
∑
z1:t

∑
x0:t

|r(xt)|
{

(14)

P(zt, xt | xt−1, πt−1)

[
t−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)−
t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)

]

+

t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)[P(zt, xt | xt−1, πt−1)− P(zt, xt | xt−1, πt−1)]
}

applying Holder’s inequality,

≤Rmax

∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)

[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
(15)

+Rmax

∑
z1:t

∑
x0:t

t−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[P(zt, xt | xt−1, πt−1)− P(zt, xt | xt−1, πt−1)]

=Rmax

∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)· (16)[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
+Rmaxδt

=Rmax

∑
z1:t−1

∑
x0:t−1

[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
(17)

+Rmaxδt,

following similar steps recursively,

= . . . = Rmax

t∑
τ=1

δτ . (18)

Finally, applying similar steps for every time step t ∈ [1, T ] results in,

∣∣V π(bt)− V̄ π(bt)
∣∣ ≤ Rmax

T∑
t=1

t∑
τ=1

δτ (19)

where,

δτ =
∑
z1:τ

∑
x0:τ

τ−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[P(zτ , xτ | xτ−1, πτ−1)− P(zτ , xτ | xτ−1, πτ−1)]

=
∑
z1:τ−1

∑
x0:τ−1

τ−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[1−
∑
zτ

∑
xτ

P(zτ , xτ | xτ−1, πτ−1)] (20)
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plugging the term in (20) to (19) and expanding the terms results in the desired bound,

∣∣V π(bt)− V̄ π(bt)
∣∣ ≤Rmax

T∑
τ=t+1

1−
∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (21)

which concludes our derivation.

1.2 Lemma 1

Lemma 1. The optimal value function can be bounded as

V π∗(bt) ≤ UDBπ(bt), (22)

where the policy π is determined according to Bellman optimality over the UDB, i.e.

UDBπ(bt) , max
at∈A

[Q̄π(bt, at) + επz (bt, at)] (23)

= max
at∈A

[r(bt, at) + Ēzt+1|bt,at [V̄
π(bt+1)] + επz (bt, at)]. (24)

Proof. In the following, we prove by induction that applying the Bellman optimality operator on
upper bounds to the value function in finite-horizon POMDPs will result in an upper bound on the
optimal value function. The notations are the same as the ones presented in the main body of the
paper. We restate some of the definitions from the paper for convenience.

The policy πt(bt) determined by applying Bellman optimality at belief bt, i.e.,

πt(bt) = arg max
at∈A

[Q̄π(bt, at) + επz (bt, at)]. (25)

As it will be needed in the following proof, we also define the value of a belief which includes in its
history at least one observation out of the simplified set, e.g. Ht = {a0, z1, . . . , zk /∈ Z, . . . , zt} as
being equal to zero. Explicitly,

V
π

t (P(xt | a0, z1, . . . , zk /∈ Z, . . . , zt)) ≡ 0 ∀k ∈ [1, t]. (26)

We also use the following simple bound,

Vt,max , Rmax · (T − t− 1) (27)

Base case (t = T ) - At the final time step T , for each belief we set the value function to be equal to
the reward value at that belief state, bT and taking the action that maximizes the immediate reward,

UDBπ(bT ) = max
aT
{r(bT , aT ) + εz(bT , aT )} ≡ arg max

aT
{r(bT , aT )} (28)

which provides an upper bound for the optimal value function for the final time step, V ?T (bT ) ≤
UDBπ(bT ).
Induction hypothesis - Assume that for a given time step, t, for all belief states the following holds,

V ?t (bt) ≤ UDBπ(bt). (29)
Induction step - We will show that the hypothesis holds for time step t − 1. By the induction
hypothesis,

V ?t (bt) ≤ UDBπ(bt) ∀bt, (30)
thus,

Q?(bt−1, at−1) = r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−t

)
V ?t (b(zt)) (31)

≤ r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−t

)
UDBπ(b(zt)) (32)

= r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−t

) [
V
π

t (bt) + επz (bt)
]
. (33)
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For the following transition, we make use of lemma 2,

= r(bt−1, at−1) + Ezt|bt−1,at−1

[
V
π

t (bt)
]

+ επz (bt−1, at−1) (34)

≡ UDBπ(bt−1, at−1). (35)

Therefore, under the induction hypothesis, Q?t−1(bt−1, at−1) ≤ UDBπ(bt−1, at−1). Taking the
maximum over all actions at,

UDBπ(bt−1) = max
at−1∈A

{UDBπ(bt−1, at−1)} (36)

≥ max
at−1∈A

{
Q?t−1(bt−1, at−1)

}
= V ?t−1(bt−1),

which completes the induction step and the required proof.

