Measurement Simplification in ρ -POMDP with Performance Guarantees

Presented by: Tom Yotam Supervisor: Assoc. Prof. Vadim Indelman

July 25th 2023

Outline

• Background

- Approach
 - Reward Bounds
 - Observation Space Partitioning
 - Computational Complexity
 - Gaussian Beliefs
- Results
 - Bounds Analysis
 - Simulation
- Recap

Decision Making Under Uncertainty

(a) Informative Planning

(b) Autonomous Agents

(C) Reinforcement Learning

Background

Partially Observable Markov Decision Process

- A POMDP formally: $(\mathcal{X}, \mathcal{A}, \mathcal{Z}, T, O, R)$
 - state, action and observation spaces
 - transition and observation models
 - reward function

Partially Observable Markov Decision Process

- Markovian transition model, i.e. $T(X, a, X') = \mathbb{P}(X'|X, a)$
- Each measurement is conditionally independent given the state, i.e. $O(X,z) = \mathbb{P}(z|X)$
- The reward is a function of the state

Partially Observable Markov Decision Process

The true state is unknown

- The agent only observes the environment through noisy measurements
- It must maintain a probability distribution over the true state

•
$$b_k \triangleq b[X_k] = \mathbb{P}(X_k | z_{0:k}, a_{0:k-1}) \triangleq \mathbb{P}(X_k | h_k)$$

POMDP - computational complexity

- Curse of dimensionality
- Curse of history

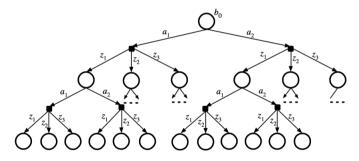
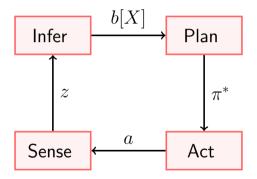
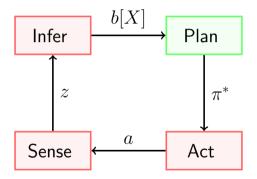


Figure: DESPOT Ye et al 2007

Plan-act-sense-infer



Plan-act-sense-infer



Plan

What is a policy?

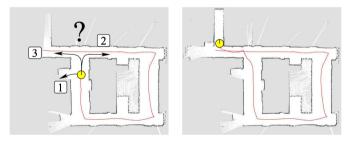
- Maps belief states to actions, $\pi: \mathcal{B} \mapsto A$
- For some finite planning horizon ℓ , the *value* of a policy π :

$$V^{\pi}(b_k) = R(b_k, \pi_k(b_k)) + \mathbb{E}_{z_{k+1:k+\ell}} \left[\sum_{i=k+1}^{k+\ell} R(b_i, \pi_i(b_i)) \right]$$

- Solving a POMDP is equivalent to finding the optimal policy π^* such that the value function is maximized.
- Can replace the optimal policy with the optimal action sequence (open loop)

ρ -POMDP

- Reasoning about uncertainty is key for planning, AI, Machine Learning
- Quantifying uncertainty allows us to identify actions that reduce it



Stachniss et al. RSS'05

ρ -POMDP

- Extends the POMDP model to include belief dependent rewards
- $R(b, \pi(b)) \triangleq -\mathcal{H}(X) \equiv \mathbb{E}_{X \sim b} (\log b[X])$
- If both X, Z, are treated as random variables, the expected reward becomes the conditional entropy of these random variables

ρ -POMDP

- $\mathbb{E}_{Z}[R(b)] = -\mathcal{H}(X \mid Z) = -\mathbb{E}_{Z}[\mathcal{H}(X \mid Z = z)]$
- The expected reward at each ith look ahead step: $\mathop{\mathbb{E}}_{Z_{k+1:i}}[R(b_i,a_{i-1})] = -\mathcal{H}(X_i|Z_{k+1:i})$
- Future observations are drawn from the distribution $\mathbb{P}(Z_{k+1:i} \mid b_k, \pi)$ and $i \in [k+1, k+\ell]$

