Simplification for Efficient Decision Making Under Uncertainty with General Distributions Ph.D. Seminar

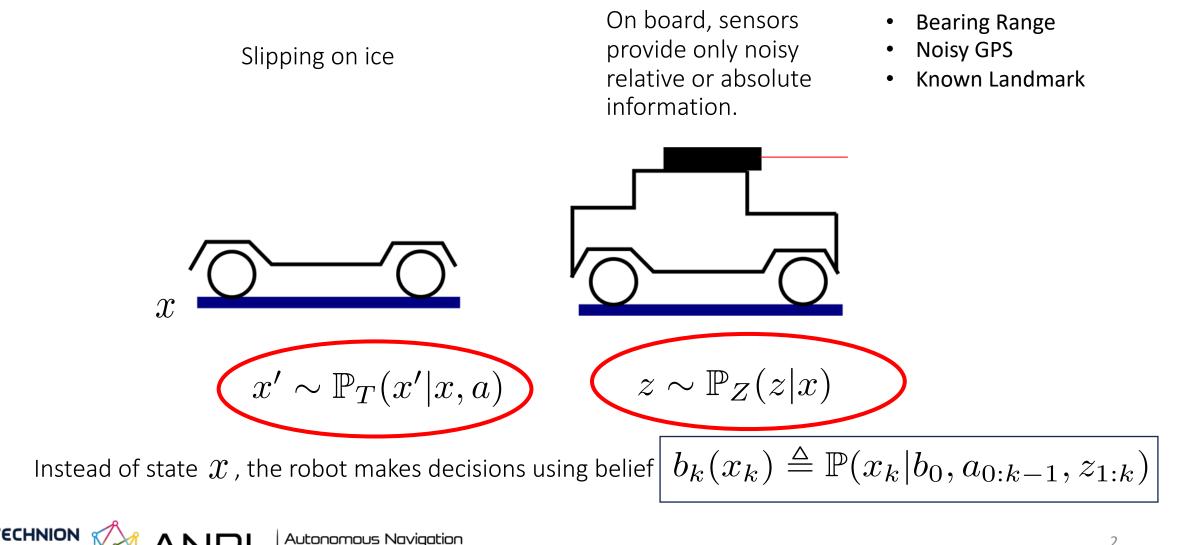
Andrey Zhitnikov

Supervised by Vadim Indelman

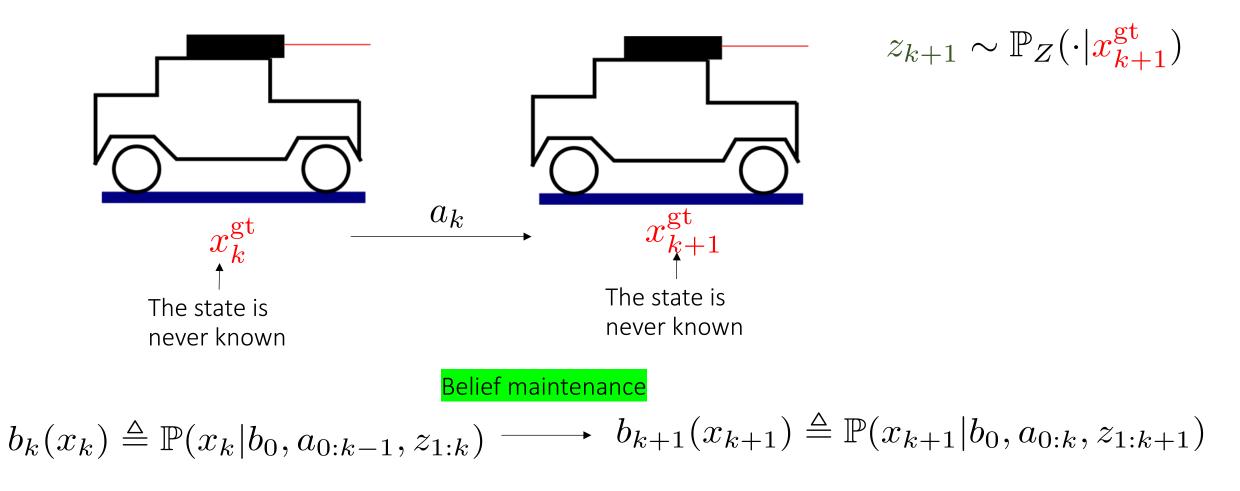
Motivation to Consider Uncertainty

and Perception Lab

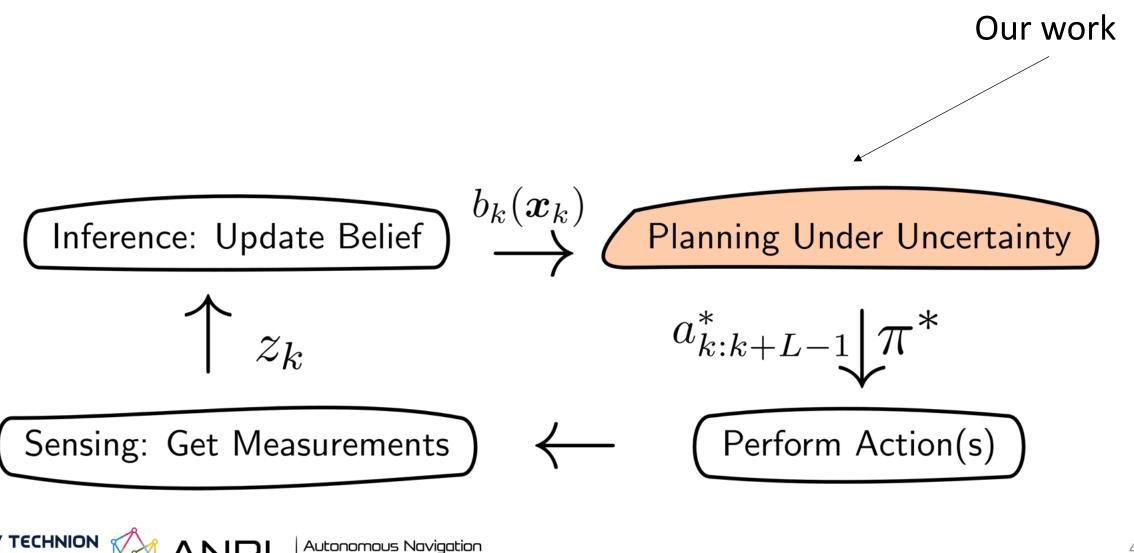
of Technology



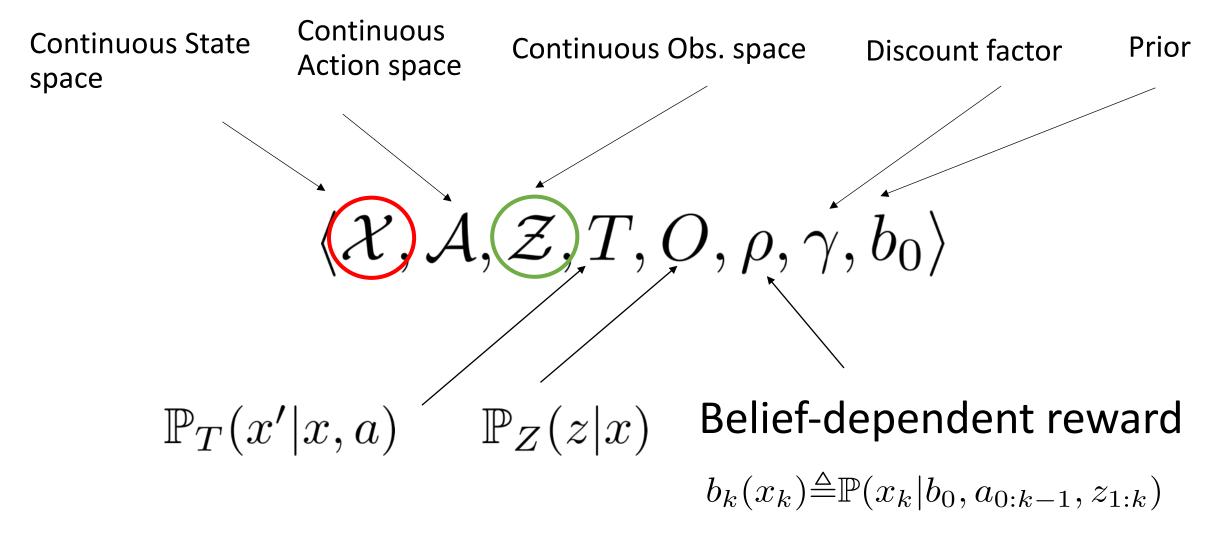
Belief Maintenance



Plan-act-sense-infer **framework** (Robot Autonomy)



Belief Dependent POMDP



Belief MDP (BMDP)

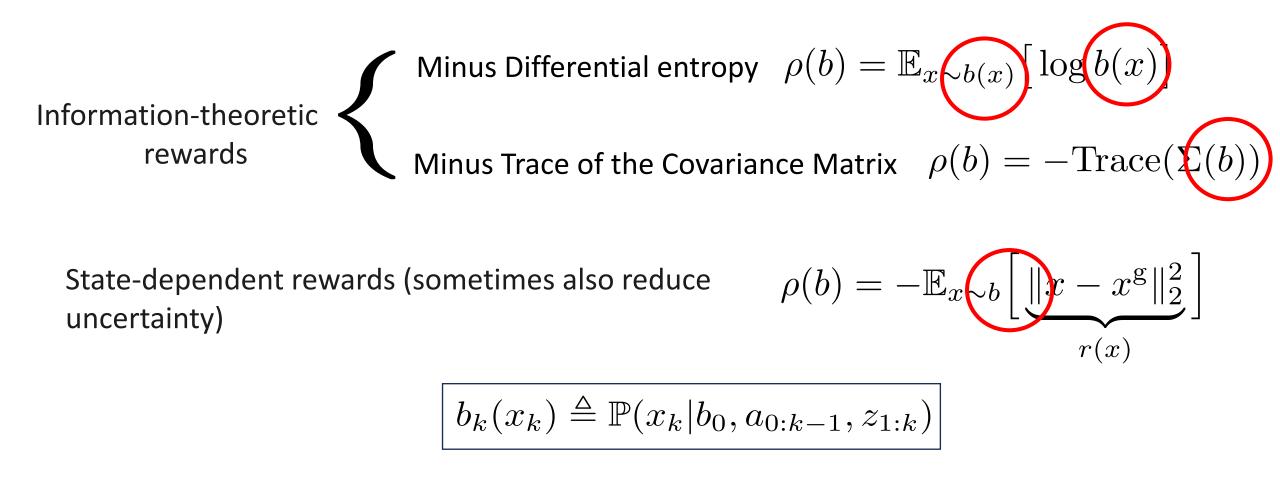
