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Abstract

Autonomous agents operating in real-world scenarios frequently encounter uncertainty
and make decisions based on incomplete information. This challenge can be struc-
tured mathematically through the lens of partially observable Markov decision processes
(POMDPs). While POMDPs offer a robust framework for planning under uncertainty,
finding an optimal plan for a POMDP can be computationally intensive and is feasible
only for simpler tasks. In response, the last two decades have witnessed the rise of
approximate algorithms, like tree search and sample-based approaches, as leading so-
lutions for tackling more complex POMDP problems. Despite their effectiveness, these
algorithms typically offer only probabilistic guarantees or, in some cases, no formal
guarantees at all.

In our research, we have focused on addressing these limitations by developing a
range of simplified algorithms with formal, deterministic guarantees. These simplified
algorithms operate on a selected subset of the state and observation spaces, commonly
considered in state-of-the-art algorithms, while providing mathematical guarantees and
computational efficiencies compared to the non-simplified algorithm. Initially, we fo-
cused on a belief-dependent reward framework, simplifying the reward calculation by
narrowing down the observation space. Then, we have applied a simplification to the
state space in the context of hybrid-belief and data-association aware POMDPs, which
otherwise may grow exponentially. Ultimately, we extended our approach to a broad
POMDP framework, simplifying both state and observation spaces, and providing de-
terministic guarantees with respect to the optimal solution.
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Chapter 1

Introduction

1.1 Motivation

The focus of our research lies in the area of decision-making, specifically decision-making
under uncertainty. The primary objective of a decision-making solver is to identify an
optimal plan for a given sequential problem. Uncertainty arises from the limited knowl-
edge that an operating agent has about its environment. This issue is prevalent in many
practical autonomous systems, such as autonomous vehicles, industrial manipulators
on conveyors, and drones navigating crowded spaces. The uncertainty is due to incom-
plete information about the environment and the current state within it. For example,
a robotic platform may rely on various sensors to perceive its surroundings, but these
sensors typically have limited range, are prone to noise, and can be affected by occlu-
sions. Additionally, uncertainty can stem from modeling approximations that translate
the real world into mathematical or programmatic representations.

The goal of this work is to develop efficient algorithms for online decision-making
under uncertainty while ensuring performance guarantees.

1.2 Preliminaries

Decision-making under uncertainty can be approached in various ways, but one of the
most commonly accepted and theoretically sound methods is to formulate the problem
as a partially observable Markov decision process (POMDP).

In a POMDP, the state encapsulates all the relevant information about the envi-
ronment, including the agent’s pose, the map of the environment, the temperature, and
more. However, the agent does not have direct access to this state. Instead, it receives
observations such as sensor measurements, which may provide only partial or noisy in-
formation about the state. By utilizing accumulated knowledge over time, including all
past observations and actions, the agent can infer information about the actual state.
One method for acquiring more information about the state is Bayesian inference. In
Bayesian inference, the agent maintains a prior distribution over all possible states and
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updates this distribution as new information arrives, forming a posterior distribution.
This distribution over the states is also known as the belief.

Given an inference mechanism, the agent can perform future planning by assuming
different courses of actions and observations, and projecting various trajectories into
the future. This form of planning is known as tree search planning. One of the main
benefits of tree search planning is its increased efficiency, achieved by focusing only
on the relevant future beliefs that the agent may encounter. By projecting different
futures and scoring them, the agent can choose the action that, in expectation, leads
to the best outcome.

We begin by formally introducing the POMDP and its associated notations.

1.2.1 POMDP Notations

POMDP is defined as a 7-tuple, M = (X ,A,Z, T,O,R, b0), where, X ,A,Z denote the
state, action and observation spaces, respectively. T (x′, x, a) = P(x′ | x, a) represents
the transition function, such that given the current state x ∈ X and action a ∈ A
returns the likelihood of the next state, x′ ∈ X . The observation function, O(z, x) =
P(z | x) returns the likelihood of obtaining observation z ∈ Z given the state x ∈ X .
The prior, b0, denotes the initial belief distribution, which returns the likelihood of
being in state x ∈ X at time step t = 0, b0(x) = P0(x). Last, R(b, a) is a reward
function, which given a belief and an action, returns a scalar value for scoring being in
belief b and performing action a.

Additionally, we use history, Ht, as a shorthand for all past action-observation
sequences Ht = {a0, z1, a1, z2, . . . , at−1, zt} up to time t. We use H−t to denote the
same history, without the last observation, i.e. H−t = (a0, z1, . . . , at−1). The likelihood
of state x given a history Ht is denoted as the belief, bt(x) = P(x | Ht), and b−t (x) =
P(x | H−t ) for a belief conditioned on H−t .

1.2.2 Inference

As observations provide only partial information about the state, the true state of the
agent is unknown. Therefore, the agent maintains a probability distribution function
over the state space, also known as a belief. At each time step t the belief is being
updated according to Bayes rule, using the transition and observation models. Given
the performed action at−1 and the received observation zt, the belief update performed
according to,

bt (x) = ηt

∫
xt−1∈X

P(zt|x)P(x|xt−1, at−1)bt−1 (xt−1) dxt−1 (1.1)

where ηt is a normalization constant,

ηt =
∫

zt∈Z

∫
xt−1∈X

P(zt|x)P(x|xt−1, at−1)bt−1 (xt−1) dxt−1dzt. (1.2)

10



However, performing inference is generally intractable due to integration over arbitrarily-
shaped distribution functions. Even for discrete spaces this calculation becomes pro-
hibitively expensive for large state and observation spaces. In the following sections we
will cover different approximation methods that aim to relax that, some of which are
particularly appealing for planning and decision making.

1.2.3 Planning

To solve a POMDP optimally, the agent needs to find a plan that maximizes some
objective function, usually defined as the sum of expected future reward values over
the unknown states. To do so, it is required to reason about all possible future actions
and their resulting observations.

A policy, π(·), is a function that realizes a specific plan and maps every belief to an
action to be executed. Each plan, or policy, is evaluated according to a value function.
Given a belief at time t, each policy corresponds to a value function,

V π(bt) = Ez

[∑T −1
τ=t

R(bτ , πτ (bτ ), bτ+1)
]
, (1.3)

which is the expected cumulative reward following the policy, π. Similarly, an action-
value function,

Qπ(bt, at) = Ezt+1 [R(bt, at, bt+1) + V π(bt+1)] , (1.4)

is the value of executing action at in bt and then following the policy π. The optimal
policy, π⋆, is a policy that maximizes the value function, V π⋆(bt) = max

π
V π(bt).

The scope of the POMDP formulation is quite flexible, and depending on the prob-
lem at hand, the horizon of the future actions and observations may be finite or infinite,
the state, observation, and action spaces may be discrete or continuous and the belief
over the state space may be structured (e.g. Gaussian) or arbitrarily distributed. Un-
fortunately, finding the optimal solution of a POMDP is intractable to all but small
problems [39].

1.3 Contribution

With the background set, we are now equipped to discuss the contributions presented
in this dissertion. Due to the intractability of planning and eventually arriving at the
optimal plan we are forced to consider an approximate solution. In this thesis, we sim-
plify the required calculations for finding a good plan, albeit mostly not optimal, while
grounding the resulting solution with a mathematical relationship to the underlying,
intractable solution.
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1.3.1 Adaptive Information Belief Space Planning - Simplifying ob-
servation spaces

We begin by considering a specific aspect of planning under uncertainty, named Belief
Space Planning or ρ-POMDPs. In this line of work, we consider problems that target
uncertainty reduction as their optimization criteria. Using uncertainty reduction as
the optimization criteria, requires a dedicated reward function for this task. Common
reward functions that aim the reduce the uncertainty grasp some property of the belief
distribution. However, these functions are usually more computationally challenging
than reward functions in standard POMDPs. More concretely, we consider entropy as
part of the reward function and show that it adds significant computational burden.
Then, to alleviate some of the computational cost, we perform simplification over the
observation space and relate the solution to the underlying, computationally challenging
POMDP. We show that not only we can reduce computational time, but can also
guarantee the same policy as the more expensive POMDP.

1.3.2 Discrete-Continuous State Spaces - Simplifying state spaces

In this line of work, we consider state spaces that involve both discrete and continuous
states. We show that such cases may lead to computational complexity that is signifi-
cantly worse than standard POMDPs. Specifically, we consider cases where the belief
may be represented either as a mixture or as a hybrid distribution. To alleviate some of
the computational burden, we suggest new approximate algorithms that consider only
a subset of the mixture-or-hybrid components and derive theorems to link between the
simplified and the original representation of the belief.

1.3.3 Online POMDPs with Deterministic Guarantees - Simplifying
observation and state spaces

Last, we consider POMDPs with just discrete spaces. We derive, for the first time,
deterministic guarantees that link any solution obtained throughout online planning
phase to the optimal solution. We show that this relationship, described as lower and
upper bounds on the difference between the approximate solution and the optimal one,
can be used on most state-of-the-art algorithms with mild impact on the computational
complexity. Then, we demonstrate how to utilize the bounds for the decision-making
phase, and show that in some cases it can result in an improved overall performance.
Last, we show that apart from using the theorem for the final decision-making, the
theorem benefits from few appealing properties and can also be used for the planning
phase. Last, we demonstrate that using the deterministic bound for planning and
decision-making may further improve the overall performance of the solution.
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1.4 Related Work

Due to the intractability of finding an exact solution to a POMDP, various approximate
algorithms have been developed. Tree search algorithms, which are the main focus
of this dissertation, are a prominent approach for such approximations. Instead of
considering all possible belief states, tree search algorithms reduce the belief space to a
reachable subset, starting from the prior belief node. In online tree-search algorithms,
rather than calculating a policy in advance, the planner needs to find an approximately
optimal action by building a tree at every time step.

1.4.1 Monte Carlo Tree Search and POMCP

Monte Carlo Tree Search (MCTS) [6] is a heuristic search algorithm for decision pro-
cesses, especially useful in large state spaces. MCTS builds a search tree incrementally,
guided by random simulations (rollouts). The algorithm balances exploration and ex-
ploitation using the Upper Confidence Bounds for Trees (UCT) algorithm [27], which
selects actions that maximize an upper confidence bound on the estimated value.

Partially Observable Monte Carlo Planning (POMCP) [45] extends MCTS to the
POMDP framework by utilizing particle filtering to represent beliefs as sets of state
particles. During each rollout, a single state particle is recursively propagated from
the root node to the leaves of the tree. POMCP handles large state and observation
spaces by aggregating Monte Carlo rollouts of future scenarios in a tree structure. It
adaptively trades off between actions that lead to unexplored areas of the tree and
actions that lead to rewarding areas by utilizing UCT.

While POMCP is considered a state-of-the-art algorithm, it is limited to discrete
state, action, and observation spaces.

1.4.2 DESPOT and Its Variants

The Determinized Sparse Partially Observable Tree (DESPOT) algorithm [46] is an-
other notable approximate solver for POMDPs. DESPOT performs forward search
over a sparse subset of the belief space by sampling a set of representative scenarios
and building a sparse belief tree over these scenarios. It relies on branch-and-bound
techniques to prune suboptimal actions and uses dynamic programming to update the
value function estimates at each node.

Anytime Regularized DESPOT (AR-DESPOT) [57] is a variant of DESPOT that
introduces regularization to handle the exploration-exploitation trade-off more effec-
tively. Similar to POMCP, AR-DESPOT performs forward search and propagates a
single particle from the root node down to its leaves. It uses a branch-and-bound ap-
proach in the forward search and utilizes dynamic programming techniques to update
the value function estimate at each node.

DESPOT and its descendants consider α-vectors in their derivations and are thus
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limited to reward functions that are linear in the belief. However, information-theoretic
functions are usually not linear with respect to the belief and thus not supported by
these approaches.

1.4.3 Progressive Widening and PFT-DPW

To handle continuous action and observation spaces, Sunberg and Kochenderfer [48]
proposed the POMCPOW algorithm, which extends POMCP by incorporating Pro-
gressive Widening (PW) [8]. PW allows the algorithm to handle continuous spaces
by limiting the branching factor of the tree. Actions and observations are sampled
according to a power-law distribution, ensuring that the tree remains tractable.

The Partially Observable Monte Carlo Planning with Double Progressive Widening
(PFT-DPW) algorithm [48] further extends this idea. In PFT-DPW, each expanded
node in the belief tree contains the same number of particles and is better suited for
belief-dependent rewards. By maintaining a fixed number of particles at each node,
PFT-DPW provides a more accurate approximation of the belief, which is important
for problems with belief-dependent rewards.

However, due to the exploratory nature of these algorithms, most belief nodes either
contain only a few particles or contain just a small number of observation branches,
making them less suitable for approximating belief-dependent rewards.

1.4.4 Belief-Dependent Reward Functions

A reward in a POMDP is commonly a function that receives a state and action as input
and maps each state to a scalar value. However, when the reward receives a belief as
input, the problem formulation is considered an extension to POMDP, called ρ-POMDP
[1], POMDP-IR [47], or Belief Space Planning (BSP) [41], [54], [21]. An objective
function on the distribution itself allows reasoning about the uncertainty directly, which
arises in many problems such as active localization [7], information gathering [17],
and active SLAM [26]. Although the POMDP formulation allows reasoning about
uncertainty implicitly, it is insufficient for problems where the goal is defined over a
distribution. For instance, in the active localization problem, the goal of the agent is
not to reach a certain destination but to reduce uncertainty about its state.

Common approaches for measuring uncertainty are information-theoretic functions,
such as entropy, information gain, and mutual information. For continuous distribu-
tions, calculating the exact values of information-theoretic rewards involves intractable
integrals in the general case. Thus, they are amenable to different approximations,
such as kernel density estimation (KDE), Voronoi diagrams [34], or sampling-based
approximations [4]. Unfortunately, all such approximations are expensive to compute,
as they require quadratic costs in the number of samples and are usually the bottleneck
of planning algorithms. Even when the belief is described as a structured multivariate
Gaussian, exact computation becomes expensive as the dimension of the state grows
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[28].
More closely related to the work presented in this thesis is [52], which interleaves

MCTS with ρ-POMDP. Their approach considers a discrete observation space. In each
traversal of the tree, their algorithm adds a fixed set of particles propagated from
the root node, which results in an increased number of samples at each node as the
algorithm progresses. According to the authors, the main motivation is a reduced
asymptotic bias. Given a time budget, a significant reduction in the number of nodes
explored is observed by the authors of [52], which in turn impacts the quality of the
policy. [14] consider a belief-dependent reward, in which they build upon PFT-DPW
[48]. Instead of maintaining the same particle set in each posterior node, they reinvig-
orate particles in every traversal of the posterior node. Then, they propose to average
over different estimations of the reward function. [14] suggest estimating the reward
function using KDE, which scales quadratically with the number of state samples. [49]
consider a sampling-based approximation to evaluate differential entropy. They pro-
pose a simplification procedure that alters the number of state samples and prunes
sub-optimal action branches using bounds relative to the non-simplified estimator. In
a follow-up work, [50] propose an approach to interleave simplification with MCTS
while maintaining tree consistency, thereby increasing computational efficiency.

1.4.5 Planning with Mixed Discrete-Continuous State Spaces

In general, all random variables in a hybrid belief are coupled, and the number of
hypotheses, i.e., realizations of discrete variables, may be combinatorially large with
the number of ambiguous objects and classes or even develop exponentially with time
given ambiguous data associations. Therefore, without resorting to approximation, the
size of the considered belief quickly becomes prohibitively large, and the computational
complexity of the corresponding problem becomes impossible to handle.

The research community has been extensively investigating passive inference ap-
proaches where the considered belief is hybrid. In [42], the authors proposed a message-
passing algorithm to correctly identify loop closures by optimizing a hybrid factor graph
[29]. A convex relaxation approach over a discrete-continuous graphical model was pre-
sented in [31] to capture perceptual aliasing and find the maximal subset of internally
coherent measurements, i.e., correct data association.

In a semantic Simultaneous Localization and Mapping (SLAM) problem, the cou-
pling between poses and discrete object class labels can be used both for disambiguat-
ing data association and pose estimation. [51] presented a recursive Bayesian approach
for localization and semantic mapping in ambiguous environments using a hybrid be-
lief over camera and object poses, with classification and data association hypotheses.
In [10], the authors utilized the mm-iSAM model from [15] to solve a semantic non-
Gaussian SLAM problem with unknown data associations, using non-parametric belief
propagation, while in [11], the authors used the max-mixture model [38] to solve a max-
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imum a-posteriori inference designed specifically for the nonlinear Gaussian case. In
[35], the authors proposed a sampling-based approach with expectation-maximization
(EM) that used the most likely class semantic measurements to perform batch infer-
ence, while in [5], the most likely class and bounding box measurements were used, in
addition to geometric measurements, to perform SLAM and data association disam-
biguation with EM as well.

In spite of the significant progress made within the SLAM community, such a hybrid
setting has received scant attention from the planning community. As such, most
off-the-shelf, state-of-the-art POMDP online solvers do not directly support hybrid
beliefs. Specifically, [45] introduced POMCP, an adaptation to Monte Carlo Tree Search
(MCTS) for POMDPs using the UCT algorithm [27] to guide the action selection
process. POMCPOW and DESPOT [48, 46] employ transition and observation models
to efficiently propagate particles from the prior belief as an efficient approximation for
belief update. However, in the context of hybrid beliefs, the belief update may not be
as efficient since it would require knowledge of the hypotheses’ probabilities, which are
not presumed to be given.

POMDPs can also be converted into belief Markov decision processes (BMDPs) to
utilize MDP solvers. PFT-DPW [48] and AI-BSP [2] are two such solvers, where belief-
states replace states in the original MDP algorithms. However, performing inference
with hybrid belief is hardly efficient due to a large number of hypotheses. For instance,
in ambiguous data association scenarios, the number of hypotheses grows exponentially
with time, making full inference intractable.

Sequential Monte Carlo (SMC) methods, also known as particle filters, are non-
parametric inference mechanisms that use sampling to approximate the posterior belief.
Using particle filters, the belief at each time step is represented by K samples, sampled
from the known models. Particle filters are efficient in terms of time complexity, which
is linear in the number of state particles. Furthermore, the structure of SMC methods
allows anytime inference to allow better posterior representation given more time.

This property is commonly exploited in many state-of-the-art (SOTA) planning
algorithms, such as [45, 46, 48] and [30]. However, for both inference [53] and planning
[45, 46, 48, 30], SMC methods are usually used in the filtering paradigm, which is
susceptible to particle depletion and over-confident belief representation.

Optimization inference methods are the current SOTA in passive SLAM, e.g., [23].
These methods use smoothing paradigms that keep track of an increasing number of
state variables, significantly outperforming state-dimensionality of particle filters. [23]
represents the SLAM instance as a Bayes tree, then utilizes the structure of the joint
probability distribution to incrementally update the posterior belief, resulting in a
real-time, efficient inference engine. Such methods were also used in planning, e.g.,
[21, 36], allowing long-term reasoning about loop closures and uncertainty reduction.
However, smoothing inference methods are usually limited to Gaussian distributions,
unable to reason about multi-modal distributions commonly arising in, e.g., ambiguous
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data associations in SLAM instances, different object class hypotheses, and multi-modal
transition models.

Multi-modal inference has recently received increased attention from the SLAM
community. [15] uses kernel density estimation (KDE) with Gaussian kernels to repre-
sent nonparametric belief distributions. Posterior update is done using Gibbs sampling
while exploiting the joint distribution structure, inspired by iSAM2 [23]. [18] uses a
tree structure to represent multiple belief hypotheses, sharing past calculations among
hypotheses that share partial histories. To keep calculations tractable, a pruning algo-
rithm is proposed. [20] utilizes normalizing flows from deep learning to transform arbi-
trary distributions to a normal distribution, solving SLAM problems with non-Gaussian
factors. However, current reported results yet to scale towards high-dimensional prob-
lems in real-time.

While addressing the challenge of ambiguous data associations (DA) has been exten-
sively researched in the passive inference community, the planning community has had
relatively few attempts at supporting ambiguous DA. General state-of-the-art POMDP
planners, such as DESPOT, POMCPOW, or PFT-DPW [48, 46] do not directly sup-
port DA out-of-the-box. Although they can be altered to support DA, e.g., by replacing
the observation model with a mixture of observation models, an ad-hoc variation will
often result in particle depletion due to the multi-modal nature of multiple hypotheses
belief. Particle depletion results in an overconfident and potentially incorrect action
selection due to the low representation of likely state particles in a belief.

A more dedicated approach for handling ambiguous DA could be to explicitly main-
tain multiple representations of conditional beliefs, each depending on different DA
histories. A naive attempt to perform planning with all hypotheses results in an expo-
nentially increasing number of hypotheses, which is computationally infeasible. Instead,
the authors of [40] introduced DA-BSP, which allows reasoning about future data as-
sociation hypotheses within a belief space planning framework for the first time. [43]
suggested reducing the computational complexity of DA-BSP by selecting only a small
subset of hypotheses and providing bounds over the loss in solution quality. [43] was
later extended to a non-myopic setting in [44]. The ARAS framework proposed in [19]
leveraged the graphical model presented in [18] to reason about ambiguous data associ-
ation in future beliefs using multi-modal factors to model discrete ambiguities. Due to
its high computational burden, these approaches did not aim at closed-loop POMDP
planning, neglecting its mathematical soundness.

1.4.6 Online POMDP Planning with Anytime Deterministic Guaran-
tees

As previously mentioned, a prominent search algorithm addressing the challenges posed
by large state and observation spaces in POMDPs is POMCP [45]. From the solution
quality standpoint, the mathematical guarantees on the provided solution by POMCP
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are asymptotic, and the quality of the solution remains unknown within any finite time
frame.

In contrast to POMCP, Regularized DESPOT offers a probabilistic lower bound on
the value function obtained at the root node, providing theoretical appeal by measuring
its proximity to the optimal policy.

As previously mentioned, POMDPs serve as a comprehensive mathematical frame-
work for addressing uncertain sequential decision-making problems. Despite their ap-
plicability, most problems framed as POMDPs struggle to achieve optimal solutions,
largely due to factors such as large state spaces and an extensive range of potential
future scenarios. The latter tends to grow exponentially with the horizon, rendering
the solution process computationally prohibitive.

Few more notable approaches for solving POMDPs with either discrete or con-
tinuous spaces include POMCPOW [48], LABECOP [16], and AdaOPS [56], which
leverage explicit use of observation models. These algorithms employ importance sam-
pling mechanisms to weigh each state sample based on its likelihood value, which is
assumed to be known. Although these methods have exhibited promising performance
in practical scenarios, they currently lack formal guarantees. To address this gap,
[33, 32] introduced a simplified solver aimed at bridging the theoretical gap between
the empirical success of these algorithms and the absence of theoretical guarantees for
continuous observation spaces. In [32], probabilistic guarantees were derived for the
simplified solver concerning its proximity to the optimal value function, thus contribut-
ing to a more comprehensive understanding of POMDP planning in both discrete and
continuous settings.
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Chapter 2

Adaptive Information Belief
Space Planning

In this chapter, we show an approach to alleviate the computational burden of calcu-
lating reward at each belief node of the tree, while guaranteeing an identical solution.
We focus on Shannon’s entropy and differential entropy, alongside state-dependent re-
ward functions. Our approach relies on clustering different nodes and evaluating an
approximated belief-dependent reward once on this entire cluster, that is, all the nodes
within a cluster share the same reward value, see figure 2.1. As a result, the estimated
value function is affected. To relate the approximated value function to the one that
would originally be calculated, each node maintains a lower and upper bound on the
value function.

Our main contributions are as follows. First, we introduce an abstract observation
model. We use the model to form an abstraction of the expected reward, namely, a
weighted average of state-dependent reward and entropy. Then, using the abstract
model, we show how computational effort is alleviated. Second, we derive determinis-
tic lower and upper bounds for the underlying expected reward values and the value
function. Third, we introduce a new algorithm, which is able to tighten the bounds
upon demand, such that the selected action is guaranteed to be identical to the non-
simplified algorithm. Last, we evaluate our algorithm in an online planning setting and
show that our algorithm outperforms the current state-of-the-art.

2.1 Preliminaries

We define POMDP as defined in section 1.2.1. Additionally, we focus on a reward
function defined as a weighted sum of state-dependent reward and entropy,

R(b, a, b′) = ω1Ex∼b′ [rx(x, a)] + ω2H(b′), (2.1)
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Figure 2.1: An illustration of our approach. The blue clusters correspond to a single
evaluation of the reward function across different posterior nodes, which is faster to
compute. Then, the algorithm initiates a refinement procedure; the refined clusters
guarantee the same action selection as the original reward evaluation.

where b′ is the subsequent belief to b and H(·) is either differential entropy or Shannon’s
entropy. The dependence of (2.1) on both b and b′ stems from the definition of the
differential estimator, as will be shown in Section 2.2.2. Given a belief at time t, each
policy corresponds to a value function,

V π(bt) = Ez

[∑T −1
τ=t

R(bτ , πτ (bτ ), bτ+1)
]
, (2.2)

which is the expected cumulative reward following the policy, π. Similarly, an action-
value function,

Qπ(bt, at) = Ezt+1 [R(bt, at, bt+1) + V π(bt+1)] , (2.3)

is the value of executing action at in bt and then following the policy π.

2.1.1 Belief-MDP

A belief-MDP is an augmentation of POMDP to an equivalent MDP, by treating the
belief-states in a POMDP as states in the Belief-MDP. Subsequently, algorithms de-
veloped originally for MDPs can be used for solving POMDPs or BSP problems with
slight modifications, a property that we exploit in this chapter.

2.2 Expected Reward Abstraction

In this section we introduce the notion of an abstract observation model and show how
this model can be utilized to ease the computational effort. We then derive bounds on
the expected reward and, as a consequence, on the value function.

We start this section with a theoretical derivation, where we assume the reward
can be calculated analytically. This appears in special cases, e.g. when the reward is
solely entropy and the belief is parametrized as a Gaussian or when the state space is
discrete. In this part we assume the observation space is discrete and thus the expected
reward can be calculated analytically. In the second part of this section, we relax those
assumptions. Generally, the observation and state spaces can be continuous and the
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belief may be arbitrarily distributed. To deal with such cases, we derive an estimator
of the expected reward, in which the belief is approximated by utilizing a particle filter.

For both the discrete and continuous observation spaces, we present an abstract
observation model,

Definition 2.2.1 (Abstract observation model). An abstract observation model assigns
a uniform probability to all observations within a single set,

Ō(zj | x) .= 1
K

K∑
k=1

O
(
zk | x

)
∀j ∈ [1,K] (2.4)

where O
(
zk | x

)
corresponds to the original observation model over different observa-

tion realizations, zk, and K denotes the cardinality of observations within that set.

The abstract model aggregates K different observations and replaces the original ob-
servation model when evaluating the reward, see Figure 2.2. In the continuous case
we revert to observation samples, thus the summation in (2.4) corresponds to different
observation samples. A more precise explanation of the continuous case will be given
in Section 2.2.2.

2.2.1 Discrete Observation Space

Since calculating the exact value of a reward function in every belief node is expensive,
we now formulate an approach to evaluate rewards once for an entire set of K poste-
rior beliefs. Such an abstraction results in a decreased number of reward evaluations
in planning. We show that when constructing the aggregation scheme as a uniform
distribution over a set of observations, one can achieve tight upper and lower bounds
on the expected entropy, defined as −E [

∑
x b(x)log(b(x))]. Moreover, we show that

abstraction for the expected state-dependent reward does not affect its value, which
remains identical with and without abstraction.

Denote the cardinality of observation space with No, we partition the observations
to C clusters and denote the number of observations within each cluster as K, see
Figure 2.2. Generally, each cluster may contain a different number of observations,
Nz =

∑C
c=1K(c); For clarity, we assume K is identical for all clusters, but the results

below are easily extended to the more general case.
Our key result, stated in the lemma below, corroborates the intuition that utilizing

an abstract observation model results in a reduced number of reward evaluations.

Lemma 2.2.2. Evaluation of the expected reward with an abstract observation model,
(2.4), requires only C evaluations of the reward, instead of No, where C = No

K . That is,

∑Nz

n=1
P̄
(
zn

t+1 | H−t+1

)
R
(
bt, at, b̄t+1

)
= (2.5)

K
∑C

c=1
P̄
(
zc·K

t+1 | H−t+1

)
R
(
bt, at, b̄t+1

)
.
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Figure 2.2: An abstraction of the observation model: (a) original discrete observation
model with No observations. (b) Abstract discrete observation model with C clusters.
(c) Sample set from the original continuous observation model, with No observations.
(d) Abstract sample set with C clusters.

Proof. see appendix A.1. ■

Here, zc·K
t+1 denotes a single representative observation of the cluster c and

P̄
(
zn | H−

) .= ∑
x∈S

Ō(zn | x)b−, (2.6)

b̄
.= Ō(zn | x)b−∑

x′∈S Ō(zn | x′)b−
. (2.7)

For the continuous state case, simply replace summations with integrals. Furthermore,
the expected state-dependent reward remains unchanged when evaluated over abstract
belief and expectation,

Lemma 2.2.3. The value of the expected state-dependent reward is not affected by the
abstraction shown in (2.4), i.e.,

Eo [Ex∼b [rx (x, a)]] = Ēo [Ex∼b̄ [rx (x, a)]] . (2.8)

Proof. see appendix A.2. ■
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Note that {Eo,Eb} and {Ēo,Eb̄} correspond to expectations with the original and ab-
stract observation models, (2.6) and (2.7).

