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Advanced Autonomy

Involves autonomous navigation, active SLAM, informative gathering, active sensing, etc.
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Advanced Autonomy

Decision-Making
Under Uncertainty
What should | be doing next?

Determine best action(s) to
accomplish a task, account for
different sources of uncertainty

Perception and

Inference Key required
capabilities

Where am I? What is the
surrounding environment?

Perception and Inference {eeeeeeed)  Decision-Making Under Uncertainty
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Autonomy Loop

b{ X
Inference: Update Belief X » Planning Under Uncertainty
Zy ajc:k+L—1| OF policy 7
Sensing: Get Measurements Perform Action(s)
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Perception and Inference

Hy

\

* Posterior belief at time k: b £ b[Xi] =P(Xk | aoik—1, 21:%) L

SN N a1

state/variables at _ _ |
N actions observations Ly
time instant k gL

Xk ={zo,..., Tk, L1}

Past & current  Environment representation,
robot states e.g. Landmarks

Dose, N, Can be represented with

graphical models, e.g. a Factor Graph




Partially Observable Markov Decision Process (POMDP)

« POMDP tuple: <X, Z, A, T7 07 IO7 bk>

state, observation, and action spaces

observation,

transition and observation models roward

Belief-dependent reward function '
~

@
Belief at planning time instant k \\/

action
k+L
* Value function V™(by) = E [Z p(bi, mi(br))]

Zk+1:k+L
=k

Belief-dependent reward function
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Partially Observable Markov Decision Process (POMDP)

k4L
e Value function V7 (b) = Z p(by, ™ (b))

Zk—i—l k+L

Belief-dependent reward function

» Belief at the /th look-ahead step: b1y = b[X1to] = P(Xpgr | Q0:k—15 20:k> Qhiktt—1 5 Zhit1:kest)

State at the /-th look Past actions & Future actions &
ahead step observations observations
/I !
/—__
—m

 Examples for reward function p(b, a): Eo k4l o kel okt L

* Expected distance to goal ( ) Planning time Ith look ahead step
* Information theoretic reward ( )



Challenge

eye oo Example - grid world
Probabilistic Inference ple-8

b [X]

Maintain a distribution over the state given data

A _ , Ltk
b ko b [Xk] o H:D(Xk | Ao.t-12 Zl:k)

True location

state actions observations

Future action

Decision-making under uncertainty

Involves reasoning about the entire observation

and action spaces along planning horizon Future observation 7 2
Z’k+]

bk” [X] et ||| I [ il || || hila mtlemlL
Computationally intractable (O ) (L] [l | (sl

I.|.||...|_’:;i.|x l / \ | ) / \ .
_

More so, in high dimensional settings ] ] ]

Poses:

ct autonomously online and efficiently
:asks in a safe and reliable fashion??

3D points:



Agenda

Experience Reuse in POMDP Planning
POMDP Planning with Hybrid Beliefs
Simplification of POMDP with Formal Guarantees

Multi-agent POMDP Planning with Inconsistent Beliefs
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Agenda

Experience Reuse in POMDP Planning

POMDP Planning with Hybrid Beliefs
Simplification of POMDP with Formal Guarantees

Multi-agent POMDP Planning with Inconsistent Beliefs

TECHNION Autonomous Navigation
lsrael Institute @4 A N — l_ and Perception Lab

of Technology

10



Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
« The probability of sampling the same belief/observation twice is zero

Zk+1

i ﬁR

dw e s

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
« The probability of sampling the same belief/observation twice is zero

Online SOTA POMDP solvers typically perform
calculations from scratch at each planning session

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.




14

Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
» The probability of sampling the same belief/observation twice is zero
» Previously sampled beliefs can still provide useful info in the current planning session

Online SOTA POMDP solvers typically perform
calculations from scratch at each planning session

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.




Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
» The probability of sampling the same belief/observation twice is zero
» Previously sampled beliefs can still provide useful info in the current planning session

Key idea: Reuse previous trajectories/calculations to get an efficient estimation of
k+L 1

Z Y (biy mi(bi), big) | b = b,ap = a] £ EL[G | by = b, ay = a

* Instead of calculatmg each planning session from scratch (state of the art)

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider a planning session at time instant k

b
a

Qw(blm ak’)

[Current time]

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider a planning session at time instant k

J i /%
a/kj a’k,- a/kff
—) —1 I—2
T bk"—l—l bkz—l-l ki+1
Q" (bx, ax) i
Ok +1 k;+1 Oki—l—l

bj 1 2

—1 /—1
bk +d bkﬁd k;+d
7 17
Ok: +d Oki+d Ok;+d
1 11
Dh, +a D+ kstd
{ Previous data ]{Current time ]

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

» Key idea: multiple importance sampling (MIS) estimator

—J
bkﬁj +d
J

J
bkj +d

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.

—1

bk‘ﬁ—d
)

0@+d
1

- -

aj.

7

E¥e

—1

1
Oki-i-].

1
k;+1

—1
bm+d

?
O@+d

\b;ﬁ +d

Ak

} Tgu ffiz

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.

bi,

Ww;j

N P(Tguffixwk?akvﬂ)




Experience Reuse in POMDP Planning

» Key idea: multiple importance sampling (MIS) estimator

Eﬁb (::) bzi <::)bk ! bii(::) O

J ) 17 z
U, A, ~ Ay, ar. Q)
—j —t r—3 —1
J i 1
0 Or.. 0 O :
ki+1 ki+1 ki+1 ki+1 1
b O b /i O , Z A IP)(7_511%]"]%'513 |bk7 Ak, 7T)
kj+1 ki+1 ki+1 7t +1O w; = P i
. . . & i (Tsuffix‘ k. 7ak ) )
Ty £1ir

bk: +d ka_F( MIS estimator: /A\

return

J ( M ~l,m
Ok +d OIfiz’—Hl Q (b a ) § : E : suffzm|bk7a’k7 )G
b/ i MIS\Yk, Uk m=1 [=1 j{: n. ( |b a’ )'
k;+d kH—T j=1"7" suffza: k‘ ) k )T
E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience-Based Value Function Estimation

~N

MIS estimator:
l,

m b, : él,m
QMIS(bkaa'k) Zm 121 1 SUffw:| k0K, T)

j= 11y ( suffza;|bk; 7a'k- s ) .
- Y
Theorem 1 O .