$$\tau(b, a, b') \triangleq \int_{z' \in \mathcal{Z}} \underbrace{\mathbb{P}(b'|b, a, z')}_{\text{Dirac } \delta} \mathbb{P}_{Z}(z'|b, a) dz$$

$$(B, \mathcal{A}, \mathcal{T}, \rho, \gamma, b_{0})$$

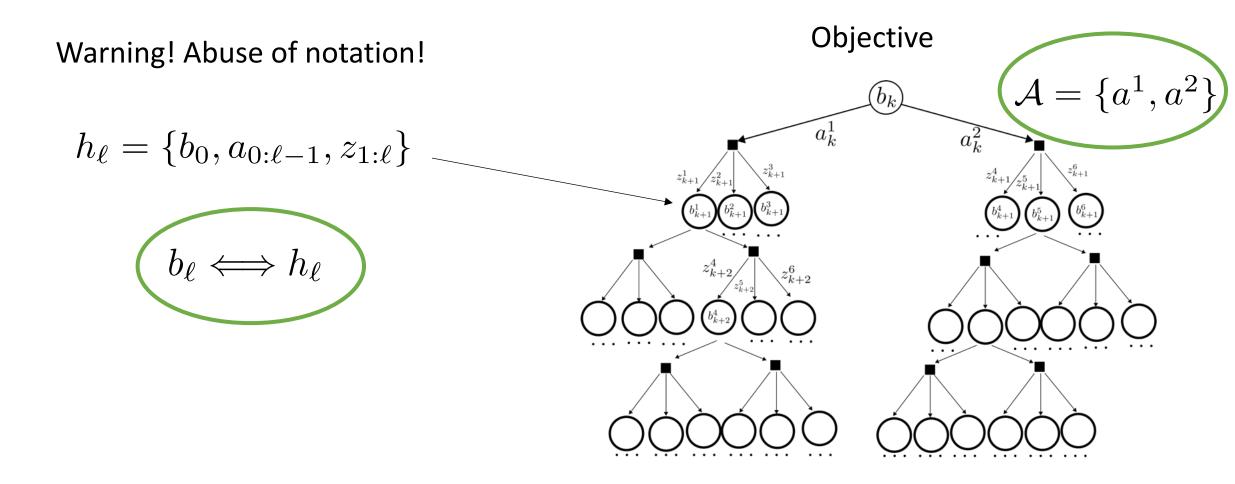
 $\mathbb{P}_{\tau}(b'|b,a)$

New state space

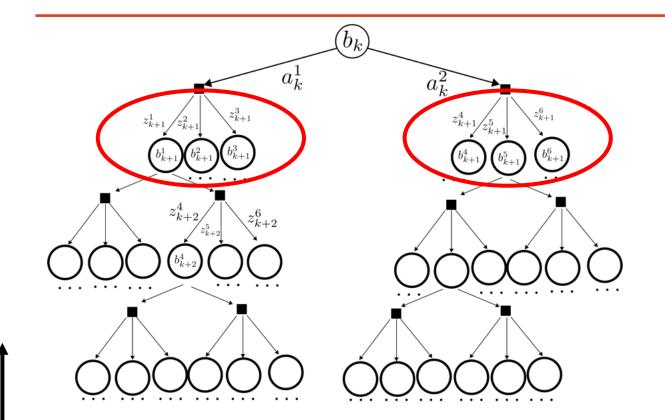
Belief-dependent rewards



Value function
$$V(b_k, \pi_{k+}) = \mathbb{E}_{z_{k+1:k+L}} \left[\sum_{\ell=k}^{k+L-1} \gamma^{\ell+1-k} \rho(b_\ell, \pi_\ell(b_\ell), z_{\ell+1}, b_{\ell+1}) \middle| b_k, \pi_{k+1} \right]$$

