Simplified POMDP Planning with an Alternative Observation Space and Formal Performance Guarantees

ISRR 2024

Da Kong and Vadim Indelman

Decision making under uncertainty is critical for many robotics tasks.

 Partial Observable Markov Decision Process (POMDP) is a promising mathematical framework, considering different sources of uncertainty.

・ロン ・回 と ・ ヨン・

Model Definition

POMDP tuple: $\langle \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle$

Spaces

- State space: X
- Action space: *A*
- **Observation space:** \mathcal{Z}

Transition Model

State evolution:

$$\mathbb{P}_T(x_{k+1}|x_k,a_k)$$

Observation Model

Measurement likelihood:

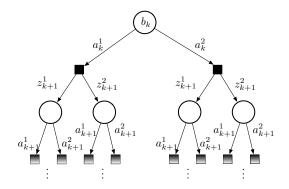
$$\mathbb{P}_Z(z_k|x_k)$$

Reward Function

Bounded reward:

$$r: \mathcal{X}, \mathcal{A} \mapsto [-R_{\max}, R_{\max}]$$

Motivation



Solving POMDP is PSPACE-hard:

- Curse of History
- Curse of Dimensionality
- Simplification with performance guarantees is essential

크

イロト イロト イヨト イヨト

- Macro-action POMDPs using VOI [Flaspohler et al., 2020]
- Approximate information state [Subramanian et al., 2022]
- Finite memory policy [Kara and Yuksel, 2022]
- MCTS with multi-level Monte Carlo [Hoerger et al., 2019]

Adaptive simplification of POMDPs with Online-Calculable Guarantees:

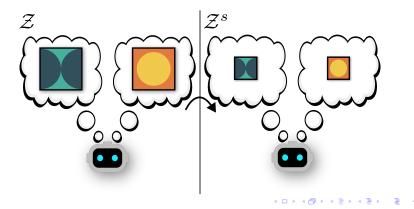
- Observation model simplification [Lev-Yehudi et al., 2024]
- State/observation space reduction [Barenboim and Indelman, 2023]
- Adaptive multi-level simplification [Zhitnikov et al., 2024]
- Distilled data association hypotheses [Shienman and Indelman, 2022]
- Simplification in multi-agent systems [Kundu et al., 2024]

Simplifying Observation Spaces

Prior work [Lev-Yehudi et al., 2024] considers a simplified observation model but the same observation space.

Simplifying Observation Spaces

- Prior work [Lev-Yehudi et al., 2024] considers a simplified observation model but the same observation space.
- What if we want to sample lower resolution images? Or use latent space vectors to represent images?
- Impact on planning performance?



Concept

Switch to alternative observation space and model.

Model Definition

 $\mathsf{POMDP} \text{ tuple: } \langle \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \to \langle \mathcal{X}, \mathcal{A}, \mathcal{O}, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

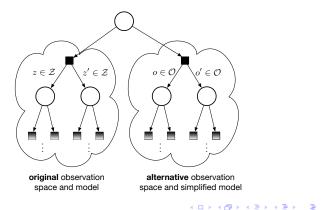
Concept

Switch to alternative observation space and model.

Model Definition

 $\mathsf{POMDP} \text{ tuple: } \langle \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \to \langle \mathcal{X}, \mathcal{A}, \mathcal{O}, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

Only at certain levels and branches of the tree.



Switch to alternative observation space and model.

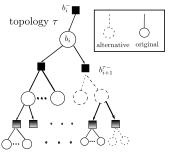
Model Definition POMDP tuple: $\langle \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle \rightarrow \langle \mathcal{X}, \mathcal{A}, \mathcal{O}, \mathbb{P}_T, \mathbb{P}_O, b_k, r \rangle$

Only at certain levels and branches of the tree.

Main questions to address:

- How to decide online where to simplify in belief tree?
- How to provide formal performance guarantees?
- How to adaptively transition between the different levels of simplification?

Definition of Alternative Observation Topology belief tree



- A novel simplification method of POMDP by switching to an alternative observation space.
- Performance guarantees by a novel bound.
- Significant speedup in experiments.

・ロン ・回 と ・ ヨン・

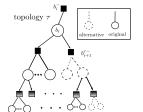
The topology τ , with topology-dependent history $h_t^{\tau-}$:

$$\beta^{\tau}(h_t^{\tau-}) \in \{0,1\}.$$

The augmented observation space:

$$\bar{\mathcal{Z}}_t(h_t^{\tau-},\tau) \triangleq \begin{cases} \mathcal{O}_t, & \text{if } \beta^{\tau}(h_t^{\tau-}) = \mathbf{0}, \\ \mathcal{Z}_t, & \text{if } \beta^{\tau}(h_t^{\tau-}) = \mathbf{1}. \end{cases}$$

The augmented observation model for any $\bar{z}_t \in \bar{Z}_t$:



(日)

 $\mathbb{P}_{\bar{Z}}(\bar{z}_t|x_t, h_t^{\tau-}, \tau) \triangleq \beta^{\tau}(h_t^{\tau-}) \mathbb{P}_{Z}(\bar{z}_t|x_t) + (1 - \beta^{\tau}(h_t^{\tau-})) \mathbb{P}_{O}(\bar{z}_t|x_t).$

Can bound the difference of Q function:

$$\left| \mathcal{Q}^{\pi^ au}_{ au}(b_k,a_k) - \mathcal{Q}^{\pi^ au_{\mathcal{I}^*}}_{ au_{\mathcal{I}}}(b_k,a_k)
ight| \leq \mathcal{B}(au,\pi^ au,b_k,a_k).$$