P(Tzuffzdbkaak, ) P(by, +1|bk’ak) ar, o
P(Tous finlOk; 0k, ™) P(bz? "116,ak.) by, +1[ \
‘ Ok +1

Proof. A (0O
P(T;:uffzmwk’a’k? W P(bi +170k 1B, +L|bk7a’k77r) : éuffia:
P(T;'uffmlbk ™) P(by 0k, 1rbh L bG 0k T n b,

]P)(b; “111bk,ak) P(Ok il b, + b_+17 . P(b; +1|bk,ak) = Ogcﬁ—d

(b,; +1|bk ’ak ) %ﬁﬂbkﬁp ) (b;Z +1|bk 70% ) ) \biz+dij

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Incremental Belief Space Planning

ML-BSP: BSP with ML observations |
. (one sample per look ahead step) !

____________________________________________

Basic simulation — autonomous navigation in unknown environments:

ML-BSP -2 .
Goal 2 ;4= L
iML-BSP . N | 12 8
60 .
— 80 _ L € |
~ . O . E =
40*1 LI |: ol . L 8 _:_ —_ O 6
X e c 1 1 C_U
[m] + 1 1
> é ..(—3 | I S % %
20 — 1 . o 1 ! L
* C 40 1 |
+ + é E 4+ E 4+
| - -
» o
LLl zZ

N
=
T

. . I |
Initial belief |, | % | ! - 2"

220 ' 20 ' 60 ML iML ML iML ML iML

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Incremental Reuse Particle Filter Tree (IR-PFT)

« Extend PFT-DPW?!, incorporating trajectories from previous planning sessions for fast
estimation of Q(bg, ax)

s 0
0. ©
S FSpeedup g

e Mean Belief I o —50 i
Goal o
Q
)
O

5 —100¢
-
S5
o
O

5 10 15 20 < _150t ', - ' '
Particles 5 10 15 20

Particles

17. Sunberg and M. Kochenderfer. "Online algorithms for POMDPs with continuous state, action, and observation spaces." ICAPS, 2018.

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.



Value Gradients with Action Adaptive Search Trees in Continuous (PO)MDPs

{—

I. Lev-Yehudi, M. Novitsky, M. Barenboim, R. Benchetrit, and V. Indelman, “Value Gradients with Action Adaptive Search Trees in Continuous (PO)MDPs”, arXiv’'25. 23
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Agenda

Experience Reuse in POMDP Planning

POMDP Planning with Hybrid Beliefs

Simplification of POMDP with Formal Guarantees

Multi-agent POMDP Planning with Inconsistent Beliefs
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Autonomous Semantic Perception & Ambiguous Environments

Viewpoint dependent semantic models Data association hypotheses
 ad  ad () component 1

1t
?”

Y coordinate [m]

N
o
L

,_.
o

Class Probability
o o =
o wn o

°

Class Probability
o o =
o w o

o

‘-----——-K componentZ
B

o

* Hybrid beliefs (over continuous and discrete RVs)

* The number of hypotheses can grow exponentially

* How do we do probabilistic inference and POMDP planning?

~
W reermen 750 ANPL

of Technology
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Semantic Perception & SLAM

e Usually, semantics and geometry are considered separately
e Cannot use coupled observation models or priors

e Can lead to absurd results

TECHNION Autonomous Navigation
lsrael Institute @_@ A N — l_ and Perception Lab

of Technology
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Class- and Viewpoint-Dependency

* |s it afloor oraroof?

* Depending on the viewpoint of the viewer!
* Looking on the people below - it's a floor
* Looking on the people above - it's a roof

 How do we know the viewpoint?

TECHNION Autonomous Navigation
lsrael Institute @4 A N — l_ and Perception Lab

of Technology




Class- and Viewpoint-Dependency

* Another example:

L. G
A

~~
TECHNION Autonomous Navigation
u Israel Institute @4 AN — l_ | and Perception Lab

oooooooooooo
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Coupled Models

* View-dependent semantic observation model:

T T P(z* | c, X"

. bo (2 = f

"M . Object class

' m m Semantic observation Agent’s viewpoint

(from a classifier) relative to object

50

404

Class Probability
o
o

rdinate [m]
w
S

104

Class Probability
IS
2

* Class and poses can be coupled via learned prior probabilities.

e Reward/constraint can depend on both classes and poses
(e.g., object search)

Y. Feldman and V. Indelman, “Bayesian Viewpoint-Dependent Robust Classification under Model and Localization Uncertainty,” ICRA’18.
V. Tchuiey, Y. Feldman, and V. Indelman, “Data Association Aware Semantic Mapping and Localization via a Viewpoint Dependent Classifier Model,” IROS’19.

V. Tchuiev and V. Indelman, “Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning,” Artificial Intelligence, 2023.

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness”, arXiv’25.

Find the cake.

It's probably in
the kitchen

%
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Hybrid Belief

Hybrid Belief at time instant k:

b| Xy, Cl =P( X, C | Hi)

History (actions, geometric &

Robot’s and objects’ poses Objects’ classes
semantic observations)

* Classes and agent poses are dependent

» Classes of different objects are dependent

As opposed to:
e Per-frame classification
* Modeling semantic observations as viewpoint independent

Y. Feldman and V. Indelman, “Bayesian Viewpoint-Dependent Robust Classification under Model and Localization Uncertainty,” ICRA’18.

V. Tchuiey, Y. Feldman, and V. Indelman, “Data Association Aware Semantic Mapping and Localization via a Viewpoint Dependent Classifier Model,” IROS’19.

