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Motivation to Consider Uncertainty
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Slipping on ice
On board, sensors 
provide only noisy 
relative or absolute 
information.  

Instead of state      , the robot makes decisions using belief  

• Bearing Range
• Noisy GPS
• Known Landmark



Belief Maintenance
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The state is 
never known

The state is 
never known

Belief maintenance



Plan-act-sense-infer framework (Robot Autonomy)
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Our work
Important!  Index       is the current time
           Index       is the future time



Belief Dependent POMDP
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Belief-dependent reward

Continuous State 
space

Continuous 
Action space Continuous Obs. space Discount factor Prior



Belief MDP (BMDP)
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New state space



Belief-dependent rewards
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Minus Differential entropy

Minus Trace of the Covariance Matrix
Information-theoretic
               rewards 

State-dependent rewards (sometimes also reduce 
uncertainty)



Objective
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Value function

Approximate by policy tree  

Find only the best action for current belief. The 
planner itself is a policy.  

Planning:Inference:



Belief tree
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ObjectiveWarning! Abuse of notation!



Existing Approaches in Continuous Spaces 
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Limits the number of children 
with constant. Proven 
guarantees on optimality! 



Existing Approaches in Continuous Spaces, MCTS 
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Select action using 
the exploration

Sample observation

Update      at 
each belief-
action node



Existing Approaches in Continuous Spaces, MCTS 
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Result: Asymmetric 
policy tree! Proven 
Convergence in 
probability.



Curses 
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• Curse of history: Branching with actions and observations is computationally 
intense.

• MCTS with belief-dependent rewards is still slow. Rewards are the bottleneck. 
• If the map is uncertain the dimension of the state is large. It can be increasingly 

large. Belief maintenance can be a bottleneck. 
  

All this prevents the robot from making fast decisions online!
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Simplification paradigm

The goal: Identify redundancies in the decision-making problem. 
Accelerate decision-making by simplification while providing 
guarantees.

simplification == relaxation of the redundancies with guarantees



Contributions (High Level)
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• Adaptive Multilevel Simplification
• Risk-aware simplified decision-making under uncertainty 
• Probabilistically Constrained Belief Space Planning



Contributions
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• Adaptive Multilevel Simplification
• Risk-aware simplified decision-making under uncertainty 
• Probabilistically Constrained Belief Space Planning

No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive 
multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman
Submitted to IJRR
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Adaptive Multilevel Simplification - the concept

Speedup planning by utilizing computationally cheaper adaptive bounds; provide 
performance guarantees; especially considering info-theoretic rewards.

Specifically: take fewer samples of belief and utilize adaptive bounds over the 
reward. More samples imply tighter bounds! 



18

Novelty

• Formulate a provable Simplification framework building on cheaper to calculate 
adaptive bounds over the reward

• Innovate algorithms in two settings, given belief tree and MCTS



Adaptive Multilevel Simplification
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Adaptive Multilevel Simplification – Given Belief Tree



Adaptive Multilevel Simplification
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On the way up the tree can prune

Resimplification strategy



Adaptive Multilevel Simplification- Given Tree Results
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Typical speedup of 20% - 50%,
Same performance!
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Adaptive Multilevel Simplification – Search Tree (Policy tree) 

Baseline MCTS:

lace
lace



Embedding into UCB driven exploration (MCTS)  
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Our: Instead of exploration to select action on the way down the tree use 
bounds.  



Adaptive Multilevel Simplification
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Adaptive Multilevel Simplification- MCTS Results
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Typical speedup of 20%,
Same performance!



Contributions
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• Adaptive Multilevel Simplification
• Risk-aware simplified decision-making under uncertainty 
• Probabilistically Constrained Belief Space Planning

Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains,
Andrey Zhitnikov and Vadim Indelman, Elsevier AI. 2022 



Risk-aware decision making – the Gap 
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Expected value

Need something else, 
distribution aware



Risk-aware decision making – the Gap 
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Risk-aware decision making 
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The probability mass that the return will be under
VaR is at most    . In other words, VaR is    - quantile of the return.



Gap 2
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• Belief update is modeled as deterministic no matter what
• Reward is deterministic given belief no matter what. 

Our: stochastic belief update (particle filter), stochastic reward 
given belief.

Need to be approximated via empirical mean



Novelty
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• Simplification while accounting for the variability of 
nonparametric representations

• Deterministic bounds over the VaR using stochastic bounds 
over the return 



Extended belief tree and variability of the return
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and



Simplification in extended setting

simplified return using operator
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VaR



Simplification in extended setting
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Key Result 
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Stochastic bounds on the return yield deterministic bounds on VaR



Specific Simplification
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Results
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Contributions

39

• Adaptive Multilevel Simplification
• Risk-aware simplified decision-making under uncertainty 
• Probabilistically Constrained Belief Space Planning

Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent 
Constraints. Andrey Zhitnikov, Vadim Indelman. IEEE Transactions on Robotics 2023



Existing Approaches
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Safety (AI):  averaged constraint    

Expectation of state dependent payoff 
with respect to belief
Safety (Robotics): Chance  Constraint   

Trajectory of robot states 



Existing Approaches
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Information theoretic    

Robotics: Maximum likely observation   

Differential 
entropy, 
uncertain map 

AI: no works to date    



Contributions of this work
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• We utilize our Probabilistically Constrained POMDP in the context of 
information-theoretic constraint;

• Maximize Value at Risk adaptively;
• We rigorously derive a theory of the simplification;
• We contribute fast adaptive pruning for safety formulated as a Probabilistic 

Constraint.



Our Probabilistic Belief Dependent Constraint
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Safety 

Information 



Maximizing Value at Risk
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Reward operator or payoff



Probabilistic constraint sample approximation
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Maximal amount of expanded laces

The inner constraint is 
violated

The inner constraint is 
satisfied



Probabilistic constraints, the bounds
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The bounds (still not simplification)

Early Accept with a lower bound: Exploration

Early Discard with an upper bound: Safety



Probabilistic constraints, the bounds-adaptivity
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Makes a step right if lace equals one 
and with prob                                         

Makes step left if lace equals zero  
and with prob 

The bounds (still not simplification)



Probabilistic constraints, simplification
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Simplification induced bounds



Partial Results – Maximal Feasible Return
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Sensor Deployment:  sometimes 80%  speedup

active SLAM: speedup about 20%



Key message

Decision-making under uncertainty holds many redundancies 
that can be exploited to accelerate the process providing 
performance guarantees!
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Papers

• No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive 
multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman Submitted to IJRR

• Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains, 
Andrey Zhitnikov and Vadim Indelman, Elsevier AI. 2022

• Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent 
Constraints. Andrey Zhitnikov, Vadim Indelman. IEEE Transactions on Robotics 2023

• Risk Aware Adaptive Belief-dependent Probabilistically Constrained Continuous POMDP Planning. Andrey 
Zhitnikov, Vadim Indelman. Rejected from Elsevier AI, to be resubmitted.

• Anytime Probabilistically Constrained Belief Space Planning. Andrey Zhitnikov, Vadim Indelman. Stealth 
mode, aiming to WAFR
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Thank you for your attention!