We now transition to the main theorem of this chapter. Using (2.4) as the abstrac-
tion mechanism, we show that,

Theorem 2.1. The expected entropy is bounded from above and below by,

0 ≤ Ēz

[
H
(
b̄
)]
− Ez [H (b)] ≤ log(K). (2.9)

Proof. see appendix A.3. ■

A direct implication of this result is a bounded sub-optimality, which we state explicitly
in corollary 2.2, while increasing computational efficiency by a factor of K. The bounds
hold in the worst-case sense, i.e. regardless of the choice of which observations one
chooses to cluster together. Note that the difference between the expected entropy and
the abstracted one is bounded from below by zero. Since the entropy evaluates the
uncertainty, the interpretation of this result is quite intuitive; the uncertainty cannot
reduce when using abstracted models. The upper bound depends on the number of
observations we choose to abstract, K. When K = 1, that is, each cluster contains a
single observation, both the upper and lower bounds are zero and the abstract expected
entropy equals the original expected entropy. From (2.1), (2.8) and (2.9) it follows that,

0 ≤ Ēz

[
R
(
b, a, b̄′

)]
−Ez

[
R
(
b, a, b′

)]
≤ ω2log(K). (2.10)

We now generalize those results and show that the value function is bounded. An
abstract value function is defined as,

V̄ π(bt) = Ēzt+1

[
R(bt, πt(bt), b̄t+1)

]
+ Ezt+1

[
V̄ π(bt+1)

]
. (2.11)

As a direct consequence of (2.10) and (2.11),

Corollary 2.2. The difference between the original value function and the abstract
value function is bounded by,

0 ≤ V̄ π(bt)− V π(bt) ≤ T · ω2log(K). (2.12)

Proof. see appendix A.4. ■

This result allows us to bound the loss when applying observation abstraction. In
Section 2.3, we devise an algorithm that adapts the bounds so that the same best
action will be chosen, with and without abstraction, while expediting planning time.
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2.2.2 Continuous Observation Space

Planning with entropy as reward over a continuous observation space is more cumber-
some as it requires calculation of,

E[H(bt)] = −
∫

zt

P(zt | H−t )
∫

xt

b(xt)log(b(xt)). (2.13)

First, the probability density function of the belief may be arbitrary, so the integral
over the state has no closed-form expression. Moreover, usually, there is no access
to the density functions due to the difficulty of exact Bayesian inference, but only
to samples. Second, even if the differential entropy could be evaluated, integrating
over the observation space makes this calculation intractable. Consequently, it is only
feasible to estimate the value function, here denoted by V̂ π(·). To approximate the
posterior belief at each time step, we employ the commonly used particle filter, see e.g.
[53]. Inspired by derivations in [4], we estimate (2.13) using state samples obtained
via a particle filter. We then sample observations using the given observation model,
conditioned on the state particles. This is a common procedure in tree search planning,
see for example [48]. Using the state and observation samples, we derive an estimator
to (2.13),

Ê[H(b̂t)] = −η̂t

M∑
m=1

N∑
i=1

O
(
zm

t | xi
t

)
qi

t−1 · (2.14)

log

O (zm
t | xi

t

)∑N
j=1 T

(
xi

t | x
j
t−1, at−1

)
qj

t−1∑N
i′=1O

(
zm

t | xi′
t

)
qi′

t−1

 ,
where b̂ .= {qi, xi}Ni=1 denotes the belief particles with weights qi; M,N are the number
of observation and state samples accordingly and η̂t = 1∑M

m=1

∑N

i=1 O(zm
t |xi

t)qi
t−1

. See
appendix A.5 for the full derivation, and [4] for a discussion about convergence of the
differential entropy estimator to the true differential entropy value. The estimator for
the expected entropy of b̂t, (2.14), is also a function of b̂t−1, hence the reward structure
R(b̂, a, b̂′).

Similar to the discrete case, we use an abstract observation model (2.4), where
instead of discrete observations, summation is done over observation samples, see Figure
2.2. We obtain upper and lower bounds that resemble the results (2.8), (2.9) and
(2.12) but depend on the approximate expected reward value. Combining results on
the expected state-dependent reward and expected entropy,

Theorem 2.3. The estimated expected reward is bounded by,

0 ≤ ˆ̄Ez

[
R
(
b̂, a, ˆ̄b′

)]
−Êz

[
R
(
b̂, a, b̂′

)]
≤ ω2log(K). (2.15)

Proof. see appendix A.6. ■
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Here, ˆ̄b′ .= {q̄i, xi}Ni=1 denotes a particle set with abstract weight, q̄i, due to the abstract
observation model (2.4), and

ˆ̄Ez [·] .=
M∑

m=1

N∑
i=1

Ō(zm | xi)qi
t−1 [·] . (2.16)

Êz[·] and b̂′ are defined similarly by replacing the abstract model with the original one.
As a result of Theorem 2.3, the estimated value function is bounded,

Corollary 2.4. The difference between the estimated value function and the abstracted
value function bounded by,

0 ≤ ˆ̄V π(bt)− V̂ π(bt) ≤ T · ω2log(K). (2.17)

Proof. see appendix A.7. ■

The computational complexity of the expected reward in (2.15) is dominated by the
complexity of the expected entropy, (2.14), which is O(MN2). By simply choosing
K = M the time complexity of the abstract expected reward diminishes to O(N2) with
bounded loss. Utilizing our result directly induces a trade-off between computational
speed and approximation loss of the value function. In the next section we derive an
adaptive algorithm that gains computational efficiency without any loss in terms of the
selected action.

2.3 Algorithms

Since the derivations in previous sections are agnostic to which algorithm is being
used, we begin this section by presenting the contribution of our work to an existing
algorithm. Then, based on insights gained from the examined algorithm, we propose
modifications to improve the current algorithm. In the following section, we show
that the changed algorithm empirically surpasses the current SOTA in performance
throughout our experiments by a significant margin.

2.3.1 Baseline Algorithms

Sparse sampling (SS) algorithm, introduced in [24], provides ϵ-accuracy guarantee on
the solution at a finite time. However, since it searches the tree exhaustively, the
convergence is quite slow in practice. On the other hand, MCTS algorithm [6] has the
desirable property of focusing its search on the more promising parts of the tree, but
was shown to have poor finite-time performance, requiring an exp(exp(...exp(1)...))1

iterations in the worst-case scenario [37]. To combat the worst-case running time of
MCTS and the slow running time of SS, Forward Search Sparse Sampling (FSSS)

1A composition of D-1 exponentials, where D denotes tree depth.
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Algorithm 2.1 AI-FSSS
Procedure: Simulate(b,d)

1: if d = 0 then
2: Return 0, 0
3: else if |C(b)| < |A| then
4: ba, a, z{1,...,K} ←−Gen(b,K)
5: P̄z|x ←− AbstractObs(ba, z{1,...,K}) // eq.(4)
6: Ē[R(ba)]←−ExpectedReward(b, a, ba, P̄z|x)
7: else
8: a←− SelectAction(b)
9: end if

10: lb←− Ē[R(ba)]
11: ub←− Ē[R(ba)] + log(K)
12: if 0 < N(ba) < K then
13: z ←− Pop (z{1,...,K})
14: b′ ←− Posterior(b, a, z)
15: VLB, VUB ←−Simulate(b′, d− 1)
16: else if N(ba) = K then
17: b′ ←− arg minb′N(b′)
18: VLB, VUB ←−Simulate(b′, d− 1)
19: else if N(ba) = 0 then
20: VLB, VUB ←−Rollout(ba, d− 1)
21: end if
22: LB(ba)←− lb+ VLB+(|C(ba)|−1)(LB(ba)−lb)

|C(ba)|

23: UB(ba)←− ub+ VUB+(|C(ba)|−1)(LB(ba)−ub)
|C(ba)|

24: a∗ ←− arg maxaUB(ba)
25: LB(b)←− LB(ba∗)
26: UB(b)←− UB(ba∗)
27: N(b)←− N(b) + 1
28: N(ba)←− N(ba) + 1
29: Return LB(b), UB(b)

[55] was introduced. It was shown to achieve comparable performance to MCTS with
performance guarantees under finite computational budget as in SS.

2.3.2 FSSS with Information-Theoretic Rewards

In its original version, FSSS introduced lower and upper bounds on the estimate of
the Qd(x, a) function. In contrast to SS, FSSS builds the tree incrementally, where
each iteration begins at the root node and proceeds down to horizon H, to obtain an
estimate for the action-value function. Whenever a new node is expanded, its direct
action-nodes are created alongside M randomly sampled children for each of them.
The branching factor, M , is a predefined hyper-parameter. After performing (|A| ·M)d

iterations, FSSS builds the same tree as SS, but enjoys anytime properties. Moreover,
FSSS may benefit from reduced computation by utilizing upper and lower bounds and
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Algorithm 2.2 Solve
Procedure: Solve

1: for i ∈ 1 : n do
2: Simulate(binit, dmax)
3: end for
4: action←− AdaptBounds(binit)
5: Return action

pruning actions that are sub-optimal.
When the reward is defined as an information-theoretic function, such as differential
entropy, upper and lower bounds on the value function cannot be determined a-priori,
thus no pruning can be made. Nonetheless, our experimental evaluations suggest that
FSSS still serves as a strong baseline.

2.3.3 Adaptive Information-FSSS

We coin our new algorithm Adaptive Information FSSS (AI-FSSS). Given the same
number of iterations, the actions obtained by the two algorithms are identical. The
pseudo-code presented in appendix A.2. As in FSSS, we build the tree incrementally,
where each iteration adds a new trajectory to the tree. The algorithm constructs an
abstract belief tree, where a set of K posterior beliefs share the same reward upper and
lower bounds relating it to the underlying reward value. This is done by immediately
sampling K observation samples whenever a new action node expanded, followed by
a computation of the abstract reward. Based on Theorem 2.3 we derive an Adapt-
Bounds procedure, that adapts the number of aggregated observations. Bounds adap-
tation halts whenever the highest lower bound, max

a
LB(binita), is higher than the upper

bound of any other action. This results in the same action selection for the full FSSS
and our adaptation, AI-FSSS.

2.3.4 Introducing Rollouts to AI-FSSS

A direct adaptation of FSSS to AI-FSSS would abstract K observations in each new
action node up to the full depth of the tree, dmax. However, when the time budget is
limited, it might not be the best strategy, since the abstraction of deeper belief nodes
of the tree may never be visited twice, but might need to be refined afterward. Instead,
we propose to perform rollout whenever a new action node is met for the first time.
This is similar to MCTS, where rollouts are used to get an estimate of the action-value
function. This approach will lead to abstraction only for expanded nodes, which are
the ones in proximity to the root node. As the number of iterations grows, action nodes
are expanded gradually and more abstract belief nodes are added to the tree. Given
that the number of iterations equals the number of action nodes in the original Sprase-
Sampling tree, followed by AdaptBounds procedure, both algorithms converge to the
same solution.
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Algorithm 2.3 Refine
Procedure: Refine(b,ba,d)

1: if IsLeaf(b) then
2: Return 0, 0
3: else if Abstract(ba) then
4: rold ←−ReuseReward(ba)
5: Pz|x ←− OriginalObsModel(ba, z{1,...,K})
6: E[H(ba)]←−ExpectedEntropy(b, ba, Pz|x)
7: r ←− rold + ω2(E[H(ba)]− Ē[H(ba)])
8: else
9: r ←−ReuseReward(ba)

10: end if
11: b′ ←− arg maxb′(UB(b′)− LB(b′))
12: a′ ←− arg maxa′(UB(b′a′)− LB(b′a′))
13: VLB, VUB ←−Refine(b′, b′a′, d− 1)
14: LB(ba)←− lb+ VLB+(|C(ba)|−1)(LB(ba)−lb)

|C(ba)|

15: UB(ba)←− ub+ VUB+(|C(ba)|−1)(LB(ba)−ub)
|C(ba)|

16: a∗ ←− arg maxaUB(ba)
17: LB(b)←− LB(ba∗)
18: UB(b)←− UB(ba∗)
19: return LB(b), UB(b)
Procedure: AdaptBounds(binit)

1: while max
a+∈A

LB(binita
+) < max

a∈A\a+
UB(binita) do

2: a∗ ←− arg max
a∈A

LB(binita)

3: Refine(binit, binita
∗, d)

4: end while
5: return a∗

2.3.5 Implementation

In this section we present the main building blocks to derive our algorithm. The vari-
ables used in Algorithm A.1 are b, ba, and b′ which represent a belief node, a predicted
belief node, i.e. after performing an action and posterior belief, after incorporating a
measurement. C(·) denotes a list of their corresponding children. a and z{1,...,K} denote
an action and a list of K sampled observations respectively. P̄z|x is a list holding the
abstract probability values of the measurement model, as in equation (4). Rstate(·, ·)
denotes a state-dependent reward function, which may be defined arbitrarily. LB,UB
and N are all initialized to zero. Rollout performs a predefined policy. In our exper-
iments, we chose uniform distribution over all actions for the rollout policy. Algorithm
A.2 uses binit, which represents the initial belief at the root node, n is the number of
iterations and dmax, the maximum depth of the planning tree.
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(a) (b) (c)

Figure 2.3: Evaluating performance of AI-FSSS. (a-b): Running time comparison of
FSSS, and our adaptation, AI-FSSS without rollouts. Both algorithms end with the
same action selection, but with increasing difference in computation time. (a) Different
observation branching factor, with 20 particles. (b) Different number of state particles,
with 4 observation after each action node. (c) Average total return of AI-FSSS with
rollouts in 2D Light-Dark with obstacles.

2.4 Experiments

The goal of the experiment section is to evaluate the influence of the abstraction mech-
anism on the planning performance. We examined both the time difference and the
total return. All algorithms use a particle filter for inference, the choice of the particle
filter variant is independent of our contribution. All experiments were performed on
the common 2D Light Dark benchmark, where both the state and observation spaces
are continuous; see an illustration in Figure 2.4. In this problem, the agent is required
to reach the goal while reducing localization uncertainty using beacons scattered across
the map. The reward function defined as a weighted sum of distance to goal, which is
state dependent reward and entropy, as in (2.1). Due to space limitations, domain and
implementation details are deferred to appendix A.2.1.

2.4.1 Time Performance Evaluation

We compared the basic FSSS with our adaptation, AI-FSSS, in terms of time efficiency.
As stressed in previous sections, both algorithms guaranteed to select the same action.
To ensure that both algorithms built the same tree, rollouts were avoided and each
iteration proceeded until the maximum depth of the tree. We note that the expected
return was inferior to our full algorithm, which is evaluated next. Technically, we also
fixed the random numbers by selecting the same seed in both algorithms.

Observation branching factor. In the first experiment, we fixed the number of
state particles to n = 40, and examined the influence of different branching factors
over the observation space, see Figure 2.3. The algorithms were limited to 20,000
iterations before performing an action. The computation time indicates an empirical
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average of over 1,000 simulations, approximating the mean time for a full trajectory.
As one would expect, the more observations are clustered in each aggregate, the more
time-efficient AI-FSSS compared to the basic FSSS. To obtain the same best action in
both algorithms, the tree construction was followed by a refinement step, see appendix
A.2, AdaptBounds. In the adapt-bounds step, we incrementally reduce the number
of aggregates, so in the worst-case every aggregate will only hold a single observation,
and thus recover the FSSS tree. This will occur only in a degenerate case, where all
action-values Q(b0, ·) will have the same value, which is rarely the case.

Number of particles. In our second experiment, we evaluated the effect of the
number of particles representing the belief. Here, the number of observations was fixed
to M = 4. Figure 2.3 shows the change in computational speed with regard to the
number of particles in our experiments. Both algorithms performed 1,000 simulations;
The empirical running time mean and standard deviation are presented in the graph.
In the experiments where only few particles were used, e.g. 5, the efficiency gain was
mild. In a setting where few particles are sufficient, computing the entropy is relatively
cheap compared other parts of the algorithm, which become relatively more significant
(e.g. the different max operators). However, we observed that the burden became
significant even in a mild number of particles, e.g. when n = 20 the speed-up ratio
more than doubled while only a modest cluster size of 4 observations was used.

Figure 2.4: An illustration of the environment being used in our experiments.

2.4.2 Total Return Evaluation

In contrast to the previous experiments, in this section we evaluate the full version of
AI-FSSS, that is, with rollouts for every newly expanded action node. We evaluated
performance against FSSS [55] and PFT-DPW [48], by augmenting a POMDP to a
belief-MDP. In this setting, each node holds n particles. All algorithms had 1 second
limitation for planning before each interaction with the environment. Except for PFT-
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DPW, the algorithms shared the same observation branching factor, M = 4. PFT-
DPW opens new observation nodes as time progresses, depending on hyper-parameters
defined by the expert. We identified ko as the dominant hyper-parameter that controls
the number of observations in our experiment. We experimented with both ko = 4 and
ko = 2 in order to keep a comparable observation branching size. The better result is
shown here, see Figure 2.3.

Each algorithm performed 1,000 full trajectories in the environment, each contained
25 steps. As suggested in Figure 2.3, our algorithm performed better than PFT-DPW
and FSSS when information-gathering was an explicit part of the task. The superior
results are expected due to the additional efficiency of our approach. Both FSSS and
PFT-DPW compute the expensive-to-evaluate reward value for every newly expanded
node, whereas AI-FSSS compute the exact reward only when it is required in order to
determine the best action selection. Consequently, under a given time-limit, AI-FSSS
expands more posterior nodes in the belief tree, which result in better coverage of the
belief tree.

2.5 Conclusions

This chapter deals with online planning under uncertainty with information-theoretic
reward functions. Information-theoretic rewards facilitate explicit reasoning about state
uncertainty, contrary to the more common expected reward over the state. Due to the
added computational burden of evaluating such measures, we consider an observation
model abstraction that improves efficiency. We derived analytical bounds with respect
to the original reward function. Additionally, we introduced a new algorithm, AI-FSSS,
that contracts the bounds upon need, and is guaranteed to select identical action as
the vanilla algorithm. Finally, we conducted an empirical performance study with
and without observation abstraction. Our results suggest a significant speed-up as
the cardinality of the particle set and the observation-branching factor increases while
yielding same performance.
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Chapter 3

Monte Carlo Planning in Hybrid
Belief POMDPs

While in the previous chapter we have simplified the reward calculation by considering
a simplified observation space, in this chapter we generalize this idea by simplifying the
entire tree construction and the value function using simplified state space.

More specifically, we consider a POMDP setting with hybrid state space that re-
sults in a belief containing discrete and continuous random variables. While the states
of the agent and of the environment are commonly represented by continuous random
variables, discrete random variables generally represent object classes, data association
hypotheses or even transition models (e.g. due to slippage) and observation models.
In ambiguous environments, where different objects or scenes can possibly be percep-
tually similar or identical, such discrete variables are particularly important, as wrong
assignments can lead to a complete failure of the agent’s task.

In this chapter we propose an approach to alleviate the computational complexity
of planning with hybrid beliefs under the POMDP formulation. We show that previous
algorithms result in biased estimators of the reward and value function, and suggest a
different way for controlling the number of hypotheses to a manageable size. Utilizing
sequential importance resampling (SIR) for hypothesis selection, we suggest an algo-
rithm that results in an unbiased estimator and efficient belief tree construction. We
show that the algorithm supports both state-dependent and belief-dependent rewards.
We proceed with a contribution to inference in the setting of ambiguous data associa-
tion, by introducing a natural way to incorporate negative information within Bayesian
inference, and demonstrate how the hypotheses weights should be updated. Last, we
demonstrate our approach on simulative environments to corroborate our findings.

Our contributions are as follows: (a) We introduce a novel algorithm that per-
forms Monte-Carlo planning to solve a POMDP when the considered belief is hybrid.
(b) We show that our algorithm, HB-MCP, leads to an unbiased utility estimate, in
contrast to existing hybrid belief algorithms. (c) We introduce negative information
to hybrid belief inference. (d) We demonstrate the effectiveness of our algorithm in
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extremely aliased simulated environments where unresolved data association leads to
multi-modal belief hypotheses. To maintain fluency of reading, the formal proofs and
further implementation and experimental details are located in appendix A.3.

3.1 Preliminaries

Based on the POMDP definition as described in section 1.2.1, we introduce the following
chapter-specific additions and changes to the definition; Given a finite planning horizon
T the value function for a policy π is defined as the expected cumulative reward received
by executing π,

V π(bt) = R(bt, π(bt)) + E
zt+1:T

[ T∑
τ=t+1

R(bτ , π(bτ ))
]
. (3.1)

Similarly, an action-value function,

Qπ(bt, at) = R(bt, at) + E
zt+1

[V π(bt+1)] , (3.2)

is defined by executing action at and then following the policy π for a finite horizon
T . At each planning session, the agent solves a POMDP by searching for the optimal
policy π∗ that maximizes (3.1). Note that R(b, a) is a general reward function on the
belief and action. In the following chapter, we discern between reward functions that
are restricted to state dependent functions or general belief dependent functions, and
use the notations RX ≜ EX∼b[r(X, a)] and Rb as a shorthand to make it clear which
definition is being considered. Here, X denotes a generalized state which includes the
current time step, and past time steps, more concretely, Xt ≜ {x0, .., xt}.

3.1.1 Hybrid Belief

A hybrid belief is defined over both continuous and discrete random variables. The
continuous random variables can represent the state of the agent and (possibly also)
of the environment, as common in SLAM framework. The discrete random variables
can represent, e.g., object classes and/or data association hypotheses. Nevertheless,
the following definition is general and not restricted to these examples.

We formally define the hybrid belief at each time t as

bt ≜ P(Xt, β0:t | Ht) = P(Xt | β0:t,Ht)︸ ︷︷ ︸
b[Xt]β0:t

P(β0:t | Ht)︸ ︷︷ ︸
b[β0:t]≡ωt

, (3.3)

where Ht ≜ {z1:t, a0:t−1} represents all past actions and observations. b[Xt]β0:t is the
conditional belief over continuous variables. ωt is the marginal belief over discrete
variables which can be considered as the hypothesis weight. We define H−t+1 ≜ Ht∪{at}
and b−t+1 ≜ P

(
Xt+1, β0:t+1|H−t+1

)
for notational convenience.
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The marginal belief ωt is updated for each realization of discrete random variables
according to

ωi,j
t = η−1P(zt | βi,j

0:t,H
−
t )P(βi,j

0:t | H
−
t ) (3.4)

=η−1

ζ
i|j
t︷ ︸︸ ︷

P(zt | βi,j
0:t,H

−
t )P(βi

t | β
j
0:t−1,H

−
t )

ωj
t−1︷ ︸︸ ︷

P(βj
0:t−1 | H

−
t ),

which is obtained by Bayes rule followed by chain rule on ωt. The un-normalized
weight can be expressed recursively as ω̃i,j

t = ζ
i|j
t ωj

t−1. The conditional belief b[Xt]β0:t

is updated for each realization of discrete random variables as

b[Xt]i,jβ0:t
= ψ(b[Xt]jβ0:t−1

, at−1, zt), (3.5)

where ψ(.) represents the Bayesian inference method.
Generally, when planning with hybrid beliefs the agent constructs both a belief tree

and multiple hypotheses trees. Each hypotheses tree represent the posterior hypothe-
ses given a history. Since every node of the planning tree (i.e. belief tree) corresponds
to a hypotheses tree, the computational complexity of the corresponding POMDP be-
comes a significant burden. In the following section we present a novel algorithm that
circumvent this difficulty via Monte-Carlo sampling.

3.2 POMDP Planning with Hybrid Beliefs

This section starts with a brief overview of how MCTS can be utilized to solve POMDPs
with hybrid beliefs and its drawbacks. Then, we present a novel approach to utilize
the UCT exploration bonus to build an asymmetric hypotheses tree, which leads to
better use of the computational resources by optimistically focusing on the interesting
hypotheses.

3.2.1 vanilla Hybrid-Belief MCTS

For completeness, we first present a vanilla-HB-MCTS algorithm. Although the exact
algorithm does not seem to exist in the literature, this is the ad-hoc way to interleave
hybrid beliefs with state-of-the-art POMDP solvers. vanilla-HB-MCTS, can be seen as
an adaptation of the state-dependent MCTS [45] algorithm to a (hybrid-)belief (3.3),
by augmenting the belief to a belief-state. A similar approach was also taken by PFT-
DPW [48], which utilized particle filters to approximate a posterior belief, over con-
tinuous variables. However, computing a full hybrid belief is a difficult and sometimes
intractable task, even for particle-based solvers, and is thus prone to approximations.

Pruning. The number of hypotheses at each posterior node in the belief tree may
be prohibitively large. To handle the infeasible number of the posterior hypotheses,
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vanilla-HB-MCTS utilizes a pruning mechanism similar to those suggested in [40, 18].
As a result, unlikely hypotheses are removed from the hypotheses tree.

In vanilla-HB-MCTS, each posterior node holds a fixed number of hypotheses once
expanded, depending on a predefined hyperparameter. Such a method may sometimes
be too harsh, pruning away hypotheses with high probability due to a limited hypothe-
ses budget, or too loose, keeping highly unlikely hypotheses, thus wasting valuable
computational time. Other approaches may also be applicable, such as fixing a prob-
ability threshold value, under which all hypotheses are pruned. However, the latter
has its own deficiencies, such as hypothesis depletion. For completeness, we describe
vanilla-HB-MCTS implementation details in the appendix A.3.

3.2.2 Hybrid Belief Monte-Carlo Planning

In contrast to vanilla-HB-MCTS, in HB-MCP, we do not use any pruning heuristic for
two reasons: (1) this requires knowledge, or an insight, as to how many hypotheses
would be sufficient for the specific POMDP; (2) Each posterior node in the belief tree
maintains hypotheses based on a hyperparameter, regardless of how relevant this node
may be for decision-making.

Conversely, we suggest an adaptive algorithm that focuses computational resources
in proportion to their relevance in the belief tree, which circumvent the difficulty in
full belief update. HB-MCP is recursively invoked with a single sampled hypothesis.
Every such single hypothesis may evolve into multiple hypotheses. HB-MCP algorithm
computes only the posterior weights (i.e. probability values) that are conditioned on
that single hypothesis, followed by a random weight sample based on their categorical
distribution. Then, only the hypothesis associated with the sampled weight is updated.
This is in contrast to the full posterior update done in vanilla-HB-MCTS.

Additionally, to support belief-dependent rewards, the reward value is estimated
based on state samples received across multiple visits to the belief node, i.e., state
samples from multiple hypotheses. We describe the algorithm details in section 3.3.

HB-MCP holds some desirable properties compared to the full belief update and
pruning approaches. First, at each iteration of HB-MCP, a maximum of T posterior
hypotheses are computed, and a small subset of the weights. This is in contrast to
the full posterior update, that would require the entire (or pruned-)set of the current
posteriors, and compute all the posterior hypotheses of the next time-step, which is
highly resource expensive for every iteration. Second, HB-MCP explores both the
planning tree and the hypotheses trees by focusing its computational effort on the
interesting parts, utilizing UCB to guide the search; this property is inspired by MCTS
which builds the planning tree by focusing on the optimistic parts of the tree. In
section 3.4, we show that this approach results in an unbiased estimator for the true
value function.
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Algorithm 3.1 HB-MCP
Procedure:Simulate(bj

t , h, d)
1: if d = 0 then
2: Return 0
3: end if
4: a←− arg max

ā

Q(hā) + c

√
log(N(h))

N(hā)

5: B(h)←GetSamples(bj
t , B(h), N(h))

6: r ←− Reward(B(h), a)
7: r ←− r + N(h)(r − rprev)
8: if |C(ha)| ≤ koN(ha)αo then
9: z ← SampleObservation(bj

t , a)
10: else
11: z ← Sample uniformly from C(ha)
12: end if
13: {ωi,j

t+1}
L
i=1 ←− ComputeWeights(bj

t , a, z)
14: i←− SampleCategorical({ωi,j

t+1}
L
i=1)

15: bi,j
t+1 ←− Ψ(bj

t , a, z, i) // Eq. (3.5)
16: if z /∈ C(ha) then
17: C(ha) ∪ {z}
18: R←− r+Rollout(bi,j

t+1, d− 1)
19: else
20: R←− r+Simulate(bi,j

t+1, haz, d− 1)
21: end if
22: N(h)←− N(h) + 1
23: N(ha)←− N(ha) + 1
24: Q(ha)←− Q(ha) + R−Q(ha)

N(ha)
25: Return R

3.3 Implementation details

In this section we describe the implementation details of our approach, HB-MCP, as
discussed in section 3.2.2.

HB-MCP can be described as follows; first, it starts by receiving a single hypothesis
and selecting an immediate action according to UCB exploration bonus. Then, samples
are generated and appended to B(h), which are later used for reward estimation (lines
5- 7). Lines 8-11 perform observation progressive widening. Then, the approach for
sampling hypotheses is shown in lines 13-15. Note that the algorithm directly computes
all the weights conditioned on the hypothesis given as input (line 13). Then, we re-
sample a single conditional belief, bi,j

t+1, sampled according to the weights (line 14). We
note that this is not a necessity, and different number of samples can be taken in those
two steps to trade-off efficiency and accuracy. Depending on whether a new posterior
node is sampled or not, lines 16-20 either call for rollout or continues recursively. Last,
the action-value function and the counters are updated.

To estimate a belief-dependent reward, state samples should correspond to their
likelihood in the full hybrid belief. In HB-MCP, hypotheses are generated iteratively,
accumulating hypotheses (or, equivalently, state samples from those hypotheses), so
that at each iteration the reward estimator is improved. Generally, a belief dependent
reward is not a simple average over samples. However, as in MCTS, HB-MCP estimates
the action value function, Q(ha), as an average of all the cumulative returns passed
through that node. To support belief dependent rewards, HB-MCP computes a new
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reward estimate based on all past samples, and replaces the previous reward estimate
with the new one. To that end, a simple recursive subtraction and addition update is
done for every node encountered along the path of the current iteration, described in
line 7.

3.4 Theoretical Analysis

In this section, we first claim that existing approximations, done in contemporary
state-of-the-art multi-hypotheses planners, such as DA-BSP [40], ARAS [19] as well
as vanilla-HB-MCTS (Section 3.2.1), lead to a biased estimation of the reward value,
and therefore a biased value function. Further, we show that even if the reward value
could be precisely recovered, the resultant value function is generally biased. Instead,
HB-MCP performs sequential sampling which converges to the correct value. Then,
we discuss how HB-MCP may also support belief-dependent reward functions and its
applicability for value function estimation.

3.4.1 State-dependent rewards

State-dependent reward functions are defined as the expected reward value over the
belief, i.e., RX ≜ EX∼b[r(X, a)]. Generally, state-dependent rewards cannot be com-
puted analytically, thus, they are approximated using state samples. Since in a hybrid
belief the number of hypotheses may be prohibitively expensive to compute, most ex-
isting algorithms approximate the belief, b̂, by performing some heuristic pruning. As
a consequence, the approximate distribution is shifted, and the reward value is biased
even with an infinite number of state samples,

Lemma 3.4.1. The estimator EX∼b̂[r(X, a)] is biased.