V. Tchuiev and V. Indelman, “Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning,” Artificial Intelligence, 2023.
T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness”, arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

k+L—1
» Value function VT(br) =Byl Y p(br mi(br), big]
=k
True trajectory and unsafe areas
* Semantic Risk Awareness Py
A L o o N L I
IP>saf€ — P({At:k+1$t ¢ Xunsafe(ca X )} |[bk [xka Ca X ﬂa 7T) Lo L
Objects’ classes  Objects’ poses T ‘ . T *

The number of classification hypotheses is MmN (N: number of objects, M: number of cIasses)] — —
How to sample w/o pruning hypotheses? How to estimate Py ¢ ? "

S
(o))
oo -
=
o

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.
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POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version
Expected Reward vs Time Step

1.0 A -
° * X g ¢
& g s
0.8+ x 4
by ¢
9 X
? 0.6 +
kS = %
2 9 ¢ &
= e +
2 0.4
% Q b x ® Exact-all-hyp
a (0] O Exact-pruned
0.2 X PF-all-hyp
' PF-pruned
+ MCMC-Our
$ SNIS-Our
0.0 A
X  GS-MAP
0 2 4 6 8
Time Step

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version o
Sensitivity to number of classes

6_

—8®— Theoretic Belief ~ —— e X —8— Theoretic Belief
—©— Theoretic Beliefprun . SR —6— Theoretic Belief-prun
0.35 A Particle Filter e 5 4 Particle Filter
Particle Filter-prun | .. N Particle Filter-prun
0304 —+-Our e e —+- Our
—- SNIS 44 —#- SNIS
0.5 -.%- Geometric MAP | g g =%+ Geometric MAP

w M T 0 3
0
0.20 o
= E
'_
0.15 2
0101 #——= = *——
N _ —— . - 14
0.05 A
o— —_— - o - -
0.00 g — F———— — = T T r——— — ———— e = 0 ‘—-_—_.—::‘_______*_______‘__—___*_ —5%
4 6 8 10 12 4 6 8 10 12
Number of classes Number of classes

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version
Sensitivity to number of objects

0.30 A

X X —8— Theoretic Belief
--------- LT THRUN ; ief-
N L T T T T g4 —©— The(lnretlc. Belief-prun
Particle Filter
2 Particle Filter-prun
& & —5 —+= Our

S . . —F— 6 _" SN'S
0.20 - = Theoret!c BeI!ef % Geometric MAP
—&— Theoretic Belief-prun
= Particle Filter
_'._
—-

A o
§ 0.15 Particle Filter-prun g
« Our £ 4
SNIS
0104 $——r—mr—em o T % Geometric MAP R ———m -
2 -
0.05 A
8 — - —0 ? S— ] R —— e — +7'
+
—— e — e ————— —r———— S Sy — e — = ] 0 & *=-—_»‘:_"_'—;‘—':.‘ ______ o e e e s o o e s s s s e
0.00 - . . |
2 3 4 5 6 7 2 3 4 5

. Number of objects . . . Number of objects
T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.
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Autonomous Semantic Perception & Ambiguous Environments

Viewpoint dependent semantic models Data association hypotheses
 ad  ad () component 1

1t
?”

Y coordinate [m]

N
o
L

,_.
o

Class Probability
o o =
o wn o

°

Class Probability
o o =
o w o

o

‘-----——-K componentZ
B

o

* Hybrid beliefs (over continuous and discrete RVs)

* The number of hypotheses can grow exponentially

* How do we do probabilistic inference and POMDP planning?

~
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Ambiguous Scenarios

* Have to reason about data association hypotheses within inference and planning

*
An observation: L
(e.g. LIDAR) A
[How should the agent act? ]
*
P(Blz,)
-

: Bi1 B
© ()

S. Pathak, A. Thomas, and V. Indelman, “A Unified Framework for Data Association Aware Belief Space Planning and Perception”, IJRR’18.
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Continuous-Discrete State Spaces - the Challenge

 The number of hypotheses may grow exponentially with the planning horizon!

Belief tree Hypothesis tree
bo

AN

.
i

M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE RA-L'23.
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Continuous-Discrete State Spaces - the Challenge

 The number of hypotheses may grow exponentially with the planning horizon!

Belief tre/_wthesis tree Sample a subset of hypotheses
bo

AN

@ © o

7 \ 7
/ \ // \'\
/ \ / 5

| /A //' \\
O O O S & b &

L
L
0

[Impact on decision making? ]

M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE RA-L'23.
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Experience Reuse in POMDP Planning

POMDP Planning with Hybrid Beliefs

Simplification of POMDP with Formal Guarantees

Multi-agent POMDP Planning with Inconsistent Beliefs
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Simplification Framework

Accelerate decision making by adaptive simplification while providing performance guarantees

Break original problem into (computationally) easier problems

Provide o
performance Relate between the original & simplified problems
guarantees ’

Tradeoff complexity Develop online adaptation mechanisms

& performance

[Indelman RAL'16; Elimelech & Indelman [JRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ22, TRO'24; Shienman & Indelman ICRA'22;
Barenboim & Indelman NIPS'23; Kitanov & Indelman IJRR'24; Zhitnikov et al. JRR'24; Lev-Yehudi, Barenboim & Indelman AAAI'24, Yotam & Indelman TRO'24, Da & Indelman ISRR'24]
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Simplification of Decision-Making Problems

* Each element of the decision-making problem can be simplified

* Action-consistent simplification preserves order between actions w.r.t. original problem

6952.4

? h
|

6951.8 -

6951.6 v

6952.2| i B Js<b37a)<g

-5302.4

Original problem

6951.4 L L L L
0 5 10 15 20

actions

V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE RA-L'16.

K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.

