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1 Proof of Lemma 1

1.1 Preliminary proof

For a given transition model P(xi+1|xi, ai) and a given observation model P(zi|xi),
if we assume the history h−i and hτ−i are known, we can bound the expected
state-dependent reward below between the original policy πτZ

i and a known
policy πτ

i for topology τ as:∣∣ E
xi|h−

i

EτZ

z̄i|xi,h
−
i

E
xi+1|xi,πτZ

i

r(xi+1)− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣ (1)

≤ max
π̄i

∣∣∣ E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄i(h−i , z̄
τ
i ))r(xi+1) (2)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

∫
xi+1

P(xi+1|xi, πτ
i )r(xi+1)

∣∣∣ (3)

Here, the policy π̄i is a mapping : H−
i × Z̄i(H−

i , τ) 7→ A.

Proof. First, we consider the situation that the belief node uses the
alternative observation space and model: βτ (h−i ) = 0.

For each xi ∈ X , we can find an action ai that maximize and minimize the
expected reward:∫

xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1 ≤ max

ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1

(4)
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xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1 ≥ min

ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1

(5)
From (4), we have:

E
xi|h−

i

EτZ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1

≤ E
xi|h−

i

EτZ

z̄i|xi,h
−
i

max
ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1 (6)

= E
xi|h−

i

Eτ

z̄i|xi,h
−
i

max
ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1 (7)

Similarly, from (5), we will get:

E
xi|h−

i

EτZ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1

≥ E
xi|h−

i

EτZ

z̄i|xi,h
−
i

min
ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1 (8)

= E
xi|h−

i

Eτ

z̄i|xi,h
−
i

min
ai(xi)∈A

∫
xi+1

P(xi+1|xi, ai)r(xi+1)dxi+1 (9)

Since we consider z̄τi = oi at the belief node for the topology and the alternative
observation model is fully observable, the actions in Equation (7) and (9) can
be viewed as a policy: ai(xi) = πi, πi ∈ {πi : H−

i × Z̄τ
i 7→ A} := Π̄i(H−

i , Z̄τ
i ).

E
xi|h−

i

EτZ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1

≤ max
π̄i∈Π̄i(H−

i ,Z̄τ
i )

E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄i(h−i , z̄
τ
i ))r(xi+1)dxi+1 (10)

E
xi|h−

i

EτZ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1

≥ min
π̄i∈Π̄i(H−

i ,Z̄τ
i )

E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄i(h−i , z̄
τ
i ))r(xi+1)dxi+1 (11)

Since different policy π̄i upper and lower bound the expected closed-loop reward,
we will also bound the distance between the expected closed-loop reward and a
known value by exploring the policy space:∣∣ E
xi|h−

i

EτZ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, πτZ
i )r(xi+1)dxi+1 − E

xi|hτ−
i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣

≤ max
π̄i∈Π̄i(H−

i ,Z̄τ
i )

∣∣ E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄i(h−i , z̄
τ
i ))r(xi+1)dxi+1

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣ (12)
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Then, we consider the belief node uses the original observation space
and model: β(h−i ) = 1.

We have:

E
xi|h−

i

EτZ

z̄i|xi,h
−
i

E
xi+1|xi,πτZ

i

r(xi+1) = E
xi|h−

i

Eτ

z̄i|xi,h
−
i

E
xi+1|xi,πτ

i

r(xi+1) (13)

Here, πτZ
i and πτ

i share the same mapping, H−
i ×Zi 7→ A. We can say that the

optimal and worst πτ
i can upper and lower bound any πτZ

i . Thus, there exists a
policy π̄τ

i that can bound the distance in Equation (12). ⊓⊔
If we take a further step from the above claim and assume the propagated

history h−i has the original POMDP topology τZ , we will have:

max
π̄i∈Π̄i(H−

i ,Z̄τ
i )

∣∣ E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄τ
i )r(xi+1)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣ (14)

≜
∣∣ E
xi|h−

i

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i , z̄

τ
i ))r(xi)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣ (15)