Proof. Assuming the weights of the pruned hypotheses are non-zero, the proof is im-
mediate,

EX∼b[r(X, a)] =
∫

X

∑
β

b(X,β)r(X, a)dX (3.6)

=
∫
X

∑
β∈A

b(X,β)r(X, a)dX+
∑

β∈¬A

b(X,β)r(X, a)dX

̸= ηA

∫
X

∑
β∈A

b(X,β)r(X, a)dX = EX∼b̂[r(X, a)].

where A denotes the set of un-pruned hypotheses, and ηA is their corresponding nor-
malizer after pruning. ■ ■

In contrast, HB-MCP samples hypotheses iteratively starting from the root node; it
utilizes sequential importance resampling, which results in an unbiased estimator for the
reward value. At every iteration, the new sampled states from the current hypothesis
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are added to the estimator from previous iterations, by averaging. The process for
generating hypotheses can be described as follows; for any time t, a hypothesis is
sampled i.i.d from a proposal-prior distribution, βi

0 ∼ Q(β0 | H0). Then, hypotheses
are recursively sampled from a proposal distribution, βi

τ ∼ Q(βτ | β0:τ−1) up to time
τ = t. We define Q(β0 | H0) ≜ P(β0 | H0), and Q(βτ | β0:τ−1) ≜ Uniform [1, |βτ |].
Then, for every time-step t, the corresponding importance weight is,

λi,j
t = P(βi,j

0:t | Ht)
Q(βi,j

0:t | H0)
=

ηtζ
i|j
t P(βj

0:t−1 | Ht−1)
Q(βi

t | β
j
0:t−1)Q(βj

0:t−1 | H0)
(3.7)

= ηtζ
i|j
t

1/|βi|j
t |

P(βj
0:t−1 | Ht−1)

Q(βj
0:t−1 | H0)

=ηtζ
i|j
t |β

i|j
t |λ

j
t−1,

where λj
0 = 1. As a consequence,

Lemma 3.4.2. HB-MCP state-dependent reward estimator, R̂X ≜ 1
N

∑N
i,j=1 λ

i,j
t

1
nX

∑nX
k=1 r(X

i,j,k
t , at),

is unbiased.

Proof.. If states are sampled i.i.d. for each hypothesis, then the expected value of the
reward estimator, R̂X , is,

E
[
R̂X

]
≜ E

 1
N

N∑
i,j=1

λi,j
t

1
nX

nX∑
k=1

r(Xi,j,k
t , at)

 (3.8)

= EQ

 1
N

N∑
i,j=1

λi,j
t E

b[Xt]i,j
β0:t

[
1
nX

nX∑
k=1

r(Xi,j,k
t , at)

]
= 1
N

N∑
i,j=1

EQ

[
P
Q

1
nX

nX∑
k=1

Eb[Xt]β0:t

[
r(Xi,j,k

t , at)
]]

= EP
[
Eb[Xt]β0:t

r(Xt, at)
]
≜ RX

where P=P(β0:t | Ht), Q=Q(β0:t | Ht), and N and nX denote the number of samples
from Q and b[Xt]i,jβ0:t

respectively. ■ ■

As the planning horizon grows, sampling hypotheses uniformly quickly induce sample
degeneracy. That is, the weights of most hypothesis samples become negligible, while
only a few remain significant, which negatively affects the accuracy of the estimate.
To avoid this issue, we perform resampling at every step, also known as sequential im-
portance resampling (SIR). Before resampling, each hypothesis weight simply becomes,
λ

i|j
t = ηtζ

i|j
t

∣∣∣βi|j
t

∣∣∣, which is then updated to 1/N after resampling. Note that resampling
does not introduce bias to the estimator [25]. To avoid repeated derivations, for the rest
of this sequel we treat mathematical proofs as if hypotheses are directly sampled from
distribution P, even though they are in fact sampled from the proposal distribution, Q.
However, all derivations can be started by sampling from Q, then follow similar steps
of lemma A.3.1 followed by resampling to arrive at the same result.
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In some cases of interest, such as ambiguous DA, the normalizer ηt cannot be easily
computed, and so the importance weight, λt, cannot be computed. A common practice
is to use the self-normalized version of the estimator, i.e. λ̃i|j

t = λ̃
i|j
t−1

ζ
i|j
t∑
ζ

i|j
t

, which is no
longer unbiased [25]. However, the self-normalizing variation is consistent, meaning it
becomes less biased with more samples and converges in probability (denoted →p) to
the theoretical value. This is a direct consequence of applying the weak law of large
numbers on both the nominator and denominator of the self-normalized estimator,

R̂SN
X ≜

∑N
i,j=1 ζ

i|j
t ωj

t−1
1

nX

∑nX
k=1 r(X

i,j,k
t , at)∑N

i,j=1 ζ
i|j
t ωj

t−1
(3.9)

=
1
N

∑N
i,j=1 ηtζ

i|j
t ωj

t−1
1

nX

∑nX
k=1 r(X

i,j,k
t , at)

1
N

∑N
i,j=1 ηtζ

i|j
t ωj

t−1
→p RX

1
,

where the denominator converges to the sum of weights, ∑i,j ω
i,j
t = 1 and the nominator

to the reward value.

3.4.2 Belief-dependent rewards

Contrary to state-dependent rewards, belief dependent rewards are not necessarily lin-
ear in the belief, so averaging over state samples from different hypotheses does not
guarantee convergence to the theoretical reward value. Moreover, different reward def-
initions may be functions of not only the states, but also the weights, the conditional
beliefs, or the probability density values of the complete theoretical belief (such as
Shannon’s entropy [43] or differential entropy [2]). To support the various cases, we
split our discussion into the parametric case, where the reward can be precisely calcu-
lated given a set of parametric conditional beliefs and the corresponding weights, and
the nonparametric case, where the reward is estimated based on state and hypothesis
samples.

HB-MCP supports belief-dependent rewards by accumulating conditional beliefs
across multiple visitations of the same history (i.e. same node in the belief tree). The
estimated weight of each conditional belief is the sample frequency of the corresponding

hypothesis. That is, P̂(βi,j
0:t | Ht) ≜ ω̂i,j

t =
∑

i,j
1

β=β
i,j
0:t

N , where N is the number of
hypothesis samples, i, j ∈ [1, |β0:t|], |β0:t| is the theoretical number of hypotheses at
time t and 1□ denotes the indicator function.

Parametric. Assuming a parametric representation for the conditional beliefs,
b[Xt]i,jβ0:t

, the belief-dependent reward, Rb(bt, at), is evaluated using the estimated hy-
brid belief, Rb(b̂t, at), where b̂t = b[Xt]β0:t b̂[β0:t] ≡ b[Xt]β0:tP̂(β0:t | Ht), and bt defined in
(3.3). Applying the hypothesis resampling approach as described in Section 3.4.1, the
sample frequency of each hypothesis in b̂t is unbiased, in other words, in expectation it
equals the theoretical weights. Moreover,
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Lemma 3.4.3. Rb(b̂t, at) converges in probability to Rb(bt, at) for any continuous,
real-valued function Rb.

Proof.. By the law of large numbers, ω̂i,j
t is consistent as N →∞ for all i, j ∈ [1, |β0:t|],

ω̂i,j
t =

N∑
k=1

1
βk=βi,j

0:t

N
→p P(βi,j

0:t | Ht)= ωi,j
t , (3.10)

then, due to the continuous mapping theorem,

Rb(b[Xt]β0:t b̂[β0:t], at)→p Rb(b[Xt]β0:tb[β0:t], at),

that is, Rb(b̂t, at) is a consistent estimator for Rb(bt, at). ■ ■

Nonparametric. In the nonparametric case, the reward value is estimated based
on state particles, which may correspond to conditional belief estimation via particle
filters, or POMDPs with reward functions that have no close-form solution, and are
thus approximated via Monte Carlo methods. Then, instead of Rb(bt, at), an esti-
mator over the reward is used, R̂b(b̂[Xt]β0:t b̂[β0:t], at), where both the belief and the
reward functions are estimators. We denote b̂[Xt]kβ0:t

=
∑nx

i=1 α
i,k
t δ(X − Xi,k

t ), where
αi,k

t is the weight of state particle i generated from conditional belief k and nx is the
number of particles used to approximate the conditional belief. To arrive at consis-
tency results for an arbitrary nonparametric reward estimator, we assume that the
reward estimator based on samples from the full theoretical belief is consistent, i.e.,
R̂b(b̂[Xt]β0:tb[β0:t], at)→p Rb(bt, at).

Lemma 3.4.4. If R̂b(b̂[Xt]β0:tb[β0:t], at) →p Rb(bt, at), then R̂b(b[Xt]β0:t b̂[β0:t], at) →p

Rb(bt, at).

Proof.. The proof follows similar steps to lemma 3.4.3. ■ ■

3.4.3 Value function

When using the existing hypotheses pruning approximations, the estimated value func-
tion converges to the wrong value even when some external source provides the exact
reward value. This is due to the way observations are generated. The value function is
defined as

V π(bt) =
∫

z
P(zt+1:τ | H−t )

T∑
τ=t

R(bτ , πτ )dz, (3.11)

and since there is usually no direct access to observations given history, first state-
samples are generated, then observations are sampled using the observation model,
that is, P(zt | H−t ) =

∑
β

∫
X P(zt | Xt, β0:t)b−(Xt, β0:t). Replacing b− with its pruned

counterpart, b̂−, results in a shifted distribution for both the belief and the measure-
ments, which impacts the value function estimation. Proof of this claim is similar to
that of lemma 3.4.1 and skipped here for conciseness.
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zβt,k =∞ βt,k >nzt (xr, lk)∈S.R. P(z | x, l) P(β | x, l)
no no yes f(·) 1
no no no 0 0
yes yes no 1 1
yes yes yes 0 0
no yes yes f(·) 0
no yes no 0 1
yes no no 1 0
yes no yes 0 1

Table 3.1: Possible combinations when considering negative information. zβt,k = ∞
indicates no observation. Hypothesis element βt,k > nzt assumes that xr, lk are out
of the sensing range. (xr, lk) ∈ S.R. indicates that a specific realization is within the
sensing range. P(zβt,k | xr, lk) and P(βt,k | xr, lk) indicate the likelihood of the models.
Last, f(·) denotes the likelihood value of the observation sensor (e.g. Gaussian).

Instead, HB-MCP generates observations by first receiving a hypothesis from the
belief at the current node, βj

0:t. Conditioned on βj
0:t and the history, HB-MCP samples a

new plausible hypothesis, βi
t+1. Then, an observation is sampled based on the posterior

hypothesis. More formally,

Ezt+1:τ [
T∑

τ=t+1
Rτ ]=Ezt+1

[
Rt+1 + Ezt+2:τ

[
V π

t+2
]]

(3.12)

= Eβ0:tEβt+1|β0:tEzt+1|β0:t+1 [Rt+1]︸ ︷︷ ︸
≜αt+1

+E
[
V π

t+2
]
.

We then define the estimator for the expected reward, α̂t+1,

ÊQ

P
(
βi

t+1 | β
j
0:t,H

−
t+1

)
Q
(
βi

t+1 | β
j
0:t,H0

) λj
t Êzt+1|β0:t+1,H−

t+1
[R̂t+1]

 (3.13)

Lemma 3.4.5. Given an unbiased reward estimator, R̂, the value-function estimator
used in HB-MCP is unbiased.

Proof. Applying similar steps from the proof of lemma A.3.1 on α̂t+1, leads to an
unbiased value, αt+1. Continuing recursively on the value function yields the desired
result. See the appendix for further details. ■

3.5 Negative Information in Ambiguous Data Association

Just like observations affect the hypotheses’ weights, not receiving an expected obser-
vation also affects the weights, commonly known as negative information. We build on
previous work [40] which addresses hybrid Bayesian inference for ambiguous DA and
shows how the mathematical formulation naturally extends to include negative informa-
tion. We limit our discussion of negative information to the context of landmark-based
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observations. We conjecture that this formulation can also be adapted to arbitrary
observations, but is out of the scope of this work.

Negative information is based on not receiving an observation from a mapped land-
mark. We denote |Lt| ∈ N as the number of mapped landmarks at time instant t.
This usually refers to the number of landmarks that already exist in the agent state
(but can be defined otherwise). We also define observation as, zt = [z1

t , ...z
|Lt|
t ]. Note

that there are |Lt| observation elements in the observation, even though usually not all
landmarks can be observed at a single time step, as some might be out of the sensing
range due to limited field of view, occlusions, and so on. If at time t only nzt < |Lt|
landmarks are observed, we fill the rest of the observation array with zk

t =∞, i.e., out
of sensing range. Then, the observation array becomes zt =[z1

t , ..., z
nzt
t ,∞, ...,∞]1×|Lt|.

The reason for such uncommon inflation of the observation array will become clear
shortly.

We define βt = [βt,1, ...., βt,|Lt|] as an array that subscribes each landmark with some
observation. For example, βt,k = 1 associates landmark lk with observation-element z1

t

from zt. Note that by the definition of the observation array, zβt,k

t =∞ for all βt,k > nzt ,
which does not correspond to any real observation.

Equipped with the definitions of βt and zt, we now discuss the adaptation of the
observation and association models. We drop the □i,j notation to avoid notation over-
loading, the derivations below are true for each hypothesis separately. In the landmark-
based context, it is common to further simplify the expression in (3.4) by assuming
conditional independency of an observation given the state variables, to a product of
observation models, P(zt | Xt, βt) =

∏|Lt|
k=1 P(zβt,k

t | xr
t , l

k), where xr
t and lk are the

current pose of the agent and landmark k. For simplicity, we assume in this work an
ideal detection sensor, in the sense that if a landmark is within range, the sensor will
detect it. Under this assumption, likelihood of obtaining an out-of-range observation
(zβt,k

t = ∞), given that the landmark is within the sensing range (denoted S.R.), is
P(zβt,k

t =∞ | xr
t , l

k ∈ S.R.) = 0. However, obtaining an out-of-range observation given
that the landmark is indeed out of the sensing range, is P(zβt,k

t =∞ | xr
t , l

k /∈ S.R.) = 1.
The association model, P(βt,k | xk

t , l
k), assigns a probability to associate a landmark,

lk, with a specific observation index, βt,k. We define the likelihood of associating an out-
of-sensing-range landmark to an actual observation element (i.e. βt,k ≤ nzt), as P(βt,k ≤
nzt | xk

t , l
k /∈ S.R.) = 0. Conversely, associating a landmark that is within the sensing

range, equals a nonzero value, for simplicity defined here as a uniform distribution
across all feasible associations, 1

nzt
. We explicitly state all possible combinations of

state, association, and observation in table 3.1.

3.6 Experiments

In this section we evaluate our approach, HB-MCP, considering multiple hypotheses due
to ambiguous DA. We compare our approach with the state of the art algorithms, DA-
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Algorithm Hypotheses control Estimator
vanilla-HB-MCTS (3.2.1) pruning biased

PFT-DPW [48] single hypo. biased
DA-BSP [40] pruning biased

HB-MCP (ours) sampling unbiased

Table 3.2: Algorithms examined in our experiments.

BSP [40] and PFT-DPW [48]. PFT-DPW is utilized here as a single hypothesis solver,
as it does not explicitly support multiple hypotheses beliefs. Its hypothesis is chosen
based on the hypotheses weights through sampling. While it is possible to modify PFT-
DPW to accommodate multiple hypotheses, we leave this for future research. To make
DA-BSP comparable to other algorithms, we adapted the algorithm to support anytime
planning by utilizing Monte-Carlo trajectory samples instead of a full tree traversal.
We also evaluated vanilla-HB-MCTS as the ad-hoc baseline for MCTS implementation
with hybrid beliefs, see table 3.2. A summary of the performance of each algorithm is
given in table A.3.

In all cases, the experiments were done using GTSAM library [9] with a python
wrapper as an inference engine for each of the hypotheses. Most current state-of-the-art
online tree search planners rely on particle filters as an inference mechanism. However,
particle filters are limited in their ability to support high-dimensional and correlated
state spaces efficiently. Instead, through GTSAM we modeled each conditional belief as
nonlinear state space model corrupted with multivariate Gaussian noise. We give more
information of the hyperparameter choice in the appendix A.3. In the experiments, we
assumed a SLAM setting, in which the map is not perfectly known, and the agent is only
given a noisy prior on the map and its own pose. Due to ambiguous data associations,
each measurement may be obtained from any of the surrounding landmarks within
the sensing range of the agent. As a result of the ambiguous data associations, the
full posterior belief becomes multi-modal, with discrete variables representing different
possible associations.

Aliased matrix. The first environment is a highly aliased map, depicted in figure
3.1(b). The task of the agent is to reduce the uncertainty of its pose and all landmarks
of the map, measured by the (negative-) A-optimality criteria. The A-optimality is
the trace for the belief covariance matrix, commonly used as uncertainty measure. The
state of the agent is its trajectory and prior landmarks. The agent is initially given three

Aliased matrix Goal reaching Kidnapped robot
HB-MCP (ours) -585.2 -716.8 -323.7

vanilla-HB-MCTS -909.6 -939.4 -349.5
PFT-DPW -961.8 -1009.8 -327.8
DA-BSP -979.5 -931.5 -330.4

Table 3.3: Comparison of algorithm performances on different scenarios. Results are
based on a simulation study with 100 trials per scenario and algorithm.
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(a) (b)

Figure 3.1: Aliased matrix. The goal of the agent is to minimize the uncertainty of
its pose and the location of all landmarks. (a) Mean and standard deviation of the
cumulative reward, over 100 trials (higher is better). (b) Illustration of the initial
belief of the agent. x∗ denotes the ground truth pose of the agent. l∗ denotes a unique
landmark. The agent receives as a prior three hypotheses at different locations, drawn
as blue ellipses.

possible hypotheses for its pose, and 24 aliased landmarks evenly scattered across the
map and a unique landmark, given as noisy prior to the agent. The unique landmark
breaks the symmetry and may be used by the agent to disambiguate hypotheses. The
action space is defined as a straight 4-directional open-loop actions, consisting of 12
intermediate steps, each of 4[m]. Each planning session was limited to 40 seconds.

(a) (b)

Figure 3.2: Kidnapped robot. The goal of the agent is to minimize the uncertainty of its
pose. (a) Mean and standard deviation of the cumulative reward, over 100 trials. (b)
Illustration of the initial belief of the agent, blue circles illustrate conditional beliefs,
crosses denote landmarks.

Kidnapped robot. The goal of the agent is to minimize the uncertainty about the
agent’s pose. The environment has 16 randomly scattered landmarks on a 160m×160m
grid, with added Gaussian noise given as prior. The prior pose of the agent is three
hypotheses randomly scattered within the grid boundaries. The action space is defined
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similarly to aliased matrix environment. The reward function is defined by the A-
optimality criteria on the robot’s pose. Each planning session was limited to 20 seconds.

(a) (b)

Figure 3.3: Goal reaching. The goal of the agent is to reach the target location while
minimizing uncertainty. (a) Mean and standard deviation of the cumulative reward,
over 100 trials. (b) Illustration of the initial belief of the agent. x∗ denotes the ground
truth pose of the agent. l∗ denotes a unique landmark. The agent receives as a prior
three hypotheses at different locations.

Goal reaching. The goal of the agent is to reach a predefined target region.
The agent prior belief is given as three hypotheses, located at different directions with
respect to the target. To ensure that the right hypothesis gets to the target, the agent
must first disambiguate some of the hypotheses (using the unique landmark shown in
figure 3.3), and only then attempt to reach the goal. The reward function is defined as
the negative sum of the Euclidean distance to goal and the A-optimality criteria. Each
planning session was limited to 20 seconds.

HB-MCP received the highest expected cumulative reward in both the ambiguous
matrix and goal reaching scenarios. Note how in the ambiguous matrix scenario, HB-
MCP achieves significant improvement in cumulative reward from step number 2. The
reason for that is the agent’s ability to spot the unique landmark, which is two open-
loop steps away when t = 0, see figure 3.1(a). Due to restricted planning time, vanilla-
HB-MCTS and DA-BSP fail to identify and utilize the reduction in uncertainty via
disambiguation using the unique landmark. In all cases a single-hypothesis PFT-DPW
is unaware of the multi-modality of the problem, and has no incentive to prioritize the
unique landmark over any other (ambiguous) landmark. In case of PFT-DPW, this
statement is true for all the experiments.

In the kidnapped robot scenario the algorithms performed almost equally well, with
slight superiority to HB-MCP. Although PFT-DPW is mathematically inaccurate due
to the choice of merely a single hypothesis, it enjoys higher inference and planning
efficiency which might translate is in some cases to good performance. Although the
kidnapped robot reward punishes for high uncertainty, the random scatter of landmarks
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and poses did not lead to any strong preference of a single policy for disambiguation,
which can be clearly seen from the cumulative reward of all algorithms in figure 3.2
(a). Clearly, depending on the scenario, even a heuristic, single-hypothesis solver might
lead to good performance. For more details, please refer to the appendix.

3.7 Conclusions

In this work, we introduced HB-MCP, a novel algorithm to handle the significant in-
crease in computational effort of planning with hybrid beliefs. We showed that current
state-of-the-art algorithms rely on an approximation, namely hypotheses pruning, that
leads to a biased and inconsistent reward and value function estimate. We proposed and
analyzed a different approach, namely HB-MCP, which utilizes sequential importance
resampling to converge to the correct value. Additionally, instead of building sym-
metric hypotheses trees, HB-MCP focuses computations on the promising branches
corresponding to the UCB bonus. We demonstrated how HB-MCP could be used for
planning in ambiguous scenarios and derived a simple extension to Bayesian inference
to handle negative information naturally. Last, we demonstrated our approach in a
simulated environment. In our experiments, HB-MCP outperformed the current state-
of-the-art hybrid belief space planning algorithms.
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Chapter 4

Data Association Aware POMDP
Planning with Hypothesis
Pruning Performance Guarantees

In the previous chapter we have considered a hybrid belief that contains both continu-
ous and discrete random variables. We have shown how to use Monte-Carlo approach
that both simplifies the computation to improve efficiency, and leads to a mathemati-
cally sound approximation that converges to the theoretical solution. In this chapter,
we consider a similar setting, where ambiguous data associations lead to a mixture
distribution. We show how to simplify calculations while having a bound on the gap
between the simplified and non-simplified solutions. Unlike in the previous paper, here
we show how to calculate this bound in practice.

We start with some motivation about why should we care about data-associations
and specifically data-associations while planning. Clearly, an autonomous agent must
reason about partial observability when interacting with the real world. For instance,
an autonomous vehicle has to reason about uncertain and incomplete information from
its sensors to make decisions such as choosing the correct lane or changing speed.
Nevertheless, most planning literature assumes complete knowledge of the source of
the observation, i.e., the observed environmental instance, but this may not be true
in practice. For example, self-driving cars use camera sensors to observe the scene
and relate surrounding objects to an a-priori known map. When a car approaches a
controlled intersection, it has to determine which of the visible traffic lights correspond
to the traffic light in the map and subsequently apply to the lane it is driving. This is
a simple problem if the localization is perfect. However, sensor noise, changing lighting
conditions, and occlusions can cause the car to associate observations with an incorrect
traffic light. Ignoring the possibility of inconsistent observation associations could lead
to an erroneous distribution shift of the state and potentially fatal consequences.

Figure 4.1 provides an example of a robot attempting to reach a destination, rep-
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Figure 4.1: Figure (a) depicts an agent aiming to reach a goal (green star) while receiving an observation
that could come from two sources, β1 or β2. In Figures (b) and (c), incorrect assumptions about the origin of the
observation lead to changes in the robot’s belief (blue and pink ellipses) and the optimal action, which can vary
significantly. Notably, in (c), the calculated best action results in unsafe states. Instead, figure (d) showcases a
data association aware belief and action, in which the agent holds two distinct hypotheses. Consequently, the
agent chooses an action to gather information rather than traveling directly towards the goal.

resented as a star. In Figure 4.1(a), the robot perceives a potential future observation,
but its exact pose is unknown and expressed as a unimodal distribution. Equipped
with a sensor having a limited field of view, the robot detects a portion of a wall, which
could be part of a corridor leading to the goal (high reward) or a pit (low reward). In
Figures 4.1(b) and (c), the robot assumes a deterministic source for the observation,
leading to potential selection of an incorrect and possibly unsafe action. Figure 4.1(d)
demonstrates a multi-modal posterior belief with different data association possibili-
ties. Consequently, the agent decides to gather more information rather than directly
moving toward the goal. This example highlights the importance of accounting for data
association ambiguity to avoid poor performance and unsafe policies where the agent
might mistakenly head towards the pit instead of the star.

In general POMDPs, a plan that accounts for uncertainty maintains a distribution
over the possible states of the world. Accounting for ambiguous data associations adds
another layer of complexity by having to consider multiple hypotheses, leading to a
mixture distribution, where each component of the mixture corresponds to a single
hypothesis. Additionally, as the planning horizon grows, the number of hypotheses
grows exponentially [40], adding a significant computational burden.

In response to the challenges posed by ambiguous data associations in POMDPs,
we propose a simplification approach, which maintains a small subset of the hypotheses
instead of maintaining an exponential number thereof. Importantly, we derive bounds
on the utility function between the POMDP with the simplified and the non-simplified
beliefs. We use these bounds to establish a trade-off between computational efficiency
and performance for state-dependent rewards. Further, using this relationship, we pro-
pose a novel pruning approach that balances computational efficiency with performance
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loss by adaptively selecting which hypotheses to prune online.
Unlike current state-of-the-art POMDP planners that rely on particle propagation,

e.g. POMCP or DESPOT, our proposed approach overcomes the challenge of particle
depletion by introducing a novel estimator for the objective function. This estimator is
agnostic to the inference mechanism being used, it supports both nonparametric and
parametric inference mechanisms to enable long planning horizons. Through exper-
iments in simulated environments, we demonstrate the effectiveness of our proposed
approach in handling multi-modal belief hypotheses with ambiguous data associations.

In this chapter we make the following main contributions: (a) we derive a theoretical
relation between the POMDP with a complete set of hypotheses and the pruned set of
hypotheses, enabling us to establish a trade-off between computational efficiency and
performance; (b) we develop an estimator that enables parametric and nonparametric
belief mixture representation to address particle depletion; (c) we establish a similar
relation between an estimated value function based on the complete set of hypotheses
and the value function of the pruned set of hypotheses; (d) our bounds can be utilized
to provide guarantees in terms of worst-case loss in planning performance given some
pruning method; (e) moreover, we derive a scheme that utilizes our bounds to adaptively
decide which hypotheses to prune to meet a user-defined allowable loss in planning
performance. Finally, we demonstrate the effectiveness of our planning algorithm in a
simulated environment with unresolved data associations leading to multi-modal belief.

4.1 Preliminaries

The reward is defined as an expectation over a state-dependent function, r(bt, at) =
Ex∼bt [rx(x, at)]. Rmax denotes the maximal value of the reward function, Rmax =
arg max
x∈X ,a∈A

{rx(x, a)}. The value function for a policy π over a finite horizon T is defined

as the expected cumulative reward received by executing π,

V π(bt) = r(bt, πt) + E
zt+1:T

[ T∑
τ=t+1

r(bτ , πτ )
]
. (4.1)

The action-value function is defined by executing action at and then following policy
π for a finite horizon T . The goal of the agent is to find the optimal policy π∗ that
maximizes the value function. In the rest of the chapter we write πt ≡ π(bt) for
conciseness.

4.1.1 Ambiguous Data Associations as Mixture Belief

To represent ambiguous data associations within the POMDP framework we define
the belief as a mixture distribution, that encompasses both continuous and discrete
random variables. The discrete variables, βt, represent different associations to seen
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observations at time t. We formally define the mixture belief at each time t as,

b (xt) =
∑
β0:t

P(β0:t | Ht)P(xt|β0:t,Ht), (4.2)

where P(β0:t | Ht) is the marginal belief over discrete variables which can be considered
as the mixture weight. An hypothesis, β0:t, denote the entire sequence of associations
up to time step t. P(xt|β0:t,Ht) is the conditional belief over continuous variables, given
that the history and associations are known. The marginal belief over the hypothesis,
β0:t, can be updated by applying Bayes rule followed by chain rule,

P(β0:t | Ht) = ηtP(zt | β0:t,H
−
t )P(β0:t | H−t ) (4.3)

= ηtP(zt | β0:t,H
−
t )P(βt | β0:t−1,H

−
t )P(β0:t−1 | H−t ).

The conditional belief is updated for each realization of discrete random variables as

P(xt|β0:t,Ht) = ψ
(
P(xt−1|β0:t−1,Ht−1), at−1, zt

)
, (4.4)

where ψ(.) represents the Bayesian inference method. Last, the reward function can
now be written in terms of hypothesis dependency, r(bt, at) = Ex∼bt [rx(x, at)] =
Eβ0:t [Ex[rx(x, at) | β0:t]]. For conciseness, we will denote

r(bβ
t , πt) ≜ Ex[rx(x, at) | β0:t]. (4.5)

4.1.2 IS and SN estimators

Importance sampling (IS) is a Monte Carlo simulation technique for estimating the
expected value of a target function with respect to a probability distribution. The IS
estimator involves drawing samples from a proposed distribution and weighting them
by the ratio of the target distribution, P(·) to the proposal distribution, Q(·),

ÊIS [rx(x)] ≜ 1
N

N∑
i=1

ω(xi)rx(xi) = 1
N

N∑
i=1

P(xi)
Q(xi)

rx(xi). (4.6)

The estimator is unbiased and consistent [12], when the proposal distribution is non-
zero wherever the target distribution is non-zero. Self-normalized importance sampling
sometimes serves as a lower-variance estimator by normalizing the importance weights.
The SN-estimator is described as,

ÊSN [rx(x)] ≜
N∑

i=1

ω(xi)∑N
j=1 ω(xj)

rx(xi), (4.7)

which converts the weights to a probability distribution. The SN-estimator is biased,
but consistent estimator.
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4.2 Planning with Ambiguous Data Associations

In this section, we provide an overview of our algorithm, DA-MCTS, and the baseline
algorithm, vanilla Hybrid Belief-MCTS (HB-MCTS) [3]. To facilitate understanding,
we present the pseudo-code for both algorithms jointly in Algorithm 4.1. We adopt a
unified view, with comments indicating the lines unique to each algorithm.

DA-MCTS is built upon the vanilla HB-MCTS algorithm, which itself is an adapta-
tion of PFT-DPW [48] and MCTS [27]. While we have chosen to use these algorithms
as the foundation for our work, we acknowledge that other approaches may also be
applicable, and we leave exploration of these avenues to future research.