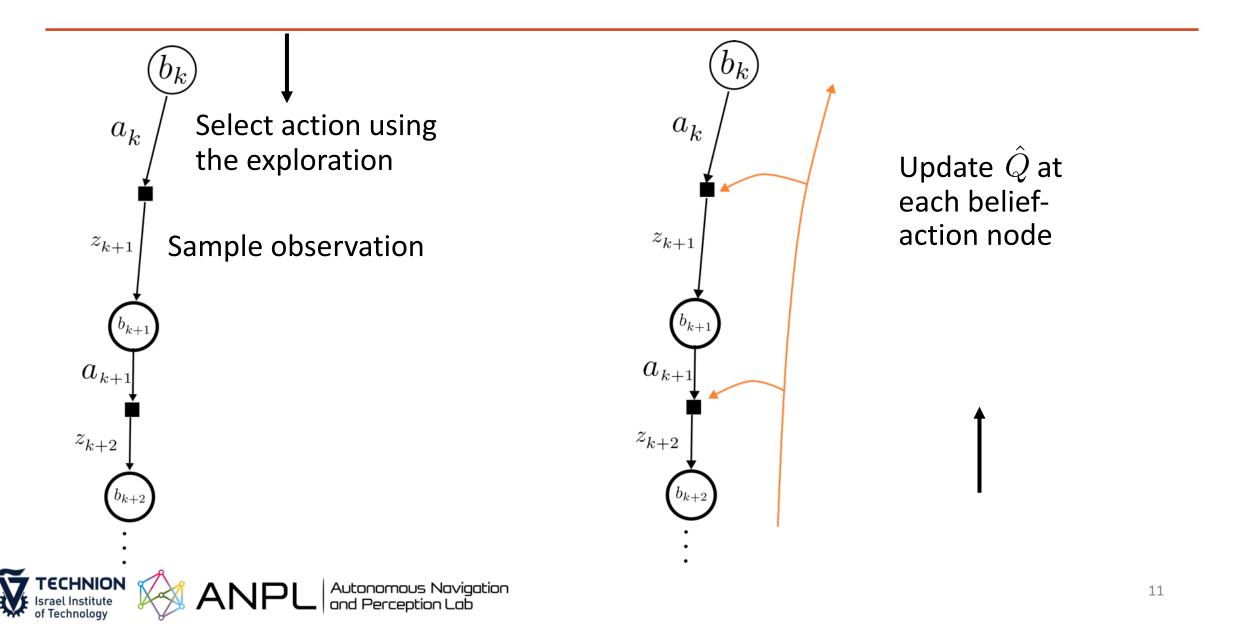


Existing Approaches in Continuous Spaces

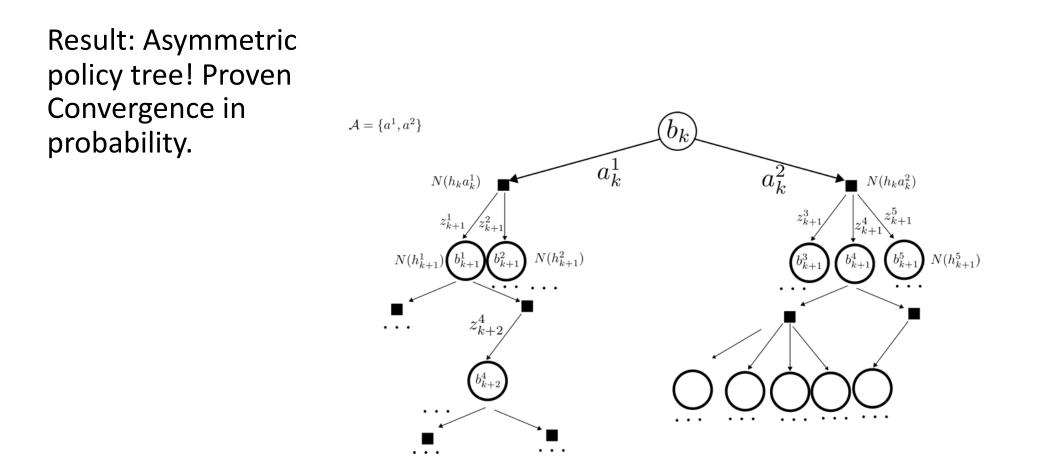


Limits the number of children with constant. Proven guarantees on optimality!

Existing Approaches in Continuous Spaces, MCTS



Existing Approaches in Continuous Spaces, MCTS



Curses

- Curse of history: Branching with actions and observations is computationally intense.
- MCTS with belief-dependent rewards is still slow. Rewards are the bottleneck.
- If the map is uncertain the dimension of the state is large. It can be increasingly large. Belief maintenance can be a bottleneck.

All this prevents the robot from making fast decisions online!

The goal: Identify redundancies in the decision-making problem. Accelerate decision-making by simplification while providing guarantees.

simplification == relaxation of the redundancies with guarantees

- Adaptive Multilevel Simplification
- Risk-aware simplified decision-making under uncertainty
- Probabilistically Constrained Belief Space Planning



- Adaptive Multilevel Simplification
- Risk-aware simplified decision-making under uncertainty
- Probabilistically Constrained Belief Space Planning

