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1 VaR and CVaR as Safety Cost Operators.

Fig. 1: Illustration of
complex safety opera-
tors in multirobot set-
ting.

Suppose we have particle represented belief and the
obstacle of the circular form Fig. 1. We have two robots
teal and blue. Each particle of the belief is a concate-
nated position of each robot such that if x is a particle,
the x[1:2] corresponds to the first robot and x[3 : 4]
corresponds to the second robot. We shall check such a
constraint for each robot separately. Let x denote the
position of the one of the robots. The map M is given.
We first define a distance from the safe space Y⊆M
as dist(x,Y) = miny∈Y∥x− y∥2. We then define Value
at Risk (VaR) as

θ(b)≜VaRb
α[dist(x,Y)]=

min{ξ|P(dist(x,Y)≤ξ)≥1−α}.
(1)

The Conditional Value at Risk (CVaR) is specified as

θ(b)≜CVaRb
α[dist(x,Y)]=

E[dist(x,Y)|{x : dist(x,Y) ≥ VaRb
α[dist(x,Y)]}].

(2)

Both of these operators are cost operators.
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2 Proofs

2.1 Proof of Lemma 1 (Representation of the Value function).

Before we begin, let us clarify that when we write {Pπ
ℓ (aℓ|bℓ)}

L−1
ℓ=1 , the aℓ and

bℓ inside the {Pℓ(aℓ|bℓ)}L−1
ℓ=1 can be a random variables for all relevant ℓ or

corresponding realizations. However, {Pπ
ℓ }

L−1
ℓ=1 is the series of distributions of

length L−1 and corresponding actions and beliefs are unknown. In addition, we
remind to the reader that πℓ(aℓ, bℓ) = Pπ

ℓ (aℓ|bℓ) ∀ℓ ∈ 1 : L−1 and π={Pπ
ℓ }

L−1
ℓ=1 .

E
[∑L−1

ℓ=0 γℓ+1ρℓ+1(bℓ, aℓ, bℓ+1)
∣∣b0, π]=∑L−1

ℓ=0 γℓ+1E
[
ρℓ+1

∣∣b0, π]=∑L−1
ℓ=0 γℓ+1E

[
ρℓ+1

∣∣b0, π] (3)

E
[
ρℓ+1

∣∣b0, π]=∫ρℓ+1
ρℓ+1P(ρℓ+1|b0, {Pπ

i }
L−1
i=0 )dρℓ+1=∫

ρℓ+1

ρℓ+1

∫
b1:ℓ

a0:ℓ∈×ℓ
i=1A

P(ρℓ+1, b1:ℓ, a1:ℓ|b0,{Pπ
i }

L−1
i=0 )db1:ℓda0:ℓdρℓ+1=

∫
ρℓ+1

ρℓ+1

∫
b1:ℓ

a0:ℓ∈×ℓ
i=1A

P(ρℓ+1|b0:ℓ, a0:ℓ)

P(b1:ℓ, a0:ℓ|b0, {Pπ
i }L−1

i=0 )db1:ℓda0:ℓdρℓ+1

(4)

Previous equation equals to∫
b1:ℓ

a0:ℓ∈×ℓ
i=1A

( ∫
ρℓ+1

ρℓ+1P(ρℓ+1|b0:ℓ, a0:ℓ)dρℓ+1

)
P(b1:ℓ, a0:ℓ|b0, {Pπ

i }L−1
i=0 )db1:ℓda0:ℓ

(5)

We now use a chain rule from the future time back on P(b1:ℓ, a0:ℓ|b0, {Pπ
i }

L−1
i=0 )

an got
E
[
ρℓ+1

∣∣b0, π]=E
a0

[
E
b1

[
E
a1

[
E
b2

[
. . .

E
aℓ

[
E
[
ρℓ+1|bℓ, aℓ

]∣∣bℓ, πℓ

]
. . .

∣∣b1, a1]∣∣b1, π1

]∣∣b0, a0]∣∣b0, π0

]
.