Vanilla HB-MCTS, a variant of belief-Markov Decision Process (BMDP), reframes
the POMDP into a belief-state model. In this, states are replaced by belief-states
reflecting an agent’s environmental uncertainty. The transition and observation func-
tions update prior to posterior beliefs based on action and observation, mirroring the
stochastic state changes in a standard MDP. By transforming POMDP to a BMDP,
many MDP planning algorithms, including MCTS, can be used as planning solvers. No-
tably, single particle propagation algorithms, such as POMCPOW, are also possible,
but may suffer from particle depletion as mentioned in section 4.

Algorithm 4.1 presents a pseudo-code for the vanilla HB-MCTS algorithm. In the
Simulate procedure, an action is selected based on the Upper Confidence Bound
(UCB) heuristic in line 4. Depending on whether the budget on the number of ob-
servations has been met, the algorithm either expands a new posterior node, which
includes its belief and reward function, and then performs a rollout, or uniformly sam-
ples an existing posterior node and continues recursively to the next node. Finally,
the action value of the current node and its relevant counters are updated. The vanilla
HB-MCTS algorithm is flexible in that the number of maintained posterior hypothe-
ses can be controlled and remain fixed based on a pre-defined hyperparameter. For
instance, a vanilla HB-MCTS with low compute resources can have a pruning budget,
where only K hypotheses are maintained in each node of the planning tree. The pruned
hypotheses are usually chosen heuristically, e.g. based on their probability value.

However, Vanilla HB-MCTS is limited in its ability to provide guarantees when
pruning is performed. While the performance guarantees we present in the next section
are applicable to any pruning heuristic, such as the one used in vanilla HB-MCTS,
we introduce a slightly different approach. Instead of pre-defining a fixed number
of hypotheses to maintain, we propose an adaptive approach that determines which
hypotheses to prune online based on a pre-defined maximum allowable loss, ϵD̄. We
then modify the HB-MCTS algorithm to adaptively determine which hypotheses to
prune, while maintaining performance guarantees with respect to the complete set of
hypotheses. This modification is reflected in line 7.

In addition, DA-MCTS can provide even tighter guarantees in hindsight without in-
curring additional computational complexity, denoted by ϵ̂hs

D̄
, shown in line 18. The in-
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creased accuracy of these guarantees is due to the granularity of the hypotheses weights.
For instance, when there is only a single hypothesis, no hypotheses are pruned, result-
ing in zero additional loss to the value function. The specific bounds and estimators
used are discussed in the following section.

Algorithm 4.1 HB-MCTS and DA-MCTS
Procedure:Simulate(b, h, d, ϵD̄)
/*Init: N(b), N(ba), Q(ba), ϵ̂hs

D̄
(b), δ̂β

D̄
(b) to 0*/

1: if d = 0 then
2: Return 0
3: end if
4: a←− arg max

ā

Q(bā) + c

√
log(N(b))

N(bā)

5: if |C(ba)| ≤ koN(ba)αo then
6: b′ ←− PrunedPosterior(b, a) /*Vanilla HB-MCTS*/
7: b′, δβ

D̄
←− PruningWithGuarantees(b, a, ϵD̄) /*DA-MCTS. Eq. (4.13)*/

8: r ←− Reward(b, a)
9: C(ba) ∪ {(b′, r)}
10: R←− r+Rollout(b′, d− 1)
11: else
12: b′, r ←− Sample uniformly from C(ba)
13: R, ϵ̂hs

D̄
←− r+Simulate(b′, d− 1, ϵD̄)

14: end if
15: N(b)←− N(b) + 1
16: N(ba)←− N(ba) + 1
17: Q(ba)←− Q(ba) + R−Q(ba)

N(ba)

18: ϵ̂hs
D̄
←− GetGuarantees(ϵ̂hs

D̄
, δ̂β

D̄
) /*DA-MCTS. Eq. (4.12)*/

19: return R, ϵ̂hs
D̄

4.3 Mathematical Analysis

In this section, we mathematically analyze the impact of pruning on the performance
of the agent. We establish a novel relationship between the complete and pruned
value functions for state-dependent reward functions and provide bounds on the loss
of approximation. Due to restricted space we defer most proofs and derivations to the
appendix, A.4.

We define Dt = {β1
t , β

2
t , ..., β

|Dt|
t } the set of associations at time step t, and Dt ⊆ Dt

as the subset of hypotheses survived after the pruning procedure. We define the pruned
belief as,

bt ≜ P̄(xt | Ht) =
∑

βt∈Dt

P(xt | βt,Ht)P̄(βt | Ht), (4.8)

where the □̄ notation indicates a pruned distribution after normalization. This can be
explicitly written as,

bt =
∫

xt−1

bt−1

∑
βt∈Dt

P(zt | xt, βt)P(βt | xt)P(xt | xt−1, πt−1)

P
(
zt | H−t

) , (4.9)

where, P
(
zt | H−t

)
=
∫

xt−1:t

∑
βt∈Dt

P(zt | xt, βt)P(βt | xt)P(xt | xt−1, π(zt−1))bt−1.
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Figure 4.2: Planning trees with nodes representing beliefs, and inner blue shapes illustrate distributions of
the conditional posteriors. (a) A belief tree with standard Monte-Carlo estimator leads to an overconfident, fully
observed data association after a single step. (b) A planning tree with Self-Normalized Importance Sampling
estimators to account for different hypotheses at posterior nodes.

Note that the summation is over the pruned set of hypotheses.

Theorem 4.1. Let time-step 0 denote the root of the planning tree. Then, the expected
reward for the pruned POMDP, M , is bounded with respect to the full POMDP, M ,
through the factor of the pruned weight values, and the maximum immediate reward,

∣∣∣E[r(bt, at)]−E[r(bt, at)]
∣∣∣≤Rmax

[
δβ

0 +
t−1∑
τ=1

Ez1:τ

[
δβ

τ

]]
, (4.10)

where δβ
τ ≜ ∑

βτ∈Dτ\Dτ
P(βτ | Hτ ), i.e. the sum of pruned hypotheses weights at

time-step τ .

Crucially, in order to calculate the value of δβ
τ , the values of the hypotheses weights

which are descendent of past pruned hypotheses are not required, as they cannot be
obtained without explicitly calculating all hypotheses. More formally, P(βt | Ht) =
P(zt|βt,H−

t )
∑

β0:t−1∈D
P(βt|β0:t−1,Ht−1)P(β0:t−1|H−

t )

P(zt|H−
t ) has summation only over the survived hy-

potheses.
The generalization of theorem A.1 to the entire value function, is straightforward

due to linearity of the expectation,

Corollary 4.2. Without loss of generality, assume that the time step at the root node
of the planning tree is t = 0. Then, for any policy π, the following holds,

∣∣∣V π(b0)−V̄ π(b̄0)
∣∣∣≤Rmax

[
T δβ

0 +
T∑

k=1

k∑
τ=1

Ez1:τ

[
δβ

τ

]]
. (4.11)

For conciseness, we denote this bound as ϵhs
D̄

. As we will derive in the following sections,
an equivalent bound can be derived for estimated value functions, that is,

|V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ Rmax

[
T δ̂β

0 +
T∑

k=1

k∑
τ=1

Êz1:τ

[
δ̂β

τ

]]
, (4.12)

where □̂ denotes an estimator. Similarly, we denote ϵ̂hs
D̄

as the (deterministic) bound
for the estimated value functions.
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4.3.1 Adaptive Pruning with Performance Guarantees

The theoretical value bound in Equation (A.115) and the estimator value bound in
Equation (4.12) can be used to provide guarantees for various pruning heuristics, in-
cluding those presented in prior work such as [40, 3] by providing guarantees after the
planning session has ended.

In this section, we go a step further, and propose a novel mechanism for selecting
the surviving hypotheses. Unlike previous approaches that use a fixed budget on the
number of allowed hypotheses [40], our algorithm requires the user to specify the maxi-
mum allowable loss, ϵD̄, on the value function. Using this allowable loss, our algorithm
dynamically selects the cardinality and instances of hypotheses to prune online, while
maintaining the performance guarantees provided in advance.

To achieve this, we set the value of ϵD̄ and by construction determine δβ
τ to be a

constant, denoted as ∆, for all Hτ and all time steps τ . We use ∆ to determine which
hypotheses to prune in order to meet the budget. The resulting bound can then be
expressed as follows,

∣∣∣V π(b0)− V̄ π(b̄0)
∣∣∣ ≤ Rmax∆

[
T +

T∑
k=1

k∑
τ=1

1
]

(4.13)

= Rmax∆
[
T 2 + 3T

2

]
≜ ϵD̄.

The hyperparameter ϵD̄ controls the maximum allowable loss and is set a priori, as
a result ∆ can easily be derived. During planning, we sum over δβ

τ , until its value
is as close as possible to ∆ without crossing its value. The difference between these
two values allows us to obtain a tighter guarantee in hindsight, ϵhs

D̄
, which satisfies the

inequality ϵhs
D̄
≤ ϵD̄. A similar claim can be made for the sampling-based bound. The

formal derivation of these estimators is presented in the next section.

4.3.2 Estimated expected reward

In this section, we first develop an estimator for the value function, assuming the
availability of a complete set of hypotheses at each posterior belief. Then, we derive
a similar, pruning-based estimator. In the next section, we will show a deterministic
relation between the estimators. However, before delving into the details, we first give
a motivation for deriving guarantees with respect to the estimators.

As stated in Corollary A.2, the value function based on the complete set of hy-
potheses should not deviate significantly from the value function based on the pruned
hypotheses set, as long as the pruned hypotheses have low weight values. However,
in practice, current state-of-the-art algorithms cannot compute the full nor the pruned
value functions due to intractable integrals involved with expectations. Online POMDP
algorithms provide performance guarantees based on estimated value functions, where
a sampled set of observations and states approximate expectations and the belief dis-
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tribution, e.g., [45, 32].

For clarity, we derive the estimator by considering separately each expected reward
along the planning horizon. Using linearity of the expectation, the value function may
be written as,

V π(b0) = r(b0, π0) +
T∑

t=1
Ez1:t [r(bt, πt)]. (4.14)

We handle each term in the summation individually, and make the following proposition
as a first step towards deriving an estimated expected reward,

Proposition 4.3.1. Let z1:t denote an observation sequence, r(bt, πt) be the reward
value for a given belief, bt and policy πt. The expected reward value can be written as,

Ez1:t [r(bt, πt)] = (4.15)∫
z1:t

Eβ0

t∏
τ=1

Eβτ |β0:τ−1

[
P
(
zτ | β0:τ ,H

−
τ

)
r
(
bβ

t , πt

)]
,

where r
(
bβ

t , πt

)
denotes the reward value of a single hypothesis realization, β0:t, as

shown in equation (4.5).

From the proposition we derive a standard Monte-Carlo sampling approach, where we
iteratively sample sequences of hypotheses β0:t and observation samples, z1:t,

ÊMC
z1:t [r(b̂t, πt)] = 1

N

∑
i

r̂
(
bβi

t , πt

)
, (4.16)

where □MC denotes Monte-Carlo estimation and bβi

t ≜ P
(
xt | βi

0:t, z
i
1:t, π0:t−1

)
. How-

ever, since the observation space is continuous, different realizations of β0:t, denoted
βi

0:t, will never sample the same observation sequence zi
1:t twice. In the planning tree,

it means that after an observation sample, there is only a single hypothesis in any
posterior node, resulting in a fully observed data association. However, if the agent
obtains an observation in the real world, the data association ambiguity is generally
not fully resolved. A result, the Monte Carlo sampling approach is an over-optimistic,
erroneous planner which only considers ambiguity at the root node of the planning tree.
See figure 4.2 for an illustration.

Inspired by [48] for standard POMDPs, and [3] for hybrid POMDPs, we derive
an Importance Sampling (IS) estimator, which may sample observations from differ-
ent distributions, and weigh each hypothesis with an importance weight, ω (zτ ). The
importance weight reflects the probability of observing zt given hypothesis β0:τ and
history H−τ , normalized to the actual sampling distribution being used, Q(·). We may
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write equation (4.15) to reflect the change,

Ez1:t [r(bt, πt)] = (4.17)∫
z1:t

Eβ0

t∏
τ=1

Q
(
zτ | H−τ

)
Eβτ |β0:τ−1

[
ω (zτ ) r

(
bβ

t , πt

)]

where ω (zτ ) = P(zτ |β0:τ ,H−
τ )

Q(zτ |H−
τ ) and Q(.) is the proposal distribution from which the

sampling-based estimator will sample observations. Clearly, the two terms are equiva-
lent. From (4.17) we can directly derive the IS-estimator,

ÊIS
z1:t [r(b̂t)] = Êz1:tEβ1:t [r̂

(
bβ

t , πt

)
] ≜ (4.18)

∑
zc

1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω (zc
τ )

N
r̂
(
bβ

t , πt

)
,

where, r̂(bβ
t , πt) is the sample-based mean for the state-reward over the conditional

belief, as defined in equation (4.5). In contrast to the standard Monte-Carlo estimator
(4.16), using an importance sampling estimator enables us to reason about all hypothe-
ses for every observation sequence, shown by the summation over β0:t for each sampled
zc

1:t.
Although the IS estimator is theoretically justified as a consistent and unbiased

estimator, we make another step in deriving the estimator and use a Self-Normalized
Importance Sampling (SN) estimator,

ÊSN
z1:t [r(b̂t)] = Êz1:tEβ1:t [r̂

(
bβ

t , πt

)
] ≜ (4.19)

∑
zc

1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1
P(βτ |β0:τ−1,H

−
τ ) ω (zc

τ )∑
zk

τ
ω (zk

τ )
r̂
(
bβ

t , πt

)

The SN-estimator is no longer unbiased, but is known to be consistent [12]. The main
reason for that step is to achieve a bounded deterministic difference between the full
and pruned estimators, as we will describe in the following section.

Last, we derive a similar estimator for the pruned posterior belief,

Êz1:t

[
r
(
b̂t, πt

)]
= Êz1:tĒβ1:t [r̂

(
bβ

t , πt

)
] ≜ (4.20)

∑
zc

1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1
P(βτ | β0:τ−1,H

−
τ ) ω (zc

τ )∑
zk

τ
ω (zk

τ )
r̂
(
bβ

t , πt

)
.

4.3.3 Estimators analysis

In this section, we derive a bounded relationship between the full and pruned estimators.
Finally, we discuss how these estimators relate to the theoretical value function.

58



(a) (b)

Figure 4.3: (a) Bounds of our approach with respect to level of simplification. V̂ , ˆ̄V are the value functions of
the full and pruned estimators respectively. ˆ̄V + ϵ̂hs

D̄
represent the bounds of the pruned estimator. Vmin, \Vmax

represent the minimum and maximum theoretical values of the value function. All values are normalized with
respect to max{|Vmin| , |Vmax|}. Here |Vmax| ≡ 0 since the reward is defined as the negative Euclidean distance
to goal. (b) Time for task completion with respect to level of simplification. Each level corresponds to the
bounds presented in figure (a).

Theorem 4.3. Let π be a policy, then the expected reward for the estimated pruned
POMDP, M̂ , is bounded with respect to the estimated full POMDP, M̂ , as follows,

∣∣∣Êπ
z1:t [r(b̂t)]− Ê

π

z1:t

[
r
(
b̂t

)]∣∣∣≤Rmax

[
δ̂β

0 +
t∑

τ=1
δ̂β

τ

]
. (4.21)

where, δ̂β
τ = Êzc

1:t
Eβ0:t−1

∑
βt∈Dt\Dt

P
(
βt | β0:t−1,H

−
t

)
for all τ ∈ [1, t] represents the

expected sum of conditional hypotheses’ weights which are myopically pruned and δ̂β
0 =∑

β0∈D0\D0
P
(
β0 | H−t

)
.

In accordance with the theoretical case, as described in Equation (4.17), to evaluate
δ̂β

τ , only the surviving hypotheses from past time steps are needed. The theorem can
be generalized to the full value function by re-introducing the summation. Under the
assumptions of theorem A.3 the following holds,

Corollary 4.4. The difference between the estimated value function of the full POMDP,
M̂ , and the estimated value function of the pruned POMDP, M̂ , is bounded by,

|V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ Rmax

[
T δ̂β

0 +
T∑

k=1

k∑
τ=1

δ̂β
τ

]
. (4.22)

The corollary relates the complete but computationally expensive value function es-
timator to the efficient, pruning-based estimator. Both estimators utilize the same
sampled observations since they share the same proposal distribution.

Finding a finite sample algorithm with practical guarantees between the estimated
value function and the theoretical remains an open challenge in the POMDP literature
and is aside from our current contribution. Nevertheless, to fully justify our approach,
we formally state that given such an algorithm, denoted A, that utilizes the impor-
tance sampling estimator defined in equation (4.19), our simplified estimator provides
a relationship to the theoretical value function while being more efficient,
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Corollary 4.5. Let π be a policy and let A be a sampling-based estimator for the value
function such that |V π(b0) − V̂ π(b̂0)| ≤ ϵA with probability at least 1 − δA. Then, the
loss in the value function for the pruned hypotheses is bounded,

|V π(b0)− ˆ̄V π(ˆ̄b0)| ≤ (4.23)

|V π(b0)− V̂ π(b̂0)|+ |V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ ϵA+ ϵ̂hs
D̄
, (4.24)

and holds with probability 1 − δA. We use ϵ̂hs
D̄

as a shorthand for the bounds provided
in corollary A.4.

The results established so far hold for any policy, assuming that both the theoretical
and estimated value functions are based on the same policy. However, planning based
on the pruned belief may result in a different policy from the optimal one for the
underlying POMDP. Nevertheless, we demonstrate that the optimal policy for the
pruned and potentially sampled-based POMDP, denoted π̄, incurs bounded loss in
performance compared to the optimal policy for the full theoretical POMDP, denoted
π⋆.

Corollary 4.6. Let π̄ be the optimal policy for the pruned, possibly sampled-based
POMDP and π⋆ be the optimal policy for the full theoretical POMDP. Then,∣∣∣V π⋆(bt)− ˆ̄V π̄(ˆ̄bt)

∣∣∣ ≤ 2
(
ϵA + ϵ̂hs

D̄

)
. (4.25)

This is an unsurprising result, since the best policy for the pruned approximation, π̄,
should perform no worse than the optimal policy, π⋆, for the simplified POMDP or
otherwise it would have been selected.

4.4 Experiments

In this section we experiment with different pruning approaches to validate our findings.
We use MCTS as a baseline algorithm and compare multiple hypothesis pruning ap-
proaches to our adaptive scheme. The experimental evaluation of our approach consists
of two main parts. In the first part, we validate the proposed bounds and investigate
their sensitivity to the level of simplification chosen. In the second part, we conduct
a simulation study to demonstrate the practical performance gains of our adaptive
pruning approach.

Importantly, we emphasize that the theoretical guarantees presented in section 4.3
are suitable for other hypotheses-based algorithms as well, such as [40, 3] or PFT-DPW
[48] if the latter is adapted to multiple hypotheses.

To conduct the simulations, we utilized the GTSAM library [9] as our inference
engine. Our belief model is based on a Gaussian Mixture Model, in which each posterior
belief in the planning tree corresponds to multiple instances of GTSAM factor graphs.
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(a) (b) (c)

Figure 4.4: The figures demonstrate the estimated state of the entire trajectory, also
known as the smoothing state, of the agent at time t given the observed history. (a)
The prior of the agent given as two Gaussian hypotheses. Each Gaussian is represented
as an ellipse illustrating its covariance, centered around its mean. The landmarks are
part of the agent state a priori but have an uncertain location, with ellipses illustrating
their covariances. (b) The belief of the agent adjacent to the first waypoint before
obtaining any observation. (c) The belief of the agent after pruning. Non-negligible
hypotheses differ substantially.

Each instance represents a conditional posterior over the continuous part of the belief,
P(xt | β0:t,Ht), while the discrete part of the belief, P(β0:t | Ht), is maintained as a
list of probability values, each corresponds to an hypothesis. Apart from the pruning
method, which is the focus of this section, all hyper-parameters are shared across all
solvers and remain fixed. The planning is performed in a receding horizon manner,
where after each planning session, only the first action is executed, and all calculations
are done from scratch in the subsequent step.

In the first experiment the belief of the agent included the pose of the agent and two
ambiguous landmarks. The objective of the agent was to reach a target destination,
encoded into the reward function as the expected Euclidean norm between the agent
pose samples and the target. The field of view of the agent was chosen to be unbounded
and with unlimited sensing range, that is, at every time step, the agent obtains an
observation from two sources, but cannot identify its source. In this simple toy example,
the number of hypotheses quickly grows and becomes intractable due to the exponential
nature of the problem. Given a horizon of 10 steps, the number of hypotheses becomes
D10 = 210, each is a Gaussian conditional distribution. In this and the next experiments
the action space is defined as primitive actions, up-down-left-right, in a fixed step size.

The estimated value function obtained from the complete set of hypotheses and
the simplified estimator generated using the adaptive pruning approach, as outlined
in Section 4.3, are illustrated in figure 4.3. The solver was endowed with an a-priori
budget, limiting the maximum loss, denoted as ϵD. Based on the estimator value, the
solver determined online which hypotheses to prune and which to retain.

The results indicate that, as the bounds become looser, i.e., when the value of ϵD
increases, the computation time efficiency also increases, trading off efficiency with per-
formance. As the bounds increases beyond the value of 0.7, they become uninformative
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since the bounds are larger or smaller than Vmax, Vmin, respectively. On the other hand,
when the allowable loss budget was set to zero, no hypotheses were pruned, resulting
in identical value estimations for both the pruned and the full estimators, which leads
to an identical result as the baseline method of no pruning.

In the second experiment, we aimed to compare the ability of different pruning
schemes to complete the task under a limited time-budget of 20 seconds, identical
to all solvers. Specifically, we compare the performance of our approach to three
types of pruning baselines; no pruning (Full-HB-MCTS), maintaining a fixed num-
ber of hypotheses (K-HB-MCTS) and pruning below a threshold value (Pthresh-HB-
MCTS). Notably, Pthresh-HB-MCTS can be seen as an extension of DA-BSP [40], to
an MCTS-based algorithm instead of Sparse Sampling, as the earlier is known to per-
form empirically better. For each pruning method we have experimented with multiple
hyperparameters, Pthresh ∈ {0.01, 0.1, 0.3} for Pthresh-HB-MCTS, K∈ {1, 3, 10} for K-
HB-MCTS, and ϵ

D
Vmax

∈ {0.1, 0.2, 0.5} for DA-MCTS. The best are shown in Table
4.1.

In that experiment, the goal of the agent was to reach an ordered set of waypoints,
positioned on coordinates [20, 0], [20, 20], [0, 20], see figure 4.4 for an illustration. After
performing 60 steps in the environment, the simulation was restarted. The reward was
defined as the expected sum of distance to the next waypoint. The state space was
defined as the agent pose, and the positions of the landmarks. Ambiguous landmarks
were placed in the vicinity of each waypoint to challenge the solvers by causing an
exponential increase in the number of hypotheses.

The results of this experiment are presented in Table 4.1. Our findings indicate that
the performance of the HB-MCTS algorithm improved when the number of hypotheses
was reduced. Given the allocated time budget, maintaining a large set of hypotheses
significantly impeded efficiency, leading to a degradation of the planner’s exploration.
Conversely, maintaining a single hypothesis resulted in an overconfident solver that po-
tentially relied on the wrong association sequence. Our proposed algorithm performed
comparably well, as it was able to distinguish between hypotheses with a significant
impact on the value function and those with low impact, which can be pruned.

Table 4.1: Reaching waypoints performance over 10 trials. The pruning hyperparame-
ters chosen for the experiments are (K = 1, Pthresh = 0.1, ϵ

D
Vmax

= 0.2) for K-HB-MCTS,
Pthresh-HB-MCTS, and DA-MCTS respectively.

Algorithm Waypoint 1 Waypoint 2 Waypoint 3
DA-MCTS (ours) 100.0% 100.0% 90.0%
Full-HB-MCTS 100.0% 30.0% 20.0%
K-HB-MCTS 100.0% 80.0% 60.0%
Pthresh-HB-MCTS 100.0% 80.0% 60.0%
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4.5 Conclusions

This chapter proposes a pruning-based approach for efficient autonomous decision-
making in environments with ambiguous data associations. The approach models the
data association problem as a partially observable Markov decision process (POMDP)
and represents multiple data association hypotheses as a belief mixture. The challenge
of handling the exponential growth in the number of hypotheses was addressed by
pruning the hypotheses while planning, with the number of hypotheses being adapted
based on bounds derived on the value function.

The results of our evaluations in simulated environments demonstrate the effective-
ness of our approach in handling multi-modal belief hypotheses with ambiguous data
associations. Our method provides a practical solution for autonomous agents to make
decisions in environments with partial observability and guaranteed performance.

Future research goals include extending the bounds to hybrid belief use-cases, im-
proving solver scalability for ambiguous data associations, efficient recovery of lost
hypotheses, and exploring computational burden reduction techniques like merging hy-
potheses with guarantees.

63



64



Chapter 5

Online POMDP Planning with
Anytime Deterministic
Guarantees

In previous chapters we have considered simplifications of either the state or observation
spaces in order to increase planning efficiency, while limiting the loss we incur on the
approximated solution. In this chapter, we interleave the approaches and consider
simplification of both the state and observation spaces simultaneously. We show that
under some restrictions, it is possible to obtain a deterministic bound on the gap
between any approximated solution and the optimal one.

Decision-making under incomplete information can be formalized as Partially Ob-
servable Markov Decision Processes (POMDPs). Finding an optimal solution to most
POMDP problems is computationally intractable, mostly due to a large number of
possibilities for the ground truth of the current state, and exponentially increasing pos-
sibilities of the future outcomes, commonly referred to as the curse of dimensionality,
and the curse of history [45]. As such, most state-of-the-art (SOTA) algorithms aim to
find an approximate solution.

One prominent approach to deriving approximate solutions employs an online tree-
search paradigm. In this framework, following each real-world decision, an online solver
evaluates the current state and projects potential future scenarios. These scenarios are
organized within a tree graph structure. As the tree is constructed, the agent assesses
the implications of selecting a particular action, subsequently receiving feedback from
the environment. This feedback informs the estimation of probabilities for new states,
guiding the selection of subsequent actions based on accumulated knowledge. This
iterative process continues, building on past outcomes to navigate the decision space.

Given the inherent approximation in these solutions, a natural inquiry regarding
the connection between the approximate solution and the actual problem at hand.
Some state of the art online algorithms, e.g. [45], offer asymptotic guarantees thus
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having no finite time guarantees on the solution quality. A different class of algorithms
suggests finite time, but probabilistic guarantees such as [46]. Many algorithms have
shown good empirical performance, at the advent of the practical use case of POMDP
problems, e.g. [48], but fall short of providing a framework that bridges between the
derived solution and the underlying POMDP.

In this work, we focus on deriving deterministic guarantees for POMDPs with dis-
crete state, action and observation spaces. Unlike existing black-box sampling mecha-
nisms employed in algorithms such as [48, 16, 56], our approach assumes access not only
to the observation model but also to the transition and the prior models. By leveraging
this additional information, we develop novel bounds that necessitate only a subset of
the state and observation spaces, enabling the computation of deterministic bounds
with respect to the optimal policy at any belief node within the constructed tree. From
a practical standpoint, we demonstrate how to harness the theoretical derivations to
recent advancements in POMDP approximate solvers, by attaching the bounds to ex-
isting state-of-the-art algorithms. We show that despite their stochastic nature, we can
guarantee deterministic linkage to the optimal solution with marginal overhead. We
extend the approach even further by demonstrating how to utilize the bounds to prune
suboptimal branches during exploration, and subsequently select an action based on
the deterministic guarantees.

In this chapter, our main contributions are as follows. First, we introduce a sim-
plified POMDP that uses a subset of the state and observation spaces to increase the
computational efficiency. Then, we derive deterministic bounds that relate between the
former and the non-simplified POMDP. Notably, the bounds are only a function of the
states and observations known to the simplified POMDP and hence can be calculated
in the planning phase to guide the decision-making and even exploration. We show
that utilizing these bounds for exploration results in convergence to the optimal solu-
tion of the POMDP in finite time. Based on the derived bounds, we illustrate how to
incorporate the bounds into a general structure of common state-of-the-art algorithms.
We utilize the bounds for pruning suboptimal actions while exploring the tree via other
exploration mechanisms, such as UCT [8]. Last, we demonstrate the practicality of the
bounds by experimenting with various algorithms to improve the empirical results of
state-of-the-art algorithms in finite-horizon problems.

5.1 Preliminaries

In this chapter, the reward is defined as an expectation over a state-dependent function,
r(bt, at) = Ex∼bt [rx(x, at)], and is assumed to be bounded by −Rmax ≤ rx(x, at) ≤
Rmax. Consequently, the value function for a policy π over a finite horizon T is defined
as the expected cumulative reward received by executing π and can be computed using
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Figure 5.1: The figure depicts two search trees: a complete tree (left) that considers
all states and observations at each planning step, and a simplified tree (right) that
incorporates only a subset of states and observations, linked to simplified models. Our
methodology establishes a deterministic link between these two trees.

the Bellman update equation,

V π
t (bt) = r(bt, πt) + E

zt+1:T

[ T∑
τ=t+1

r(bτ , πτ )
]
. (5.1)

We use V π
t (bt) and V π

t (Ht) interchangeably throughout the chapter. The action-value
function is defined by executing action at and then following policy π,

Qπ
t (bt, at) = r(bt, at) + E

zt+1:T

[ T∑
τ=t+1

r(bτ , πτ )
]
. (5.2)

The optimal value function may be computed using Bellman’s principle of optimality,

V π∗
t (bt) = max

at
{r(bt, at) + E

zt+1|at,bt

[
V π∗

t+1(bt+1)
]
}. (5.3)

For notational convenience, we introduce a few more simplifying notations; We use
Vmax,t,Vmin,t to denote upper an lower bounds on the value function at time step t. In
the simplest case, these may be Vmax,t = (T −t)·Rmax, Vmin,t = (t−T )·Rmax. Addition-
ally, in this chapter we denote a trajectory as, τt = {x0, a0, z1, x1, a1, . . . , at−1, xt, zt},
and a corresponding probability distribution over the possible trajectories, P(τt). We
denote a policy-dependent trajectory distribution as Pπ(τt) ≡ P(τt | b0, π0, . . . , πt).