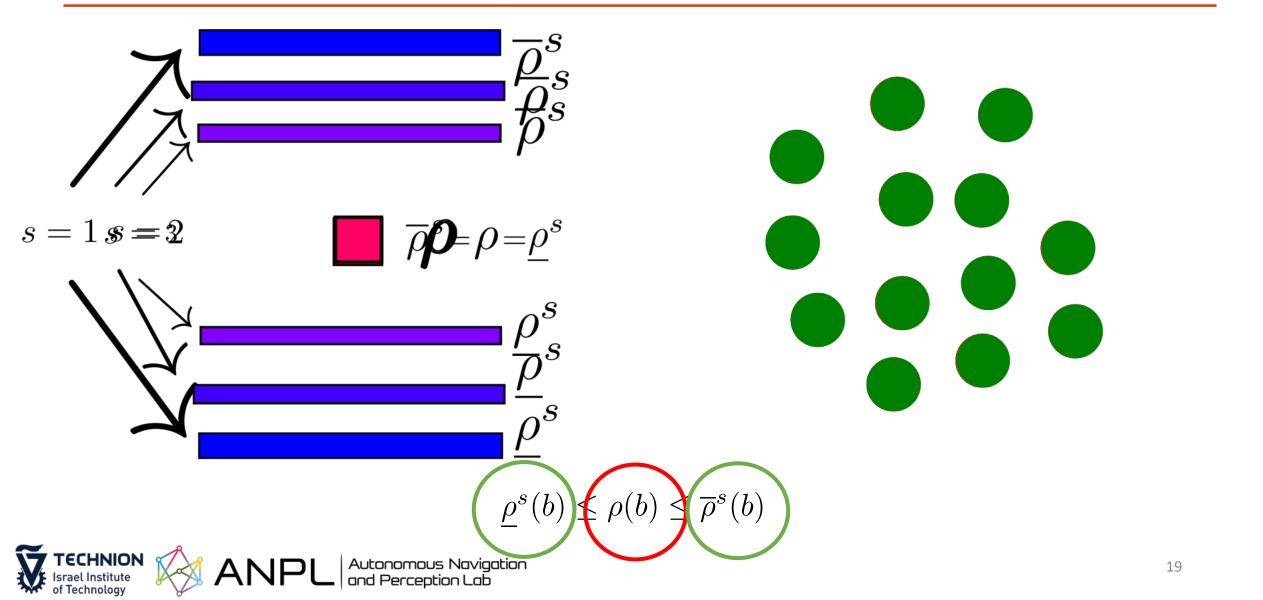
No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman Submitted to IJRR

Speedup planning by utilizing computationally cheaper adaptive bounds; provide performance guarantees; especially considering info-theoretic rewards.

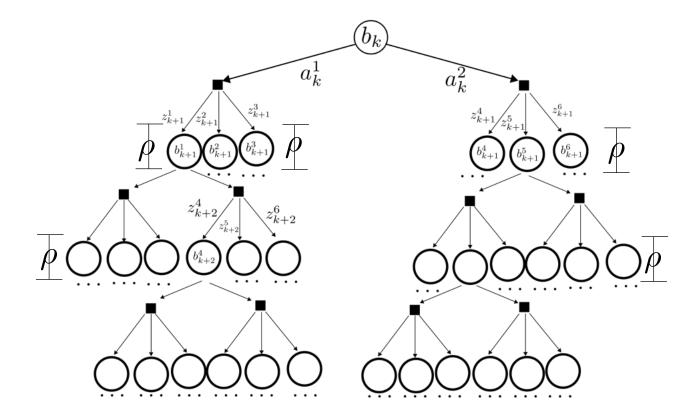
Novelty

- Formulate a provable Simplification framework building on cheaper to calculate adaptive bounds over the reward
- Innovate algorithms in two settings, given belief tree and MCTS

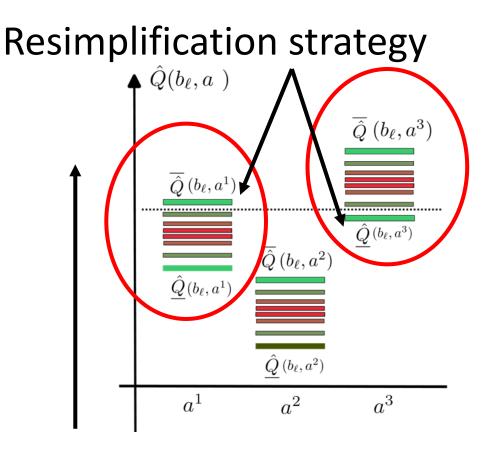
Adaptive Multilevel Simplification



Adaptive Multilevel Simplification – Given Belief Tree

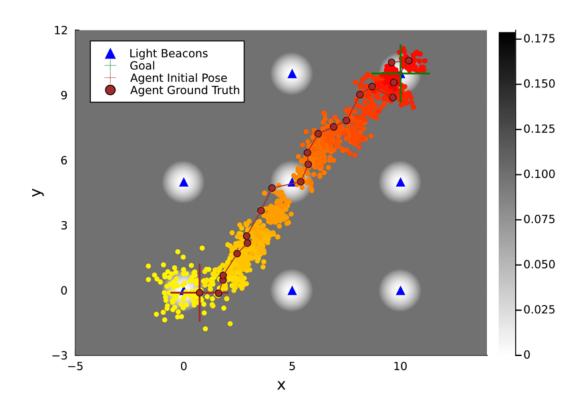


Adaptive Multilevel Simplification

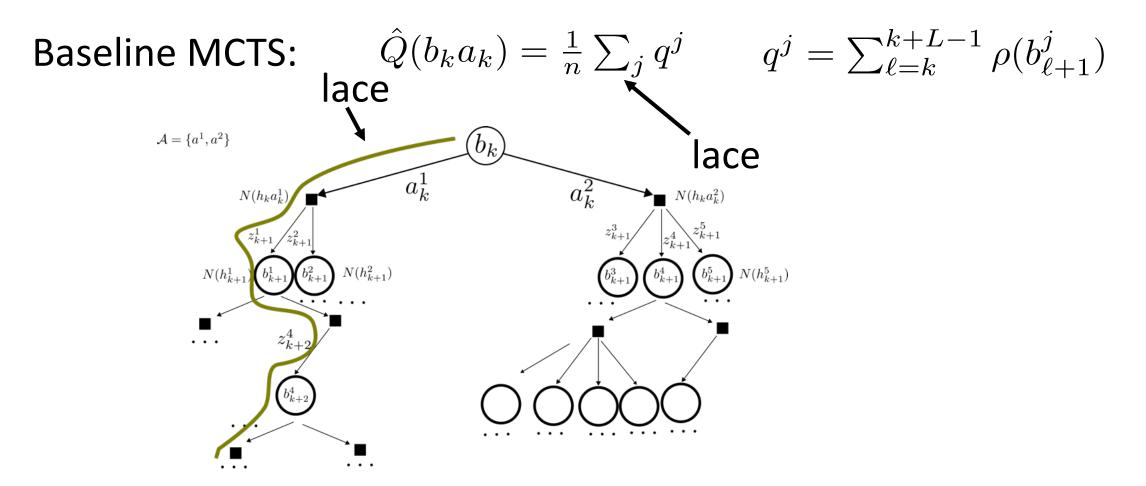


On the way up the tree

Adaptive Multilevel Simplification- Given Tree Results



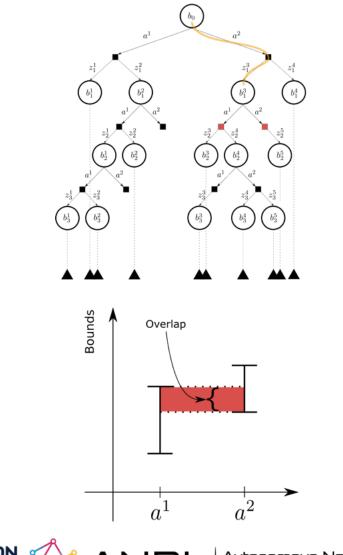
Typical speedup of 20% - 50%, Same performance!