=
∣∣ E
xi−1|h−

i−1

EτZ

z̄i−1|xi−1,h
−
i−1

E
xi|xi−1,π

τC
i−1

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i , z̄

τ
i ))r(xi)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi)
∣∣ (16)

i) If both β(h−i−1) = 0 and β(h−i ) = 0, for every possible xi ∈ X and xi−1 ∈ X ,

we can find an action a+i (xi) and a
+
i−1(xi−1) such that:

E
xi|xi−1,π

τC
i−1

∫
xi+1

P(xi+1|xi, π̄+
i )r(xi+1)

≤ max
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

max
ai(xi)

∫
xi+1

P(xi+1|xi, ai(xi))r(xi+1) (17)

Then we have:

E
xi−1|h−

i−1

EτZ

z̄i−1|xi−1,h
−
i−1

E
xi|xi−1,π

τC
i−1

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i , z̄

τ
i ))r(xi+1)

≤ E
xi−1|h−

i−1

EτZ

z̄i−1|xi−1,h
−
i−1

max
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

Eτ

z̄i|xi,{hi−1,ai−1}

max
ai(xi)

∫
xi+1

P(xi+1|xi, ai(xi))r(xi+1) (18)

= E
xi−1|h−

i−1

Eτ

z̄i−1|xi−1,h
−
i−1

max
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

Eτ

z̄i|xi,{h−
i−1,z

τ
i−1,ai−1}

max
ai(xi)

∫
xi+1

P(xi+1|xi, ai(xi))r(xi+1) (19)
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Similarly, we can find the lower bound:

E
xi−1|h−

i−1

EτZ

z̄i−1|xi−1,h
−
i−1

E
xi|xi−1,π

τC
i−1

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i , z̄

τ
i ))r(xi+1) (20)

≥ E
xi−1|h−

i−1

EτZ

z̄i−1|xi−1,h
−
i−1

min
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

Eτ

z̄i|xi,{hi,ai−1}

min
ai(xi)

∫
xi+1

P(xi+1|xi, ai(xi))r(xi+1) (21)

= E
xi−1|h−

i−1

Eτ

z̄i−1|xi−1,h
−
i−1

min
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

Eτ

z̄i|xi,{h−
i ,zτ

i−1,ai−1}

min
ai(xi)

∫
xi+1

P(xi+1|xi, ai(xi))r(xi+1) (22)

The ai−1(xi−1) and ai(xi) in the above equations can be viewed as policy respec-
tively, πi−1 ∈ Πi−1(H−

i−1, Z̄τ
i−1) and πi ∈ Πi(H−

i−1, Z̄τ
i−1, πi−1, Z̄τ

i ). Similar to
the previous claim, we can say there exists a policy to bound the below distance:∣∣ E

xi−1|h−
i−1

EτZ

z̄i−1|xi−1,h
−
i−1

E
xi|xi−1,π

τC
i−1

Eτ

z̄i|xi,h
−
i

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i , z̄

τ
i ))r(xi+1)

(23)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣

≤ max
π̄i−1∈Π̄i−1(H−

i−1,Z̄τ
i−1),π̄i(h

−
i−1,z

τ
i−1,π̄i−1(h

−
i−1,z

τ
i−1),z

τ
i )∣∣ E

xi−1|h−
i−1

Eτ

z̄i−1|xi−1,h
−
i−1

E
xi|xi−1,π̄i−1

Eτ

z̄i|xi,h
p−
i

∫
xi+1

P(xi+1|xi, π̄i)r(xi+1) (24)

− E
xi|hτ−

i

Eτ

z̄i|xi,h
τ−
i

E
xi+1|xi,πτ

i

r(xi+1)
∣∣ (25)

ii) If β(h−i−1) = 0 and β(h−i ) = 1, for each possible xi−1 ∈ X and each
zi ∈ Zi:

E
xi|xi−1,π

τC
i−1

E
z̄i|xi

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i−1, z

τZ
i−1, π

τC
i−1, z

τ
i ))r(xi+1)

≤ max
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

E
z̄i|xi

max
ai(zi)

∫
xi+1

P(xi+1|xi, ai(zi))r(xi+1) (26)