-5302.6

-1-5302.8

-1-5303

-1-5303.2

-5303.4
30

Simplified problem

[Same optimal action! ]

41



Simplification of Decision-Making Problems

Computationally cheap(er)
bounds

V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE RA-L'16.
K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

T

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

~

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Belief Sparsification for Gaussian BSP

* Find an appropriate sparsified (square root) information matrix

* Perform decision making using that, rather the original, information matrix

_______________________________________________________________________________________________________________________

' Gaussian belief over high dim. state X € R": b[X] = N(X*, A~ Y = N(X*,(R'R) ™)

Information-theoretic reward (entropy): H[X] = %log((Qwe)”IA\_l)

_______________________________________________________________________________________________________________________

* Do we get the same performance (decisions), i.e. is it action consistent? 2€Ho"*

V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE RA-L'16.
K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.
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Belief Sparsification for Gaussian BSP

 Sparsification of (square root) information matrix

A A, AW](bs,a)
E | g .H l 3 N\ " s 10,0

actions

* Graphical models perspective:

0‘ — @@

V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE RA-L'16.

K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.



Belief Sparsification for Gaussian BSP

e Agent performs simultaneous localization and mapping
 Maintains a multivariate Gaussian belief

b[X] =N (X", (RTR)™)

e Task: reach a goal with minumum uncertainty

Candidate actions
(trajectories)

Reconstructed
map

.

K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.

46



47

Belief Sparsification for Gaussian BSP

[ Different sparsifications ]

e Agent performs simultaneous localization and mapping

« Maintains a multivariate Gaussian belief R Rioved 4 diagonal
L * T —1
X = N(X*, (RTR)~) .
* Task: reach a goal with minumum uncertainty 'au
Candidate actions 2000 -
(trajectories) |
./
2800
2750 o
Reconstructed ® 00l g
ma Y S
T > 2650 =
P
\_y 2600 w— =P involved
2550 e
2500
Action P Pinvolved 7)diagonal

K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.



Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

~

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state)| < Simplification of Risk-Averse POMDP Planning

o

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Topological Gaussian Belief Space Planning (t-BSP)

» Topological properties of factor graphs dominantly determine estimation accuracy?

Key idea:

* Design a metric of factor graph topology that is strongly correlated with entropy
* Determine best action using that topological metric (instead of entropy)
* Does not require explicit inference, nor partial state covariance recovery

) &

B~ &

topological
metric s(G)

Factor graph Topological graph G(T', F)

K. Khosoussi, et al. "Reliable graphs for SLAM”, IJRR’19.

A. Kitanov and V. Indelman. "Topological belief space planning for active SLAM with pairwise Gaussian potentials and performance guarantees”, IJRR’24.
M. Shienman, A. Kitanov, and V. Indelman. "Ft-bsp: Focused topological belief space planning." IEEE RA-L'21.

graph signature
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Topological Gaussian Belief Space Planning (t-BSP)

Metric Space Topological space Topological and info-theoretic
metrics are strongly correlated

JW) = Sin(me) + JIS(Xen)| 5(G) = Hyn(G) m 1= o — oo 30

2 IR 2 d .
T~ TP &2, d0d0)
U* = argmin J(U) U* = arg max s|G(U
y mas[G(U) oo (e
“ \ 19 18 .
0.965 % ] vi0
§ :.' .2.221 ’3.2029
== 0.96 ¥'.. 1 hv<d _r*:v’;"'ffzs ®30
%‘ ”} '%715'20632 -
. 20.955 | “ ] L5
 Cheap to calculate, only a function of node degrees 13 L /
° o 51337 Biame K- \°
g 095 Rk . lps
e Supports incremental calculations 5 : ‘
0.945 r °
* Provided bounds on the error/loss ‘Jk (L{) — Jk (U*) 04T .’ /
’ ]

0.935 : : -
-800 -600 -400  -200

cost J (Z,{ )

A. Kitanov and V. Indelman. "Topological belief space planning for active SLAM with pairwise Gaussian potentials and performance guarantees”, IJRR’24.
M. Shienman, A. Kitanov, and V. Indelman. "Ft-bsp: Focused topological belief space planning." IEEE RA-L'21.



t-BSP: Gazebo Results

e =1 15t planning session (exploration)
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A. Kitanov and V. Indelman. "Topological belief space planning for active SLAM with pairwise Gaussian potentials and performance guarantees”, IJRR’24.

ST topological metric
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Focused Topological Gaussian Belief Space Planning (ft-BSP)

 Unfocused BSP — reduce uncertainty over all variables

¢ ﬁ’j |
pARARAgS
AT
T
i T

nitng
ety

focused reconstruction task

collision avoidance

F 1
T3 U) = —-log (2me) — Slog

1 ;
Ak—:-L’ + —)log’-\2+L ‘ Expensive!

M. Shienman, A. Kitanov, and V. Indelman. "Ft-bsp: Focused topological belief space planning." IEEE RA-L'21.

Focused BSP — reduce uncertainty over a predefined subset of variables (focused variables)

-
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Focused Topological Gaussian Belief Space Planning (ft-BSP)

Unfocused BSP — reduce uncertainty over all variables

Focused BSP — reduce uncertainty over a predefined subset of variables (focused variables)

@®  Spearman's correlation: 0.9988
® Spearman's correlation: 0.99666

720
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700
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1213

Measurement Selection

212

Y
5"\‘/)
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SH'I'(‘
'

Active 2D Pose SLAM

M. Shienman, A. Kitanov, and V. Indelman. "Ft-bsp: Focused topological belief space planning." IEEE RA-L'21.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

e

Utilize a subset of hypotheses (hybrid beliefs)

~

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Simplification of POMDPs with Nonparametric Beliefs

, 0.30
* Value function S
L—-1
V:(bk) — Jk(bk,ﬂ') - E{Z r(bk+/,7rk+,(bk+,)) + r(bk+L)} 0.15
1=0

Simplification:

~* Utilize a subset of samples for planning

(&
1
——

RN.

SN.
N\,—/
TN
-

'+ Information-theoretic reward (entropy) ;

'+ Analytical (cheaper) bounds over the reward Ib(b,b°,a) < r(b,a) < ub(b,b°,a)

_______________________________________________________________________________________________________________________

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.
A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of POMDPs with Nonparametric Beliefs

* Adaptive multi-level simplification in a Sparse Sampling setting:

PO00000  OOOOOO#
A AN
/
OO e O OgOOé}O Typical speedup of 20% - 50%,

Same performance!

