Simplified POMDP Planning with an Alternative Observation Space and Formal Performance Guarantees

ISRR 2024

Da Kong and Vadim Indelman

メロト メ部 トメ 君 トメ 君 トッ

 290

 \blacksquare Decision making under uncertainty is critical for many robotics tasks.

Partial Observable Markov Decision Process (POMDP) is a promising mathematical framework, considering different sources of uncertainty.

メロトメ 伊 トメ ミトメ ミト

Model Definition

POMDP tuple: $\langle X, A, Z, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle$

Spaces

- State space: \mathcal{X}
- **Action space:** \mathcal{A}
- \blacksquare Observation space: $\mathcal Z$

Transition Model

State evolution:

$$
\mathbb{P}_T\bigl(X_{k+1} \big| X_k, a_k \bigr)
$$

Observation Model

Measurement likelihood:

$$
\mathbb{P}_Z(z_k|x_k)
$$

Reward Function

Bounded reward:

$$
r: \mathcal{X}, \mathcal{A} \mapsto [-R_{\text{max}}, R_{\text{max}}]
$$

イロン イ母ン イミン イヨン ニヨー

Motivation

Solving POMDP is PSPACE-hard:

- Curse of History
- **Curse of Dimensionality**
- Simplification with performance guarantees is essential

∍

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

- **Macro-action POMDPs using VOI [\[Flaspohler et al., 2020\]](#page-21-0)**
- **Approximate information state [\[Subramanian et al., 2022\]](#page-22-0)**
- **Finite memory policy [\[Kara and Yuksel, 2022\]](#page-21-1)**
- **MCTS** with multi-level Monte Carlo **[\[Hoerger et al., 2019\]](#page-21-2)**

Adaptive simplification of POMDPs with Online-Calculable Guarantees:

- Observation model simplification [\[Lev-Yehudi et al., 2024\]](#page-21-3)
- State/observation space reduction [\[Barenboim and Indelman, 2023\]](#page-21-4)
- **Adaptive multi-level simplification [\[Zhitnikov et al., 2024\]](#page-22-1)**
- Distilled data association hypotheses [\[Shienman and Indelman, 2022\]](#page-21-5)
- Simplification in multi-agent systems [\[Kundu et al., 2024\]](#page-21-6)

Simplifying Observation Spaces

Prior work [\[Lev-Yehudi et al., 2024\]](#page-21-3) considers a simplified observation model but the same observation space.

Simplifying Observation Spaces

- **Prior work [\[Lev-Yehudi et al., 2024\]](#page-21-3) considers a simplified observation model** but the same observation space.
- What if we want to sample lower resolution images? Or use latent space vectors to represent images?
- **Impact on planning performance?**

Concept

Switch to alternative observation space and model.

Model Definition

POMDP tuple: $\langle X, A, Z, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \rightarrow \langle X, A, \mathcal{O}, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

Concept

Switch to alternative observation space and model.

Model Definition

POMDP tuple: $\langle X, A, Z, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \rightarrow \langle X, A, O, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

Only at certain levels and branches of the tree.

■ Switch to alternative observation space and model.

Model Definition POMDP tuple: $\langle X, A, Z, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \rightarrow \langle X, A, O, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

■ Only at certain levels and branches of the tree.

Main questions to address:

■ How to decide online where to simplify in belief tree?

■ How to provide formal performance guarantees?

■ How to adaptively transition between the different levels of simplification?

Definition of Alternative Observation Topology belief tree

- A novel simplification method of POMDP by switching to an alternative observation space.
- **Performance guarantees by a novel bound.**
- Significant speedup in experiments.

イロメ イ母メ イヨメ イヨメー

ľ

The topology τ , with topology-dependent history $h^{\tau-}_t$:

$$
\beta^{\tau}(h_t^{\tau-}) \in \{0,1\}.
$$

The augmented observation space:

$$
\bar{\mathcal{Z}}_t(h_t^{\tau-}, \tau) \triangleq \left\{ \begin{array}{ll} \mathcal{O}_t, & \text{if } \beta^{\tau}(h_t^{\tau-}) = 0, \\ \mathcal{Z}_t, & \text{if } \beta^{\tau}(h_t^{\tau-}) = 1. \end{array} \right.
$$

■ The augmented observation model for any $\bar{z}_t \in \bar{\mathcal{Z}}_t$:

メロメメ 御きメ ミトメ 差す 一番

 $\mathbb{P}_{\bar{Z}}(\bar{z}_t|x_t, h_t^{\tau-}, \tau) \triangleq \beta^{\tau}(h_t^{\tau-})\mathbb{P}_{Z}(\bar{z}_t|x_t) + (1-\beta^{\tau}(h_t^{\tau-}))\mathbb{P}_{O}(\bar{z}_t|x_t).$

Can bound the difference of Q function:

$$
\left|Q^{\pi^{\tau}}_{\tau}(b_k,a_k)-Q^{\pi^{\tau_Z *}}_{\tau_Z}(b_k,a_k)\right|\leq B(\tau,\pi^{\tau},b_k,a_k).
$$

The upper and lower bounds only within topology τ :

$$
lb(\tau, \pi^\tau, b_k, a_k) \leq Q_{\tau_Z}^{\pi^{\tau_Z*}}(b_k, a_k) \leq ub(\tau, \pi^\tau, b_k, a_k),
$$

where

$$
lb(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) - B(\tau, \pi^{\tau}, b_k, a_k)
$$

$$
ub(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) + B(\tau, \pi^{\tau}, b_k, a_k)
$$

 $2Q$ 11/19

メロトメ 伊 トメ 君 トメ 君 トー 君

Performance Guarantees

(a) Overlap for topology τ. **Cannot** identify optimal action.