E
xi|xi−1,π

τC
i−1

E
z̄i|xi

∫
xi+1

P(xi+1|xi, π̄+
i (h

−
i−1, z

τZ
i−1, π

τC
i−1, z

τ
i ))r(xi+1)

≥ min
ai−1(xi−1)

E
xi|xi−1,ai−1(xi−1)

E
z̄i|xi

min
ai(zi)

∫
xi+1

P(xi+1|xi, ai(zi))r(xi+1) (27)

The ai−1(xi−1) and ai(zi) in the above equations can be viewed as policy re-
spectively, πi−1(h

−
i−1, z

τ
i−1) and πi(h

−
i−1, z

τ
i−1, πi−1(h

−
i−1, z

τ
i−1), z

τ
i ). Then we can

get the same result as Equation (25).
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iii) If both β(h−i−1) = 1 and β(h−i ) = 0, the result is similar.

iv) If β(h−i−1) = 1 and β(h−i ) = 1, the policy π̄i−1,i in Equation (25) shares
the same mapping as the closed-loop policy πτC

i−1,i. So there exists the optimal
and worst policy that upper and lower bound the expected reward, so we can
also get the same result as Equation (25).

1.2 Main Proof of Lemma 1

∣∣∣ Eτ

z̄1:i|b0,πτ
(r(bτi ))− EτZ

z̄1:i|b0,πτZ
(r(bτZi ))

∣∣∣ (28)

Assume state-dependent reward

=
∣∣∣ Eτ

z̄1:i|b0,πτ
E

xi|bτi
r(xi)− EτZ

z̄1:i|b0,πτZ
E

xi|b
τZ
i

(r(xi))
∣∣∣ (29)

=
∣∣∣ Eτ

z̄1:i−1|b0,πτ
E

xi|hτ−
i

Eτ

z̄i|xi,h
τ−
i

r(xi)− EτZ

z̄1:i−1|b0,πτZ
E

xi|h
τZ−
i

EτZ

z̄i|xi

(r(xi))
∣∣∣ (30)

(Chain rule and cancel zi)

=
∣∣∣ Eτ

z̄1:i−1|b0,πτ
E

xi|hτ−
i

r(xi)− EτZ

z̄1:i−1|b0,πτZ
E

xi−1|h
τZ
i−1

E
xi|xi−1,π

τC
i−1

(r(xi))
∣∣∣ (31)

(Bayes Rule)

=
∣∣∣ Eτ

z̄1:i−1|b0,πτ
E

xi|hτ−
i

r(xi)− EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)
∣∣∣
(32)

=
∣∣∣ Eτ

z̄1:i−1|b0,πτ
E

xi|hτ−
i

r(xi)

− E
x0|b0

E
x1|x0,π

τC
0

EτZ

z̄1|x1,h
p−
1

... E
xi−1|xi−2,π

τC
i−2

EτZ

z̄i−1|xi−1,h
p−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)
∣∣∣ (33)

Here, h̄τ− is propagated history with topology τ . It can be easily got by just
repeating the process in Section 1.1 from time t = i to the initial time t = 0.

≤max
π̄τ

∣∣∣ Eτ

z̄1:i−1|b0,πτ
E

xi|hτ−
i

r(xi)

− E
x0|b0

E
x1|x0,π̄τ

0

Eτ

z̄1|x1,h̄
τ−
1

... E
xi−1|xi−2,π̄τ

i−2

Eτ

z̄i−1|xi−1,h̄
τ−
i

E
xi|xi−1,π̄τ

i−1

r(xi)
∣∣∣ (34)
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2 Proof of Lemma 2

Proof. We can look into the difference in the Q function between two different
topologies, which is defined as below:

∆Q(b0, a0, π
τZ , πτ , τZ , τ) ≜ |QπτZ

τZ (b0, a0)−Qπτ

τ (b0, a0)| (35)

=
∣∣ L∑
i=1

EτZ

z̄1:i|b0,πτZ
(r(bi))−

L∑
i=1

Eτ

z̄1:i|b0,πτ
(r(bi))

∣∣ (36)

(Assume state-dependent reward and chain rule, same as Equation (32))

=
∣∣∣ L∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]∣∣∣ (37)

(Take out the expected reward r(xL) from the summation)