5.2 Simplified POMDP

Typically, it is infeasible to fully expand a Partially Observable Markov Decision Process
(POMDP) tree due to the extensive computational resources and time required. To
address this challenge, we propose two approaches. In the first approach, presented in
5.3.1, we propose a solver that selectively chooses a subset of the observations to branch
from, while maintaining a full posterior belief at each node. This allows us to derive an
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hypothetical algorithm that directly uses our suggested deterministic bounds to choose
which actions to take while exploring the tree. As in most scenarios computing a
complete posterior belief may be too expensive, in section 5.3.2 we suggest an improved
method that in addition to branching only a subset of the observations, selectively
chooses a subset of the states at each encountered belief.

The presented approaches diverge from many existing algorithms that rely on black-
box prior, transition, and observation models. Instead, our method directly utilizes
state and observation probability values to evaluate both the value function and the
associated bounds. In return, an anytime deterministic guarantee on the value func-
tion for the derived policy concerning its deviation from the optimal value function is
derived.

To that end, we define a simplified POMDP, which is a reduced version of the orig-
inal POMDP that abstracts or ignores certain states and/or observations. A simplified
POMDP, M̄ , is a tuple ⟨X̄ ,A, Z̄, T̄ , Ō,R, b̄0⟩, where X̄ , Z̄, T̄ and Ō are the simplified
versions of the state and observation spaces, and their corresponding transition and
observation models,

b̄0(x) ≜

b0(x) , x ∈ X̄0

0 , otherwise
(5.4)

P̄(xt+1 | xt, at) ≜

P(xt+1 | xt, at) , xt+1 ∈ X̄ (H−t+1)

0 , otherwise
(5.5)

P̄(zt | xt) ≜

P(zt | xt) , zt ∈ Z̄(Ht)

0 , otherwise
(5.6)

where X̄ (H−t+1) ⊆ X and Z̄(Ht) ⊆ Z may be chosen arbitrarily, e.g. by sampling or
choosing a fixed subset a-priori, as the derivations of the bounds are independent of
the subset choice. Note that the simplified prior, transition and observation models are
unnormalized and do not aim to represent valid distribution functions. For the rest of
the sequel we drop the explicit dependence on the history, and denote X̄ (H−t+1) ≡ X̄ ,
Z̄(Ht) ≡ Z̄. The action space, A and prior probability, b0 are as defined in the original
POMDP, M .

With the definition of the simplified POMDP, we define a corresponding simplified
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value function,

V̄ π(b̄0) ≜ Ē
[ T∑

t=0
rx(xt, at)

]
(5.7)

=
T∑

t=0

∑
z1:t

∑
x0:t

t∏
k=1

P̄(zk | xk)P̄(xk | xk−1, πk−1)b̄(x0)rx(xt, at) (5.8)

=
T∑

t=0

∑
τt

P̄π(τt)rx(xt, at), (5.9)

where the simplified expectation-like operator, Ē[·], is taken with respect to the simpli-
fied prior, transition and observation models, which do not include the entire distribu-
tion, and thus is not a complete expectation.

We use the simplified value function as a computationally-efficient replacement for
the theoretical value function; For clarity, the simplified POMDP and consequently
all derivations consider a finite-horizon POMDP, but its extension to the discounted
infinite horizon case is straightforward, by introducing the discount factor whenever
the reward is being used, and an additive term for truncating the tree, γtVmax,t, as
suggested in, e.g., [27].

In the following sections, we will derive upper and lower bounds between the sim-
plified and the theoretical values of a given policy. Then, we will show how to use the
simplification to achieve guarantees with respect to the optimal value function of the
original POMDP, and how to utilize these bounds for planning.

5.3 Anytime Deterministic Guarantees for Simplified POMDPs

5.3.1 Simplified Observation Space

We first analyze the performance guarantees of a simplified observation space, while
assuming a complete belief update at each considered history node, i.e., X̄ ≡ X . Such an
approach is viable when the posterior belief can be calculated efficiently, e.g. when the
state spae is sufficiently small. We start by presenting a bound between the simplified
value function and the theoretical one of a given policy; then, we provide optimality
guarantees for any policy, obtained by solving the simplified POMDP, both in terms
of convergence and a deterministic bound, in which the optimal value, for an unknown
policy must reside in.

Fixed Policy Guarantees for Simplified Observation Spaces

The following theorem describes the guarantees of the observation-simplified value func-
tion with respect to its theoretical value,

Theorem 5.1. Let bt belief state at time t, and T be the last time step of the POMDP.
Let V π(bt) be the theoretical value function by following a policy π, and let V̄ π(bt) be
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the simplified value function, as defined in (5.7), by following the same policy. Then,
for any policy π, the difference between the theoretical and simplified value functions is
bounded as follows,

∣∣∣V π(bt)−V̄ π(bt)
∣∣∣ ≤Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

b(xt)
τ∏

k=t+1
P(zk | xk)P(xk | xk−1, πk−1)

 ≜ ϵπ(bt).

(5.10)

Proof. The proof is provided in A.7. ■

Similarly, the action-dependent bound on the value difference, denoted ϵπ(bt, at), is
the bound of taking action at in belief bt and following policy π thereafter,∣∣∣Qπ(bt, at)−Q̄π(bt, at)

∣∣∣ ≤ ϵπ(bt, at), (5.11)

where,

ϵπ(bt, at) ≜ Rmax

T∑
τ=t+1

[
1−

∑
zt+1:τ

∑
xt:τ

b(xt)P(zt+1 | xt+1)P(xt+1 | xt, at)· (5.12)

τ∏
k=t+2

P(zk | xk)P(xk | xk−1, πk−1)
]
.

Importantly, ϵπ(bt) and ϵπ(bt, at) only contain terms which depend on observations
that are within the simplified space, z ∈ Z̄. This is an essential property of the bounds,
as it is a value that can easily be calculated during the planning process and provides
a certification of the policy quality at any given node along the tree. Furthermore, it
is apparent from (5.10) that as the number of observations included in the simplified
set, Z̄, increases, the values of ϵπ(bt) and ϵπ(bt, at) consequently diminishes,

∑
z1:τ

∑
x0:τ

b(x0)
τ∏

k=1
P(zk | xk)P(xk | xk−1, πk−1) Z̄→Z−−−→ 1

leading to a convergence towards the theoretical value function, i.e. ϵπ(bt) → 0 and
ϵπ(bt, at)→ 0.

Optimality Guarantees for Simplified Observation Spaces

Theorem 5.1 provides both lower and upper bounds for the theoretical value function,
assuming a fixed policy. Using this theorem, we can derive upper and lower bounds
for any policy, including the optimal one. This is achieved by applying the Bellman
optimality operator to the upper bound in a repeated manner, instead of the estimated
value function; In the context of tree search algorithms, our algorithm explores only a
subset of the decision tree due to pruned observations. However, at every belief node
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encountered during this exploration, all potential actions are expanded. The action-
value function of these expanded actions is bounded using the Upper Deterministic
Bound, which we now define as

UDBπ(bt, at) ≜ Q̄π(bt, at) + ϵπ(bt, at) = r(bt, at) + Ēzt+1 [V̄ π(bt+1)] + ϵπ(bt, at). (5.13)

In the event that no subsequent observations are chosen for a given history, the
value of Q̄π(bt, at) simplifies to the immediate reward plus an upper bound for any
subsequent policy, given by Rmax · (T − t− 1). Then, we make the following claim,

Lemma 5.3.1. The optimal value function can be bounded by,

V π∗(bt) ≤ UDBπ†(bt), (5.14)

where the policy π† is determined according to Bellman optimality over the UDB, i.e.

π†(bt) = arg max
at∈A

[Q̄π†(bt, at) + ϵπ
†(bt, at)] = arg max

at∈A
UDBπ†(bt, at) (5.15)

UDBπ†(bt) ≜ max
at∈A

UDBπ†(bt, at). (5.16)

Proof. The proof is provided in A.6.1. ■

Notably, using UDB to find the optimal policy does not require a recovery of all
the observations in the theoretical belief tree, but only a subset which depends on the
definition and complexity of the POMDP. Each action-value is bounded by a lower and
upper bound, which can be represented as an interval enclosing the theoretical value.
When the bound intervals of two candidate actions do not overlap, one can clearly
discern which action is suboptimal, rendering its subtree redundant for further explo-
ration. This distinction sets UDB apart from current state-of-the-art online POMDP
algorithms. In those methods, any finite-time stopping condition fails to ensure opti-
mality since the bounds used are either heuristic or probabilistic in nature.

In addition to certifying the obtained policy with Bellman optimality criteria, one
can utilize UDB as an exploration criteria,

at = arg max
at∈A

[UDBπ†(bt, at)], (5.17)

which ensures convergence to the optimal value function, as the number of visited
posterior nodes increases.

Corollary 5.2. By utilizing Lemma 5.3.1 and the exploration criteria defined in (5.17),
an increasing number of explored belief nodes guarantees convergence to the optimal
value function.

Proof. The proof is provided in A.8. ■
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5.3.2 Simplified State and Observation Spaces

In most scenarios, a complete evaluation of posterior beliefs during the planning stage
may pose significant computational challenges. To tackle this issue, we propose the use
of a simplified state space in addition to the simplified observation space considered
thus far. Specifically, we derive deterministic guarantees of the value function that
allow for the selection of a subset from both the states and observations.

We start the analysis of simplifying the state-and-observation spaces by fixing a
policy and derive upper and lower bounds for the theoretical, yet unknown, value
function at the root node, hereafter referred to as the ’root-value’. This process involves
the use of a simplified value function and an additional bonus term, which are easier
to compute than the theoretical value function. Considering that various segments
of the decision tree contribute differently to the upper bound, we then examine each
subtree’s contribution separately, which leads to a recursive formulation of the bound.
Importantly, these bounds are exclusively derived in relation to, and hold only with
respect to, the root node. This is in contrast to the bounds shown in theorem 5.1,
which bound the value function of each node in the belief tree.

Using the deterministic bounds at the root allows us to certify the performance
of following a particular policy starting from the root of the planning tree. Based
on these bounds we extend previous results, shown in theorem 5.3, and show that,
(1) exploring the tree with a bound that is formulated with respect to the root node
leads to an optimistic estimation of the optimal value function with respect to that
root node. (2) Utilizing the bounds for action exploration leads to convergence to
the optimal solution of the entire tree. (3) We develop a new method for pruning
suboptimal mid-tree action branches. This method includes a bonus term for the
upper and lower bounds, accounting for previously unconsidered cumulative probability,
enhancing model efficiency by eliminating less optimal paths.

Fixed policy guarantees

We begin by stating the core theorem of our work, which sets forth the upper and lower
bounds of a root-value function, with a simplified value function,

Theorem 5.3. Let b0 and b̄0 be the theoretical and simplified belief states, respectively,
at time t = 0, and T be the last time step of the POMDP. Let V π(b0) be the theoretical
value function by following a policy π, and let V̄ π(b̄0) be the simplified value function
by following the same policy, as defined in (5.7). Then, for any policy π, the theoretical
value function and at the root is bounded as follows,

Lπ
0 (H0) ≤ V π(b0) ≤ Uπ

0 (H0). (5.18)
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where,

Uπ
0 (H0) ≡ V̄ π(b̄0) + Vmax,0

[
1−

∑
τ0

P̄(τ0)
]

+
T −1∑
t=0
Vmax,t+1

∑
τt

P̄π(τt)−
∑
τt+1

P̄π(τt+1)


(5.19)

Lπ
0 (H0) ≡ V̄ π(b̄0) + Vmin,0

[
1−

∑
τ0

P̄(τ0)
]

+
T −1∑
t=0
Vmin,t+1

∑
τt

P̄π(τt)−
∑
τt+1

P̄π(τt+1)


(5.20)

Proof.. A proof is provided in A.9. ■

A key aspect of Theorem 5.3 is that the bounds it establishes are exclusively dependent
on the simplified state and observation spaces. This characteristic is vital in order to
compute them during the planning phase.

The intuition behind the result of the derivation can be interpreted as follows; it
takes a conservative approach to the value estimation by assuming that every trajectory
not observed may obtain an extremum value. Moreover, it allows flexibility in how the
trajectories are selected, which are allowed to be chosen arbitrarily in terms of the
simplified state space, observation space and the horizon of each trajectory.

The theorem provides bounds for the theoretical value function at the root node of
the search tree, given a policy. Using Bellman-like equations, one can restructure the
formulation to compute the bounds recursively, which is crucial for making computa-
tions in online planning computationally efficient,

Uπ
0 (Ht) ≜

∑
τt∈T (Ht)

P̄(τt)rx(xt, πt) +
∑

τt∈T (Ht)
P̄(τt)Vmax,t +

∑
zt+1∈Z̄(Ht,πt)

Uπ
0 (Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmax,t


(5.21)

Lπ
0 (Ht) ≜

∑
τt∈T (Ht)

P̄(τt)rx(xt, πt) +
∑

τt∈T (Ht)
P̄(τt)Vmin,t +

∑
zt+1∈Z̄(Ht,πt)

Lπ
0 (Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmin,t


(5.22)

and,

Uπ
0 (HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ), Lπ
0 (HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ). (5.23)

where T (Ht) represent the set of trajectories that consist history Ht, i.e., all trajectories
T (Ht) = {(x0:t, a0:t−1, z1:t) | (a0:t−1, z1:t) = Ht}. The values Uπ

0 (Ht) and Lπ
0 (Ht),

represent the relative upper and lower bounds of node Ht with respect to the value
function at the root, H0. In other words, they do not represent the bounds of a policy
starting from node Ht. The first two summands have a similar structure to the standard
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Bellman update operator used in POMDPs, with two main differences. First, the state
dependent reward is multiplied by the probability of the entire trajectory from the root
node, and not the density value of the belief. Notably, the value of ∑τt∈T (Ht) P(τt)
will generally not sum to one, due to the dependence of the summed trajectories on
the history. Second, there is no expectation operator over the values of the next time
step. This is a result of using a distribution over the trajectories, instead of the belief
itself. The last summand assigns an optimistic value for the set of trajectories reached
to node Ht but not to Ht+1.

Optimality Guarantees

We have shown in theorem 5.3 how to calculate bounds for the difference in value
functions between the original and the simplified POMDP, given a fixed policy. In
this section, we show that by applying Bellman-like optimality operator on U0(Ht), the
obtained value at the root node is an upper bound for the optimal value function. More
formally,

Lemma 5.3.2. Let A be the set of actions and U⋆
0 (Ht), L⋆

0(Ht) be the upper and lower
bounds of node Ht chosen according to,

U⋆
0 (Ht) ≜ max

at

∑
τt∈T (Ht)

P̄(τt) [rx(xt, at) + Vmax,t] +
∑

zt+1∈Z̄(Ht,at)

U⋆
0 (Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmax,t


(5.24)

L⋆
0(Ht) ≜ max

at

∑
τt∈T (Ht)

P̄(τt) [rx(xt, at) + Vmin,t] +
∑

zt+1∈Z̄(Ht,at)

L⋆
0(Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmin,t


(5.25)

and,

U⋆
0 (HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ), L⋆
0(HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ). (5.26)

Then, the optimal root-value is bounded by,

L⋆
0(H0) ≤ V π∗(H0) ≤ U⋆

0 (H0). (5.27)

The proof is provided in 34.

In this lemma, we establish that employing the ’partial’ root-bound is sufficient for
ensuring both upper and lower bounds in relation to the optimal value function at
the root node. This approach differs from that presented in the previous section (see
Lemma 5.3.1). There, each node in the tree was associated with its unique upper
bound based on its value function. In contrast, the current lemma demonstrates that
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using the ’partial’ bound across all nodes in the tree, which is valid only at the root,
still guarantees bounded value for the optimal root-value function, while avoiding the
requirement to maintain a complete belief at each node of the tree.

Early Stopping Criteria

Lemma 5.3.2 establishes that the recursive Bellman-like optimality operator, can be
used to bound the optimal value function at the root. Since the bounds are determin-
istic, these bounds can be used for eliminating suboptimal actions with full certainty
while planning. Then, we define the interval for each action at the root as,

I⋆(H0, a0) ∈ [L⋆
0(Ht, a0),U⋆

0 (H0, a0)] , (5.28)

and use it as a tool for pruning suboptimal actions once an upper bound of an action
falls below the best lower bounds amongst other actions within that node, see figure
5.2 for an illustration.

Figure 5.2: Bound intervals for different actions. The optimal value function is guar-
anteed to be between the maximal lower and upper bounds. As a result, actions a2

and a4 are suboptimal and can be pruned safely.

State-of-the-art algorithms such as POMCP and DESPOT employ probabilistic
and asymptotic reasoning to approximate the optimal policy, and lack a mechanism to
conclusively determine the suboptimality of an action, leading to infinite exploration
of suboptimal actions. In contrast, utilizing (5.28) guarantees that once an action
is identified suboptimal, it can be safely excluded from further consideration. Since
the bounds can be integrated with arbitrary exploration methods, it provides a novel
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mechanism for pruning with contemporary SOTA algorithms.
Importantly, this approach introduces a practical stopping criterion for the online

tree search process. When the exploration results in only one viable action remaining
at the root, it signifies the identification of the optimal action. Note that this does
note necessitate exhaustive exploration of the entire tree or complete convergence of
the bounds.

Exploration Strategies

One can further utilize the root upper bound to determine the exploration of actions, the
simplified state and observation spaces at run time, which guarantees convergences to
the optimal value function in finite time, which is novel for online tree search POMDPs
solvers to the best of our knowledge. We define the following deterministic exploration
strategy,

at = arg max
a∈A
{

∑
τt∈T (Ht)

P̄(τt)rx(xt, a) +
∑

zt+1∈Z̄(Ht,a)

U⋆
0 (Ht+1) + Vmax,t

 ∑
τt∈T (Ht)

P̄(τt)−
∑

τt+1∈T (Ht,at)
P̄(τt+1)

}
(5.29)

zt+1 = arg max
ot+1∈Z(Ht,at)

{U⋆
0 ((Ht, at, ot+1))− L⋆

0((Ht, at, ot+1))} (5.30)

xt+1 = arg max
x∈X (Ht+1)

{P̄⋆((τt, at, zt+1, x))−
∑
τT

P̄⋆(τT | τt, at, zt+1, x)}, (5.31)

where the actions are chosen by the highest upper bound, sometimes referred to as
an ”optimism in face of uncertainty”, which offers a balance between exploration and
exploitation of actions that are possibly optimal or have high uncertainty in their value.
Observations are chosen based on the maximum gap between the upper and lower
bounds, which results in observations with high uncertainty in their value. Last, we
define P̄⋆(τt) as the probability of a trajectory τt under a policy derived from recursive
action selection as per (5.29). Subsequently, the selection of states effectively maximizes
the difference in probability between the individual trajectory density and the aggregate
probability of all sampled trajectories that begin with that particular trajectory.

Lemma 5.3.3. Performing exploration based on (5.29), (5.30) and (5.31) ensures that
the algorithm converges to the optimal value function within a finite number of planning
iterations. The proof is provided in A.6.4.

Importantly, alternative methods for the state-action-observation exploration are
viable and, if given limited planning time, may offer improved performance in practice.
Lemma 5.3.3 suggests one way that is guaranteed to converge in finite time. We leave
the investigation of other approaches for finite-time convergence using the deterministic
bounds for future research.

Moreover, the bounds suggested in this chapter can be integrated with established
algorithms like POMCP or DESPOT ([45, 46]), an approach which offers several ad-
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vantages over the existing algorithms. First, The quality of their solutions with respect
to the optimal value can be assessed and validated. Second, whenever the bounds at
the root of the solver do not overlap, the planning session can be terminated early with
a guarantee of identifying the optimal action.

5.4 Algorithms

Algorithm 5.1 Algorithm-A:
function Search

1: while time permits do
2: Generate states x from b0.
3: τ0 ←− x
4: P̄0 ←− b(x = τ0 | h0)
5: if τ0 /∈ τ(h0) then
6: P̄(h0)←− P̄(h0) + P̄0

7: end if
8: Simulate(h0, D, τ0, P̄0).
9: end while

10: Return

function fwdUpdate(ha, haz, τd, P̄τ , x′)
1: if τd /∈ τ(ha) then
2: τ(ha)←− τ(ha) ∪ {τd}
3: R̄(ha)←− R̄(ha) + P̄τ · rx(x, a)
4: end if
5: τd ←− τd ∪ {x′}
6: P̄τ ←− P̄τ · Zz|x′ · Tx′|x,a

7: if τd /∈ τ(haz) then
8: P̄(haz)←− P̄(haz) + P̄τ

9: τ(haz)←− τ(haz) ∪ {τd}
10: end if
11: Return

function Simulate(h, d, τd, P̄d)
1: if d = 0 then
2: Return
3: end if
4: Select action a.
5: Generate next states and observations, x′, z.

6: τd, P̄τ ←−fwdUpdate(ha, haz, τd, P̄τ , x
′)

7: Select next observation z.
8: Simulate(haz, d− 1, τd, P̄τ )
9: bwdUpdate(h, ha, d)

10: Return

function bwdUpdate(h, ha, d)
1: ϵ(ha) = γD−dVmax,d(P̄(h) − P̄(ha)) +
γD−d−1 · Vmax,d+1(P̄(ha)−

∑
z|ha

P̄(haz))

2: U(ha)=R̄(ha) + γ
∑

z|haU(haz) + ϵ(ha)
3: L(ha)=R̄(ha) + γ

∑
z|haL(haz)− ϵ(ha)

4: U(h)←− maxa′{U(ha′)}
5: L(h)←− maxa′{L(ha′)}
6: Return

In this section we aim to describe how to fit our bounds to a blueprint of a general
algorithm, named Algorithm − A, which serves as an abstraction to many existing
algorithms. Then, we explicitly describe two algorithms, DB-POMCP, an adaptation
to POMCP that uses UCB for exploration, and our deterministic bounds for decision-
making, and RB-POMCP, a particle-based solver that utilizes the bounds both for
decision-making and exploration.

To compute the deterministic bounds, we utilize Bellman’s update and optimal-
ity criteria. This approach naturally fits dynamic programming approaches such as
DESPOT [57] and AdaOPS [56]. However, it may also be attached with algorithms
that rely on Monte-Carlo estimation, such as POMCP [45], by viewing the search tree
as a policy tree.
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While the analysis presented in section 5.3 is general and independent of the selec-
tion mechanism of the states or observations, we focus on sampling as a way to choose
the simplified states at each belief node and the observations to branch from. Fur-
thermore, the selection of the subspaces X̄ , Z̄ need not be fixed, and may change over
the course of time, similar to state-of-the-art algorithms, such as [16, 45, 46, 48, 56].
Alternative selection methods may also be feasible, as sampling from the correct dis-
tribution is not required for the bounds to hold. Importantly, attaching our bounds
to arbitrary exploration mechanism certifies the algorithm solution with deterministic
bounds to the optimal solution, and may result in an improved decision making, as will
be shown in the experimental section.

Algorithm−A is outlined in algorithm 5.1. For clarity of exposition, we assume
the following; at each iteration a single state particle is propagated from the root node
to the leaf (line 2 of function Search). The selection of the next state and observations
are done by sampling from the observation and transition models (line 5), and each
iteration ends with the full horizon of the POMDP (lines 2). However, none of these are
a restriction of our approach and may be replaced with arbitrary number of particles,
arbitrary state and observation selection mechanism and a single or multiple expansions
of new belief nodes at each iteration.

To compute the UDB value, we require both the state trajectory, denoted as τ ,
and its probability value, Pτ . We use the state trajectory as a mechanism to avoid
duplicate summation of an already accounted for probability value and is utilized to
ascertain its uniqueness at a belief node. The probability value, Pτ , is the likelihood of
visiting a trajectory τ = {x0, a0, x1, z1, . . . , at−1, xt, zt} and is calculated as the product
of the prior, transition and observation likelihoods (line 6). If a trajectory was not
previously observed in a belief node, its reward value is multiplied by the likelihood of
the trajectory. Each trajectory likelihood is maintained as part of a cumulative sum
of all visited trajectories in the node. This cumulative sum is then used to calculate
the upper and lower bounds, which are shown in lines 1-2. The term computed in line
1 represents the loss of holding only a subset of the states in node ha from the set in
node h, plus the loss of having only a partial set of posterior nodes and a subset of their
states. Vmax,d represents an upper bound for the value function. A simple bound on the
value function can be Vmax,d = Rmax ·(D−d), but other more sophisticated bounds may
also be used. In the experimental section we show that despite the additional overhead,
utilizing the deterministic bounds, (5.20) and (5.19), within the actual decision-making
improves the results of the respective algorithms.

5.4.1 DB-POMCP

DB-POMCP uses theorem 5.3 for decision-making once an optimal action was found or
at time-out given limited planning time. In aligning Algorithm 5.1 with the POMCP
framework, the action exploration process determined by the Upper Confidence Bounds
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for Trees (UCT) criterion,

UCT (Ht, at) = Q̂mean(Ht, at) + c

√
log(N(Ht))
N(Ht, at)

, (5.32)

where Q̂mean is the average of the cumulative sums obtained from sampled explorations,
and c is a tunable constant that trades-off exploration and exploitation during plan-
ning. Following this criterion, each state and observation is then sampled according
to their respective transition and observation models. The original POMCP method,
as discussed in [45], employs Monte-Carlo rollouts for value estimation and refrains
from adding new nodes during these rollouts. During our evaluations we saw a negli-
gible difference in performance, thus we avoid presenting rollouts to algorithm 5.1 for
simplicity. However, DB-POMCP supports both settings.

5.4.2 RB-POMCP

Root-Bounded POMCP (RB-POMCP) differs from DB-POMCP in that it uses a dif-
ferent exploration method. We denote it RB-POMCP to emphasize that the bounds
hold only in the root node, and are not valid for any node along the tree, yet unlike
DB-POMCP the bounds are used for exploration in any part of the tree. The RB-
POMCP methodology draws inspiration from the Monte-Carlo approach suggested the
original POMCP algorithm and innovates by incorporating upper and lower bounds,
as defined in (5.24) and (5.25), to guide both the exploration and the decision-making
processes.

The RB-POMCP framework is constructed based on the structure outlined in Al-
gorithm 5.1, which necessitates specific implementations for abstract state, action, and
observation exploration functions. In our approach, we opt for an approximation to the
exploration mechanism proposed in section 5.3.2. More precisely, while we adhere to the
action exploration strategy described in the lemma, we simplify the observation and
state exploration components by employing basic Monte-Carlo sampling techniques,
akin to those used in the standard POMCP algorithm. This modification is intended
to enhance the algorithm’s planning efficiency without compromising the integrity of
the algorithm bounds. The remainder of the RB-POMCP algorithm adheres closely to
the procedures specified in Algorithm 5.1. Additionally, we use pruning and stopping
criteria, as described in 5.3.2.

5.4.3 Time complexity

The time complexity for each posterior node, primarily depends on the specific algo-
rithm being used. In the case of dynamic programming methods, such as DESPOT
and AdaOPS, there is a negligible added computational complexity detailed below.
In the case of Monte Carlo methods, such as POMCP, the computational complexity
is O(|A|) attributed mainly to the action-selection, while our approach adds another
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linear time complexity term, making it O(|A| + |Z̄|) due to the summation over the
simplified observation space. During each iteration of the algorithm, an ”IF” state-
ment is used to determine whether a specific trajectory has already been encountered
at the current node. This verification process can potentially result in an added linear
complexity of O(D), where D represents the planning horizon. However, this overhead
can be circumvented by assigning a unique ID value to each trajectory at the previous
step and subsequently checking whether a pair, comprising the ID value and the new
state, has already been visited. This approach reduces the overhead to an average time
complexity of O(1) by utilizing hash maps efficiently.

5.5 Experiments

Our primary contribution is of a theoretical nature, yet we conducted experiments to
evaluate the practical applicability of our proposed methodologies. Initially, we adopted
a hybrid strategy, such as DB-POMCP, by incorporating our deterministic bounds ex-
clusively for the decision-making, while relying on existing exploration strategies such as
POMCP and DESPOT. Essentially, this approach enhances the POMCP and DESPOT
frameworks by equipping them with mechanisms that ensure bounded sub-optimality.
In a subsequent experimental setup, we applied the deterministic bounds to both the
exploration and decision-making phases, based on the methodologies outlined in sec-
tion 5.4.2. We then compared the empirical performance of using the deterministic
bounds solely for decision-making to the baseline algorithms without the incorpora-
tion of any deterministic bounds. Our findings indicate that while the application of
deterministic bounds to decision-making can enhance performance, this strategy be-
comes less effective in identifying the optimal action as the complexity of the POMDP
increases. Conversely, when the deterministic bounds are applied to both exploration
and decision-making (section 5.4.2), the results demonstrate a linear increase in plan-
ning time proportional to the size of the POMDP, indicating better scalability.

5.5.1 Deterministic-Bounds for Decision-Making

In this subsection, we focus on the application of deterministic bounds exclusively
for decision-making. This approach involves using a predefined exploration strategy
during the planning phase, but making the final action selection based on the deter-
ministic bounds as shown in (5.24). The comparative results for the standard and
deterministically-bounded versions of the POMCP and DESPOT algorithms are pre-
sented in Table 5.1. These versions, labeled DB-POMCP and DB-DESPOT, adhere to
the original exploration criteria of their respective algorithms but select actions based
on the highest lower bound, as specified in (5.20).

Our experimental analysis reveals that, in addition to offering a level of optimality
certification for the chosen actions, utilizing deterministic bounds for action selection
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can enhance the expected cumulative reward. It is important to note, however, that
this method does not always lead to better outcomes. Specifically, it may not be
advantageous in situations where the highest lower bound is less than other available
upper bounds (for instance, comparing actions a1 and a3 in figure 5.2). This limitation
is evident in the results for the Laser Tag POMDP, a considerably larger problem
compared to the other POMDPs evaluated, where the deterministic bounds did not
yield performance improvements.

Table 5.1: Performance comparison with and without deterministic bounds, for short
horizon, H = 5.

Algorithm Tiger POMDP Laser Tag Discrete Light Dark Baby POMDP
DB-DESPOT (ours) 3.7 ±0.48 −5.3 ±0.14 −5.3 ±0.01 −3.9 ±0.56
AR-DESPOT 2.8 ±0.55 −5.1 ±0.14 −61.5 ±5.80 −5.4 ±0.85
DB-POMCP (ours) 3.0 ±0.21 −4.0 ±0.24 −3.7 ±0.82 −4.5 ±0.57
POMCP 2.2 ±0.76 −3.9 ±0.27 −4.5 ±1.15 −5.4 ±0.63

5.5.2 Root-Bounds for Decision-Making and Exploration

Table 5.2: Performance comparison with and without deterministic bounds, for medium
horizon, H = 15.

