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Motivation to Consider Uncertainty

On board, sensors * Bearing Range

Slipping on ice provide only noisy * Noisy GPS
relative or absolute ¢ Known Landmark
information.

G Corom D

A
Instead of state U, the robot makes decisions using belief k (:L’k) — (:Bk |bo, ao:-k—1, ?1: k)
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Belief Maintenance
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The state is The state is

never known never known

Belief maintenance

bk+1 (33k+1) = IPD(Clﬁ’kjtl |b07 ao:k, Zl:k—|—1)

bi.(z1) = P(xk|bo, 0:k—1, 21:1)
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Plan-act-sense-infer framework (Robot Autonomy)

Our work

/

b (x
anerence: Update Belieo kl }k) ﬁanning Under Uncerta@
%
T 2l az:k—FL—l\l/ﬂ-
LSensing: Get MeasurementD % CPerform Action(s)]
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Belief Dependent POMDP

Continuous
Action space

Continuous State
space

Continuous Obs. space Discount factor Prior

/
\
\

Pr(z'|x,a) Pgz(z|z) Behef—dependent reward

bi(x1)=P(xk|bo, a0:k—1, 21:1)
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Belief MDP (BMDP)

7(b,a,b') = JczP'|b,a,2")Pz(2'|b,a)dz
Dirac ¢

\ A7/7-7 P, b()>

P (b'|b,a)

New state space
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Belief-dependent rewards

Minus Differential entropy p(b ‘ lo
Information-theoretic
rewards Minus Trace of the Covariance Matrix p(b) = —Trace(]

State-dependent rewards (sometimes also reduce p(b) = —Ex}
uncertainty)

()

b (1) = P(ak|bo, ao:k—1, 21:%)
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Objective

 k+L—1
. B (+1—k
Value function V (by,, s ) = Esp 1y E v p(be, me(be), 2o41,bes1) bk, Tho
| (=k
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Belief tree

Warning! Abuse of notation! Objective
(by
a aj n

hﬁ — {b07 A0:4—1 Zl:f} \;{ /\\;M ~1/J\.

by <= Iy / /T\ T
OQOOO Q/CBOOQD\O

BOOC00 GHOGOO
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Existing Approaches in Continuous Spaces

Limits the number of children
with constant. Proven
guarantees on optimality!

‘ /\ /\ 0/5\ /&)
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Existing Approaches in Continuous Spaces, MCTS

|

a,, Select action using

the exploration Update Q at

each belief-

N
Zk+1/ Sample observation action node

At

1
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Existing Approaches in Continuous Spaces, MCTS

Result: Asymmetric
policy tree! Proven
Convergence in
probability.
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curses

Curse of history: Branching with actions and observations is computationally
intense.

 MCTS with belief-dependent rewards is still slow. Rewards are the bottleneck.

If the map is uncertain the dimension of the state is large. It can be increasingly
large. Belief maintenance can be a bottleneck.

All this prevents the robot from making decisions online!
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Simplification paradigm

The goal: Identify redundancies in the decision-making problem.
Accelerate decision-making by simplification while providing
guarantees.

simplification == relaxation of the redundancies with guarantees
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Contributions (High Level)

* Adaptive Multilevel Simplification
* Risk-aware simplified decision-making under uncertainty
* Probabilistically Constrained Belief Space Planning
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Contributions

* Risk-aware simplified decision-making under uncertainty
* Probabilistically Constrained Belief Space Planning

No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive
multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman
Submitted to IJRR
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Adaptive Multilevel Simplification - the concept

Speedup planning by utilizing computationally cheaper adaptive bounds; provide
performance guarantees; especially considering info-theoretic rewards.
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Novelty

* Formulate a provable Simplification framework building on cheaper to calculate
adaptive bounds over the reward
* |nnovate algorithms in two settings, given belief tree and MCTS
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Adaptive Multilevel Simplification
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Adaptive Multilevel Simplification — Given Belief Tree
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Adaptive Multilevel Simplification

Resimplification strategy

Q(b[, al)

On the way up the tree
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Adaptive Multilevel Simplification- Given Tree Results

A Light Beacons

- Goal
- Agent Initial Pose
@ Agent Ground Truth

Typical speedup of 20% - 50%,
Same performance!