Lemma 2. Let bt denote a belief state and πt a policy at time t. Let P̄(zt | xt) be the simplified
observation model which represents the likelihood of observing zt given xt. Then, the following
terms are equivalent,

Ezt
[
V
π

t (bt) + επz (bt)
]

= Ezt
[
V
π

t (bt)
]

+ επz (bt−1, at−1) (37)

Proof.

Ezt
[
V
π

t (bt) + επz (bt)
]

= (38)

Ezt
[
V
π

t (bt)
]

+ Ezt

Rmax

T∑
τ=t+1

1−
∑
zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)


(39)

focusing on the second summand,

∑
zt∈Z

P
(
zt | H−t

)
Rmax

T∑
τ=t+1

1−
∑
zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (40)

= Rmax

T∑
τ=t+1

1−
∑
zt

P
(
zt | H−t

) ∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (41)

by marginalizing over xt−1,

= Rmax

T∑
τ=t+1

[1−
∑
zt

P
(
zt | H−t

) ∑
zt+1:τ

∑
xt−1:τ

P(zt | xt)P(xt | xt−1, πt−1)b(xt−1)

P
(
zt | H−t

) · (42)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)]

canceling out the denominator,

= Rmax

T∑
τ=t+1

[1−
∑
zt:τ

∑
xt−1:τ

P(zt | xt)P(xt | xt−1, at−1)b(xt−1)· (43)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)] ≡ επz (bt−1, at−1)
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it is left to show that Ezt|bt−1,at−1

[
V
π

t (bt)
]

= Ezt|bt−1,at−1

[
V
π

t (bt)
]
. By the definition of a value

function of a belief not included in the simplified set, we have that,

Ezt|bt−1,at−1

[
V
π

t (bt)
]

=
∑
zt∈Z

P
(
zt | H−t

)
V
π

t (bt) (44)

=
∑
zt∈Z

P
(
zt | H−t

)
V
π

t (bt) +
∑

zt∈Z\Z

P
(
zt | H−t

)
V
π

t (bt) (45)

=
∑
zt∈Z

P
(
zt | H−t

)
· V πt (bt) +

∑
zt∈Z\Z

P
(
zt | H−t

)
· 0 (46)

= Ezt|bt−1,at−1

[
V
π

t (bt)
]
, (47)

which concludes the derivation.

1.3 Corollary 1.1

We restate the definition of UDB exploration criteria,
at = arg max

at∈A
[UDBπ(bt, at)] = arg max

at∈A
[Q̄π(bt, at) + επz (bt, at)]. (48)

Corollary 1.1. Using Lemma 1 and the exploration criteria defined in (48) guarantees convergence
to the optimal value function.

Proof. Let us define a sequence of bounds, UDBπn(bt) and a corresponding difference value between
UDBn and the simplified value function,

UDBπn(bt)− V̄ πn (bt) = επn,z(bt), (49)
where n ∈ [0, |Z|] corresponds to the number of unique observation instances within the simplified
observation set, Zn, and |Z| denotes the cardinality of the complete observation space. Additionally,
for the clarity of the proof and notations, assume that by construction the simplified set is chosen
such that Zn(Ht) ≡ Zn remains identical for all time steps t and history sequences, Ht given n. By
the definition of επn,z(bt),

επn,z(bt) = Rmax

T∑
τ=t+1

1−
∑

zt+1:τ∈Zn

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 , (50)

we have that επn,z(bt)→ 0 as n→ |Z|, since∑
zt+1:τ∈Zn

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)→ 1 (51)

as more unique observation elements are added to the simplified observation space, Zn, eventually
recovering the entire support of the discrete observation distribution.