(6)

■

2.2 Proof of Theorem 1 (Necessary condition for theoretical
posteriors to be safe)

For the necessary condition we prove the inverse implication. Suppose that ∀zℓ∈Z
it holds that P

(
{xℓ∈X safe

ℓ }
∣∣h−

ℓ , zℓ
)
≥δ. We arrive at

(
∫
zℓ∈Z P

(
{xℓ∈X safe

ℓ }
∣∣h−

ℓ , zℓ
)
P(zℓ|h−

ℓ )dzℓ)≥δ. (7)

■



Anytime PC-BSP 3

2.3 Proof of Theorem 2(Representation of Our Outer Constraint).

Before we begin, let us clarify that when we write

P((1Φδ
0
(b0)

∏L
ℓ=1 1Φδ

ℓ
(bℓ))=1|b0, a0, {Pπ

ℓ }
L−1
ℓ=1 ),

the actions aℓ and the beliefs bℓ inside {Pπ
ℓ }

L−1
ℓ=1 are unknown random quantities.

In addition, we remind to the reader that πℓ(aℓ, bℓ)=Pπ
ℓ (aℓ|bℓ) ∀ℓ∈1:L−1 and

π={Pπ
ℓ }

L−1
ℓ=1 . Moreover, in this paper each posterior belief is associated with

corresponding propagated belief. Therefore we can rescind the explicit dependence
of the indicator on propagated belief.

E
[
1Φδ

0
(b0)

∏L
ℓ=1 1Φδ

ℓ
(bℓ)|b0, a0, {Pπ

ℓ }
L−1
ℓ=1

]
=∫

b1:L
a1:L−1∈×L−1

ℓ=1 A

1Φδ
0
(b0)

∏L
ℓ=1 1Φδ

ℓ
(bℓ)

P(b1:L, a1:L−1|b0, a0, {Pπ
ℓ }L−1

ℓ=1 )db1:Lda1:L−1.

(8)

Now, we need to handle P(b1:L, a0:L−1|b0, a0, {Pπ
ℓ }

L−1
ℓ=1 ). It holds that

P(b1:L, a1:L−1|b0, a0, {Pπ
ℓ }L−1

ℓ=1 )

equals to
P(b2:L, a2:L−1|b0, a0, b1, a1,Pπ

1 (a1|b1), {Pπ
ℓ }L−1

ℓ=2 )

P(b1, a1|b0, a0, {Pℓ}L−1
ℓ=1 ) =

P(b2:L, a2:L−1|b1, a1, {Pπ
ℓ }L−1

ℓ=2 )P
π
1 (a1|b1)P(b1|b0, a0)=

P(bL|bL−1, aL−1)
∏L−1

ℓ=1 Pπ
ℓ (aℓ|bℓ)P(bℓ|bℓ−1, aℓ−1).

(9)

We now merge (8) and (9), and land at the desired result

1Φδ
0
(b0)

∫
b1:L

a1:L−1∈×L−1
i=1 A

1Φδ
L
(bL)P(bL|bL−1, aL−1)

∏L−1
ℓ=1 (Pπ

ℓ (aℓ|bℓ)P(bℓ|bℓ−1, aℓ−1)1Φδ
ℓ
(bℓ))db1:Lda1:L−1=

1Φδ
0
(b0)

∫
b1
P(b1|b0, a0)1Φδ

1
(b1)

∫
a1

Pπ
1 (a1|b1)(. . .∫

bL
1Φδ

L
(bL)P(bL|bL−1, aL−1)dbL . . . )da1db1 =

1Φδ
0
(b0)E

b1
[1Φδ

1
(b1)E

a1

[E
b2
[1Φδ

2
(b2). . .

E[1Φδ
L
(bL)|bL−1, aL−1

]
. . . |b1, a1]|b1, π1]|b0, a0] =

1Φδ
0
(b0)E

b1
[ E
a1∼Pπ

1 (a1|b1)
[

P((
∏L

ℓ=1 1Φδ
ℓ
(bℓ))=1|b1, a1, π)|b1, π1]|b0, a0].