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.
A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of POMDPs with Nonparametric Beliefs

* Adaptive multi-level simplification in an MCTS setting:

Overlap

Bounds

| |
CLl CL2

A
>

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.

A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) e Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

Y T

~

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]

59



60

Simplification of BSP/POMDP with Hybrid Beliefs

Belief tree Hypothesis tree Belief tree with all hypotheses Belief tree with a subset of hypotheses

()

CIDIOABIDIS

A

@

Concept:
e |nstead, utilize only a subset of hypotheses
* Derive reward bounds, given planning task (reward) LB(by, ) < V™ (b)) < UB(by, )

* Disambiguate between hypotheses
* Navigate to a goal

M. Shienman and V. Indelman, “D2A-BSP: Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints,” ICRA’22, Outstanding Paper Award Finalist.
M. Shienman and V. Indelman, “Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints,” ISRR’22.

M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE RA-L'23.

M. Barenboim, I. Lev-Yehudi, and V. Indelman, “Data Association Aware POMDP Planning with Hypothesis Pruning Performance Guarantees,” IEEE RA-L'23.



Simplification of BSP/POMDP with Hybrid Beliefs

f 1oors:BSP without budget constraints f1loors:BSP without budget constraints
70 { —@— ND2A-BSP 10, —®— ND2A-BSP
—&— NO_SIMPLIFICATION —&— NO_SIMPLIFICATION
60 - 3.5
0 501 O 307
(O] (]
L4 L 2s
) )
g 30 - g 2.0
1.5 A
20 A
1.0 A
10 +
0.5
04{ ® o *— —®
T T T T 00 ¥ T T T T T T T
1 2 ) 3 . 4 5 2 3 4 ] 5 6 7 8 9
planning horizon prior hypotheses

 Significant speed-up in planning
 Same planning performance is guaranteed (no overlap between bounds)

61

M. Shienman and V. Indelman, “D2A-BSP: Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints,” ICRA’22, Outstanding Paper Award Finalist.

M. Shienman and V. Indelman, “Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints,” ISRR’22.
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Simplification of BSP/POMDP with Hybrid Beliefs

* Derived a deterministic bound to relate the full set of hypotheses to a subset thereof,

Corollary

For any policy m, and selection of hypotheses set {5(",:7}',.5'0 the
following holds,

‘ VW(bO)_ \_/W(EO)‘ S 7zmax

T5€+§: Zk:EZM [55}] .

k=1 r1=1

Full tree Any subset \
Importantly, the bound relies on the
available hypotheses

@ @ Can bound the theoretical value with
/ access only to the simplified tree
\ , ’ /q / \ .
é) O/ S & S c\b Bounds can be evaluated online

M. Barenboim, . Lev-Yehudi, and V. Indelman, “Data Association Aware POMDP Planning with Hypothesis Pruning Performance Guarantees,” IEEE RA-L'23.




Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

TR

~

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]

63



POMDPs with Deterministic Guarantees

SOTA sampling based approaches come with probabilistic theoretical guarantees

Theorem 2 Let 7 be an ()plmm/ policy at a belief by. Lel r be a ]mll( y d(mul from a DESPOT

DESPOT that has heicbt g el g S J nlad cconasiae far holiof ha  Ear any
T, € (0,

Theorem 1. Suppose that ‘111 dssumpuons lmud above hold. L(.l N = |bo| > Mymin. Fore > 0,

Theorem 1. For suitable choice of ¢, the value function constructed by PO-UCT converges
AdaOPS —ml holds wit| in p'/'r)bubilil,l/ to the optimal value _/'uu(-[/t)lf. V(h) 5 \"(h). "fo.r all /I}.s‘l(.)l‘l'('.\' h that are
prefized by hy. As the number of {1s1l~ N(h) approaches infinity, the bias of the wvalue

Ve (bo) 3 function, E[V(h) — V*(h)] is O(log N(h)/N(h)).

where 1,

POMCP wertle peobg SUp, o P

Can we get deterministic guarantees?

We show that deterministic guarantees are indeed possible!

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.
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Online POMDP Planning with Anytime Deterministic Guarantees

Concept:

Instead of solving the original POMDP, consider a simplified version of that POMDP.

M- N

Derive a mathematical relationship between the solution of the simplified, and the
theoretical POMDP.

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.
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Online POMDP Planning with Anytime Deterministic Guarantees

* Givena POMDP: M = (X, Z, A, by, Pr, Pz, p,7)

* Define a simplified POMDP,
M <X Z A b()aPTvPZ?lO? >

l |

(H) C bo(z) 2 {8"@) g
(Ht) , otherwise

\\ad

P(xsy1 | xe,ae) , Tpp1 € X(Ht+1)
, otherwise

— P(Zt | .’L't) AR = Z(Ht)
WAY )
Pz | 2) = { , otherwise

P(zit1 | e, 0:) = {

)

)

e Simplified value function

\_/W(Bt) = r(BtaWt) + I_EZH—I:'T [\_/W(Et‘ﬂ)]

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.
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Online POMDP Planning with Anytime Deterministic Guarantees

* Deterministic guarantees (assuming discrete spaces)

bo
Simplified tree @

— Tx’ |x,a _

- - Nd
DetermmlstliGuira“tees II- @9 ‘eﬁ
Vi(bo) —V(bo)| <€|
. T & &

[ Bounds can be evaluated onIine}

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.



Online POMDP Planning with Anytime Deterministic Guarantees

Importantly, the bounds can be calculated during planning.

How can we use them?
* Pruning of sub-optimal branches

—— Made possible by the deterministic guarantees
e Stopping criteria for the planning phase

— Made possible by the deterministic guarantees
* Finding the optimal solution in finite time

—— Without recovering the theoretical tree

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.