Algorithm Tiger POMDP Rock Sample Navigate to Goal Baby POMDP
RB-POMCP (ours) 1.5 ±0.76 8.5 ±0.22 61.2 ±0.71 −12.0 ±0.27
DB-POMCP (ours) −1.1 ±0.15 7.9 ±0.21 62.4 ±0.75 0.0 ±0.00
POMCP −5.6 ±0.24 5.7 ±0.20 68.5 ±0.69 −12.5 ±0.27

The performance outcomes presented in Table 5.2 reveal that the RB-POMCP
algorithm typically matches or surpasses the standard POMCP in various tested envi-
ronments, except for the Navigate to Goal POMDP scenario. The limited performance
in this particular context can be attributed to the nature of RB-POMCP’s exploration
strategy, which is designed to assure optimality over extended planning periods but
does not inherently guarantee enhanced results within limited planning durations. Un-
like probabilistic algorithms that leverage statistical concentration inequalities—such
as the Hoeffding inequality employed in the Upper Confidence Bounds for Trees (UCT)
[27] exploration mechanism of POMCP—RB-POMCP adopts a more cautious strategy.
This approach entails considering both worst-case and best-case scenarios to establish
a deterministic link with the optimal value may not always translate to superior im-
mediate performance due to its conservative nature.
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Figure 5.3: The graphs show the measured planning time for RB-POMCP and DB-
POMCP to find the optimal action under different UCT coefficient values. All simula-
tion runs were capped at 3,600 seconds.

5.5.3 Planning for optimal action

To highlight the differences between RB-POMCP and DB-POMCP, we examined each
algorithm’s planning time to deterministically identify the optimal value, as depicted
in Figure 5.3. Notably, conventional state-of-the-art algorithms, such as POMCP and
DESPOT, cannot deterministically identify the optimal action within a finite timeframe
and are thus not considered in this analysis.

DB-POMCP incorporates the Upper Confidence Bounds for Trees (UCT) method
for exploration. However, its exploration strategy lacks awareness of the deterministic
bounds of the optimal value function, leading to insufficient guidance toward actions
that may be optimal. Despite significantly increasing the exploration coefficient beyond
the values suggested in previous works [45, 48], our findings, as presented in Figure 5.3,
demonstrate that the exploration bonus diminishes too rapidly, effectively limiting fur-
ther exploration of potentially optimal actions. While UCT, in theory, explores the be-
lief tree indefinitely, in practical scenarios, the exploration rate of new branches dimin-
ishes exponentially over time, making it less effective in environments where identifying
the optimal action in a reasonable time is crucial. Conversely, RB-POMCP directly
utilizes upper and lower bounds information, facilitating a more targeted search for the
optimal value. This approach leads to a planning duration that scales linearly with
the problem size, as evidenced in Figure 5.3, highlighting its efficiency in identifying
optimal actions within a finite timeframe.

5.5.4 Technical Details

The implementation of our algorithm written in the Julia programming language, using
the Julia POMDPs package for evaluation and the vanilla POMDP versions, provided
by [13]. This package primarily supports infinite horizon problems; however, we mod-
ified it to also handle finite-horizon POMDPs. The experiments were conducted on a
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computing platform consisting of an Intel(R) Core(TM) i7-7700 processor with 8 CPUs
operating at 3.60GHz and 15.6 GHz. The hyper-parameters for the POMCP and AR-
DESPOT solvers, and further details about the POMDPs used for our experiments are
detailed in appendix A.5.

5.6 Conclusions

In this work, we presented a novel methodology aimed at offering anytime, determin-
istic guarantees for approximate POMDP solvers. These solvers strategically leverage
a subset of the state and observation spaces to alleviate the computational overhead.
Our key proposition elucidates a linkage between the optimal value function, which is
inherently computationally intensive, and a more tractable approximation frequently
employed in contemporary algorithms. In the first part of the chapter, we derived the
theoretical relationship between the use of a selective subset of states and observa-
tions in a planning tree. One contribution of this work is an extension of previously
published result on upper deterministic bound (UDB) to govern exploration in the
case of simplified state and observation spaces, while being theoretically guaranteed
to converge to the optimal value. This approach, however, may be computationally
infeasible in many practical POMDPs, due to its need to iterate through all states
and observations at each node. Thus, we provide two novel algorithms, DB-POMCP
and RB-POMCP, that approximate this approach, while still being able to provide a
deterministic relationship to the optimal value and provide a stopping criteria for when
the planning has converged to its optimal value. Additionally, we provide a method
to attach our bounds to existing state-of-the-art algorithms. We extend this approach
by providing the ability to prune sub-optimal branches within the exploration phase.
We have outlined how our methodology can be integrated within these algorithms.
Finally, to illustrate the practical utility of our derivations, we evaluate DB-POMCP
and RB-POMCP against state-of-the-art algorithms and highlight the differences in
performance to find the optimal action between the two.
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Appendix A

Appendices

A.1 Adaptive Information Belief Space Planning

A.1.1 Proofs

Lemma 1

The proof is provided for continuous state space; The discrete case obtained similarly
by changing integrals to summations.

Proof.

Nz∑
n=1

P̄
(
zn | H−

)
H(b̄) =

−
Nz∑

n=1
P̄
(
zn | H−

) ∫
x
P̄(x | H) · log(P̄(x | H)) (A.1)

applying Bayes’ rule for P̄(x | H),

−
Nz∑

n=1

∫
x
Ō(zn | x)P

(
x | H−

)
(A.2)

·log
(

Ō(zn | x)P (x | H−)∫
x′ Ō(zn | x′)P (x′ | H−)

)

Splitting summation to follow the partitioning of the abstract observation model,

−
C∑

c=1

Kc∑
k=K(c−1)+1

∫
x
Ō(zk | x)P

(
x | H−

)
(A.3)

·log
(

Ō(zk | x)P (x | H−)∫
x′ Ō(zk | x′)P (x′ | H−)

)
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By construction, Ō(z | x) has uniform distribution for zk, where k ∈ [K(c−1)+1,Kc].
Thus,

−
C∑

c=1

 Kc∑
k=K(c−1)+1

1

∫
x
Ō(zKc | x)P

(
x | H−

)
(A.4)

·log
(

Ō(zKc | x)P (x | H−)∫
x′ Ō(zKc | x′)P (x′ | H−)

)
=

−
C∑

c=1
K ·

∫
x
Ō(zKc | x)P

(
x | H−

)
(A.5)

·log
(

Ō(zKc | x)P (x | H−)∫
x′ Ō(zKc | x′)P (x′ | H−)

)
=

K ·
C∑

c=1
P̄
(
zKc | H−

)
H(b̄)

which concludes the proof. ■

86



Lemma 2

Proof. We begin with,
Ēo [Ex∼b̄ [rx (x, a)]] (A.6)

by definition of Ēo [·], b̄(x),

Nz∑
n=1

P̄
(
zn | H−

) [∑
x∈S

P̄(x | zn,H−)rx (x, a)
]

(A.7)

applying chain rule,

Nz∑
n=1

∑
x∈S

P̄(x, zn | H−)rx (x, a) = (A.8)

Nz∑
n=1

∑
x∈S

Ō(zn | x)b−(x)rx (x, a)

we split the sum over the observations to comply with the abstraction partitioning and
use the the abstract observation model definition, (4),

∑
x∈S

C∑
c=1

Kc∑
k=K(c−1)+1

∑Kc
m=K(c−1)+1O(zm | x)

K
b−(x)rx (x, a) (A.9)

we then arrive at the desired result,

∑
x∈S

Nz∑
n=1

O(zn | x)b−(x)rx (x, a) = (A.10)

Eo [Ex∼b [rx (x, a)]] (A.11)
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Theorem 1

Proof. For clarity, we omit the time index in the derivation, the result holds for any
time step. We use H− to denote past history while excluding last observation. We also
use b and P(x | z,H−) interchangeably. Rearranging the abstraction from (1),

K∑
k=1

Ō
(
zk | x

)
= K · Ō(zb | x) .=

K∑
k=1

O
(
zk | x

)
∀b ∈ [1,K]

Plugging it to the expected entropy term, (11),

Ēz

[
H
(
b̄
)]
− Ez [H (b)] = (A.12)

No∑
i=1

P̄
(
zi | H−

)
H
(
b̄
)
−

No∑
i=1

P
(
zi | H−

)
H (b) (A.13)

expanding the entropy term,

−
No∑
i=1

P̄
(
zi | H−

) ∫
x
P̄
(
x | zi,H

−) log (b̄) (A.14)

+
No∑
i=1

P
(
zi | H−

) ∫
x
P
(
x | zi,H

−) log (b)

by Bayes’ rule,

−
No∑
i=1

∫
x
Ō (zi | x)P

(
x | H−

)
log

(
b̄
)

(A.15)

+
No∑
i=1

∫
x
O (zi | x)P

(
x | H−

)
log (b)

a change in the order of summation and integral and a split of No = C ·K result in,

−
∫

x

C∑
c=1

Kc∑
k=K(c−1)+1

Ō (zk | x)P
(
x | H−

)
log

(
b̄
)

(A.16)

+
∫

x

C∑
c=1

Kc∑
k=K(c−1)+1

O (zk | x)P
(
x | H−

)
log (b)
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By plugging-in the definition of the abstract model,

−
∫

x

C∑
c=1

 Kc∑
k=K(c−1)+1

∑Kc
k̄=K(c−1)+1O (zk̄ | x)

K

 (A.17)

P
(
x | H−

)
log

(
b̄
)

+
∫

x

C∑
c=1

Kc∑
k=K(c−1)+1

O (zk | x)P
(
x | H−

)
log (b) =

−
∫

x

C∑
c=1

Kc∑
k=K(c−1)+1

O (zk | x)P
(
x | H−

)
log

(
b̄
)

(A.18)

+
∫

x

C∑
c=1

Kc∑
k=K(c−1)+1

O (zk | x)P
(
x | H−

)
log (b) =

No∑
i=1

P
(
zi | H−

) ∫
x
b · log

(
b

b̄

)
= (A.19)

Ez

[
DKL

(
b||b̄
)]
≥ 0

(A.19) obtained by applying similar steps in reverse order. The last equality holds since
KL-divergence is non-negative and so is its expectation. It is left to prove the upper
bound; Applying Bayes rule to the nominator and denominator of (A.19),

No∑
i=1

P
(
zi | H−

) ∫
x
blog

(
O (zi | x)
Ō (zi | x)

)
(A.20)

+
No∑
i=1

P
(
zi | H−

)
log

(
P̄ (zi | H−)
P (zi | H−)

)∫
x
bds

By construction of the abstract observation model,

C∑
c=1

Kc∑
k=K(c−1)+1

P
(
zk | H−

) ∫
x
b · log

 O (zk | x) ·K
Kc∑

k=K(c−1)+1
O (zk̄ | x)

 ds

+
C∑

c=1

Kc∑
k=K(c−1)+1

P
(
zk | H−

)
log

(
P̄ (zk | H−)
P (zk | H−)

)

≤ log(K)
C∑

c=1

Kc∑
k=K(c−1)+1

P
(
zk | H−

) ∫
x
bds+ 0 = log(K).

The inequality is due to positiveness of the denominator in the first term and
Jensen’x inequality in the second term. we end up with,

0 ≤ Ēz

[
H
(
b̄
)]
− Ez [H (b)] ≤ log(K). (A.21)
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Corollary 1.1

Proof. From Lemma 2 it is clear that the expected state-dependent reward is unaf-
fected by the abstraction, and thus will not affect the value function. For the sake
of conciseness and clarity, we prove the case that the value function depends only on
the entropy. The general case derived similarly by applying Lemma 2 instead of the
expected state-dependent reward.

V π(bt) =
Nz∑

n=1
P
(
zn

t+1 | H−t+1

)
[−H(bt+1) + V π(bt+1)]

expanding the value function,

−
Nz∑

n=1
P
(
zn

t+1 | H−t+1

)[
H(bt+1) (A.22)

+
Nz∑

n′=1
P
(
zn′

t+2 | H−t+2

)
H(bt+2) + · · ·

]]
by linearity of expectation,

− Ezt+1 [H(bt+1)] + Ezt+1

[
Ezt+2

[
H(bt+2)

]]
+ · · · (A.23)

using Theorem 1 for each of the expected entropy terms separately until time-step
T − 1,

V π(bt) ≥−
[
Ē[H(b̄t+1)] + log(K)

]
(A.24)

− Ezt+1

[
Ēzt+2 [H(b̄t+2)] + log(K)

]
· · ·

=− Ēzt+1

[
H(b̄t+1)

]
(A.25)

− Ezt+1Ēzt+2

[
H(b̄t+2)

]
· · ·+ T · log(K)

applying similar steps in reverse order yields the abstract value function,

V̄ π(bt) + T · log(K)

=⇒V̄ π(bt)− V π(bt) ≤ T · log(K).

Following the same derivation and applying the other side of the inequality of Theorem
1, completes the derivation for the entropy as reward. Using the more general reward,
(1), and applying Lemma 2, yields the proof for corollary 1.1,

0 ≤ V̄ π(bt)− V π(bt) ≤ T · ω2log(K).
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Expected Entropy Estimation

We derive an estimator to the expected differential entropy with continuous observation
space. The discrete state or observation spaces follows similar derivation by replacing
integrals with summations.

E[H(bt)] = −
∫

zt

p(zt | H−t )
∫

xt

p(xt | zt,H
−
t ) (A.26)

· log(p(xt | zt,H
−
t ))

applying Bayes’ rule,

E[H(bt)] = −
∫

zt

∫
xt

p(xt, zt | H−t ) (A.27)

· log
(
O(zt | xt)

∫
xt−1

T (xt | xt−1, at−1)b(xt−1)
)

+
∫

zt

∫
xt

p(xt, zt | H−t ) · log(p(zt | H−t ))

by chain rule and marginalization,

E[H(bt)] = −
∫

zt

∫
xt

O(zt | xt)b−(xt) (A.28)

· log
(
O(zt | xt)

∫
xt−1

T (xt | xt−1, at−1)b(xt−1)
)

+
∫

zt

∫
xt

O(zt | xt)b−(xt)

· log
(∫

xt

O(zt | xt)b−(xt)
)

using particle filter, the belief represented as a set of weighted particles, {(x1, q1), . . . , (xi, qi), . . . , (xn, qn)}.
Where qi denotes the weight of particle i.

E[H(bt)] ≈ −
∫

zt

ηt

n∑
i=1

O
(
zt | xi

t

)
qi

t−1· (A.29)

· log

O (zt | xi
t

) n∑
j=1

p
(
xi

t | x
j
t−1, at−1

)
qj

t−1


+
∫

zt

ηt

n∑
i=1

O
(
zt | xi

t

)
qi

t−1·

· log
(∑

i

O
(
zt | xi

t

)
qi

t−1

)

where ηt =
∫

zt

∑n
i=1O

(
zt | xi

t

)
qi

t−1 normalizes the estimator for the probability function
so that it sums to 1. Then, we approximate expectation over the observation space using
observation samples, and query the likelihood model conditioned on the state samples,
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O
(
zm | xi

)
∀zm ∈ {z1, . . . , zM},

Ê[H(b̂t)] = −ηt

M∑
m=1

n∑
i=1

O
(
zm

t | xi
t

)
qi

t−1· (A.30)

· log

O (zm
t | xi

t

) n∑
j=1

T
(
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t | x
j
t−1, at−1

)
qj

t−1


+ηt

M∑
m=1

[
n∑

i=1
O
(
zm

t | xi
t

)
qi

t−1

]

· log
(

n∑
i′=1

O
(
zm

t | xi′
t

)
qi′

t−1

)

ηt = 1∑M
m=1

∑n
i=1O

(
zm

t | xi
t

)
qi

t−1
(A.31)

which concludes the derivation.
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Theorem 2

Note that the reward function, (1), is built of two terms, state dependent reward and
entropy,

R(b, a, b′) = ω1Ex∼b′ [rx(x, a)] + ω2H(b′). (A.32)

For clarity, we divide the proof into two parts,

ˆ̄Ez

[
R
(
b̂, a, ˆ̄b′

)]
−Êz

[
R
(
b̂, a, b̂′

)]
= (A.33)

ω1
( ˆ̄Ez

[
E

x∼ˆ̄b′ [rx(x, a)]
]
− Êz

[
Ex∼b̂′ [rx(x, a)]

])
(A.34)

+ω2
( ˆ̄Ez

[
H
(ˆ̄b)]− Êz

[
H
(
b̂
)])

.

The first is about the difference in expected entropy, which is similar in spirit to the
proof of Theorem 1. The second follows the claim and proof of Lemma (2). We begin
with the difference of the expected entropy. For clarity, we derive the upper and lower
bounds separately. For the upper bound,

Proof. In the following we directly plug-in the expected entropy estimator, with both
the abstract observation model and the original observation model. For clarity, we split
the expression into two parts and deal with each separately.

ˆ̄Ez

[
H
(ˆ̄b)]− Êz

[
H
(
b̂
)]

= − ηt

M∑
m=1

n∑
i=1

O
(
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t | xi
t

)
qi

t−1︸ ︷︷ ︸
(a)

(A.35)
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︸ ︷︷ ︸
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+ ηt
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n∑
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O
(
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t

)
qi

t−1 · log
(
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O
(
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t | xi
t

)
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t−1

)
︸ ︷︷ ︸

(b)

+ ηt

M∑
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n∑
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O
(
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)
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t−1︸ ︷︷ ︸
(a)

· log

O (zm
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T
(
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j
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)
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︸ ︷︷ ︸

(a)

− ηt
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O
(
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t | xi
t

)
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t−1 · log
(

n∑
i=1

O
(
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t | xi
t

)
qi
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)
︸ ︷︷ ︸

(b)
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In the first expression we start by splitting the summation to sum over its clusters and
sum over the components of each cluster,

(a) =ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 (A.36)

·log

O
(
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t | x
j
t−1, at−1

)
qj

t−1

O
(
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t | xi
t

)∑n
j=1 p

(
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t | x
j
t−1, at−1

)
qj

t−1


(a) =ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 (A.37)

·log

O
(
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)
O
(
zk

t | xi
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)


using the abstract model, (4),

(a) =ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 (A.38)

·log

 K ·O
(
zk

t | xi
t

)
∑K·c

k=K(c−1)+1O
(
zk

t | xi
t

)
 . (A.39)

since the denominator within the log is a sum of positive values, the following clearly
holds,

(a) ≤ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 · log(K) (A.40)

by taking the constant log(K) out of the summation, the rest sums to one, so (a) ≤
log(K). Next we bound the second expression from above,

(b) =ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 (A.41)

·log
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(
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t

)
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i=1O

(
zk

t | xi
t

)
qi
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applying Jensen’x inequality,

(b) ≤log

ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1

 (A.42)

by recalling the definition of the normalizer, we end up with log(1) = 0 ■

Last, we provide a proof for the lower bound,
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Proof.

ˆ̄Ez

[
H
(ˆ̄b)]− Êz

[
H
(
b̂
)]

=

−ηt

C∑
c=1

K·c∑
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(
zk

t | xi
t

)
qi

t−1

·
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]

since log(x) ≤ x− 1, ∀x > 0,

ˆ̄Ez

[
H
(ˆ̄b)]− Êz

[
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rearranging terms,
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·
O
(
zk

t | xi
t

)
∑n

i=1O
(
zk

t | xi
t

)
qi

t−1
·
∑n

i=1O
(
zk

t | xi
t

)
qi

t−1

O
(
zk

t | xi
t

) (A.46)

we conclude with,

1− ηt

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

O
(
zk

t | xi
t

)
qi

t−1 = 0 (A.47)

We now derive the second part of Theorem 2, i.e. for the difference of expected
state-dependent reward.

Lemma A.1.1. The value of the estimated expected state-dependent reward is not
affected by the abstraction shown in (4), i.e.,

ˆ̄Ez

[
E

x∼ˆ̄b′ [rx(x, a)]
]

= Êz
[
Ex∼b̂′ [rx(x, a)]

]
(A.48)
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Proof.

ˆ̄Ez

[
E

x∼ ˆ̄b′
t

[rx(xt, at)]
]

= (A.49)

M∑
m=1

P̄(zm
t | H−t )

n∑
i=1

P̄(xi
t | zm

t ,H
−
t )rx(xi

t, at) (A.50)

applying chain rule,

M∑
m=1

n∑
i=1

P̄(xi
t, z

m
t | H−t )rx(xi

t, at), (A.51)

then applying chain-rule from the other direction and using the markovian assumption
of the observation model,

M∑
m=1

n∑
i=1

Ō(zm
t | xi

t)b−t · rx(xi
t, at). (A.52)

Applying the transition function on particles from bt−1, does not alter their weights,
therefore we receive the following expression,

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

Ō
(
zk

t | xi
t

)
qi

t−1rx(xi
t, at) (A.53)

Using (1),

C∑
c=1

K·c∑
k=K(c−1)+1

n∑
i=1

K·c∑
k̄=K(c−1)+1

O
(
zk̄

t | xi
t

)
K

qi
t−1rx(xi

t, at), (A.54)

followed by canceling the summation over k with K in the denominator,

M∑
m=1

n∑
i=1

O(zm
t | xi

t)b−t · rx(xi
t, at). (A.55)

We then end up with the desired result,

ˆ̄Ez

[
E

x∼ˆ̄b′ [rx(x, a)]
]

= Êz
[
Ex∼b̂′ [rx(x, a)]

]
(A.56)

To conclude the proofs of Theorem 2, note that,

0 ≤ ω1
( ˆ̄Ez

[
E

x∼ˆ̄b′ [rx(x, a)]
]
− Êz

[
Ex∼b̂′ [rx(x, a)]

])
(A.57)

+ ω2
( ˆ̄Ez

[
H
(ˆ̄b)]− Êz

[
H
(
b̂
)])
≤ ω2log(K) (A.58)
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Corollary 2.1

The proof of 2.1 follows closely to the proof in A.4. Replacing the exact value function
with its estimated counterpart from A.6 yields the desired result.
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A.2 AI-FSSS

In this section we present the main procedures to derive our algorithm. The variables
used in Algorithm A.1 are b, ba and b′ which represent a belief node, a predicted
belief node, i.e. after performing an action and posterior belief, after incorporating a
measurement. C(·) denotes a list of their corresponding children. a and z{1,...,K} denotes
an action and a list of K sampled observations respectively. P̄z|x is a list holding the
abstract probability values of the measurement model, as in equation (4). Rstate(·, ·)
denotes a state-dependent reward function, which may be defined arbitrarily. γ denotes
the discount factor. LB,UB and N are all initialized to zero. Rollout performs a
predefined policy. In our experiments, we chose uniform distribution over all actions
for the rollout policy. Algorithm A.2 uses binit, which represents the initial belief at the
root node, n is the number of iterations and dmax, the maximum depth of the planning
tree.

Algorithm A.1 AI-FSSS
Procedure: Simulate(b,d)

1: if d = 0 then
2: Return 0, 0
3: else if |C(b)| < |A| then
4: a, z{1,...,K} ←−Gen(b,K)
5: P̄z|x ←− AbstractObs(ba, z{1,...,K}) // eq.(4)
6: Ē[R(ba)]←−ExpectedReward(b, a, ba, P̄z|x)
7: else
8: a←− SelectAction(b)
9: end if

10: lb←− Ē[R(ba)]
11: ub←− Ē[R(ba)] + log(K)
12: if 0 < N(ba) < K then
13: z ←− Pop (z{1,...,K})
14: b′ ←− Posterior(b, a, z)
15: VLB, VUB ←−Simulate(b′, d− 1)
16: else if N(ba) = K then
17: b′ ←− arg min

b′
N(b′)

18: VLB, VUB ←−Simulate(b′, d− 1)
19: else if N(ba) = 0 then
20: VLB, VUB ←−Rollout(ba, d− 1)
21: end if
22: LB(ba)←− lb+ γVLB+(|C(ba)|−1)(LB(ba)−lb)

|C(ba)|

23: UB(ba)←− ub+ γVUB+(|C(ba)|−1)(LB(ba)−ub)
|C(ba)|

24: LB(b)←− max
a
LB(ba)

25: UB(b)←− max
a
UB(ba)

26: N(b)←− N(b) + 1
27: N(ba)←− N(ba) + 1
28: Return LB(b), UB(b)
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Algorithm A.2 Solve
Procedure: Solve

1: for i ∈ 1 : n do
2: Simulate(binit, dmax)
3: end for
4: action←− AdaptBounds(binit)
5: return action
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Algorithm A.3 Refine
Procedure: Refine(b,ba,d)

1: if IsLeaf(b) then
2: Return 0, 0
3: else if Abstract(ba) then
4: rold ←−ReuseReward(ba)
5: Pz|x ←− OriginalObsModel(ba, z{1,...,K})
6: E[H(ba)]←−ExpectedEntropy(b, ba, Pz|x)
7: r ←− rold + ω2(E[H(ba)]− Ē[H(ba)])
8: else
9: r ←− rold

10: end if
11: b′ ←− arg max

b′
(UB(b′)− LB(b′))

12: a′ ←− arg max
a′

(UB(b′a′)− LB(b′a′))

13: VLB, VUB ←−Refine(b′, b′a′, d− 1)
14: LB(ba)←− lb+ γVLB+(|C(ba)|−1)(LB(ba)−lb)

|C(ba)|

15: UB(ba)←− ub+ γVUB+(|C(ba)|−1)(LB(ba)−ub)
|C(ba)|

16: LB(b)←− max
a
LB(ba)

17: UB(b)←− max
a
UB(ba)

18: return LB(b), UB(b)
Procedure: AdaptBounds(binit)

1: while max
a+∈A

LB(binita
+) < max

a∈A\a+
UB(binita) do

2: a∗ ←− arg max
a∈A

LB(binita)

3: Refine(binit, binita
∗, d)

4: end while
5: Return a∗

A.2.1 Implementation Details

Domain

We compared the different algorithms on a two-dimensional Light Dark environment.
In this domain, the unobserved state of the agent is its pose, (X,Y ), defined relative
to a global coordinate frame, located at (0, 0). There are 9 possible actions, eight of
which has one unit of translation, and they differ from each other by the direction
which is equally spaced on a circle, the ninth action has zero translation. We denote
the transition model as x′ = f(x, a, w). At each time step, the agent receives a noisy
estimate of its position as an observation, denoted by z = h(x, v). In our experiments
we chose w and v to be distributed according to a Gaussian noise, although in general
they may be arbitrary. The reward function defined as the negative weighted sum of
distance to goal and entropy,

rx(b, a) = −Eb[∥x− xg∥]−H(b), (A.59)
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The prior belief assumed to be Gaussian, b0 = N ([0, 0],Σ0). In all our experiments,
we employ a receding horizon approach. At each iteration we calculate a solution from
scratch and share no information across different time steps.

Domain - Total Return Evaluation

We performed the experiments on a modification of Light Dark 2D and added forbidden
regions to the environment. Whenever the agent crosses to a forbidden region, a -10
reward was added to its immediate reward. Also, we added +10 reward whenever the
agent reached the goal and stayed there until the episode terminated.

Hyperparameters

Here we present the hyperparameters used to evaluate the total return performance.

AI-FSSS
n C K

20 4 4
FFFS

n C
20 4

PFT-DPW
n c1 ko αo

20 1 4 0.014

Table A.1: Hyperparameters used in the experiments.

2 c controls the bonus of the UCB function, which is different from the obser-
vation branching factor in FSSS and AI-FSSS, C.
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A.3 Monte Carlo Planning in Hybrid Belief POMDPs

A.3.1 Theoretical analysis

Lemma A.3.1. HB-MCP state-dependent reward estimator, R̂X ≜ 1
N

∑N
i,j=1 λ

i,j
t

1
nX

∑nX
k=1 rx(Xi,j,k

t , at),
is unbiased.

Proof.. If states are sampled i.i.d. for each hypothesis, then the expected value of the
reward estimator, R̂X , is,

E[R̂] =
∫

Q(R̂X | Ht)R̂XdR̂X

=
∫ ∫ ∫

Q(R̂X , b, x1:n | Ht)R̂Xdx1:ndbdR̂X

=
∫ ∫ ∫
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=
∫ ∫

Q(R̂X | x1:n)Q(x1:n | bt,Ht)R̂Xdx1:ndR̂X

=
∫ ∫

Q(R̂X | x1:n)

∑
i,j

Q(x1:n | bt, β
i,j
0:t,Ht)Q(βi,j

0:t | bt,Ht)

 R̂Xdx1:ndR̂X

=
∫ ∫

Q(R̂X | x1:n)

∑
i,j
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i,j
0:t,Ht)Q(βi,j
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 R̂Xdx1:ndR̂X

=
∫
R̂X(x1:n)

∑
i,j

Q(x1:n | bt, β
i,j
0:t,Ht)Q(βi,j

0:t | Ht)

 dx1:n

=
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i,j

Q(βi,j
0:t | Ht)

∫
Q(x1:n | bt, β

i,j
0:t,Ht)R̂X(x1:n)dx1:n

=
∑
i,j

Q(βi,j
0:t | Ht)

∫
Q(x1:n | βi,j

0:t,Ht)R̂X(x1:n)dx1:n

= EQEb[Xt]β0:t
R̂X(x1:n) = E

 1
N

N∑
i,j=1

λi,j
t

1
nX

nX∑
k=1

rx(Xi,j,k
t , at)


= EQ

 1
N

N∑
i,j=1

λi,j
t E

b[Xt]i,j
β0:t

[
1
nX

nX∑
k=1

rx(Xi,j,k
t , at)

]
= 1
N

N∑
i,j=1

EQ

[
P
Q

1
nX

nX∑
k=1

Eb[Xt]β0:t

[
rx(Xi,j,k

t , at)
]]

= EP
[
Eb[Xt]β0:t

rx(Xt, at)
]
≜ RX

where P=P(β0:t | Ht), Q=Q(β0:t | Ht), and N and nX denote the number of samples
from Q and b[Xt]i,jβ0:t

respectively. ■
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Lemma A.3.2. Given an unbiased reward estimator, R̂, the value-function estimator
used in HB-MCP is unbiased.