■
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(a) (b)

(c) (d)

Fig. 2: This simulation setup is associated with Table 1. In this figure we plot
one of the trials shown in Table 1. We nullify unsafe part of the belief in planning
and run PC-SB-PFT-DPW. (a) Here, we plot the goal, agent ground truth,
estimated agent positions and the obstacles; (b) Belief particles, where the colors
symbolize the time instance; (c) Traces of the agent and the landmark (obstacle);
(d) Visualization of the truncation. Here we move each particle of b0 with action
selected by the agent and plot the truncation region of the stochastic motion
model.

3 Additional Simulations

We now describe additional simulations we have done. We remind to the reader
that in PC-PFT-DPW the operator ϕ comply with

ϕ(bℓ)=P
(
{xℓ∈X safe

ℓ }
∣∣bℓ)=P

(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ

)
(10)

ϕ(b−ℓ )=P
(
{xℓ∈X safe

ℓ }
∣∣b−ℓ )=P

(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ−1

)
. (11)

and in PC-SB-PFT-DPW if follows

ϕ(b̄ℓ)=P
(
{xℓ∈X safe

ℓ }
∣∣b̄ℓ)=

P
(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ,

⋂ℓ−1
i=0{xi∈X safe

i }
) (12)
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(a) (b)

(c) (d)

Fig. 3: This simulation setup is associated with Table 1 columns related to
PC-SB-PFT-DPW and here we show one of the trials. In this figure we nullify
unsafe part of the belief in planning. (a) Here, we plot the goal, agent ground
truth, estimated agent positions and the obstacles; (b) Belief particles, where
the colors symbolize the time instance; (c) Traces of the agent and the landmark
(obstacle); (d) Visualization of the truncation. Here we move each particle of b0
with action selected by the agent and plot the truncation region of the stochastic
motion model.

ϕ(b̄−ℓ )=P
(
{xℓ∈X safe

ℓ }
∣∣b̄−ℓ )=

P
(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ−1,

⋂ℓ−1
i=0{xi∈X safe

i }
)
.

(13)

3.1 SLAM

In our second setup we fill the complete rectangle with tiny obstacles in a random
manner as debated (Fig. 4) in the manuscript. We show our results in Table 1. We
did not obtained a significant difference in two approaches. Interestingly, as we see
the safety is much challenging in this problem due to challenging robot localization
with simultaneous mapping of uncertain single landmark. Additionally we see
that the reward is slightly higher in PC-PFT-DPW. We think that this maybe
related to the fact that dropping unsafe particles helps to localize the robot. Thus
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(a) (b)

(c) (d)

Fig. 4: This simulation setup is associated with Table 1 columns related to
PC-PFT-DPW and here we show one of the trials. In this figure we do not
nullify unsafe part of the belief in planning. (a) Here, we plot the goal, agent
ground truth, estimated agent positions and the obstacles; (b) Belief particles,
where the colors symbolize the time instance; (c) Traces of the agent and the
landmark (obstacle); (d) Visualization of the truncation. Here we move each
particle of b0 with action selected by the agent and plot the truncation region of
the stochastic motion model.

the PC-SB-PFT-DPW is less sensitive to the minimization of the trace of the
covariance matrix of the belief.

3.2 PushBox2D

In Fig. 5 we show one of the trials with several values of δ.
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Table 1: 50 Trials of at most 20 cycles of autonomy loop where planning sessions
implemented by Alg. PC-SB-PFT-DPW versus PC-PFT-DPW. Same seed in
both Alg. This problem is the SLAM described in the main manuscript. In our
second scenario shown at Fig. 3 and Fig. 4. Here we study the probability of
the safe trajectory while running autonomy loop, number of collisions and the
reward value. The operator ϕ conforms to (12) and (13) in PC-SB-PFT-DPW
and to (10) and (11) in PC-PFT-DPW. The inner threshold δ = 0.8.

P̂(S|b0) num coll. mean cum. rew. ± std
PC-SB-PFT-DPW PC-PFT-DPW PC-SB-PFT-DPW PC-PFT-DPW PC-SB-PFT-DPW PC-PFT-DPW

0.6 0.6 28/70 28/70 −109.92± 11.55 −106.68± 12.77

(a) δ = 0.0 (b) δ = 0.3

(c) δ = 0.7 (d) δ = 1.0

Fig. 5: Visualization of actual PushBox2D simulation with several values of δ.
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