-0.025
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X
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Adaptive Multilevel Simplification — Search Tree (Policy tree)

Baseline MCTS: Q(brar) = L3 ¢ ¢ =3 el )

lace \
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Embedding into UCB driven exploration (MCTS)

Q(ha) < < O(ha)

Our: Instead of exploration to select action on the way down the tree use
bounds.
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Adaptive Multilevel Simplification

©
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Adaptive Multilevel Simplification- MCTS Results

target 0.125
belief

starting position
true state
observed

light beacons

0.100

Typical speedup of 20%,
0.075 Same performanCE!

0.050

-0.025

—~
TECHNION Autonomous Navigation 26
g Israel Institute @E AN P L and Perception Lab

of Technology




Contributions

* Adaptive Multilevel Simplification
e Risk-aware simplified decision-making under uncertainty
* Probabilistically Constrained Belief Space Planning

Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains,

Andrey Zhitnikov and Vadim Indelman, Elsevier Al. 2022
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Risk-aware decision making —the Gap

Need something else,
distribution aware

Expected value

Autonomous Navigation 28
and Perception Lab

W ssmen 50 ANPL

of Technology




¥

Risk-aware decision making —the Gap
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Risk-aware decision making

Areturn

V‘&‘Rg (gk |blm 7T) | | T
-—

P(gr|br, )
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~
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The probability mass that the return will be under

VaR is at most . In other words, VaR is 3- quantile of the return.

VE(by, ) = VaRg(gi|br, m) =
= sup{¢ s.t P(gr > &|bg,m) > 1 — 5}

poﬁcies
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Gap 2

* Belief update is modeled as deterministic no matter what
* Reward is deterministic given belief no matter what.

Q.
X
{sivwiidi {shwik

Our: stochastic belief update (particle filter), stochastic reward
given belief.
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® p(b) = Eyrp(a) [ log b(x)]

. /

Need to be approximated via empirical mean
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Novelty
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Simplification while accounting for the variability of
nonparametric representations

Deterministic bounds over the VaR using stochastic bounds
over the return
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Extended belief tree and variability of the return
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Simplification in extended setting

Areturn simplified return using operator
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Simplification in extended setting

A return
P(ﬁk | bk,ﬂ',l/)
- e 6 9k = fogr (PE+1:k+L)
) y!m%/_\'< : 8 e extension
. ~ 0 S simplification
e -0 .

!H/”_‘> <~ O original

™ k+L - O | 3
~ 0 — simplified

P(gk | bkaﬂ-)

P(gka gk‘Hk—FLa V)
1 —a < P(lgr — gkl < e|Hpyr,v) a€0,1)
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Key Result

k+L

VaRgo(llbg, m) < VaRg( > pelby, ) < VaRppa(ulbr, )

l=k+1
N——

{l )

VaRgiq(u|by, 7, v)

! 1-8+a {

VaRg(gr|bk, 7) _'_ VaRs_o(bmv) S simplification
P(

— original
P(gk|bk, )

Areturn

P(ulbg, 7, v)

l|bk,7r, V)
— simplified

>
T policies

Stochastic bounds on the return yield deterministic bounds on VaR
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Specific Simplification
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Results

return value

Running times for each of the three action se-
quences for N =2000 and n = 100.

ai a as

gk time [sec] 30178 23858 20664

gy time [sec] 85 64 57
[, u time [sec] 4084 3255 2805
speedup 7.24 7.18 7.22
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)\ Vz1R4,_-_>|3(I|bk. (1)
Y VaRg 382 (u|by, a)
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action sequences
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Contributions

* Adaptive Multilevel Simplification
* Risk-aware simplified decision-making under uncertainty
* Probabilistically Constrained Belief Space Planning

Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent
Constraints. Andrey Zhitnikov, Vadim Indelman. |IEEE Transactions on Robotics 2023
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Existing Approaches

Safety (Al): averaged constraint

Zk—|—1 k+L [Zk—l_L (b€+1)’bka T >0

Expectation of state dependent ¢(b£):E _1 }
~bs(- : Xsafe
with respect to belief rerbelt) - toeine €A