-

N

Deterministic Guarantees

~

[V (bo) — V(bo)| <€

/

Bounds

I(Hy)
——

»
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Simplifying Complex Observation Models with Probabilistic Guarantees

Visual POMDP planning
* Visual observations are complex to model in planning’?
* Learned observation models are (often) impractical for solving POMDPs in real time

Can we simplify the learned models?
What is the impact on planning performance?

Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs”.
2Deglurkar et al., “Compositional Learning-based Planning for Vision POMDPs”.

I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” AAAI’24.
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Simplifying Complex Observation Models with Probabilistic Guarantees

* We replace the (learned) observation model pz with a cheaper model ¢z
* Simpler GMM, Shallower Neural Network, etc.
* Example:

pz(z | ) qz(z | x) e
fy T Simplified models

p,(zlx)

Original, expensive

q,(z1x)
Simplified, cheap

I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” AAAI’24.
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Simplifying Complex Observation Models with Probabilistic Guarantees

* We replace the (learned) observation model pz with a cheaper model ¢z
« Simplified action-value function: Q%

Corollary 3 Th\e}glrggsf: al pg_MDP  Planner
For arbitrary €,0 > 0 there exists a number of particles for which - - N\
oREm (o (o , for,) (ot
pZ o QZ 1. S 1 \ -_— \ -_—
Sim léﬁled { Q (o [z
- x\_, P Mp
with probability of at least 1 — ¢ for.any guaranteed planner o , \ .,} \ .,}

\
\

\ * Importance sampling

. lculati ffli li
Estimator of the Q function of a Separate calculations to offline/online
particle-belief POMDP, with

simplified models

——— -

Theoretical Q function
of the POMDP, with

original models

I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” AAAI'24
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Simplified POMDP Planning with an Alternative Observation Space

* Switch to an alternative observation space and model = 2z
Y -
Model Definition {::} @:}
POMDP tuple: (X, A, Z,Pr, Pz, b, r) — (X, A, O, Pr, Po, by, r) 00770 O
@ a

* Only at certain levels and branches of the tree

original observation alternative observation
space and model space and simplified model

D. Kong and V. Indelman, “Simplified Belief Space Planning with an Alternative Observation Space and Formal Performance Guarantees,” ISRR’24.



Simplified POMDP Planning with an Alternative Observation Space

* Switch to an alternative observation space and model = 2z
Y -
Model Definition {::} @
POMDP tuple: (X, A, Z,Pr, Pz, b, r) — (X, A, O, Pr, Po, by, r) 00770 O
@ a

* Only at certain levels and branches of the tree

topology 7 é}

/Main guestions addressed: ) \ alfernative ~original
 How to decide online where to simplify in belief tree? o
 How to provide formal performance guarantees? /.\ .
 How to adaptively transition between the different levels of simplification? () 0 X
AN
C{\O e S

D. Kong and V. Indelman, “Simplified Belief Space Planning with an Alternative Observation Space and Formal Performance Guarantees,” ISRR’24.



Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

TR

~

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Partitioning of a Multivariate Observation Space

Value function: V™ (br) = R(bg, (b))

Zk:+1 k+¢

k+¢
> R(bi,mi(b }

1=k—+1

Belief-dependent reward: entropy

R(b, (b)) = —H(X) = Ex~s (log b[X])

The expected reward at each ith look-ahead step:

E [R(bz', az’—l)] — _H(Xz'|Zk—l—1:i)

Zk-l—l:'i

Future observations are drawn from the distribution P(Zki14 | bk, )

T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
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Partitioning of a Multivariate Observation Space

* Consider a multivariate random variable Z € Z, that represents future observations:

7 =(Z',72%...,2™)

* Examples:

.
Raw measurement of an image sensor Factor graph
‘wi 174 168 150 182 18 112 68 i‘ 157 [153 [ 174 168 [150 152 [129 181 [172 [16) | 185 | 156

20 120 | s0 | 14 & 1| 48 106 189 18 f

26 108 | 5 [12a 120 200 166 | 18 | 58 |10 0

= =[] =[]= Xo

oo o e o

206 | 174 | 155 | 282 m e %

190 |24 173 | 66 (103 (143 | 9% | SO0 09 | 249

T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
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Partitioning of a Multivariate Observation Space

* Consider a multivariate random variable Z € Z, that represents future observations:

7 =(Z',72%...,2™)

* We can partition / € Z into different subsets/components, e.g.
75 ={zY. 7% ...,2™}
AR VAR ALE AL

Z =7°UZ°

/Z

711110 721|10

o . e
Hierarchical Partitioning: LI g2l 7320 402,

7lalla-1  72alla-1 Zmalm/2q_q

T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.



Partitioning of a Multivariate Observation Space

But why is this a good idea?
* Apply partitioning to a raw image measurement of size 20x20 binary pixels
 Consider all of the different permutations for each pixel, 2%% in total
o If we partition Z° = {Z"Y | y < 10} and Z° £ {Z"Y | y > 10}

* Need to consider 22%° permutations for each

* Overall, 2201 ys 2™400 permutations

T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
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Partitioning of a Multivariate Observation Space

Lemma 2

Given two sets of expected measurements (Z*°, Z*), the conditional
Entropy can be factorized as

H(X|Z2)=H(Z°|X) + H(Z°|X) — H(Z*, Z°) + H(X) | H(Z°,2°) = H(Z*) + H(Z°) - 1(Z* Z7)

LBE2H(Z | X)+H(Z|X) — H(Z®) — H(Z®) + H(X)
I(Z%, Z%)
UB = H(Z5|X) +H(X) —H(Z°)

T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
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Partitioning of a Multivariate Observation Space

Measurement Jacobian

Multivariate Gaussian Belief

L I x = 3 xy
rX X 1 M

X X P2

e Posterior information matrix: o % © i
A= X X Ps5

X X1 pe

Aug T X (f)l

X X1 3

* Prior work!? - application of the matrix determinant lemma:

entropy oc  |A, + A" A|=|A,]|1, +4-3, - 4]
posterior info matrix
Ay + AT A
A

For information gain:
1

I
|l + A AT|=In |, + 4. 2M X (4T

One-time calculations for all candidate actions
Recover entries only for the involved variables in any of the actions