Proof. First, note that the value function of time step t+ 1 can be written as,

Ezt+1:τ [
T∑

τ=t+1
Rτ ]=Ezt+1

[
Rt+1 + Ezt+2:τ

[
V π

t+2
]]

(A.60)

= Eβ0:tEβt+1|β0:tEzt+1|β0:t+1 [Rt+1]︸ ︷︷ ︸
≜αt+1

+E
[
V π

t+2
]
.

and its corresponding estimator,

α̂t+1 ≜ ÊQ

P
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)
Q
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t+1 | β
j
0:t,H0

) λj
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 . (A.61)

Then,
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Ê
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Continuing recursively on the value function yields the desired result. ■

A.3.2 Implementation details - vanilla-HB-MCTS

Algorithms A.4 and A.5 describe the main procedures of vanilla-HB-MCTS. Algorithm
A.4 follows PFT-DPW [48] closely. Line 3 in Algorithm A.4 performs action selection
based on the UCT exploration bonus. In our experimental setting, we assumed discrete
action space, and thus avoided action progressive widening, which can otherwise be re-
placed with Line 3. Line 4 performs observation progressive widening, which resamples
previously seen observations. This step is required to avoid shallow trees due to a
continuous observation space, see [48] for further details. Algorithm A.5 computes the
pruned-posterior belief, given the multi-hypotheses posterior belief from the previous
time-step and the selected action.
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Algorithm A.4 vanilla-HB-MCTS
Procedure:Simulate(b, h, d)
1: if d = 0 then
2: Return 0
3: end if
4: a←− arg max

ā

Q(bā) + c

√
log(N(b))

N(bā)

5: if |C(ba)| ≤ koN(ba)αo then
6: b′ ←− PrunedPosterior(b, a)
7: r ←− Reward(b, a)
8: C(ba) ∪ {(b′, r)}
9: R←− r+Rollout(b′, d− 1)
10: else
11: b′, r ←− Sample uniformly from C(ba)
12: R←− r+Simulate(b′, d− 1)
13: end if
14: N(b)←− N(b) + 1
15: N(ba)←− N(ba) + 1
16: Q(ba)←− Q(ba) + R−Q(ba)

N(ba)
17: return R

Algorithm A.5 PrunedPosterior
Procedure:PrunedPosterior(b, a)
// b ≜ {bj

t , ωj
t }M

j=1
1: z ← SampleObservation(b, a)
2: {ωi,j

t+1}
L,M
i=1,j=1 ←−ComputeWeights(b, a, z) //eq.(3.4)

3: {ωi,j
t+1}

Ls(j),M
i=1,j=1 ←− Prune({ωi,j

t+1}
L,M
i=1,j=1)

4: {ω̄i,j
t+1}

Ls(j),M
i=1,j=1 ←− Normalize({ωi,j

t+1}
Ls(j),M
i=1,j=1 )

5: for j ∈ [1, M ] do
6: for i ∈ [1, Ls(j)] do
7: bi,j

t+1 ←− Ψ(bj
t , a, z, i) // eq. (3.5)

8: b′.append({bi,j
t+1, ω̄i,j

t+1})
9: end for
10: end for
11: Return b′

A.3.3 Results

This subsection is intended to provide more information about the experiments that
appear in the chapter. Specifically, we provide the trajectories performed by HB-MCP
and attempt to interpret the results below. In table A.2 we provide the hyperparameters
used in our experiments and in table A.3 we provide a numeric values for the average
cumulative reward of our experiments.

Aliased matrix. There are many ambiguous, evenly spaced landmarks around the
agent, along with its ambiguous initial pose, as shown in figure A.1b. The intuitive
way to reduce the uncertainty of the belief would be to first disprove wrong hypotheses,
and then pass near as many landmarks as possible, such that they would be within the
sensing range. The easiest way to disambiguate hypotheses would be to use the unique
landmark (see figure A.1b). It is clearly shown in figure A.1c that the agent indeed
prioritizes the unique landmark before passing near landmarks. Note that the unique
landmark would only be visible (and thus provide observation) if the ground-truth
position of the landmark is within the sensing range of the ground-truth pose of the
agent. It can also be seen from figure A.1a that after two macro-steps, which is the
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(a) cumulative return (b) initial belief (c) trajectories

Figure A.1: The goal of the agent is to minimize the uncertainty of its pose and the
location of all landmarks. (a) Mean and standard deviation of the cumulative reward,
over 100 trials (higher is better). (b) Illustration of the initial belief of the agent. x∗
denotes the ground truth pose of the agent. l∗ denotes a unique landmark. The agent
receives as a prior three hypotheses at different locations, drawn as blue ellipses. (c)
Ground-truth trajectories are visualized in transparent color, illustrated on top of the
initial belief, such that multiple similar trajectories appear in a moreopaque color.

distance from the unique landmark, the descent in cumulative reward becomes less
steep, and significantly outperform other algorithms.

(a) cumulative return (b) initial belief (c) trajectories

Figure A.2: The goal of the agent is to reach the target location while minimizing
uncertainty. (a) Mean and standard deviation of the cumulative reward, over 100 trials.
(b) Illustration of the initial belief of the agent. x∗ denotes the ground truth pose of the
agent. l∗ denotes a unique landmark. The agent receives as a prior three hypotheses
at different locations. (c) Ground-truth trajectories are visualized in transparent color,
illustrated on top of the initial belief, such that multiple similar trajectories appear in
a moreopaque color.

Goal reaching. As shown in A.2c, most of the trajectories performed by the agent
only walk through a simple straight line. Due to the multi-modal hypotheses, the agent
first prioritizes the unique landmark (figure A.2b), which practically disambiguates
wrong hypotheses due to their large distance from the unique landmark. Then, the
agent chooses to reach the goal region to maximize the cumulative reward.

Kidnapped robot. The trajectories shown in figure A.3c do not show a strong
preference to any direction. Note that the environment is highly aliased, and there is
no unique landmark where the agent may reach to easily disprove wrong hypotheses.
Similar results were obtained through all solvers (figure A.3a). Although all landmarks
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(a) cumulative return (b) initial belief (c) trajectories

Figure A.3: The goal of the agent is to minimize the uncertainty of its pose. (a) Mean
and standard deviation of the cumulative reward, over 100 trials. (b) Illustration of the
initial belief of the agent, blue circles illustrate conditional beliefs, crosses denote land-
marks. (c) Ground-truth trajectories are visualized in transparent color, illustrated on
top of the initial belief, such that multiple similar trajectories appear in a moreopaque
color.

look alike, disambiguation may occur by utilizing the pattern of the scattered land-
marks. However, such disambiguation may require a long planning horizon which was
out of reach for our non-optimized planner.

Hyperparameter Description Default Value
c UCB exploration constant 40
Nx Number of state particles per belief node 200
Tm Time limit per planning step (in seconds) 202 / 403
T Lookahead horizon 8
ko Observation double progressive widening multiplicative 2.0
αo Observation double progressive widening exponent 0.014

Table A.2: Hyperparameters for HB-MCP (ours), vanilla-HB-MCTS and PFT-DPW
algorithm. 1 indicates the planning time for Goal reaching and Kidnapped robot sce-
narios. 2 indicates the planning time for Aliased matrix scenario.

Aliased matrix Goal reaching Kidnapped robot
HB-MCP (ours) -585.2 -716.8 -323.7

vanilla-HB-MCTS -909.6 -939.4 -349.5
PFT-DPW -961.8 -1009.8 -327.8
DA-BSP -979.5 -931.5 -330.4

Table A.3: Comparison of algorithm performances on different scenarios. Results are
based on a simulation study with 100 trials per scenario and algorithm.
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A.4 Data Association Aware POMDP Planning with Hy-
pothesis Pruning Performance Guarantees

A.4.1 Theoretical analysis

Theorem 1

Theorem A.1. Let time-step t = 0 denote the root of the planning tree. Then, the
expected reward for the pruned POMDP, M , is bounded with respect to the full POMDP,
M , through the factor of the pruned weight values, and the maximum immediate reward,

∣∣∣E[r(bt, at)]−E[r(bt, at)]
∣∣∣≤Rmax

[
δβ

0 +
t−1∑
τ=1

Ez1:τ

[
δβ

τ

]]
, (A.62)

where δβ
τ ≜ ∑

βτ∈Dτ\Dτ
P(βτ | Hτ ), i.e. the sum of pruned hypotheses weights at

time-step τ .

Proof.. Denote Dt as the total number of new associations at time t, and Dt as a subset
thereof. By definition of the expected future reward,∣∣∣E[r(bt)]− E[r(bt)]

∣∣∣ (A.63)

=
∣∣∣ ∫
z1:t

∫
x0:t

rx(xt) · [b0

t∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.64)

− b0

t∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))]
∣∣∣ (A.65)

(A.66)
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by marginalizing out the variables βt, zt,∣∣∣ ∫
z1:t

∫
x0:t

rx(xt) ·
[
b0P (xt | xt−1, πt−1)) (A.67)

·
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.68)

− b0P (xt | xt−1, πt−1)) (A.69)

·
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))
]∣∣∣ (A.70)

≤
∫

z1:t

∫
x0:t

∣∣∣rx(xt) ·
[
b0P (xt | xt−1, πt−1)) · (A.71)

t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.72)

− b0P (xt | xt−1, πt−1)) · (A.73)
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))
]∣∣∣ (A.74)

from Holder’s inequality,

≤ Rmax

∫
z1:t

∫
x0:t

∣∣∣P (xt | xt−1, πt−1)) (A.75)

[
b0 ·

t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.76)

− b0 ·
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))
]∣∣∣ (A.77)

since the transition model is positive, we take out of the absolute operator and marginal-
ize it out,

≤ Rmax

∫
z1:t

∫
x0:t

∣∣∣b0 ·
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.78)

− b0 ·
t−1∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))
∣∣∣ (A.79)

to avoid clutter convenience, we denote
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b̃t ≜ b0

t∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.80)

b̃t ≜ b0

t∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) . (A.81)

Then we can rewrite it as,

= Rmax

∫
z1:t−1

∫
x0:t−1

(A.82)

∣∣∣b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)

− b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)
∣∣∣

note how this expression can also be written as, Rmax
∫

z1:t−1

∫
x0:t−1

∣∣∣b̃t − b̃t

∣∣∣. This will be

useful for a recursive structure to be discussed later.
We now add and subtract,

= Rmax

∫
z1:t−1

∫
x0:t−1

(A.83)

∣∣∣b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)

− b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)

+ b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)

− b̃t−2

|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)
∣∣∣
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grouping terms and applying triangle inequality,

= Rmax

∫
z1:t−1

∫
x0:t−1

(A.84)

∣∣∣ [b̃t−2 − b̃t−2
] |Dt−1|∑

βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2))
∣∣∣ (A.85)

+Rmax

∫
z1:t−1

∫
x0:t−1∣∣∣b̃t−2 ·

[|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)

−
|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)
]∣∣∣

The first summand describes the loss due to pruning in past time steps. The second
summand describes the loss due to pruning at the latest time step. Focusing on the
second summand, recall that Dt ⊆ Dt, thus,

Rmax

∫
z1:t−1

∫
x0:t−1

(A.86)

∣∣∣b̃t−2 ·
[|Dt−1|∑

βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)) (A.87)

−
|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2))
]∣∣∣ (A.88)

= Rmax

∫
z1:t−1

∫
x0:t−1

b̃t−2· (A.89)

∣∣∣ ∑
βt−1∈Dt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)) (A.90)

+
∑

βt−1∈Dt\Dt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2)) (A.91)

−
|Dt−1|∑
βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2))
∣∣∣ (A.92)

= Rmax

∫
z1:t−1

∫
x0:t−1

b̃t−2· (A.93)

∣∣∣ ∑
βt−1∈Dt−1\Dt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2))
∣∣∣ (A.94)

since all terms within the absolute operator are positive, we can now drop it entirely,
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we then marginalize the observation at time t− 1,

= Rmax

∫
z1:t−2

∫
x0:t−1

b0 ·
t−2∏
τ=1

|Dτ |∑
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1)) (A.95)

∑
βt−1∈¬Dt−1

P(βt−1 | xt−1)P (xt−1 | xt−2, πt−2)) (A.96)

by introducing back the normalizer of the pruned belief, P(zτ | H−τ ), we get,

= Rmax

∫
z1:t−2

t−2∏
k=1

P
(
zk | H−k

) ∫
x0:t−1

(A.97)

b0 ·
t−2∏
τ=1

∑|Dτ |
βτ

P(zτ | xτ , βτ )P(βτ | xτ )P (xτ | xτ−1, πτ−1))

P
(
zτ | H−τ

)
 (A.98)

∑
βt−1∈¬Dt−1

P(βt−1 | xt−1)P (xt−1 | xt−2, πt−2)) (A.99)

= Rmax

∫
z1:t−2

t−2∏
k=1

P
(
zk | H−k

) ∫
xt−2:t−1

bt−2
∑

βt−1∈¬Dt−1

P(βt−1 | xt−1)P (xt−1 | xt−2, πt−2))

(A.100)

or, equivalently,

= RmaxEz1:t−2

 ∫
xt−2:t−1

bt−2
∑

βt−1∈¬Dt−1

P(βt−1 | xt−1)P (xt−1 | xt−2, πt−2))

 . (A.101)

Crucially, note how the following term depends only on the survived hypotheses (no
access to the pruned hypotheses is required). Finally, by rearranging and marginalizing
state variables, we get,

= RmaxEz1:t−2

 ∫
xt−1

∑
βt−1∈¬Dt−1

P(βt−1 | xt−1)P
(
xt−1 | H−t−1

) (A.102)

= RmaxEz1:t−2

 ∑
βt−1∈¬Dt−1

P
(
βt−1 | H−t−1

) (A.103)

= RmaxEz1:t−2

 ∑
βt−1∈¬Dt−1

∫
zt−1

P(βt−1 | Ht−1)P
(
zt−1 | H−t−1

) (A.104)

= RmaxEz1:t−1

 ∑
βt−1∈¬Dt−1

P(βt−1 | Ht−1)

 (A.105)

Going back to the first summand from equation (A.83) and applying triangle inequality,
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we have that,

Rmax

∫
z1:t−1

∫
x0:t−1

(A.106)

∣∣∣ [b̃t−2 − b̃t−2
] |Dt−1|∑

βt−1

P(zt−1 | xt−1, βt−1)P(βt−1 | xt−1)P(xt−1 | xt−2, πt−2))
∣∣∣ (A.107)

≤ Rmax

∫
z1:t−2

∫
x0:t−2

∣∣∣b̃t−2 − b̃t−2
∣∣∣ (A.108)

recall the recursive structure from equation (A.82), thus,∣∣∣E[r(bt)]− E[r(bt)]
∣∣∣≤ (A.109)

RmaxEz1:t−1

 ∑
βt−1∈¬Dt−1

P(βt−1 | Ht−1)

+Rmax

∫
z1:t−2

∫
x0:t−2

∣∣∣b̃t−2 − b̃t−2
∣∣∣ (A.110)

≤ Rmax

(
Ez1:t−1

 ∑
βt−1∈¬Dt−1

P(βt−1 | Ht−1)

 (A.111)

+ Ez1:t−2

 ∑
βt−2∈¬Dt−2

P(βt−2 | Ht−2)

+
∫

z1:t−3

∫
x0:t−3

∣∣∣b̃t−3 − b̃t−3
∣∣∣) ≤ ... (A.112)

≤ Rmax

t−1∑
τ=1

Ez1:τ

 ∑
βτ∈¬Dτ

P(βτ | Hτ )

+
∫
x0

∣∣∣b0 − b0
∣∣∣dx0

 (A.113)

≡ Rmax

(
t−1∑
τ=1

Ez1:τ

[
δβ(Hτ )

]
+ δ

β

0

)
(A.114)

which concludes our derivation. ■

Corollary 1.1

Corollary A.2. Without loss of generality, assume that the time step at the root node
of the planning tree is t = 0. Then, for any policy π, the following holds,

∣∣∣V π(b0)−V̄ π(b̄0)
∣∣∣≤Rmax

[
T · δβ

0 +
T∑

k=1

k∑
τ=1

Ez1:τ

[
δβ

τ

]]
. (A.115)

Proof. The proof is a direct consequence of the linearity of expectation. ■
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Self Normalized Importance Sampling Estimator

In this subsubsection we will derive the SN estimator. The theoretical expected reward
at time step t may be written as,

Ez1:t [r(bt)]=
∫

z1:t

t∏
τ=1

P
(
zτ | H−τ

)∑
β0:t∈D0:t

P(β0:t | Ht)
∫

xt

P(xt | β0:t,Ht)rx(xt) (A.116)

where D0:t is the set of all hypotheses at time step t. Applying Bayes rule followed by
a chain rule on P(β0:t | Ht),

∫
z1:t

t∏
τ=1

P
(
zτ | H−τ

) ∑
β0:t∈D0:t

P
(
zt, βt | β0:t−1,H

−
t

)
P
(
zt | H−t

) P(β0:t−1 | Ht−1)
∫

xt

P(xt | β0:t,Ht)rx(xt)

(A.117)
applying this step repeatedly on P(β0:τ | Hτ ) ∀τ ∈ [1, t− 1] results in,

∫
z1:t

t∏
τ=1

P
(
zτ | H−τ

) ∑
β0:t∈D0:t

P(β0)
t∏

τ=1

P (zτ , βτ | β0:τ−1,H
−
τ )

P
(
zτ | H−τ

) ∫
xt

P(xt | β0:t,Ht)rx(xt)

(A.118)

=
∫

z1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1
P
(
zτ , βτ | β0:τ−1,H

−
τ

) ∫
xt

P(xt | β0:t,Ht)rx(xt) (A.119)

=
∑

β0∈D0

P(β0)
∑

β1∈D1

P
(
β1 | β0,H

−
1

) ∫
z1
P
(
z1 | β0:1,H

−
1

)
· · · (A.120)

· · ·
∑

βt∈Dt

P
(
βt | β0:t−1,H

−
t

) ∫
zt

P
(
zt | β0:t,H

−
t

) ∫
xt

P(xt | β0:t,Ht)rx(xt)

where the second equality is due to chain rule on P (zτ , βτ | β0:τ−1,H
−
τ ) and rearranging

terms.
According to equation (A.120) we define a self-normalized importance sampling

estimator for the expected reward, at time step t, where both the observations and
states are sampled,

Êz1:t [r(b̂t)] ≜
∑

β0∈D0

∑
β1∈D1

∑
c1

· · ·
∑

βt∈Dt

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.121)

=
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.122)

where ω (zτ ) = P(zτ |β0:τ ,H−
τ )

Q(zτ |H−
τ ) and Q(.) is the proposal distribution according to which

the sampling-based estimator generates observations. Similarly, we define the pruned
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estimator, where the only difference is the summation over a pruned subset of the
hypotheses, denoted D,

Êz1:t

[
r
(
b̂t

)]
=
∑
zc

1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω (zc
τ )∑

zk
τ
ω (zk

τ )
r̂
(
bβ

t

)
. (A.123)

Theorem 2

Theorem A.3. Let π be the policy, then the expected reward for the estimated pruned
POMDP, M̂ , is bounded with respect to the estimated full POMDP, M̂ , as follows,

∣∣∣Êπ
z1:t [r(b̂t)]− Ê

π

z1:t

[
r
(
b̂t

)]∣∣∣ ≤ Rmax

[
δ̂β

0 +
t∑

τ=1
δ̂β

τ

]
. (A.124)

where, δ̂β
τ = Êzc

1:t
Eβ0:t−1

∑
βt∈Dt\Dt

P
(
βt | β0:t−1,H

−
t

)
for all τ ∈ [1, t] represents the

expected sum of conditional hypotheses’ weights which are myopically pruned and δ̂β
0 =∑

β0∈D0\D0
P
(
β0 | H−t

)
.

Proof.. Hereon forward, we assume that conditioned the same hypothesis, β0:τ , the
same observations and states are sampled. This is required in order to obtain a deter-
ministic bound and can be achieved in practice by fixing some seed number. Addition-
ally, we also define a pruned conditionals,

P
(
βτ | β0:τ−1,H

−
τ

)
≜

P (βτ | β0:τ−1,H
−
τ ) , β0:τ ∈ D0:τ

0 , otherwise
. (A.125)

Then,

∣∣∣Êz1:t [r(b̂t)]− Êz1:t

[
r
(
b̂t

)]∣∣∣ (A.126)

= |
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.127)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
|

= |
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.128)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
|

114



add and subtract,

|
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.129)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
P
(
βt | β0:t−1,H

−
t

) ωc
t∑

c′
t
ωc′

t

r̂
(
bβ

t

)

+
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
P
(
βt | β0:t−1,H

−
t

) ωc
t∑

c′
t
ωc′

t

r̂
(
bβ

t

)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
|

applying triangle inequality then focusing on the second pair of terms,

|
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
P
(
βt | β0:t−1,H

−
t

) ω(zc
τ )∑

zk
t
ω(zk

t )
r̂
(
bβ

t

)
(A.130)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
|

= |
∑

β0∈D0

t−1∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
· (A.131)

∑
βt∈Dt

[
P
(
βt | β0:t−1,H

−
t

)
− P

(
βτ | β0:τ−1,H

−
τ

)]∑
zc

τ

ω(zc
τ )∑

zk
t
ω(zk

t )
r̂
(
bβ

t

)
|

applying again triangle inequality followed by Holder inequality,

≤ Rmax

∑
β0∈D0

t−1∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
· (A.132)

∣∣∣∣∣∣
∑

βt∈Dt

[
P
(
βt | β0:t−1,H

−
t

)
− P

(
βτ | β0:τ−1,H

−
τ

)]∣∣∣∣∣∣
= Rmax

∑
β0∈D0

t−1∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
· (A.133)

∑
βt∈Dt\Dt

P
(
βt | β0:t−1,H

−
t

)
≜ Rmaxδ̂

β
t

where δ̂β
t is the empirical expected weight of all the pruned hypotheses at time step t.

Crucially, its value depends only on past pruned hypotheses, which are known to us.
Now focusing on the first pair of terms from equation (A.129),
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|
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t∏

τ=1
P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
r̂
(
bβ

t

)
(A.134)

−
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
P
(
βt | β0:t−1,H

−
t

) ω(zc
t )∑

zk
t
ω(zk

t )
r̂
(
bβ

t

)
|

= |
∑

β0∈D0

t∏
k=1

∑
βk∈Dk

∑
zc

τ

[
P(β0)

t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
− P(β0)

t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

)]
·

(A.135)

P
(
βt | β0:t−1,H

−
t

) ω(zc
t )∑

zk
t
ω(zk

t )
r̂
(
bβ

t

)
|

triangle and Holder inequalities,

≤
∑

β0∈D0

t−1∏
k=1

∑
βk∈Dk

∑
zc

τ

|P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
(A.136)

− P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
|
∑

βt∈Dt

∑
zc

τ

P
(
βt | β0:t−1,H

−
t

) ω(zc
t )∑

zk
t
ω(zk

t )
Rmax

= Rmax

∑
β0∈D0

t−1∏
k=1

∑
βk∈Dk

∑
zc

τ

|P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
(A.137)

− P(β0)
t−1∏
τ=1

P
(
βτ | β0:τ−1,H

−
τ

) ω(zc
τ )∑

zk
τ
ω(zk

τ )
|

then, applying similar steps recursively on the obtained term yields,

∣∣∣Êz1:t [r(b̂t)]− Êz1:t

[
r
(
b̂t

)]∣∣∣ ≤ Rmax

t∑
τ=0

δ̂β
τ (A.138)

which concludes our derivation. ■

Corollary 2.1

Corollary A.4. The difference between the estimated value function of the full POMDP,
M̂ , and the estimated value function of the pruned POMDP, M̂ , is bounded by,

|V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ Rmax

[
δ̂β

0 +
T∑

k=1

k∑
τ=1

δ̂β
τ

]
. (A.139)

Proof. The proof is a direct consequence of the linearity of expectation. ■
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Corollary 2.2

Corollary A.5. Let π be a policy and let A be a sampling-based estimator for the value
function such that |V π(b0) − V̂ π(b̂0)| ≤ ϵA with probability at least 1 − δA. Then, the
following corollary holds for the loss in the value function for the pruned hypotheses,

|V π(b0)− ˆ̄V π(ˆ̄b0)| ≤ (A.140)

|V π(b0)− V̂ π(b̂0)|+ |V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ ϵA + ϵ̂hs
D̄
, (A.141)

hold with probability 1 − δA. We use ϵ̂hs
D̄

as a shorthand for the bounds provided in
corollary A.4.

Corollary 2.3

Corollary A.6. Let π⋆ be the optimal policy for the full theoretical POMDP with a
respective value function, V (bt). Let π̄ be the optimal policy for the pruned POMDP
and a value function, V̄ (b̄t). Last, let ˆ̄π be the optimal policy for the pruned, sampled-
based POMDP with a value function, ˆ̄V (ˆ̄bt). Then, with probability at least 1− δA, the
following holds, ∣∣∣V π⋆(bt)− ˆ̄V ˆ̄π(ˆ̄bt)

∣∣∣ ≤ 2(ϵA + ϵ̂hs
D̄

). (A.142)

Proof.. For conciseness, we drop the explicit dependence on the belief at each value
function. ∣∣∣V π∗ − V̂

π̂∣∣∣ ≤ ∣∣∣V π∗ − V̂ π̂
∣∣∣︸ ︷︷ ︸

(a)

+
∣∣∣V̂ π̂ − V̂

π̂∣∣∣︸ ︷︷ ︸
(b)

(A.143)

we split the derivation of term (a) into two cases, case 1a: V π̂ ≥ V̂ π∗ , then, V π∗ ≥
V π̂ ≥ V̂ π∗

(a) =
∣∣∣V π∗ − V̂ π̂

∣∣∣≤ ∣∣∣V π∗ − V π̂
∣∣∣+∣∣∣V π̂ − V̂ π̂

∣∣∣ (A.144)

≤
∣∣∣V π∗ − V̂ π∗

∣∣∣+∣∣∣V π̂ − V̂ π̂
∣∣∣≤ 2ϵA

Case 2a: V π̂ ≤ V̂ π∗ . Then, V π̂ ≤ V̂ π∗ ≤ V̂ π̂. By triangle inequality,

(a) =
∣∣∣V π∗ − V̂ π̂

∣∣∣≤ ∣∣∣V π∗ − V̂ π∗
∣∣∣+∣∣∣V̂ π∗ − V̂ π̂

∣∣∣ (A.145)

≤
∣∣∣V π∗ − V̂ π∗

∣∣∣+∣∣∣V π̂ − V̂ π̂
∣∣∣≤ 2ϵA (A.146)

Similarly, we split the handling of term (b) to two different cases, case 1b: if V̂ π̂ ≥ V̂
π̂
,
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then, V̂ π̂ ≥ V̂ π̂ ≥ V̂
π̂
. By triangle inequality,

(b) =
∣∣∣V̂ π̂ − V̂

π̂∣∣∣≤ ∣∣∣V̂ π̂ − V̂ π̂
∣∣∣+∣∣∣V̂ π̂ − V̂

π̂∣∣∣ (A.147)

≤
∣∣∣V̂ π̂ − V̂

π̂∣∣∣+∣∣∣V̂ π̂ − V̂
π̂∣∣∣≤ 2ϵ̂hs

D̄
(A.148)

where the last inequality is due to corollary A.5. Case 2b: if V̂ π̂ ≤ V̂
π̂
, then,V̂ π̂ ≤

V̂
π̂
≤ V̂

π̂
. From triangle inequality,

(b) =
∣∣∣V̂ π̂ − V̂

π̂∣∣∣≤ ∣∣∣V̂ π̂ − V̂
π̂∣∣∣+∣∣∣V̂ π̂

− V̂
π̂∣∣∣ (A.149)

≤
∣∣∣V̂ π̂ − V̂

π̂∣∣∣+∣∣∣V̂ π̂ − V̂
π̂∣∣∣≤ 2ϵ̂hs

D̄
(A.150)

which covers all the cases and result in,∣∣∣V π⋆(bt)− ˆ̄V ˆ̄π(ˆ̄bt)
∣∣∣ ≤ 2(ϵA + ϵ̂hs

D̄
). (A.151)

118



A.5 Online POMDP Planning with Anytime Determinis-
tic Guarantees

A.6 Mathematical Analysis

We start by restating the definition of the simplified value function,

V̄ π(b̄t) ≜ r(b̄t, πt) + Ē
[
V̄ (bt)

]
(A.152)

=
∑
xt

b̄(xt)rx(xt, πt) +
∑
zt

P̄(zt+1 | H−t+1)V̄ (b̄(zt+1)), (A.153)

A.6.1 Theorem 1

Theorem A.7. Let bt belief state at time t, and T be the last time step of the POMDP.
Let V π(bt) be the theoretical value function by following a policy π, and let V̄ π(bt) be
the simplified value function, as defined in (5.7), by following the same policy. Then,
for any policy π, the difference between the theoretical and simplified value functions is
bounded as follows,

∣∣∣V π(bt)−V̄ π(bt)
∣∣∣ ≤Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)

 ≜ ϵπz (bt).