=
∣∣∣ L−1∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]

+ EτZ

z̄1:L−2|b0,πτZ
E

xL−1|h
τZ−
L−1

EτZ

z̄L−1|xL−1,h
p−
L−1

E
xL|xL−1,π

τZ
L−1

r(xL)

− Eτ

z̄1:L−2|b0,πτ
E

xL−1|hτ−
L−1

Eτ

z̄L−1|xL−1,h
τ−
L−1

E
xL|xL−1,πτ

L−1

r(xL)
∣∣∣ (38)

(Bound the expected reward r(xL) using the same method in Section 1.1)

≤ max
π̄τ
L−1∈Π̄L−1(H

τZ−
L−1 ,Z̄τ

L−1)

∣∣∣ L−1∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]

+ EτZ

z̄1:L−2|b0,πτZ
E

xL−1|h
τZ−
L−1

Eτ

z̄L−1|xL−1,h
τZ−
L−1

E
xL|xL−1,π̄τ

L−1

r(xL)

− Eτ

z̄1:L−2|b0,πτ
E

xL−1|hτ−
L−1

Eτ

z̄L−1|xL−1,h
τ−
L−1

E
xL|xL−1,πτ

L−1

r(xL)
∣∣∣ (39)
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(Take out the expected reward r(xL−1) from the summation, and denote the
policy maximizing the distance as π̄+

L−1)

=
∣∣∣ L−2∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]

(40)

+ EτZ

z̄1:L−3|b0,πτZ
E

xL−2|h
τZ−
L−2

EτZ

z̄L−2|xL−2,h
τZ−
L−2

E
xL−1|xL−2,π

τZ
L−2

r(xL−1)

− Eτ

z̄1:L−3|b0,πτ
E

xL−2|hτ−
L−2

E
z̄L−2|hτ−

L−2,τ
E

xL−1|xL−2,πτ
L−2

r(xL−1) (41)

+ EτZ

z̄1:L−2|b0,πτZ
E

xL−1|h
τZ−
L−1

Eτ

z̄L−1|xL−1,h
τZ−
L−1

E
xL|xL−1,π̄

+
L−1

r(xL)

− Eτ

z̄1:L−2|b0,πτ
E

xL−1|hτ−
L−1

Eτ

z̄L−1|xL−1,h
τ−
L−1

E
xL|xL−1,πτ

L−1

r(xL)
∣∣∣ (42)

=
∣∣∣ L−2∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]

(43)

+ EτZ

z̄1:L−3|b0,πτZ
E

xL−2|h
τZ−
L−2

EτZ

z̄L−2|xL−2,h
τZ−
L−2

E
xL−1|xL−2,π

τZ
L−2

(
r(xL−1)

+ Eτ

z̄L−1|xL−1,h
τZ−
L−1

E
xL|xL−1,π̄

+
L−1(h

τZ−
L−1 ,z̄

τ
L−1)

r(xL)
)

(44)

− Eτ

z̄1:L−3|b0,πτ
E

xL−2|hτ−
L−2

Eτ

z̄L−2|xL−2,h
τ−
L−2

E
xL−1|xL−2,πτ

L−2

r(xL−1)

− Eτ

z̄1:L−2|b0,πτ
E

xL−1|hτ−
L−1

Eτ

z̄L−1|xL−1,h
τ−
L−1

E
xL|xL−1,πτ

L−1

r(xL)
∣∣∣ (45)
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(Bound the term E
xL−1|xL−2,π

τZ
L−2

(r(xL−1)+ Eτ

z̄L−1|xL−1,h
τZ−
L−1

E
xL|xL−1,π̄

+
L−1

r(xL)) using

a similar method as Section 1.1)

≤ max
π̄L−2,L−1

∣∣∣ L−2∑
i=1

[
EτZ

z̄1:i−2|b0,πτZ
E

xi−1|h
τZ−
i−1

EτZ

z̄i−1|xi−1,h
τZ−
i−1

E
xi|xi−1,π

τZ
i−1

r(xi)

− Eτ

z̄1:i−2|b0,πτ
E

xi−1|hτ−
i−1

Eτ

z̄i−1|xi−1,h
τ−
i−1

E
xi|xi−1,πτ

i−1

r(xi)
]