Performance Guarantees

(a) Overlap for topology τ . **Cannot** identify optimal action.

(b) No overlap for topology τ' . **Can** identify optimal action *a^k* .

イロメ イ母メ イヨメ イヨメー

Transitioning Between Topologies

- If bounds for τ overlap, cannot identify optimal action.
- Tighten the bounds by transitioning to $\tau'.$

Figure: Incremental and adaptive transition from τ to τ' .

メロトメ 伊 トメ ミトメ ミト

How to obtain the bound $B(\tau, \pi^{\tau}, b_{k}, a_{k})$?

A general result by considering QDMP as the upper bound of POMDP:

$$
B(\tau,\pi^{\tau},b_k,a_k)=\max_{\pi^{CMDP}}\big|Q^{\pi^{\tau}}_{\tau}(b_k,a_k)-Q^{\pi^{CMDP}}(b_k,a_k)\big|.
$$

N With a specific choice of the alternative model and space, we can get a better bound.

Kロメ K個 K K ミメ K ミメーミー のなぐ

The alternative observation space $\mathcal O$ and model $\mathbb P_O$ ($o \mid x$) are defined as,

$$
\mathbb{P}_{\mathcal{O}}(o \mid x) \triangleq \delta(o - x), \text{ where } o \in \mathcal{O} \triangleq \mathcal{X}.
$$

The alternative observation space $\mathcal O$ and model $\mathbb P_O$ ($o \mid x$) are defined as,

$$
\mathbb{P}_{\mathcal{O}}(o \mid x) \triangleq \delta(o-x), \text{ where } o \in \mathcal{O} \triangleq \mathcal{X}.
$$

Complexity: Significantly reduced

Consider an expected state-dependent reward at any depth $i + 1$ given action a_i and $b_i^{\tau-}$,

$$
\mathbb{E}_{x_i|b_i^{\tau}} \mathbb{E}_{\bar{z}_i|x_i, h_i^{\tau}} \mathbb{E}_{x_{i+1}|x_i, a_i}[r(x_{i+1})].
$$

Then, the complexity is reduced from $|\mathcal{Z}||\mathcal{X}|^2$ to $|\mathcal{X}|^2.$

メロトメ 伊 トメ ミトメ ミト

Experiments

Simulation Trajectory of our method in Goal-Reaching Task:

Runtime: \times 2+ speedup with the same optimal actions identified

 $2Q$

- A novel framework to simplify POMDPs by selectively switching to alternative observation space and model.
- \blacksquare Definition of the adaptive observation topology belief tree.
- Novel bounds for the simplification method to maintain performance guarantees.
- \blacksquare Optimal actions identified with $\times 2$ speedup.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │

Bibliography

Barenboim, M. and Indelman, V. (2023).

Online pomdp planning with anytime deterministic guarantees. In *Advances in Neural Information Processing Systems (NeurIPS)*.

Flaspohler, G., Roy, N. A., and Fisher III, J. W. (2020).

Belief-dependent macro-action discovery in pomdps using the value of information. *Advances in Neural Information Processing Systems*, 33:11108–11118.

Hoerger, M., Kurniawati, H., and Elfes, A. (2019).

Multilevel monte-carlo for solving pomdps online. In *Proc. International Symposium on Robotics Research (ISRR)*.

Kara, A. D. and Yuksel, S. (2022).

Near optimality of finite memory feedback policies in partially observed markov decision processes. *J. of Machine Learning Research*, 23(1):437–482.

Kundu, T., Rafaeli, M., and Indelman, V. (2024).

Multi-robot communication-aware cooperative belief space planning with inconsistent beliefs: An action-consistent approach.

In *IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)*.

Lev-Yehudi, I., Barenboim, M., and Indelman, V. (2024).

Simplifying complex observation models in continuous pomdp planning with probabilistic guarantees and practice.

In *AAAI Conf. on Artificial Intelligence*.

Shienman, M. and Indelman, V. (2022).

D2a-bsp: Distilled data association belief space planning with performance guarantees under budget constraints.

In *IEEE Intl. Conf. on Robotics and Automation (ICRA)*.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

F

Subramanian, J., Sinha, A., Seraj, R., and Mahajan, A. (2022).

Approximate information state for approximate planning and reinforcement learning in partially observed systems.

Journal of Machine Learning Research, 23(12):1–83.

No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive multilevel simplification.

Intl. J. of Robotics Research.

メロメメ 御 メメ 君 メメ 君 メー 君