Embedding into UCB driven exploration (MCTS)

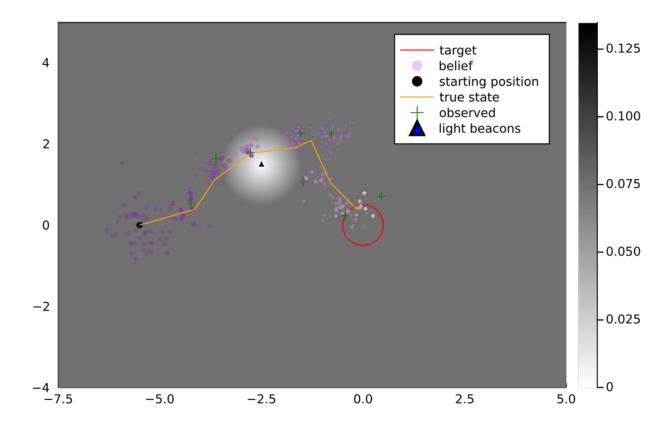
Our: Instead of exploration to select action on the way down the tree use bounds.

Adaptive Multilevel Simplification



-W

Adaptive Multilevel Simplification- MCTS Results



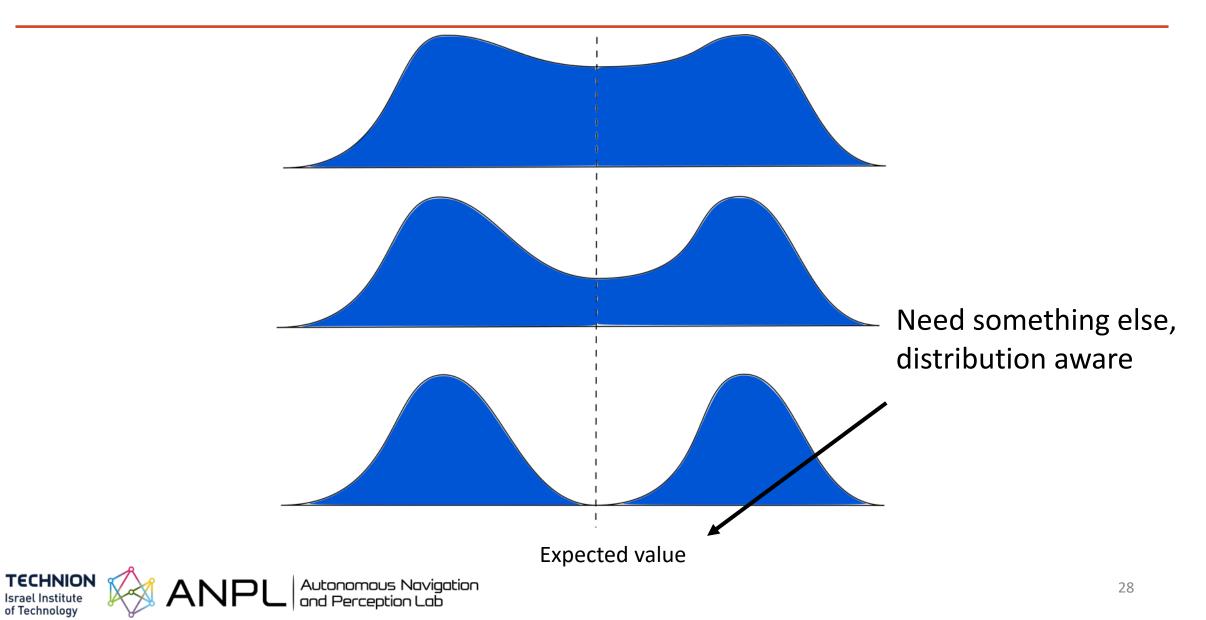
Typical speedup of 20%, Same performance!



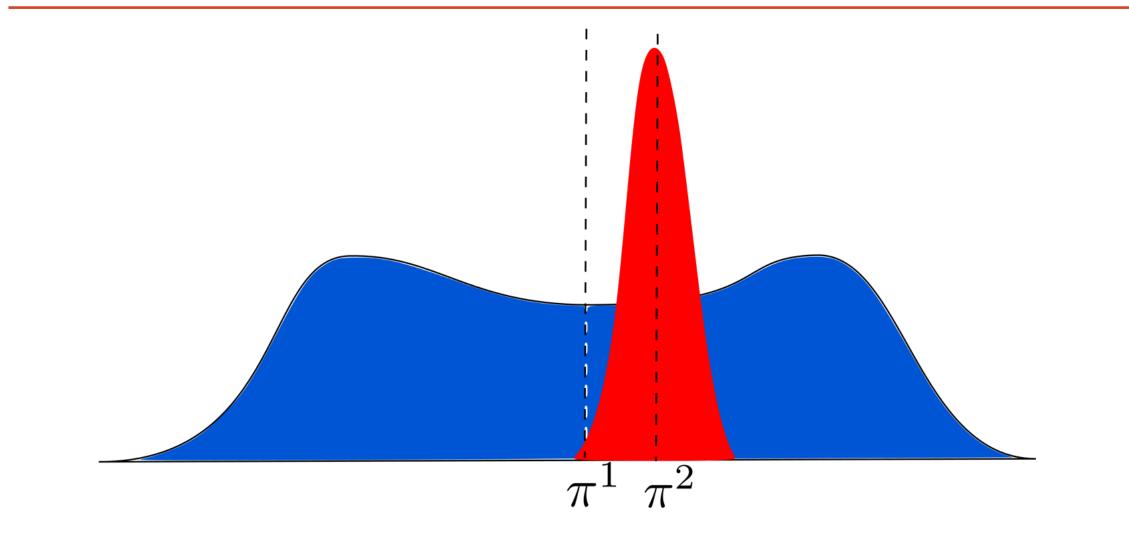
- Adaptive Multilevel Simplification
- Risk-aware simplified decision-making under uncertainty
- Probabilistically Constrained Belief Space Planning

Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains, Andrey Zhitnikov and Vadim Indelman, Elsevier AI. 2022

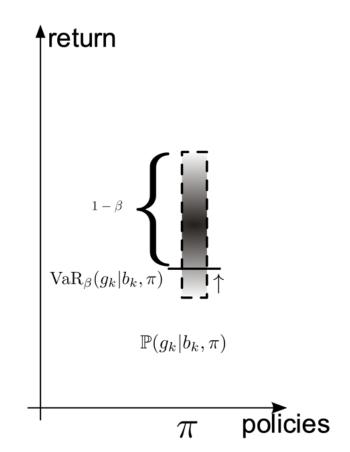
Risk-aware decision making – the Gap



Risk-aware decision making – the Gap



Risk-aware decision making

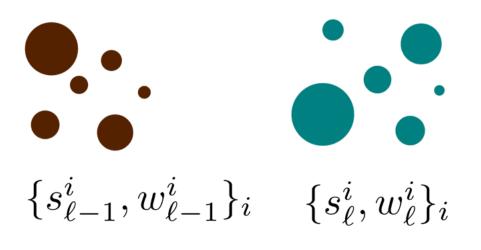


The probability mass that the return will be under VaR is at most β . In other words, VaR is β - quantile of the return.