(46)

+ E
z̄1:L−3|,b0,πτZ ,τZ

E
xL−2|h

τZ−
L−2

Eτ

z̄L−2|xL−2,h
τZ−
L−2

E
xL−1|xL−2,π̄L−2

(
r(xL−1)

+ Eτ

z̄L−1|xL−1,h
p−
L−1

E
xL|xL−1,π̄L−1

r(xL)
)

(47)

− Eτ

z̄1:L−3|b0,πτ
E

xL−2|hτ−
L−2

Eτ

z̄L−2|xL−2,h
τ−
L−2

E
xL−1|xL−2,πτ

L−2

r(xL−1)

− Eτ

z̄1:L−2|b0,πτ
E

xL−1|hτ−
L−1

Eτ

z̄L−1|xL−1,h
τ−
L−1

E
xL|xL−1,πτ

L−1

r(xL)
∣∣∣ (48)

(We can do it in a recursive way)

≤ max
π̄τ∈Πτ

|Qπ̄τ

τZ (b0, a0)−Qπτ

τ (b0, a0)| (49)

Which completes the proof of Lemma 2.

3 Proof of Theorem 1

The proof can be simple.
Proof:

QπτZ

τ ′ (bk, ak) ≤ min
πτ∈Πτ

[Qπτ

τ (bk, ak) + δQ(bk, ak, π
τ , τ)] (50)

= min
πτ∈Πτ

[Qπτ

τ (bk, ak) + max
π̄τ∈Πτ

|Qπ̄τ

τ (bk, ak)−Qπτ

τ (bk, ak)|] (51)

= max
πτ∈Πτ

[Qπτ

τ (bk, ak)] (52)

The second direction in (21) can be proved similarly. ⊓⊔

4 Proof of Theorem 2

Proof. Let’s consider the end of the planning horizon L.
If βτ (h(b−L−1)) = 1, we have:∫
zL−1

p(zL−1|xL−1) max
πτ
L−1∈Πτ

∫
xL

p(xL|xL−1, π
τ
L−1)r(xL) (53)

=

∫
zL−1

p(zL−1|xL−1)

∫
xL

p(xL|xL−1, π
τZ∗
L−1)r(xL) (54)
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If βτ (h(b−L−1)) = 0, we have:

min
πτ
L−1∈Πτ

∫
xL

p(xL|xL−1, π
τ
L−1)r(xL)

≤
∫
zL−1

p(zL−1|xL−1)

∫
xL

p(xL|xL−1, π
τZ∗
L−1)r(xL) (55)

We denote the left-hand side in Equation (54) and (55) as LHS1(xL−1, τ) and
the right-hand side as RHS1(xL−1, τZ). In general, we can say LHS1(xL−1, τ) ≤
RHS1(xL−1, τZ).

Then, we take one more step earlier. Also if βτ (h(b−L−2)) = 1 , we have:∫
zL−1

p(zL−1|xL−1) max
πτ
L−2∈Πτ

∫
xL−1

p(xL−1|xL−2, π
τ
L−2)[r(xL−1) + LHS1(xL−1, τ)]

≤
∫
zL−2

p(zL−2|hL−2)

∫
xL−2

p(xL−2|xL−2, π
τZ∗
L−2)[r(xL−1) +RHS1(xL−1, τ)]

(56)

And if βτ (h(b−L−2)) = 0, we have:

min
πτ
L−2∈Πτ

∫
xL−1

p(xL−1|xL−2, π
τ
L−2)[r(xL−1) + LHS1(xL−1, τ)]

≤
∫
zL−2

p(zL−2|hL−2)

∫
xL−2

p(xL−2|xL−2, π
τZ∗
L−2)[r(xL−1) +RHS1(xL−1, τ)]

(57)

We also denote the left-hand side of the inequality in Equation (56) and (57) as
LHS2(xL−2, τ) and the right-hand side as RHS2(xL−2, τZ). In general, we can
say LHS2(xL−2, τ) ≤ RHS2(xL−2, τZ).