(A.154)

Proof.. For notational convenience, we derive the bounds for the value function by
denoting the prior belief as b0,

V π
0 (b0) = Ez1:T

[ T∑
t=0

r(bt, at)
]

(A.155)

applying the belief update equation,

V π
0 (b0) =

∑
z1:T

T∏
τ=1

P
(
zτ | H−τ

) T∑
t=0

∑
xt

P(zt | xt)
∑

xt−1 P(xt | xt−1, πt−1)bt−1

P
(
zt | H−t

) rx(xt, at)


(A.156)

=
∑
z1:T

T∏
τ=1

P
(
zτ | H−τ

) T∑
t=0

∑
x0:t

∏t
k=1 P(zk | xk)P(xk | xk−1, πk−1)b(x0)∏t

τ=1 P
(
zτ | H−τ

) rx(xt, at)


(A.157)

=
T∑

t=0

∑
z1:T

∑
x0:T

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)rx(xt, at) (A.158)
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which applies similarly to the simplified value function,

V̄ π
0 (b0) =

T∑
t=0

∑
z1:T

∑
x0:T

t∏
k=1

P̄(zk | xk)P(xk | xk−1, πk−1)b(x0)rx(xt, at). (A.159)

We begin the derivation by focusing on a single time step, t, and later generalize to the
complete value function.

|Ez1:t [r(bt)]− Ēz1:t [r(b̄t)]| (A.160)

=|
∑
z1:t

∑
x0:t

[
t∏

k=1
P(zk | xk)P(xk | xk−1, πk−1)b(x0)rx(xt)−

t∏
k′=1

P̄(zk′ | xk′)P(xk′ | xk′−1, πk′−1)b(x0)rx(xt)]|

(A.161)

≤
∑
z1:t

∑
x0:t

∣∣∣∣∣rx(xt)
[

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1
b(x0) P̄(zk′ | xk′)P(xk′ | xk′−1, πk′−1)

]∣∣∣∣∣
(A.162)

=
∑
z1:t

∑
x0:t

|rx(xt)|
[

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1
b(x0) P̄(zk′ | xk′) P(xk′ | xk′−1, πk′−1)

]
(A.163)

where the second transition is due to triangle inequality, the third transition is equal-
ity by the construction, i.e. using the simplified observation models imply that the
difference is nonnegative. We add and subtract, followed by rearranging terms,

=
∑
z1:t

∑
x0:t

|rx(xt)| (A.164)

[
t∏

k=1
P(zk, xk | xk−1, πk−1)b(x0)−

t−1∏
k=1

b(x0)P̄(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)

+
t−1∏
k=1

b(x0)P̄(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)−
t∏

k′=1
b(x0)P̄(zk′ , xk′ | xk′−1, πk′−1)]

=
∑
z1:t

∑
x0:t

|rx(xt)|
{

(A.165)

P(zt, xt | xt−1, πt−1)
[

t−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)−
t−1∏
k=1

b(x0)P̄(zk, xk | xk−1, πk−1)
]

+
t−1∏
k=1

b(x0)P̄(zk, xk | xk−1, πk−1)[P(zt, xt | xt−1, πt−1)− P̄(zt, xt | xt−1, πt−1)]
}
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applying Holder’s inequality,

≤Rmax
∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)
[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)
t−1∏
k=1

P̄(zk, xk | xk−1, πk−1)
]

(A.166)

+Rmax
∑
z1:t

∑
x0:t

t−1∏
k=1

P̄(zk, xk | xk−1, πk−1)b(x0)[P(zt, xt | xt−1, πt−1)− P̄(zt, xt | xt−1, πt−1)]

=Rmax
∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)· (A.167)
[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)
t−1∏
k=1

P̄(zk, xk | xk−1, πk−1)
]

+Rmaxδt

=Rmax
∑

z1:t−1

∑
x0:t−1

[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)
t−1∏
k=1

P̄(zk, xk | xk−1, πk−1)
]

(A.168)

+Rmaxδt,

following similar steps recursively,

= . . . = Rmax

t∑
τ=1

δτ . (A.169)

Finally, applying similar steps for every time step t ∈ [1, T ] results in,

∣∣∣V π(bt)− V̄ π(bt)
∣∣∣ ≤ Rmax

T∑
t=1

t∑
τ=1

δτ (A.170)

where,

δτ =
∑
z1:τ

∑
x0:τ

τ−1∏
k=1

P̄(zk, xk | xk−1, πk−1)b(x0)[P(zτ , xτ | xτ−1, πτ−1)− P̄(zτ , xτ | xτ−1, πτ−1)]

=
∑

z1:τ−1

∑
x0:τ−1

τ−1∏
k=1

P̄(zk, xk | xk−1, πk−1)b(x0)[1−
∑
zτ

∑
xτ

P̄(zτ , xτ | xτ−1, πτ−1)]

(A.171)

plugging the term in (A.171) to (A.170) and expanding the terms results in the desired
bound,

∣∣∣V π(bt)− V̄ π(bt)
∣∣∣ ≤Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)


(A.172)

which concludes our derivation. ■
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A.6.2 Lemma 1

Lemma A.6.1. The optimal value function can be bounded as

V π∗(bt) ≤ UDBπ(bt), (A.173)

where the policy π is determined according to Bellman optimality over the UDB, i.e.

UDBπ(bt) ≜ max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)] (A.174)

= max
at∈A

[r(bt, at) + Ēzt+1|bt,at
[V̄ π(bt+1)] + ϵπz (bt, at)]. (A.175)

Proof.. In the following, we prove by induction that applying the Bellman optimality
operator on upper bounds to the value function in finite-horizon POMDPs will result
in an upper bound on the optimal value function. The notations are the same as the
ones presented in chapter 5. We restate some of the definitions from the chapter for
convenience.

The policy πt(bt) determined by applying Bellman optimality at belief bt, i.e.,

πt(bt) = arg max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)]. (A.176)

As it will be needed in the following proof, we also define the value of a belief which
includes in its history at least one observation out of the simplified set, e.g. Ht =
{a0, z1, . . . , zk /∈ Z̄, . . . , zt} as being equal to zero. Explicitly,

V̄ π
t (P(xt | a0, z1, . . . , zk /∈ Z̄, . . . , zt)) ≡ 0 ∀k ∈ [1, t]. (A.177)

We also use the following simple bound,

Vt,max ≜ Rmax · (T − t− 1) (A.178)

Base case (t = T ) - At the final time step T , for each belief we set the value
function to be equal to the reward value at that belief state, bT and taking the action
that maximizes the immediate reward,

UDBπ(bT ) = max
aT
{r(bT , aT ) + ϵz(bT , aT )} ≡ arg max

aT
{r(bT , aT )} (A.179)

which provides an upper bound for the optimal value function for the final time step,
V ⋆
T (bT ) ≤ UDBπ(bT ).

Induction hypothesis - Assume that for a given time step, t, for all belief states the
following holds,

V ⋆
t (bt) ≤ UDBπ(bt). (A.180)

122



Induction step - We will show that the hypothesis holds for time step t− 1. By the
induction hypothesis,

V ⋆
t (bt) ≤ UDBπ(bt) ∀bt, (A.181)

thus,

Q⋆(bt−1, at−1) = r(bt−1, at−1) +
∑

zt∈Z
P
(
zt | H−t

)
V ⋆

t (b(zt)) (A.182)

≤ r(bt−1, at−1) +
∑

zt∈Z
P
(
zt | H−t

)
UDBπ(b(zt)) (A.183)

= r(bt−1, at−1) +
∑

zt∈Z
P
(
zt | H−t

) [
V̄ π

t (bt) + ϵπz (bt)
]
. (A.184)

For the following transition, we make use of lemma A.6.1,

= r(bt−1, at−1) + Ēzt|bt−1,at−1

[
V̄ π

t (bt)
]

+ ϵπz (bt−1, at−1) (A.185)

≡ UDBπ(bt−1, at−1). (A.186)

Therefore, under the induction hypothesis, Q⋆
t−1(bt−1, at−1) ≤ UDBπ(bt−1, at−1). Tak-

ing the maximum over all actions at,

UDBπ(bt−1) = max
at−1∈A

{UDBπ(bt−1, at−1)} (A.187)

≥ max
at−1∈A

{
Q⋆

t−1(bt−1, at−1)
}

= V ⋆
t−1(bt−1),

which completes the induction step and the required proof. ■

Lemma A.6.2. Let bt denote a belief state and πt a policy at time t. Let P̄(zt | xt)
be the simplified observation model which represents the likelihood of observing zt given
xt. Then, the following terms are equivalent,

Ezt

[
V̄ π

t (bt) + ϵπz (bt)
]

= Ēzt

[
V̄ π

t (bt)
]

+ ϵπz (bt−1, at−1) (A.188)

Proof..

Ezt

[
V̄ π

t (bt) + ϵπz (bt)
]

= (A.189)

Ezt

[
V̄ π

t (bt)
]

+ Ezt

Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P̄(zk | xk)P(xk | xk−1, πk−1)


(A.190)
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focusing on the second summand,

∑
zt∈Z

P
(
zt | H−t

)
Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P̄(zk | xk)P(xk | xk−1, πk−1)


(A.191)

= Rmax

T∑
τ=t+1

1−
∑
zt

P
(
zt | H−t

) ∑
zt+1:τ

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)


(A.192)

by marginalizing over xt−1,

= Rmax

T∑
τ=t+1

[1−
∑
zt

P
(
zt | H−t

) ∑
zt+1:τ

∑
xt−1:τ

P̄(zt | xt)P(xt | xt−1, πt−1)b(xt−1)
P
(
zt | H−t

) ·

(A.193)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)]

canceling out the denominator,

= Rmax

T∑
τ=t+1

[1−
∑
zt:τ

∑
xt−1:τ

P̄(zt | xt)P(xt | xt−1, at−1)b(xt−1)· (A.194)

τ∏
k=t+1

P̄(zk | xk)P(xk | xk−1, πk−1)] ≡ ϵπz (bt−1, at−1)

it is left to show that Ezt|bt−1,at−1

[
V̄ π

t (bt)
]

= Ēzt|bt−1,at−1

[
V̄ π

t (bt)
]
. By the definition of

a value function of a belief not included in the simplified set, we have that,

Ezt|bt−1,at−1

[
V̄ π

t (bt)
]

=
∑

zt∈Z
P
(
zt | H−t

)
V̄ π

t (bt) (A.195)

=
∑

zt∈Z̄

P
(
zt | H−t

)
V̄ π

t (bt) +
∑

zt∈Z\Z̄

P
(
zt | H−t

)
V̄ π

t (bt) (A.196)

=
∑

zt∈Z̄

P̄
(
zt | H−t

)
· V̄ π

t (bt) +
∑

zt∈Z\Z̄

P
(
zt | H−t

)
· 0 (A.197)

= Ēzt|bt−1,at−1

[
V̄ π

t (bt)
]
, (A.198)

which concludes the derivation. ■

124



A.6.3 Corollary 1.1

We restate the definition of UDB exploration criteria,

at = arg max
at∈A

[UDBπ(bt, at)] = arg max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)]. (A.199)

Corollary A.8. Using Lemma A.6.1 and the exploration criteria defined in (5.17)
guarantees convergence to the optimal value function.

Proof.. Let us define a sequence of bounds, UDBπ
n(bt) and a corresponding difference

value between UDBn and the simplified value function,

UDBπ
n(bt)− V̄ π

n (bt) = ϵπn,z(bt), (A.200)

where n ∈ [0, |Z|] corresponds to the number of unique observation instances within
the simplified observation set, Z̄n, and |Z| denotes the cardinality of the complete
observation space. Additionally, for the clarity of the proof and notations, assume that
by construction the simplified set is chosen such that Z̄n(Ht) ≡ Z̄n remains identical
for all time steps t and history sequences, Ht given n. By the definition of ϵπn,z(bt),

ϵπn,z(bt) = Rmax

T∑
τ=t+1

1−
∑

zt+1:τ∈Z̄n

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)

 , (A.201)

we have that ϵπn,z(bt)→ 0 as n→ |Z|, since

∑
zt+1:τ∈Z̄n

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)→ 1 (A.202)

as more unique observation elements are added to the simplified observation space, Z̄n,
eventually recovering the entire support of the discrete observation distribution.

From lemma A.6.1 we have that, for all n ∈ [0, |Z|] the following holds,

V π∗(bt) ≤ UDBπ
n(bt) = V̄ π

n (bt) + ϵπn,z(bt). (A.203)

Additionally, from theorem 5.1 we have that,∣∣∣V π(bt)− V̄ π
n (bt)

∣∣∣ ≤ ϵπn,z(bt), (A.204)

for any policy π and subset Z̄n ⊆ Z, thus,

V̄ π
n (bt)− ϵπn,z(bt) ≤ V π(bt) ≤ V π∗(bt) ≤ V̄ π

n (bt) + ϵπn,z(bt). (A.205)

Since ϵπn,z(bt)→ 0 as n→ |Z|, and |Z| is finite, it is guaranteed that UDBπ
n(bt)

n→|Z|−−−−→
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V π∗(bt) which completes our proof. ■

Moreover, depending on the algorithm implementation, the number of iterations can
be finite (e.g. by directly choosing actions and observations to minimize the bound).
A stopping criteria can also be verified by calculating the difference between the upper
and lower bounds. The optimal solution is obtained once the upper bound equals the
lower bound.

A.6.4 Theorem 2

Theorem A.9. Let bt belief state at time t, and T be the last time step of the POMDP.
Let V π(bt) be the theoretical value function by following a policy π, and let V̄ π(bt) be
the simplified value function, as defined in (5.7), by following the same policy. Then,
for any policy π, the difference between the theoretical and simplified value functions is
bounded as follows,

∣∣∣V π(bt)−V̄ π(bt)
∣∣∣ ≤Rmax

T∑
τ=t+1

1−
∑

zt+1:τ

∑
xt:τ

b(xt)
τ∏

k=t+1
P̄(zk | xk)P(xk | xk−1, πk−1)

 ≜ ϵπ(bt).

(A.206)

Recall that we define τt = {x0, a0, z1, x1, a1, . . . , aT −1, xt, zt}. Then the value func-
tion is defined as,

V π(b0) =
∑
τT

Pπ(τT )
[ T∑

t=0
rx(xt, at)

]
(A.207)

applying chain rule and rearranging terms,

=
∑
τT

Pπ(x1:T , z1:T , a1:T | τ0)Pπ(τ0)
[ T∑

t=0
rx(xt, at)

]
(A.208)

=
∑
τ0

Pπ(τ0)
∑

x1:T ,z1:T ,a1:T

Pπ(x1:T , z1:T , a1:T | τ0)
[ T∑

t=0
rx(xt, at)

]
(A.209)

=
∑
τ0

Pπ(τ0)
[
rx(x0, a0) +

∑
x1:T ,z1:T ,a1:T

Pπ(x1:T , z1:T , a1:T | τ0)
[ T∑

t=1
rx(xt, at)

]]
(A.210)

nullifying instances of the complete probability distribution, Pπ(·), is denoted as a sim-
plified distribution, P̄π(·). We can then split and bound from above the value function,
such that the simplified value function consideres only a subset of the trajectories at
time t = 0,
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≤
∑
τ0

P̄π(τ0)
[
rx(x0, a0) +

∑
x1:T ,z1:T ,a1:T

Pπ(x1:T , z1:T , a1:T | τ0)
[ T∑

t=1
rx(xt, at)

]]
(A.211)

+
[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 (A.212)

We then apply similar steps on the next time step, t = 1,

=
[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 +

∑
τ0

P̄π(τ0)
[
rx(x0, a0) (A.213)

+
∑

x1:T ,z1:T ,a1:T

Pπ(x2:T , z2:T , a2:T | τ1)Pπ(x1, z1, a1 | τ0)
[ T∑

t=1
rx(xt, at)

]]

=
[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 +

∑
τ0

P̄π(τ0)
[
rx(x0, a0) (A.214)

+
∑

x1,z1,a1

Pπ(x1, z1, a1 | τ0)
∑

x2:T ,z2:T ,a2:T

Pπ(x2:T , z2:T , a2:T | τ1)
[ T∑

t=1
rx(xt, at)

]]

=
[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 +

∑
τ0

P̄π(τ0)
[
rx(x0, a0) (A.215)

+
∑

x1,z1,a1

Pπ(x1, z1, a1 | τ0)
[
rx(x1, a1) +

∑
x2:T ,z2:T ,a2:T

Pπ(x2:T , z2:T , a2:T | τ1)
[ T∑

t=2
rx(xt, at)

]]]

≤
∑
τ0

P̄π(τ0)
[
1−

∑
x1,z1,a1

P̄π(x1, z1, a1 | τ0)
]
Vmax,1 +

[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 (A.216)

+
∑
τ0

P̄π(τ0)
[
rx(x0, a0) +

∑
x1,z1,a1

P̄π(x1, z1, a1 | τ0)
[
rx(x1, a1)

+
∑

x2:T ,z2:T ,a2:T

Pπ(x2:T , z2:T , a2:T | τ1)
[ T∑

t=2
rx(xt, at)

]]]

which results in,

=
[∑

τ0

P̄π(τ0)−
∑
τ1

P̄π(τ1)
]
Vmax,1 +

[
1−

∑
τ0

P̄π(τ0)
]
Vmax,0 (A.217)

+
∑
τ0

P̄π(τ0)
[
rx(x0, a0) +

∑
x1,z1,a1

P̄π(x1, z1, a1 | x0, a0)
[
rx(x1, a1)

+
∑

x2:T ,z2:T ,a2:T

Pπ(x2:T , z2:T , a2:T | τ1)
[ T∑

t=2
rx(xt, at)

]]]
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Performing the same steps iteratively up to time t = T , yields the desired outcome,

V π(b0) ≤
T∑

t=0

∑
τt

P̄π(τt)rx(xt, at)+Vmax,0

[
1−

∑
τ0

P̄π(τ0)
]
+
T −1∑
t=0
Vmax,t+1

∑
τt

P̄π(τt)−
∑
τt+1

P̄π(τt+1)


(A.218)

A.6.5 Optimality Guarantees

Lemma A.6.3. Let A be the set of actions and U⋆
0 (Ht), L⋆

0(Ht) be the upper and lower
bounds of node Ht chosen according to,

U⋆
0 (Ht) ≜

∑
τt∈T (Ht)

P̄(τt) [rx(xt, at) + Vmax,t] +
∑

zt+1∈Z̄(Ht,at)

U⋆
0 (Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmax,t


(A.219)

L⋆
0(Ht) ≜

∑
τt∈T (Ht)

P̄(τt) [rx(xt, at) + Vmin,t] +
∑

zt+1∈Z̄(Ht,at)

L⋆
0(Ht+1)−

∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmin,t


(A.220)

and,

U⋆
0 (HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ), L⋆
0(HT ) ≜

∑
τT ∈T (HT )

P̄(τT )rx(xT ). (A.221)

Then, the optimal root-value is bounded by,

L⋆
0(H0) ≤ V π∗(H0) ≤ U⋆

0 (H0). (A.222)

Proof. We wish to show that L⋆
0(H0) ≤ V π∗(b0) ≤ U⋆

0 (H0). We derive a proof for one
side of the inequality, while the other follows similarly. First note that,

V π∗(b0) ≤ Uπ∗
0 (H0) ≤ max

π∈Π
Uπ

0 (H0) (A.223)

where the first inequality is due to Theorem 5.3, and the second inequality is true by
definition. However, the claim in Lemma 5.3.2 is a recursive claim, while the bound
provided in Theorem 5.3 only holds with respect to the root. Thus, for completeness,
we also need to show that the best action can be chosen recursively, even though the
bound is ‘partial‘ in different parts of the tree.
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max
π0:T ∈Π

Uπ
0 (H0)

= max
π0:T ∈Π

∑
τ0∈T (H0)

P(τ0)[rx(x0, π0) + Vmax,0] +
∑

z1∈Z(H0,π0)

Uπ
0 (H1)−

∑
τ1∈T (H1)

P(τ1)Vmax,0



= max
π0∈Π


∑

τ0∈T (H0)
P(τ0)[rx(x0, π0) + Vmax,0] + max

π1:T ∈Π

∑
z1∈Z(H0,π0)

Uπ
0 (H1)−

∑
τ1∈T (H1)

P(τ1)Vmax,0




= max
a0


∑

τ0∈T (H0)
P(τ0)[rx(x0, a0) + Vmax,0] +

∑
z1∈Z(H0,a0)

 max
π1:T ∈Π

Uπ
0 (H1)−

∑
τ1∈T (H1)

P(τ1)Vmax,0




which continues similarly up to time t = T , which completes the proof,

V π∗(b0) ≤ Uπ∗
0 (H0) ≤ max

π∈Π
Uπ

0 (H0) = U⋆
0 (H0). (A.224)

Lemma A.6.4. Performing exploration based on (5.29), (5.30) and (5.31) ensures that
the algorithm converges to the optimal value function within a finite number of planning
iterations.

Proof. Consider a given policy π. We claim that following the state and observation
selection criteria in equations (5.30) and (5.31) will lead to visiting unexplored trajec-
tories τT at every iteration unless all relevant trajectories have already been explored.

To show this, note that the upper bound U⋆
0 ((Ht, at, ot+1)) and the lower bound

L⋆
0((Ht, at, ot+1)) will converge when the bound interval is zero, i.e.,

U⋆
0 ((Ht, at, ot+1))− L⋆

0((Ht, at, ot+1)) = 0. (A.225)

This convergence occurs when all future trajectories by following policy π from node
Ht+1 = (Ht, at, ot+1) until the end of the horizon were explored,

Uπ
0 (Ht+1)− Lπ

0 (Ht+1) =

=
∑

τt+1∈T (Ht+1)
P̄(τt+1)Vmax,t+1 +

∑
zt+2∈Z̄(Ht+1,πt+1)

Uπ
0 (Ht+2)−

∑
τt+2∈T (Ht+2)

P̄(τt+2)Vmax,t+1


−

 ∑
τt+1∈T (Ht+1)

P̄(τt+1)Vmin,t+1 +
∑

zt+2∈Z̄(Ht+1,πt+1)

Lπ
0 (Ht+2)−

∑
τt+2∈T (Ht+2)

P̄(τt+2)Vmin,t+1


=

 ∑
τt+1∈T (Ht+1)

P̄(τt+1)−
∑

zt+2∈Z̄(Ht+1,πt+1)

∑
τt+2∈T (Ht+2)

P̄(τt+2)

 (Vmax,t+1 − Vmin,t+1)

+
∑

zt+2∈Z̄(Ht+1,πt+1)

[Uπ
0 (Ht+2)− Lπ

0 (Ht+2)]
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since ∀t ∈ [0, T − 1] ,Vmax,t+1 − Vmin,t+1 ̸= 0, then Uπ
0 (Ht+1)− Lπ

0 (Ht+1) = 0 only if ,

∑
τt+1∈T (Ht+1)

P̄(τt+1)−
∑

zt+2∈Z̄(Ht+1,πt+1)

∑
τt+2∈T (Ht+2)

P̄(τt+2) = 0, ∀t ∈ [0, T − 2] .

(A.226)
Thus, all the simplified probability terms in the policy tree converge to 1. Similarly,
the probability gap,

1−
∑
τT

P̄⋆(τT | τt, at, zt+1, x) = 0 (A.227)

only when all non-zero future trajectories with a prefix (τt, at, zt+1, x) have been ex-
plored. Finally, we are left to show that selecting actions based on the criteria shown
in (5.29), results in the optimal action upon convergence. Utilizing lemma 5.3.2, the
proof follows similarly to the one shown in (A.8), which concludes our derivation. ■

A.7 Experiments

A.7.1 POMDP scenarios

We begin with a brief description of the Partially Observable Markov Decision Process
(POMDP) scenarios implemented for the experiments. each scenario was bounded by
a finite number of time steps used for every episode, where each action taken by the
agent led to a decrement in the number of time steps left. After the allowable time
steps ended, the simulation was reset to its initial state.

Tiger POMDP

The Tiger is a classic POMDP problem [22], involves an agent making decisions between
two doors, one concealing a tiger and the other a reward. The agent needs to choose
among three actions, either open each one of the doors or listen to receive an observation
about the tiger position. In our experiments, the POMDP was limited horizon of 5
steps. The problem consists of 3 actions, 2 observations and 2 states.

Discrete Light Dark

Is an adaptation from [48]. In this setting the agent needs to travel on a 1D grid
to reach a target location. The grid is divided into a dark region, which offers noisy
observations, and a light region, which offers accurate localization observations. The
agent receives a penalty for every step and a reward for reaching the target location.
The key challenge is to balance between information gathering by traveling towards the
light area, and moving towards the goal region.
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Laser Tag POMDP

In the Laser Tag problem, [46], an agent has to navigate through a grid world, shoot
and tag opponents by using a laser gun. The main goal is to tag as many opponents
as possible within a given time frame. The grid is segmented into various sections
that have varying visibility, characterized by obstacles that block the line of sight,
and open areas. There are five possible actions, moving in four cardinal directions
(North, South, East, West) and shooting the laser. The observation space cardinality
is |Z| ≈ 1.5 × 106, which is described as a discretized normal distribution and reflect
the distance measured by the laser. The states reflect the agent’s current position and
the opponents’ positions. The agent receives a reward for tagging an opponent and a
penalty for every movement, encouraging the agent to make strategic moves and shots.

Baby POMDP

The Baby POMDP is a classic problem that represents the scenario of a baby and a
caregiver. The agent, playing the role of the caregiver, needs to infer the baby’s needs
based on its state, which can be either crying or quiet. The states in this problem
represent the baby’s needs, which could be hunger, discomfort or no need. The agent
has three actions to choose from: feeding, changing the diaper, or doing nothing. The
observations are binary, either the baby is crying or not. The crying observation does
not uniquely identify the baby’s state, as the baby may cry due to hunger or discomfort,
which makes this a partially observable problem. The agent receives a reward when it
correctly addresses the baby’s needs and a penalty when the wrong action is taken.

A.7.2 Hyperparameters

The hyperparameters for both DB-DESPOT and AR-DESPOT algorithms were se-
lected through a grid search. We explored an array of parameters for AR-DESPOT,
choosing the highest-performing configuration. Specifically, the hyperparameter K

was varied across {10, 50, 500, 5000}, while λ was evaluated at {0, 0.01, 0.1}. Similarly,
DB-POMCP and POMCP were examined three different values for the exploration-
exploitation weight, c = {0.1, 1.0, 10.0} multiplied by Vmax, which denotes an upper
bound for the value function.

For the initialization of the upper and lower bounds used by the algorithms, we used
the maximal reward, multiplied by the remaining time steps of the episode, Rmax ·(T −
t− 1).
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הכולל היברידי, מצב מרחב עם POMDPs של בהקשר המצב למרחב פישוט יישמנו מכן, לאחר
התצפית מקור בהן בעיות השאר בין וכוללות מגוונות, זה מסוג בעיות ורציפים. דיסקרטיים מצבים
באופן לגדול עשויות ההיברידי במרחב הדיסקרטיות האפשרויות מספר זה, פישוט ללא ידוע. אינו
למספר מוגבל לתכנן ניתן אליהם העתידיים הצעדים שמספר כך התכנון, צעדי מספר עם מעריכי
פתרונות שני והצגנו לתת-קבוצה, האפשרויות מספר את פישטנו זה, קושי עם להתמודד כדי קטן.
מבוסס השני הפתרון ואילו הנכון, לפתרון להתכנס ומובטח דגימה מבוסס הראשון כאשר עיקריים,
לבין לנו, ידוע שאינו התיאורטי, הפתרון בין האפשרי המרחק את החוסמות מתמטיות הבטחות
לאלגוריתמים ביחס ביצועים שיפור הראינו הפתרונות בשני בפועל. המחושב המקורב הפתרון

כיום. הקיימים

POMDP בעיות בעבור יחד, גם והתצפיות המצב מרחב לפישוט שלנו הגישה את הרחבנו לבסוף,
חסמים לקבל ניתן התכנון בזמן נתון רגע שבכל הראינו דטרמיניסטיות. הבטחות ומתן דיסקרטיות
האופטימלי הפתרון בין המרחק על גם אלא למקורב, התיאורטי הפתרון בין המרחק על רק לא
לאלגוריתמים החסמים את להוסיף שניתן הראינו בנוסף, המקורב. הפתרון לבין לנו, ידוע שאיננו
בחסמים ששימוש הראנו לבסוף, החישובי. לקושי קטנה תוספת עם כיום הידועים ביותר הטובים

אלו. אלגוריתמים ביצועי את לשפר עשויים הדטרמיניסטיים
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תקציר

החלטות ומקבלים ודאות בחוסר קרובות לעיתים נתקלים האמיתי בעולם הפועלים אוטונומיים סוכנים
החלטה תהליכי של מתמטי מבנה תחת ההחלטות קבלת אתגר את למסגר ניתן חלקי. מידע בסיס על
באופן לצפייה ניתן הסוכן פועל בו והמרחב מאחר . (POMDPs) חלקית לצפייה שניתנים מרקוביים
בייס, תיאוריית על מסורתי באופן נשען זה שיערוך הקיים. המצב את לשערך הסוכן על בלבד, חלקי

הסוכן. נמצא בו האפשריים המצבים מרחב על עדכני פילוג היא שתוצאתו

אופטימלית תוכנית מציאת ודאות, חוסר תחת לתכנון מתאימה מסגרת מציעים POMDPs-ש בעוד
ביותר. פשוטות משימות עבור רק אפשרית והיא חישובית אינטנסיבית להיות יכולה POMDP עבור
מספר בפרט, התכנון. צעדי מספר עם מעריכית גדל העתידיים התרחישים מספר זה, מסוג בבעיות
בכל מכך, יתרה הפעולות. מספר כפול האפשריות התצפיות במספר מעריכי העתידי התרחישים
גדול, להיות שעשוי המצבים, מרחב על העדכני הפילוג את לחשב נדרש אפשרי, עתידי תרחיש
בשני זה, מקושי כתוצאה סביר. בזמן אופטימלית מדיניות מציאת על יותר עוד שמכביד מה
מבוססות וגישות עצים חיפוש כמו מקורבים, אלגוריתמים לעליית עדים היינו האחרונים העשורים
שלהם, היעילות אף על יותר. מורכבות POMDP בעיות עם להתמודדות מובילים כפתרונות דגימה,
הבטחות ללא מסוימים, במקרים או, הסתברותיות הבטחות רק מציעים כלל בדרך אלו אלגוריתמים

כלל. פורמליות

הבטחות עם מפושטים אלגוריתמים מגוון פיתוח ידי על אלו במגבלות בטיפול התמקדנו במחקרנו,
המוצעים המפושטים האלגוריתמים החישוב, סיבוכיות את לייעל כדי ודטרמיניסטיות. פורמליות
מתוך חלקיים חישובים ומבצעים והתצפיות, המצב מרחב מתוך תתי-קבוצות על פועלים במחקרנו
הלא לאלגוריתמים בהשוואה חישובית ויעילות מתמטיות הבטחות מתן תוך התיאורתי, החישוב
המצב ממרחב שבריר רק הכולל יותר, מפושט אלטרנטיבי, POMDP הגדרנו כך, לצורך מפושטים.

התצפיות. או

בבעיות המתקדנו הפרס. פונקציית חישוב ייעול לטובת התצפיות מרחב בפישוט התמקדנו תחילה,
באופן הפילוג. על כתוחלת רק ולא הסתברות פילוג על כפונקצייה מוגדרת הפרס פונקציית בהן
מצב, מבוסס פרס על תוחלת של ממושקל כסכום הוגדרה זו בבעיה הפרס פונקציית יותר, מפורט
של השילוב מטרת רוב, פי על המצבים. פילוג על ואנטרופיה POMDP בעיות ברוב שמוגדר כפי
בד אלא התועלת, את למקסם רק דואגת שלא פעולה מדיניות מציאת היא מצב מבוססת אנטרופיה
ביצועים הבטחות הראנו זו בעבודתנו זו. בסביבה הפועל הסוכן של הודאות חוסר את למזער בבד
לאלגוריתם בהשוואה ארבע פי עד חישוב זמני ושיפור מפושטת, הלא לבעיה ביחס דטרמיניסטיות

התצפיות. מרחב פישוט ללא דומה
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