$$V^{L}(b_{k},\pi) = \mathsf{VaR}_{\beta}(g_{k}|b_{k},\pi) =$$
$$= \sup\{\xi \text{ s.t } \mathsf{P}(g_{k} > \xi|b_{k},\pi) \ge 1 - \beta\}$$

Gap 2

- Belief update is modeled as deterministic no matter what
- Reward is deterministic given belief no matter what.



$$\rho(b) = \mathbb{E}_{x \sim b(x)} \left[\log b(x) \right]$$

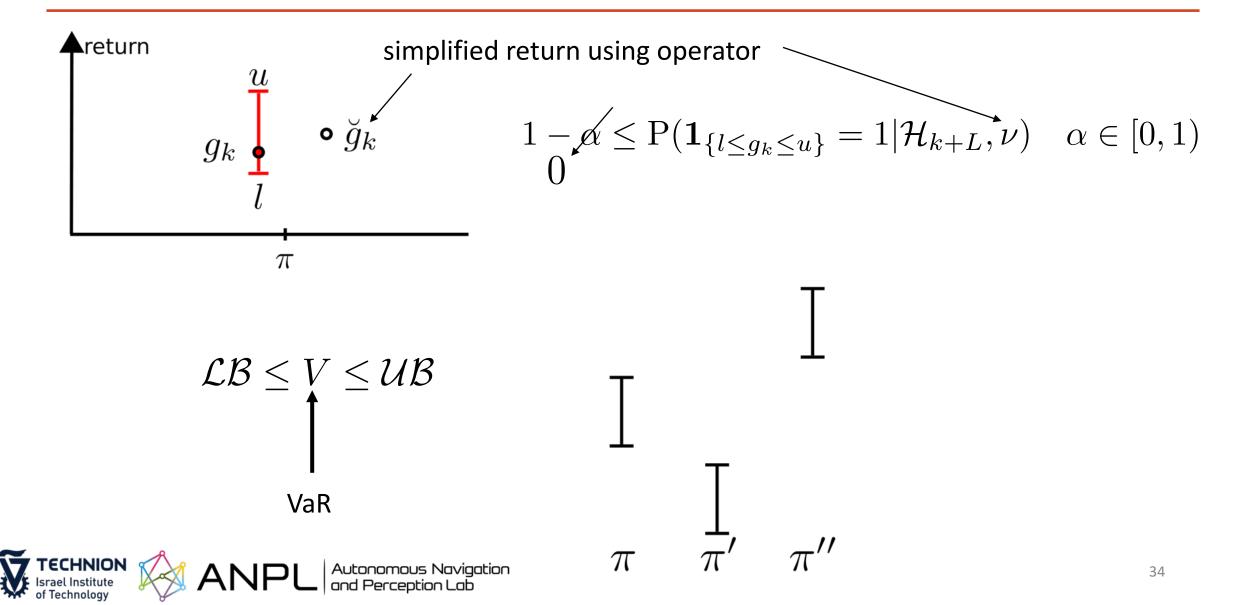
Need to be approximated via empirical mean

Our: stochastic belief update (particle filter), stochastic reward given belief.

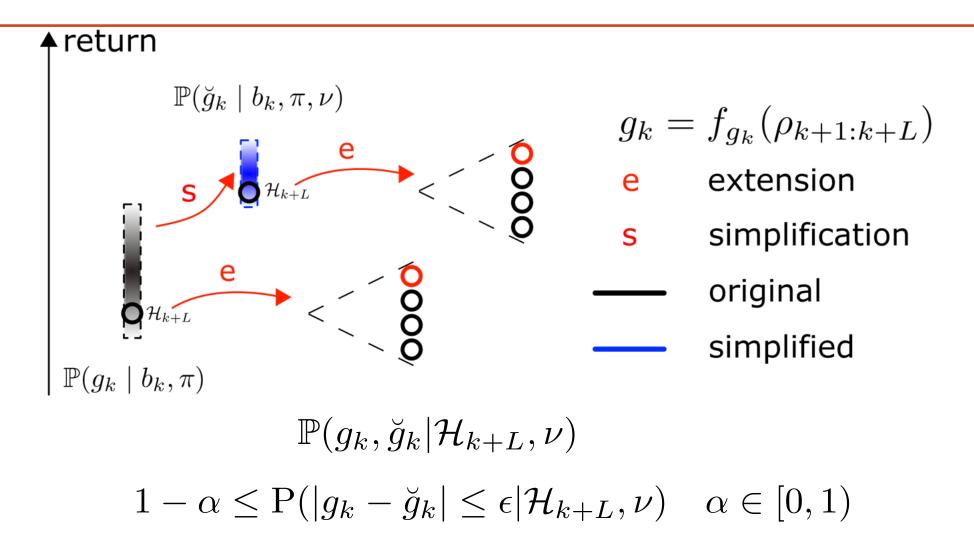
- Simplification while accounting for the variability of nonparametric representations
- Deterministic bounds over the VaR using stochastic bounds over the return