1D. Kopitkov and V. Indelman, “No belief propagation required: belief space planning in high-dimensional state spaces via factor graphs, the matrix determinant lemma, and re-use of calculation”, IJRR’17.
2D. Kopitkov and V. Indelman, “General-purpose incremental covariance update and efficient belief space planning via a factor-graph propagation action tree”, JRR’19.
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Partitioning of a Multivariate Observation Space

Partitioning of a Gaussian Belief

A; = A8+ AT A,

Measurement Jacobian

o~
-

l, = x = x4
: "X X T M
Factor Graph X X P2
X X P4
X X P3
A - X X Ps5
X X| pe
X o1
X X (1
X X P9
5 _ X X1 g

Observation partitioning corresponds to splitting the Jacobian into blocks

Zi > (Z7,Z7)
A;
Ai -
A;

Bounds?:

f(A,A) £ [A+ AT A
LB=C—E [n

LA (A Af)]

) Aug—
21Zk+1-z Ay Reduced cgmplexity wrt rAMDL2:
. 4 AUg— gs m
UB=C_ 2ZEM[1nf (Ak ,Az)], O(—) vs O(m?)

4

1T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.

2D. Kopitkov and V. Indelman, “No Belief Propagation Required: Belief Space Planning in High-Dimensional State Spaces via Factor Graphs, Matrix Determinant Lemma and Re-use of Calculation,” IJRR’17.
2D. Kopitkov and V. Indelman, “General-purpose incremental covariance update and efficient belief space planning via a factor-graph propagation action tree”, IJRR’19.



Partitioning of a Multivariate Observation Space

Application to Active SLAM

Trajectory
Possible Paths

x  Observed Landmarks

40
(S
0 30
fa

10
0

4 Paths | # Factors | RP rAMDL’ MP (ours)'
100 2056 | No | 11.521+ 0.537 | 6.888 £ 0.155
100 2056 | Yes | 24.636 4+ 1.381 | 11.758 & 0.372
100 5004 | Yes | 84.376 & 14.458 | 32.069 + 4.913

Table: Total planning time in seconds (lower is better)

1T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
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2D. Kopitkov and V. Indelman, “No Belief Propagation Required: Belief Space Planning in High-Dimensional State Spaces via Factor Graphs, Matrix Determinant Lemma and Re-use of Calculation,” IJRR’17.
2D. Kopitkov and V. Indelman, “General-purpose incremental covariance update and efficient belief space planning via a factor-graph propagation action tree”, IJRR’19.
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Partitioning of a Multivariate Observation Space

Application to Active SLAM

3400 4

33501

Method time [sec]

33001

MP (ours)'| 585.507 £ 27.153
rAMDL® | 802.545 + 25.651
iISAM?2® | 1764.835 + 26.521

Table: Total planning time in seconds (lower is better)

Entropy

3250 1

3200 4

750 800 850 900 950

3150 4

550 600 650 700

0 50 100 150 200 250 300 350 400 450 500
Path

1T. Yotam and V. Indelman, “Measurement Simplification in p-POMDP with Performance Guarantees,” IEEE T-RO’24.
2D. Kopitkov and V. Indelman, “No Belief Propagation Required: Belief Space Planning in High-Dimensional State Spaces via Factor Graphs, Matrix Determinant Lemma and Re-use of Calculation,” IJRR’17.

2D. Kopitkov and V. Indelman, “General-purpose incremental covariance update and efficient belief space planning via a factor-graph propagation action tree”, IJRR’19.

3M. Kaess, et al., "iSAM2: Incremental smoothing and mapping using the Bayes tree," IJRR’12.



Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

~

TR

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) | Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Simplification of Risk Averse POMDP Planning

* Impact of simplification on distribution over returns/rewards

e Simplified risk aware decision making with belief-dependent rewards

y.HM gk = fg.(Pr+1:k+L)

: S simplification
original
: 1 He+ L
- simplified
P(gr | br, )

V7(by) = @(P(Pk—klzlﬁ—L‘bkaWk:k—kL—l)an\

Y. Pariente and V. Indelman, “Simplification of Risk Averse POMDPs with Performance Guarantees,”, arXiv’24.
A. Zhitnikov and V. Indelman, “Simplified Risk Aware Decision Making with Belief Dependent Rewards in Partially Observable Domains,” Artificial Intelligence, 2022.
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Probabilistically Constrained Belief Space Planning

k+L—1
max K Pr+1 bk, T+
subject to P(c(bk.krr;¢,0) = 1|bg, mpy) > 1 — ¢ o

Information gain®: [Ok+1

C(bk:k—l-L; (/b? 5) = 1{( fi_,f’_l ¢(bt,bt+1)) >4} (bk:k+L) 2’1’”/ i l

O O

c(bpek+r; ¢, 0) = H Lip,:p(b,)>61 (be)
=k

Safety?:

IA. Zhitnikov and V. Indelman, “Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints,” T-RO’24.
2A. Zhitnikov and V. Indelman, “Anytime Probabilistically Constrained Provably Convergent Online Belief Space Planning,” arXiv’24.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

TR

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

~

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL'16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ'22, TRO'24; Shienman & Indelman ICRA22;
Kitanov & Indelman IJRR24; Zhitnikov et al. IJRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Multi-Robot Belief Space Planning

A common assumption: Beliefs of different robots are consistent at planning time

* Requires prohibitively frequent data-sharing capabilities!

A
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

Available only to robot r Common history, e.g. from the last Available only to robot r’
data-sharing

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’'24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

* Decentralized POMDP tuple from the perspective of robot r:
T
<X727A7 T,O,,O, bk>

e Obijective function:

J(bg,apt) = E [Z P(bktis ki) + p(bptr)]

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

e Can lead to a lack of coordination and unsafe and sub-optimal actions
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T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification

Algorithms with Formal Guarantees,” arXiv’25.



Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

e Can lead to a lack of coordination and unsafe and sub-optimal actions

/;1 R\ ‘ ﬁ !

Challenge: Guarantee a consistent joint action selection by individual robots, despite

!
the robots having inconsistent beliefs; otherwise, self-trigger communication {a" a’’
Il‘ ,,//’ ‘\\ \'__’I. i‘ ‘\\\ T > y / ‘\‘\ - >
\.’ “ \\I/ ? “\ Z r' \\ ,// \\
a a . a -~ \
r —~""; o D - N/ -
f f z" ~ED A

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.

T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.

93



Action Consistency

* If two decision-making problems have the same action preference, this implies both have the

same best action regardless of the actual objective/value function values

Objective /\W Decision-making problem 1

; Decision-making problem 2
v

>

actions

 Key idea: to guarantee consistent multi-robot decision-making, each robot
* reasons about its own and other robots’ action preferences while accounting for the
missing information between the robots
* checks if for all these realizations, we get the same best joint action

V. Indelman, “No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space,” IEEE RA-L'16.
K. Elimelech and V. Indelman, “Simplified decision making in the belief space using belief sparsification,” IJRR"22.
A. Kitanov and V. Indelman, “Topological Belief Space Planning for Active SLAM with Pairwise Gaussian Potentials and Performance Guarantees,” IJRR’24.
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Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information
2. What it perceives about the reasoning of the other robot r’
3. What it perceives about the reasoning of itself perceived by the other robot r’

Available only to robot r Common history, e.g. from the last Available only to robot r’
data-sharing

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’'24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.



Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information

Toy example for ’_A‘ = |Z| =2

J0)

A

=1

-=
|

|
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Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information
2. What it perceives about the reasoning of the other robot r’

D

Toyexamplefor|.A| = Z| = 2
A S0 ® ") Robot r reasons about possible values of this data
A PO
2 N < n i
a | a a a
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Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information
2. What it perceives about the reasoning of the other robot r’
3. What it perceives about the reasoning of itself perceived by the other robot r’

Robot r reasons about possible values of this data
Toyexamplefor|.A| = Z| =2: P

A J0p,0) ® 0"
1

0 AT

'—u—-l
>
|
r==
N
|
n

r==

J()
J0)
| |
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Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information
2. What it perceives about the reasoning of the other robot r’
3. What it perceives about the reasoning of itself perceived by the other robot r’

For each possible observation of r’, z” € AZ, ", robotr
k

constructs a plausible belief of robot r's 571" I"(37) 2 P(xy, | “H" ", 37)

k k
/ - A r v r'|r r|r’|r
evaluates J(b]"I"(3"),a) Va e A A J(by,a) m Ju" a) A T a)
_ T I —————— I
Checks if a is selected A 11&2&3!
Toyexamplefor|.A| = Z| = 2 . A
A G B "0 0 AT > B A
r o | oo |
“ !.il_: Lo :.g_: . :L:Q’_: A N
= = © A
= A ~ u A = -
A a a




100

Decentralized Verification of Multi-Robot Action Consistency (MR-AC)

* From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information
2. What it perceives about the reasoning of the other robot r’
3. What it perceives about the reasoning of itself perceived by the other robot r’

 Same best action in all cases? A' SRR
* Yes: MR-AC is guaranteed to be satisfied = A g | g
* Robots are guaranteed to choose the same joint action A
* No further data sharing is needed! - -

* No: self-trigger communication, share some data, repeat Steps 1-3

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.



Simulation Results (Search & Rescue Scenario)
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* EnforceAC: our approach

 Baseline I: always communicate all data

e Baseline Il: never communicate

—30 |— ENFORCEAC
- |— Baseline-I
— Baseline-II

— ENFORCEAC
— Baseline-I
— Baseline-II

No. of time steps since the last COMM
0

0 50 100 150 200 0 50 100 150 200
Time steps Time steps

(a) comm-restr = 0 (b) comm-restr = 0

~30 — R; : comm-restr=30
— Ry : comm-restr=30
—35|—  comm-restr=0
—40
845
S-50

=55
—60
—65}
=70

0 50 100 150 200
Time steps

(c) comm-restr = 30

NOT-AC (ACTION INCONSISTENCY), COMMS AND TIME FOR E = 200.

Input Algorithm Not-AC | coMM | Time
comm-restr = () Baseline-11 181 0 1.3s
Motion prim. = 4 Baseline-1 0 400 1.3s
MaxEntropy-Init ENFORCEAC 0 238 12.4s
comm-restr = ( Baseline-II 185 0 1.3s
Motion prim. = 4 Baseline-I 0 400 1.4s
Entropy-Init ENFORCEAC 0 268 8.7s
comm-restr = ( Baseline-II 194 0 3.6s
Motion prim. = 8 Baseline-I 0 400 34
MaxEntropy-Init ENFORCEAC 0 248 36.4s
comm-restr = 0 Baseline-I1 188 0 3.6s
Motion prim. = 8 Baseline-I 0 400 3.6s
Entropy-Init ENFORCEAC 0 278 31.1s
comm-restr = 20 Baseline-II 194 0 3.3s
Motion prim. = 8 Baseline-1 14 360 4.3s
MaxEntropy-Init ENFORCEAC 13 224 94.9s
comm-restr = 20 Baseline-I1 188 0 328
Motion prim. = 8 Baseline-1 14 360 3.6s
Entropy-Init ENFORCEAC 10 251 31.2s
comm-restr = 30 Baseline-I1 188 0 3.4s
Motion prim. = 8 Baseline-1 22 340 4.0s
MaxEntropy-Init ENFORCEAC 20 238 46.9s

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification

Algorithms with Formal Guarantees,” arXiv’25.
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T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.



Probabilistic MRAC
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T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
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Towards Scalable Online Decision Making Under

Agenda Uncertainty in Partially Observable Environments
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