The left-hand side is the iterative way to calculate lb(bt, πt, τ). If we keep iter-
ate the above process from the end to the beginning of the planning horizon, we
will get the inequality at the top of the belief tree: lb(b0, a0, τ) ≤ QπτZ∗

τZ (b0, a0).

5 Sparse Sampling

For a random variable X ∼ P, we use another sampling-based random variable,
Y ∼ Q to approximate the expectation of the original theoretic value. If we
obtain some samples {yi}Ni=1 from a known distribution Q, the calculation will
be:

E
X∼P

[f(X)] =

∫
f(x)P(x)dx =

∫
f(x)

P(x)

Q(x)
Q(x)dx ≃ 1

N

N∑
i=1

P(yi)

Q(yi)
f(yi) (58)

Usually, the proposed distributionQ is the known motion model. The weighted
sampling can be more efficient, where resampling will create more particles
from the samples with higher weights. The belief density is approximated by

b(x) ≃
∑N

i=1 wiδ(x−xi)∑N
i=1 wi .
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5.1 Proof of Theorem 3

Theorem 1 (Theorem 3). Bounded Estimation Error. For all the depth
d = 0, ..., L − 1 and a, the following concentration bound holds with probability

at least 1− 2|A|(|A|C)L exp(−Cλ2

2V 2
max

) :

∆ûb(b0, a0, τ) ≤
L(L− 1)

2
λ, ∆l̂b(b0, a0, τ) ≤

L(L− 1)

2
λ. (59)

For the upper bound:

Proof. We will follow a similar way to prove it as [2, 5].
Firstly, we consider a general situation at a depth of d and try to bound the

error of estimating the optimal Q function given a belief bd and an action ad:

δτ
ûb
(d) ≜ |Qπτ∗

τ (bd, ad)− Q̂πτ∗

τ (bd, ad)| (60)

=
∣∣∣r(bd, ad) + E

bd+1|bd,ad

[V τ∗(bd+1)]− r(bd, ad)−
1

C

C∑
i=1

V̂ τ∗(b
′[Ii]
d+1)

∣∣∣ (61)

=
∣∣∣ E
zd+1|bd,ad,τ

[V τ∗(bd+1)]−
1

C

C∑
i=1

V̂ τ∗(b̄
τ,[Ii]
d+1 )

∣∣∣ (62)

≤
∣∣∣ E
zd+1|bd,ad,τ

[V τ∗(bd+1)]−
1

C

C∑
i=1

V τ∗(b̄
τ,[Ii]
d+1 )

∣∣∣+ ∣∣∣ 1
C

C∑
i=1

V τ∗(b̄
τ,[Ii]
d+1 )− 1

C

C∑
i=1

V̂ τ∗(b̄
τ,[Ii]
d+1 )

∣∣∣
(63)

Here, the propagated next step belief state samples for a given belief tree

topology τ is denoted as b̄
τ,[Ii]
d+1 . It is updated by the motion and observation

models for the given topology τ :

b̄
τ,[Ii]
d+1 ∼ ψτ (b̄τd+1|bd, ad) = 1β(h−

d+1)=1α·P(zd+1|xd+1)P(xd+1|bd, ad)+1β(h−
d+1)=0P(xd+1|bd, ad)

(64)
Here, α is a Bayes normalization factor. For the first term in Equation (63), we
can directly use the Hoeffding’s inequality:

P(
∣∣∣ E
zd+1|bd,ad,τ

[V τ∗(bd+1)]−
1

C

C∑
i=1

V τ∗(b
′[Ii]
d+1)

∣∣∣ ≤ λ) ≥ 1− 2 exp(
−Cλ2

2V 2
max

) (65)

For the second term in Equation (63), we analyze it in an iterative way:

∣∣∣ 1
C

C∑
i=1

V τ∗(b̄
τ,[Ii]
d+1 )− 1

C

C∑
i=1

V̂ τ∗(b̄
τ,[Ii]
d+1 )

∣∣∣ = 1

C

∣∣∣ C∑
i=1

Qπτ∗

τ (b̄
τ,[Ii]
d+1 , a

∗
d+1)−

C∑
i=1

Q̂πτ∗

τ (b̄
τ,[Ii]
d+1 , a

∗
d+1)

∣∣∣
(66)

≤ δτ
ûb
(d+ 1) (67)
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So, the below iterative bound is satisfied with a probability of at least 1 −
2|A|(|A|C)L−d exp(−Cλ2

2V 2
max

):

δτ
ûb
(d) ≤ λ+ δτ

ûb
(d+ 1) (68)

Here, the probability is based on the worst case for iteration, where it requires
all the child belief nodes generated are well estimated with the number of |A|C
child nodes for each time step.