Extended belief tree and variability of the return

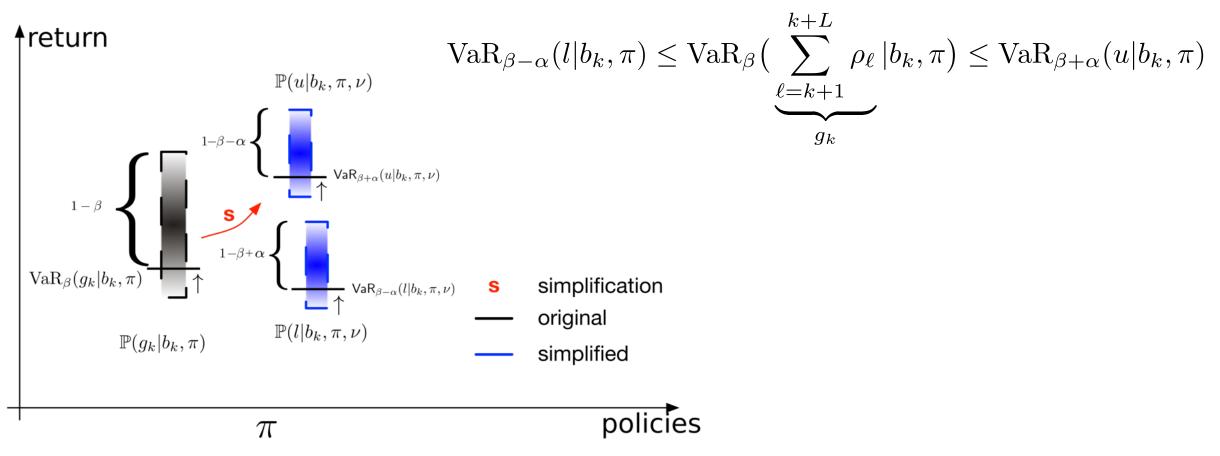
Simplification in extended setting



Simplification in extended setting

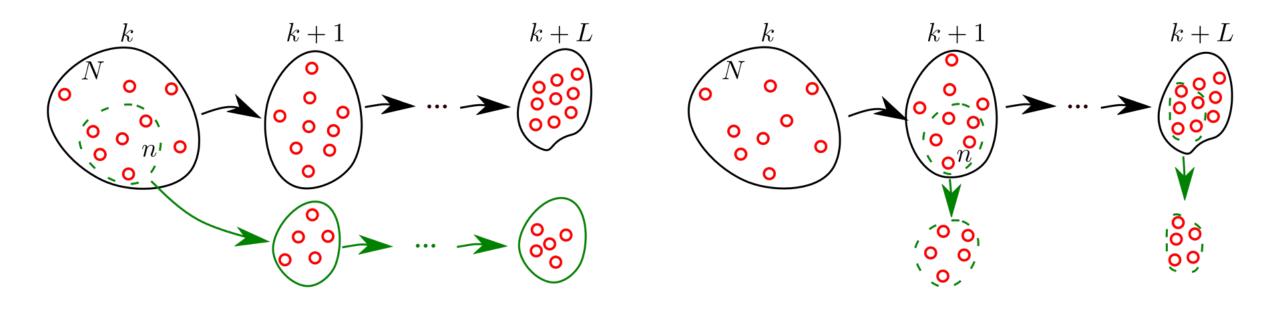


Key Result

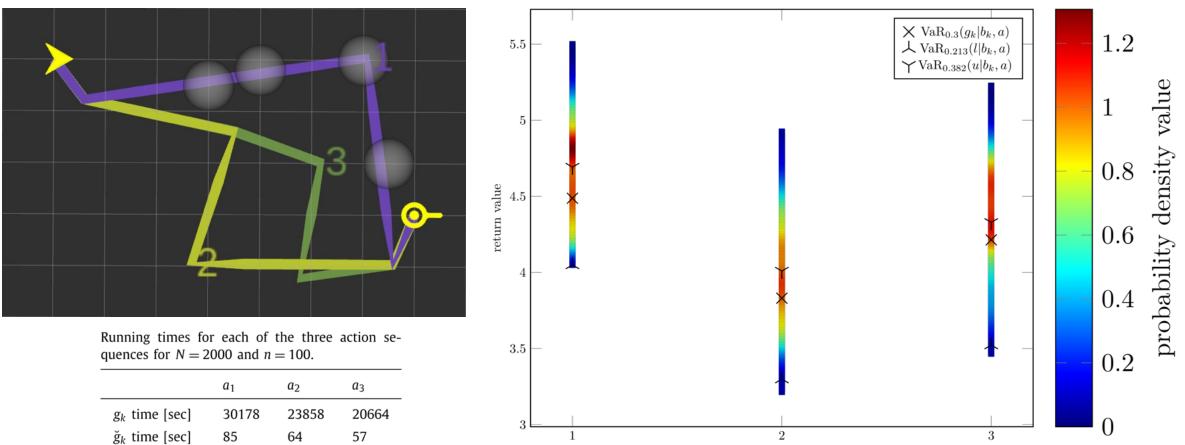


Stochastic bounds on the return yield deterministic bounds on VaR

Specific Simplification



Results



action sequences

4084

7.24

2805

7.22

3255

7.18

l, *u* time [sec]

speedup

- Adaptive Multilevel Simplification
- Risk-aware simplified decision-making under uncertainty
- Probabilistically Constrained Belief Space Planning

Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints. Andrey Zhitnikov, Vadim Indelman. IEEE Transactions on Robotics 2023

Safety (AI): averaged constraint

Expectation of state

$$\mathbb{E}_{z_{k+1:k+L}} \begin{bmatrix} \sum_{\ell=k}^{k+L} \phi(b_{\ell+1}) \middle| b_k, \pi \end{bmatrix} \ge \delta$$

Expectation of state dependent payoff $\phi(b_\ell) = \mathbb{E}_{x_\ell \sim b_\ell}(\cdot) \begin{bmatrix} \mathbf{1}_{\{x_\ell: x_\ell \in \mathcal{X}_\ell^{\mathrm{safe}}\}} \end{bmatrix}$ with respect to belief

Safety (Robotics): Chance Constraint

$$\mathbb{E}_{\tau_k} \left[\mathbf{1}_{\{\tau_k:\tau_k \in \times_{\ell=k}^{k+L} \mathcal{X}_{\ell}^{\text{safe}}\}} \middle| b_k, \pi \right] \ge \delta$$

Trajectory of robot states $\tau_k = x_{k:k+L}$

Existing Approaches

Information theoretic

Al: no works to date

$$\mathbb{E}_{z_{k+1:k+L}}\left[\sum_{\ell=k}^{k+L-1}\phi(b_{\ell},b_{\ell+1})\Big|b_k,\pi\right] \ge \delta$$

Robotics: Maximum likely observation

$$\sum_{\ell=k}^{k+L-1} \phi(b_{\ell}^{\mathrm{ML}}, b_{\ell+1}^{\mathrm{ML}}) \ge \delta$$

Contributions of this work

- We utilize our Probabilistically Constrained POMDP in the context of information-theoretic constraint;
- Maximize Value at Risk adaptively;
- We rigorously derive a theory of the simplification;
- We contribute fast adaptive pruning for safety formulated as a Probabilistic Constraint.

Our Probabilistic Belief Dependent Constraint

$$\max_{\pi_{k+}} \mathbb{E} \left[\sum_{\ell=k}^{k+L-1} \rho_{\ell+1} \middle| b_k, \pi_{k+} \right]$$

subject to $P(c(b_{k:k+L}; \phi, \delta) = 1 | b_k, a_{k+}) \ge 1 - \epsilon$
Safety $\longrightarrow c(b_{k:k+L}; \phi, \delta) \triangleq \prod_{\ell=k}^{k+L} \mathbf{1}_{\{b_\ell: \phi(b_\ell) \ge \delta\}}(b_\ell)$

Information
$$\longrightarrow c(b_{k:k+L}; \phi, \delta) \triangleq \mathbf{1}_{\{(\sum_{\ell=k}^{k+L-1} \phi(b_t, b_{t+1})) \in \delta\}}(b_{k:k+L})$$