From lemma 1 we have that, for all n ∈ [0, |Z|] the following holds,
V π∗(bt) ≤ UDBπn(bt) = V̄ πn (bt) + επn,z(bt). (52)

Additionally, from theorem 1 we have that,∣∣V π(bt)− V̄ πn (bt)
∣∣ ≤ επn,z(bt), (53)

for any policy π and subset Zn ⊆ Z , thus,
V̄ πn (bt)− επn,z(bt) ≤ V π(bt) ≤ V π∗(bt) ≤ V̄ πn (bt) + επn,z(bt). (54)

Since επn,z(bt) → 0 as n → |Z|, and |Z| is finite, it is guaranteed that UDBπn(bt)
n→|Z|−−−−→ V π∗(bt)

which completes our proof.

Moreover, depending on the algorithm implementation, the number of iterations can be finite (e.g. by
directly choosing actions and observations to minimize the bound). A stopping criteria can also be
verified by calculating the difference between the upper and lower bounds. The optimal solution is
obtained once the upper bound equals the lower bound.
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2 Experiments

2.1 POMDP scenarios

We begin with a brief description of the Partially Observable Markov Decision Process (POMDP)
scenarios implemented for the experiments. each scenario was bounded by a finite number of time
steps used for every episode, where each action taken by the agent led to a decrement in the number
of time steps left. After the allowable time steps ended, the simulation was reset to its initial state.

2.1.1 Tiger POMDP

The Tiger is a classic POMDP problem [2], involves an agent making decisions between two doors,
one concealing a tiger and the other a reward. The agent needs to choose among three actions,
either open each one of the doors or listen to receive an observation about the tiger position. In
our experiments, the POMDP was limited horizon of 5 steps. The problem consists of 3 actions, 2
observations and 2 states.

2.1.2 Discrete Light Dark

Is an adaptation from [4]. In this setting the agent needs to travel on a 1D grid to reach a target
location. The grid is divided into a dark region, which offers noisy observations, and a light region,
which offers accurate localization observations. The agent receives a penalty for every step and a
reward for reaching the target location. The key challenge is to balance between information gathering
by traveling towards the light area, and moving towards the goal region.

2.1.3 Laser Tag POMDP

In the Laser Tag problem, [3], an agent has to navigate through a grid world, shoot and tag opponents
by using a laser gun. The main goal is to tag as many opponents as possible within a given time frame.
The grid is segmented into various sections that have varying visibility, characterized by obstacles
that block the line of sight, and open areas. There are five possible actions, moving in four cardinal
directions (North, South, East, West) and shooting the laser. The observation space cardinality is
|Z| ≈ 1.5 × 106, which is described as a discretized normal distribution and reflect the distance
measured by the laser. The states reflect the agent’s current position and the opponents’ positions.
The agent receives a reward for tagging an opponent and a penalty for every movement, encouraging
the agent to make strategic moves and shots.

2.1.4 Baby POMDP

The Baby POMDP is a classic problem that represents the scenario of a baby and a caregiver. The
agent, playing the role of the caregiver, needs to infer the baby’s needs based on its state, which can be
either crying or quiet. The states in this problem represent the baby’s needs, which could be hunger,
discomfort or no need. The agent has three actions to choose from: feeding, changing the diaper, or
doing nothing. The observations are binary, either the baby is crying or not. The crying observation
does not uniquely identify the baby’s state, as the baby may cry due to hunger or discomfort, which
makes this a partially observable problem. The agent receives a reward when it correctly addresses
the baby’s needs and a penalty when the wrong action is taken.

2.2 Hyperparameters

The hyperparameters for both DB-DESPOT and AR-DESPOT algorithms were selected through a
grid search. We explored an array of parameters for AR-DESPOT, choosing the highest-performing
configuration. Specifically, the hyperparameterK was varied across {10, 50, 500, 5000}, while λ was
evaluated at {0, 0.01, 0.1}. Similarly, DB-POMCP and POMCP were examined three different values
for the exploration-exploitation weight, c = {0.1, 1.0, 10.0} multiplied by Vmax, which denotes an
upper bound for the value function.

For the initialization of the upper and lower bounds used by the algorithms, we used the maximal
reward, multiplied by the remaining time steps of the episode,Rmax · (T − t− 1).
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Finally, we provide our algorithm implementation in https://github.com/moranbar/Online-POMDP-
Planning-with-Anytime-Deterministic-Guarantees.
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