The upper and lower bounds only within topology τ :

$$\textit{lb}(au, \pi^ au, b_k, a_k) \leq \mathcal{Q}_{ au_Z}^{\pi^ au Z^*}(b_k, a_k) \leq \textit{ub}(au, \pi^ au, b_k, a_k),$$

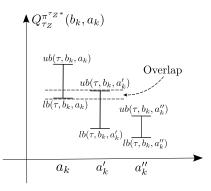
where

$$\begin{split} & \textit{lb}(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) - \textit{B}(\tau, \pi^{\tau}, b_k, a_k) \\ & \textit{ub}(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) + \textit{B}(\tau, \pi^{\tau}, b_k, a_k) \end{split}$$

11/19

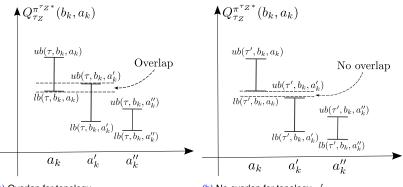
(a)

Performance Guarantees



(a) Overlap for topology τ . **Cannot** identify optimal action.

Performance Guarantees



(a) Overlap for topology τ . **Cannot** identify optimal action. (b) No overlap for topology τ' . **Can** identify optimal action a_k .

イロン イヨン イヨン イヨン

Transitioning Between Topologies

- If bounds for τ overlap, cannot identify optimal action.
- Tighten the bounds by transitioning to τ' .

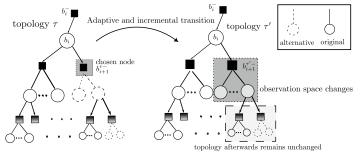


Figure: Incremental and adaptive transition from τ to τ' .

How to obtain the bound $B(\tau, \pi^{\tau}, b_k, a_k)$?

A general result by considering QDMP as the upper bound of POMDP:

$$B(au, \pi^{ au}, b_k, a_k) = \max_{\pi^{OMDP}} \left| Q_{ au}^{\pi^{ au}}(b_k, a_k) - Q^{\pi^{OMDP}}(b_k, a_k)
ight|.$$

With a specific choice of the alternative model and space, we can get a better bound.

The alternative observation space \mathcal{O} and model $\mathbb{P}_{\mathcal{O}}(o \mid x)$ are defined as,

$$\mathbb{P}_{O}(o \mid x) \triangleq \delta(o - x), \text{ where } o \in \mathcal{O} \triangleq \mathcal{X}.$$

The alternative observation space O and model $\mathbb{P}_O(o \mid x)$ are defined as,

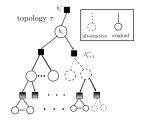
$$\mathbb{P}_{O}(o \mid x) \triangleq \delta(o - x), \text{ where } o \in \mathcal{O} \triangleq \mathcal{X}.$$

Complexity: Significantly reduced

Consider an expected state-dependent reward at any depth i + 1 given action a_i and $b_i^{\tau-}$,

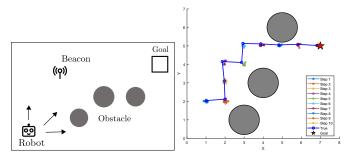
$$\mathbb{E}_{x_i|b_i^{\tau}} = \mathbb{E}_{\bar{z}_i|x_i,h_i^{\tau}} = \mathbb{E}_{x_{i+1}|x_i,a_i}[r(x_{i+1})].$$

Then, the complexity is reduced from $|\mathcal{Z}||\mathcal{X}|^2$ to $|\mathcal{X}|^2$.



Experiments

Simulation Trajectory of our method in Goal-Reaching Task:



Runtime: ×2+ speedup with the same optimal actions identified

Method	Total Planning Time for 10 Steps (s)
Proposed	7.731
Full Problem	17.720

æ

・ロト ・回 ト ・ヨト ・ヨト

- A novel framework to simplify POMDPs by selectively switching to alternative observation space and model.
- Definition of the adaptive observation topology belief tree.
- Novel bounds for the simplification method to maintain performance guarantees.
- Optimal actions identified with ×2 speedup.

(日) (個) (目) (日) (日)

Bibliography

Barenboim, M. and Indelman, V. (2023).

Online pomdp planning with anytime deterministic guarantees. In Advances in Neural Information Processing Systems (NeurIPS).

Flaspohler, G., Roy, N. A., and Fisher III, J. W. (2020).

Belief-dependent macro-action discovery in pomdps using the value of information. *Advances in Neural Information Processing Systems*, 33:11108–11118.

Hoerger, M., Kurniawati, H., and Elfes, A. (2019).

Multilevel monte-carlo for solving pomdps online. In Proc. International Symposium on Robotics Research (ISRR).

Kara, A. D. and Yuksel, S. (2022).

Near optimality of finite memory feedback policies in partially observed markov decision processes. J. of Machine Learning Research, 23(1):437–482.

Kundu, T., Rafaeli, M., and Indelman, V. (2024).

Multi-robot communication-aware cooperative belief space planning with inconsistent beliefs: An action-consistent approach.

In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

Lev-Yehudi, I., Barenboim, M., and Indelman, V. (2024).

Simplifying complex observation models in continuous pomdp planning with probabilistic guarantees and practice.

In AAAI Conf. on Artificial Intelligence.

Shienman, M. and Indelman, V. (2022).

D2a-bsp: Distilled data association belief space planning with performance guarantees under budget constraints.

In IEEE Intl. Conf. on Robotics and Automation (ICRA).

Subramanian, J., Sinha, A., Seraj, R., and Mahajan, A. (2022).

Approximate information state for approximate planning and reinforcement learning in partially observed systems.

Journal of Machine Learning Research, 23(12):1-83.

No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive multilevel simplification.

Intl. J. of Robotics Research.