The estimation error at the end of the planning horizon L− 1 is:

δτ
ûb
(L− 1) = λ (69)

Then, we can find out the estimation bound at the top of the given belief
tree by calculating it from the bottom to the top by Equation (68).

For the estimation of lower bound:

Proof. Firstly, we consider a general situation at a depth of d and try to bound
the error of estimating the lower bound function given a belief bd and an action
ad:

δτlb(t) ≜ |lb(bt, at, τ)− l̂b(bt, at, τ)| (70)

=
∣∣∣1β(h(b−t+1))=1

[
E

zt+1|h(bt),at,τ
max
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

max
πt+1

l̂b(b̄Iit+1, πt+1, τ)
]

+1β(h(b−t+1))=0

[
E

zt+1|h(bt),at,τ
min
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

min
πt+1

l̂b(b̄Iit+1, πt+1, τ)
]∣∣∣

(71)

≤
∣∣∣1β(h(b−t+1))=1{

∣∣ E
zt+1|h(bt),at,τ

max
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

max
πt+1

lb(b̄Iit+1, πt+1, τ)
∣∣

+
∣∣ 1
C

C∑
i=1

max
πt+1

lb(b̄Iit+1, πt+1, τ)−
1

C

C∑
i=1

max
πt+1

l̂b(b̄Iit+1, πt+1, τ)
∣∣}

+1β(h(b−t+1))=0{
∣∣ E
zt+1|h(bt),at,τ

min
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

min
πt+1

lb(b̄Iit+1, πt+1, τ)
∣∣

+
∣∣ 1
C

C∑
i=1

min
πt+1

lb(b̄Iit+1, πt+1, τ)−
1

C

C∑
i=1

min
πt+1

l̂b(b̄Iit+1, πt+1, τ)
∣∣}∣∣∣ (72)

Here, we can use a technique similar to the previous proof. We can directly use
the Hoeffding inequality to bound the first term in each indicator as:

P(
∣∣∣ E
zt+1|h(bt),at,τ

max
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

max
πt+1

lb(b̄Iit+1, πt+1, τ)
∣∣∣ ≤ λ) ≥ 1−2 exp(

−Cλ2

2V 2
max

)

(73)
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P(
∣∣∣ E
zt+1|h(bt),at,τ

min
πt+1

lb(bt+1, πt+1, τ)−
1

C

C∑
i=1

min
πt+1

lb(b̄Iit+1, πt+1, τ)
∣∣∣ ≤ λ) ≥ 1−2 exp(

−Cλ2

2V 2
max

)

(74)
The second term is also iteratively bounded by δτlb(t+1). So, combining the two
probabilistic bounds together, we can get the iterative bound for the estimator

satisfied with a probability of at least 1− 2|A|(|A|C)L−ts exp(−Cλ2

2V 2
max

):

δτlb(t) ≤ (72) ≤1β(h(b−t+1))=1

[
λ+ δτlb(t+ 1)

]
+ 1β(h(b−t+1))=0

[
λ+ δτlb(t+ 1)

]
(75)

=λ+ δτlb(t+ 1) (76)

The estimate error at the end of the planning horizon is:

δτlb(L− 1) = λ (77)

Now, we can find out the estimation bound at the top of the given belief tree by
calculating it from the bottom to the top, from L− 1 to 0.