Safety (Robotics): Chance Constraint

by }25

ETk |:1{7_k T ka+Lxsafe}

Trajectory of robot states Tk, = Tk:k+L
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Existing Approaches

Differential

—h(ber)+h(be) oo

uncertain map

Information theoretic ¢(b£a b£+1) —

Al: no works to date E brL-l ¢(be,boaq) ibk, 7'('} > 0

Zk+1:k+L [ =k

. : : : k+L—1 ML
Robotics: Maximum likely observation . o(by b€+1) > 9
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Contributions of this work

We utilize our Probabilistically Constrained POMDP in the context of
information-theoretic constraint;

« Maximize Value at Risk adaptively;

« Werigorously derive a theory of the simplification;

« We contribute fast adaptive pruning for safety formulated as a Probabilistic
Constraint.
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Our Probabilistic Belief Dependent Constraint

" k+L—1 -

max [ Z Pr+1 bk,ﬂ'k_|_

L =k l

subject to P(c(bg.xa1;0,0) = 1|bg, axa) Z@
k+ L
A
Safety — (bt P, 0) = H 1{@@(@)@(5@)

=k

. . 2
Information — C(bk:k+La§ba5)—1{( k—l—L—l¢(bt7bt+1))@(bk:k—l—l})

=k
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Maximizing Value at Risk

ap+€arg max V(by, ap+ie)  V(bk, art;€) = VaRe((s(Orik+15 ) |0k, it )
Q4

sup{5 . P(S(bk;k_u;; )) Z 5\bk,ak+) Z 1 — 6}

Reward operator or payoff

_~
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Probabilistic constraint sample approximation

A

P(m) (C(bk:k—l—L; ¢7 5) — 1‘bk77‘-k—|—) —

Maximal amount of expanded laces

()

2
‘V\ NG c' ~ P(clbr, ar+ )

%kﬂ QO O ce 0,1}

[ak+1 Ar+1

b}.+2 /
] 2 .3
k4 3/ 3Z~+zl l “k+2

O O The inner constraint is The inner constraint is
— violated satisfied
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Probabilistic constraints, the bounds

The bounds (still not simplification)

ch ~ P(cibk,ak+)

1 — 1
— bl < = bl
- ;C( bkt L @, 0) < - ;C( bkt @, 0) <
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Probabilistic constraints, the bounds-adaptivity

The bounds (still not simplification) ¢ ~ P(c|by, ax)

~

1 & 1 & 1 &
— b3, 0) < — -, 6) — 2, 0)
mlz_;c( kik+Li @5 0) _mzc kikt-L5 @ 0) +mzc bkt @5 0)

=1 [=1

Makes a step right if lace equals one Makes step left if lace equals zero

and with prob and with prob

P(C(bk;]H_L; 0, 5) = 1|bk,ak+) P(C(bk:k-i-ll; P, 5) — O‘blﬂak—k)
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Probabilistic constraints, simplification

G(be,bes1) < (b, bes1) < @by, beyq)  SMplitication induced bounds

’ '
¢(bk+1, br) 1H(2) lb(l)E U.b(l)u H(2)

Q(bi;:k—l—L; ?7 5) S C<bgﬂik+L; ¢7 5) S E(bgc:k-l—L; 57 6)
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Partial Results — Maximal Feasible Return

active SLAM: speedup about 20%

Sensor Deployment: sometimes 80% speedup
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Key message

Decision-making under uncertainty holds many redundancies
that can be exploited to accelerate the process providing
performance guarantees!
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Papers

* No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive
multilevel simplification. A Zhitnikov, O Sztyglic, V Indelman Submitted to IJRR

» Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains,
Andrey Zhitnikov and Vadim Indelman, Elsevier Al. 2022

* Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent
Constraints. Andrey Zhitnikov, Vadim Indelman. IEEE Transactions on Robotics 2023

* Risk Aware Adaptive Belief-dependent Probabilistically Constrained Continuous POMDP Planning. Andrey
Zhitnikov, Vadim Indelman. Rejected from Elsevier Al, to be resubmitted.

* Anytime Probabilistically Constrained Belief Space Planning. Andrey Zhitnikov, Vadim Indelman. Stealth
mode, aiming to WAFR

Thank you for your attention!
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