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Introduction

m  Sequential decision-making under uncertainty
m These are commonly formalized as POMDPs
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Introduction

A common approach for solving POMDPs is through online tree search methods

m Each node represents a belief
m Each edge represents an action or an observation
m Given a prior belief, the posterior belief is calculated via probabilistic inference

prior —>

be+1 = U(bt, at, zt+1)

observation ——» 1

posterior ——»
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Hybrid State Spaces

We will be focusing on POMDPs with Hybrid state spaces.

Continuous representations may include,

m The agent pose

m Landmark positio
m etc.

While discrete variables

We name each realization of the
discrete variables a hypothesis

Object classes

etc.

_~
W Issmen (750 ANPL

of Technology

J

Data association hypotheses
Semantic information (e.g. traffic light state)
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Hybrid State Spaces

m Hybrid belief over continuous and discrete variables:

(e.g. agent state, landmark IocationsQ R
- be = P (X4, Bowt | Hy) = P(Xy | Boue, He) P (5075 | Hy).

(e.g. data association hypotheses)
[Xt]Bo_t [IBO t]=wy

B Belief over agent state is represented by a mixture density (e.g. GMM):
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Hybrid State Spaces - The Challenge

Computing the value function requires explicit knowledge of the hypotheses

However, the number of hypotheses may grow exponentially with the horizon!
Belief tMpothesis tree
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Hybrid State Spaces - Current State Of The Art

Most SOTA algorithms prune hypotheses heuristically

However, this leads to a biased estimator of the value function

Pruned Hypothesis Tree Full Hypothesis Tree
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Hybrid State Spaces - Our Contributions

Instead of computing all possible hypotheses, we utilize MCTS sampling and exploration approach.
MCTS:

m  An MDP solver
m Uses UCT to tradeoff exploration-exploitation for actions

UCT(xt,at)zé(Xt’af)“'m 560 O% O/'B ’%

m Given an action, samples the next state
m Tends to quickly focus on the important parts of the tree

Selection Backpropagation

Expansion RoIIout
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Hybrid State Spaces - Our Contributions

To solve Hybrid-POMDPs, we derived a new algorithm, named Hybrid-Belief Monte-Carlo Planning (HB-MCP)

HB-MCP adds a layer that samples hypotheses via Monte-Carlo sampling

Selection Backpropagation
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Hybrid State Spaces - Our Contributions
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Full hybrid belief (shown in blue) at each iteration,
regardless of the hypotheses significance.
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Hybrid State Spaces - Our Contributions

We have derived a corresponding reward estimator, 7%)(, and
have shown that it leads to an unbiased estimator,

Lemma

The samp/ed—based state-dependent reward estimator,
Rx 2
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Hybrid State Spaces - Results

HB-MCP has shown improved performance on multiple experiments
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Hybrid State Spaces - Conclusions

To conclude,

m  Hybrid POMDPs are computationally difficult and the number of hypotheses may even
grow exponentially with the horizon

m Naively pruning hypotheses leads to a biased estimation of the value function

m Instead, we suggest a new algorithm and show that it leads to an unbiased estimator
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