6 Experiment Settings

6.1 Experiment 1

In our current implementation, the belief tree Tτ that corresponds to an initial
simplified topology τ is constructed by expanding the original observation space
only at randomly chosen 15% of the propagated belief nodes and switching the
rest to an alternative observation space O = X (see (16)), i.e. considering the
state space X instead of the observation space Z. Then, at each iteration, if the
condition (12) is not satisfied, we switch to a different (less simplified) topology
τ ′ by turning 5 randomly-chosen propagated belief nodes in τ , that had an
alternative observation space, back to the original observation space. Once (12)
is satisfied, we are guaranteed to find the optimal action a⋆k, and we terminate
the process.

6.2 Experiment 2

The sparse sampling planner in a particle-belief POMDP setting has three pa-
rameters: planning horizon d, number of observation samples K, and number of
the weighted state samples N that represent the particle belief. In our experi-
ments, we evaluate our approach and the original sparse sampling solver using
two sets of these parameters: d = 3,K = 50, N = 50 and d = 3,K = 90, N = 90.

6.3 Experiment 3

The beacon navigation problem serves as a common benchmark for evaluating
POMDP solvers [1, 4].
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The planning environment comprises a robot located at the initial belief, a
beacon for generating observations, three obstacles, and a goal to reach. The
locations of the robot, beacon, obstacles, and goal are defined in a 2D space as
x ∈ R2, xb ∈ R2, xo ∈ R2, and xg ∈ R2, respectively. The observation z ∈ R2 is
defined as the relative position with respect to the beacon, employing a Gaussian
observation model defined as:

P (z|x) =

{
N (x− xb, I2×2/(100||s− xb||)), if ||x− xb|| > 1,

N (x− xb, I2×2/100), otherwise.
(78)

The reward is assumed to be state-dependent: r(b, a) = E
x|b

[r(x, a)]. The state-

dependent reward function contains two parts, reward from reaching the goal rg
and penalty from the obstacles ro, as r(x,a) = rg(x,a) + ro(x,a). The action
a belongs to the action space |A| = {[1.0, 0.0], [0.0, 1.0], [−1.0, 0.0], [0.0,−1.0]}
representing the movement of right, up, left, and down. The reward of reaching
the goal is defined as:

rg(x,a) =
50

||x− xg||+ 0.001
. (79)

The penalty from entering the nearby area of the three obstacles o1, o2, o3 is
defined as:

ro(x,a) = −50, if ||x− xoi || ≤ 1,∀i = 1, 2, 3. (80)

The motion model follows a Gaussian distribution:

P (x′|x,a) = N (x+ a, ΣT ), (81)

with the covariance ΣT = I2×2/100.
The trajectory of the goal-reaching tasks simulation is presented in Figure 1

below. The belief particles at each step are depicted by small dots of different
colors. True positions of the robot are represented by blue dots and lines, while
the gray circles indicate the obstacles with a penalty. The star symbolizes the
goal to reach. This visualization serves to demonstrate the successful process by
which our method reaches the goal. Our goal chooses the same optimal policy as
the sparse sampling in the original full POMDP. Table 1 below demonstrates the
total planning time for 10 steps until reach the goal using our proposed method
and using sparse sampling in the original full problem. Own method achieves a
significant speedup during the whole planning process.

Method Total Planning Time for 10 Steps (s)

Proposed 7.731
Full Problem 17.720

Table 1: Comparison of methods for an exact calculation of the Q function.
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Fig. 1: Simulation Trajectory of the Goal-Reaching Task

6.4 Limitation

Our approach demonstrates effectiveness in scenarios characterized by a large
observation space, which is consistent with the theoretical analysis of simplifying
policy space. Despite requring multiple iterations, our simplification strategy is
still able to reduce computation time.

During the experiment, we also encountered failure cases in which nearly
all nodes need to be un-simplified and use the original observation space so
that the optimal action at the root could be distinguished. This implies that
our method will eventually converge to a topology resembling the original one
after numerous iterations, resulting in increased time costs. We address this
dilemma as the trade-off between simplification and direct calculation, which all
the simplification problems will face.

In addressing this dilemma, it is crucial to have a method that can intel-
ligently and adaptively determine whether a situation is amenable to simplifi-
cation. By evaluating the potential level of simplification before incurring high
costs of explicit calculating, we can prune inadequate simplification candidates
and further simplify the iteration process. We will focus on this problem in future
work.
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