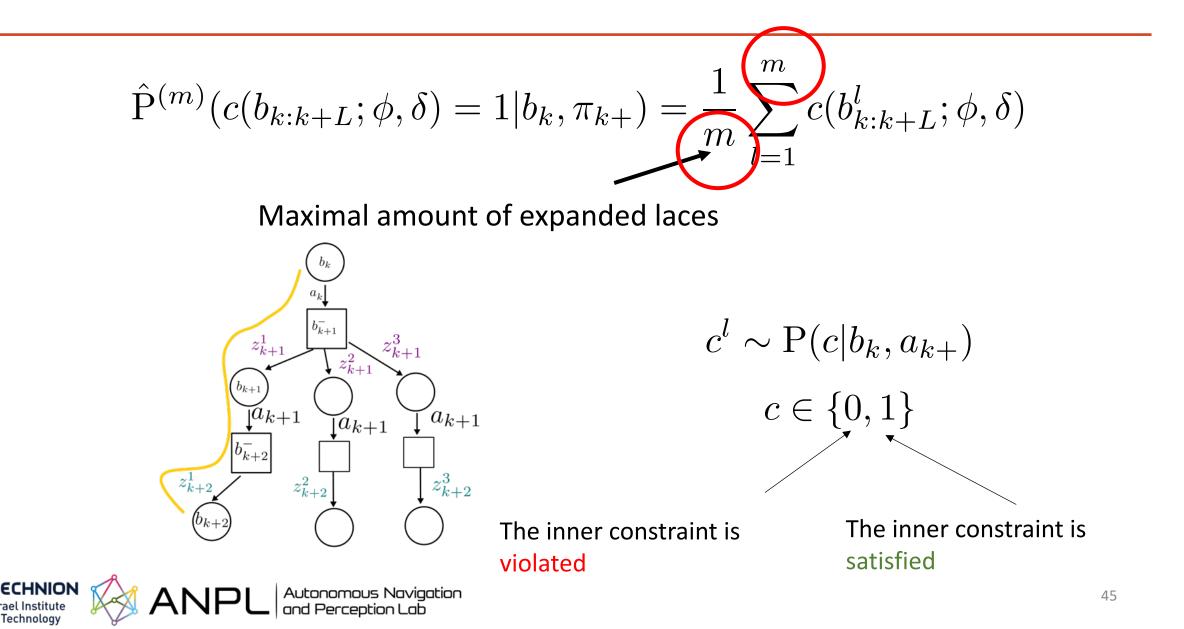
$$a_{k+}^* \in \arg \max_{a_{k+} \in \mathcal{A}} \mathcal{V}(b_k, a_{k+}; \epsilon) \qquad \mathcal{V}(b_k, a_{k+}; \epsilon) = \operatorname{VaR}_{\epsilon}((s(b_{k:k+L}; \cdot) | b_k, a_{k+}))$$

$$\sup\{\delta: P(s(b_{k:k+L}; \cdot)) \ge \delta | b_k, a_{k+1}) \ge 1 - \epsilon\}$$

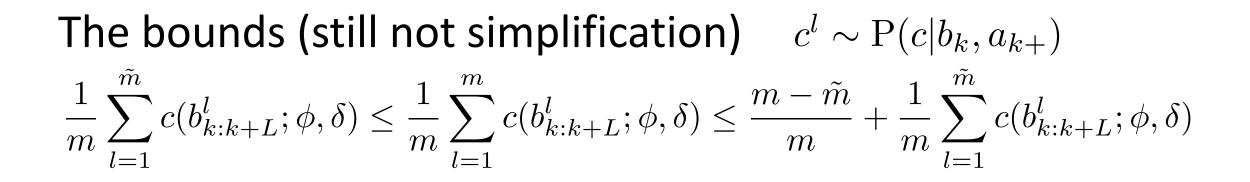
Reward operator or payoff

Probabilistic constraint sample approximation

of Technology



Probabilistic constraints, the bounds



Probabilistic constraints, the bounds-adaptivity

The bounds (still not simplification) $c^l \sim P(c|b_k, a_{k+})$

$$\frac{1}{m}\sum_{l=1}^{\tilde{m}} c(b_{k:k+L}^{l};\phi,\delta) \le \frac{1}{m}\sum_{l=1}^{m} c(b_{k:k+L}^{l};\phi,\delta) \le \frac{m-\tilde{m}}{m} + \frac{1}{m}\sum_{l=1}^{\tilde{m}} c(b_{k:k+L}^{l};\phi,\delta)$$

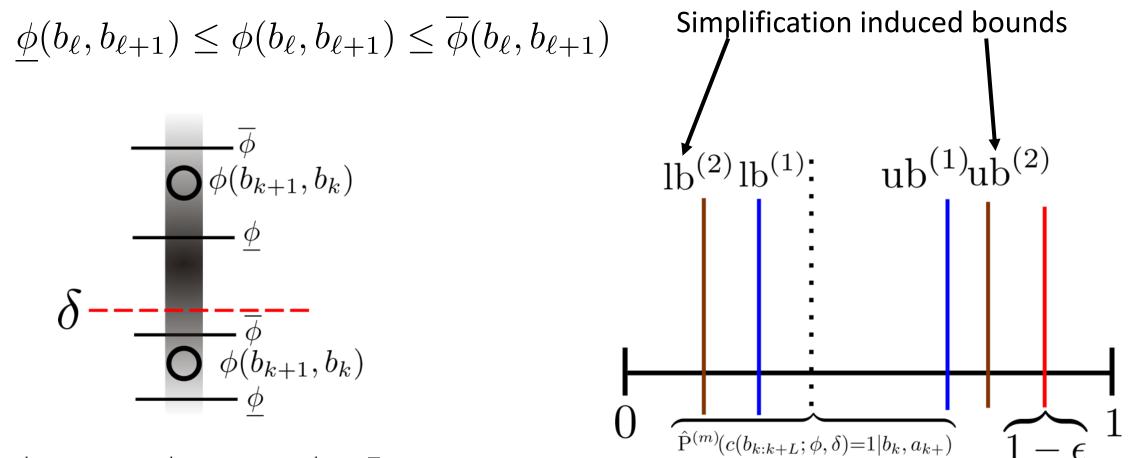
Makes a step **right** if lace equals **one** and with prob

$$P(c(b_{k:k+L};\phi,\delta) = 1|b_k,a_{k+})$$

Makes step **left** if lace equals **zero** and with prob

$$P(c(b_{k:k+L};\phi,\delta)=0|b_k,a_{k+})$$

Probabilistic constraints, simplification



 $\underline{c}(b_{k:k+L}^{l};\underline{\phi},\delta) \leq c(b_{k:k+L}^{l};\phi,\delta) \leq \overline{c}(b_{k:k+L}^{l};\overline{\phi},\delta)$

active SLAM: speedup about 20%

Sensor Deployment: sometimes 80% speedup

Decision-making under uncertainty holds many redundancies that can be exploited to accelerate the process providing performance guarantees!

Papers

- No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman Submitted to IJRR
- Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains, Andrey Zhitnikov and Vadim Indelman, Elsevier AI. 2022
- Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints. Andrey Zhitnikov, Vadim Indelman. IEEE Transactions on Robotics 2023
- Risk Aware Adaptive Belief-dependent Probabilistically Constrained Continuous POMDP Planning. Andrey Zhitnikov, Vadim Indelman. Rejected from Elsevier AI, to be resubmitted.
- Anytime Probabilistically Constrained Belief Space Planning. Andrey Zhitnikov, Vadim Indelman. Stealth mode, aiming to WAFR

Thank you for your attention!