Related Work

• POMDP online solvers

- Sunberg and Kochenderfer ICAPS'18
- Ye et al. JAIR'17
- Simplification in inference
 - Khosoussi et al. WAFR'20
 - Zhang and Vela CCVP'15
 - ► Carlevaris-Bianco, Kaess and Eustice TRO'14
- Simplification in planning
 - Zhitnikov and Indelman Al'22
 - Elimelech and Indelman IJRR'22

Contributions

- Novel observation space partitioning
- Analytical bounds on the expected reward, as function of partitioned space, that hold for all families of belief distributions.
- Partition tree that allows greater efficiency as we go down its hierarchy.
- Bounds that are adaptive and converge to the original solution.
- Hierarchy of efficient implementations for Gaussian beliefs

Outline

• Background

• Approach

- Reward Bounds
- Observation Space Partitioning
- Computational Complexity
- Gaussian Beliefs

• Results

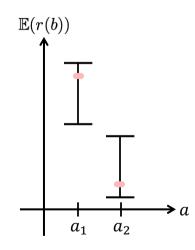
- Bounds Analysis
- Simulation
- Recap

Approach - simplification

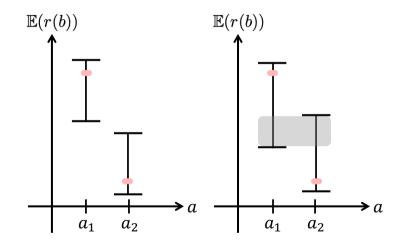
- To choose the optimal action from a pool of candidate actions need to evaluate the reward function for each action.
- Instead, one can evaluate bounds on the expected reward function as a proxy

$$\mathcal{LB}_{i} \leq \underset{Z_{k:i}}{\mathbb{E}} \left(R(b_{i}) \right) \leq \mathcal{UB}_{i}$$
$$\sum_{i=k+1}^{k+\ell} \mathcal{LB}_{i} \leq J\left(b_{k}, a_{k:k+\ell-1} \right) \leq \sum_{i=k+1}^{k+\ell} \mathcal{UB}_{i}$$

Approach - reward bounds



Approach - reward bounds overlap



Multivariate Observation Space

• Consider a multivariate random variable $Z \in \mathcal{Z}$, that represents future observations:

$$Z = (Z^1, Z^2, \dots, Z^m)$$

• Z^i is a random variable defined by a given sensing modality, and m is the number of such random variables

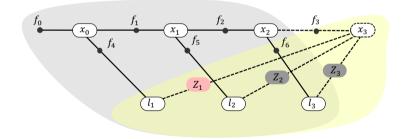
Multivariate Observation Space

For example, raw measurement of an image sensor

15	57 15	17	L 18	150	162	129	151	172	161	165	166	157	153	174	168	150	152	129	151	172	161	155	156
15	15 18	2 16		74 78	62	33		110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
1	10 18	0 6	3	4 34	6	10	33	48	105	169	181	180	180	50	14	34	6	10	33	48	106	159	181
20	6 10	0	12	131	111	120	204	166	15		180	206	109	5	124	131	111	120	204	166	16	56	180
19	4	4 13	2	51 237	239	239	228	227			201	194	68	137	251	237	239	239	228	227	87	n	201
17	2 10	6 20	2	3 233	214	220	239	228	- 98		206	172	106	207	233	233	214	220	239	228	98	74	206
	18	8 17	20	9 185	215	211	158	139		20	169	188	88	179	209	185	215	211	158	139	76	20	169
	19 1	7 16		и 10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
19	19 16	8 19	11	15	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
20	6 17	4 15	5 25	236	231	149	178	228	43	95	234	206	174	155	252	236	231	149	178	228	43	95	234
	10 21	6 11	5 14	9 236	187	85	150		38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
19	10 22	14 14	7 10	8 227	210	127	102		101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
19	0 21	4 17		10	143	95	50		109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
	17 19	6 23		rs I	- 61			6	217	255	211	187	196	236	75	1	81	47	0	6	217	255	211
	13 20	2 23	14	15	0		108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
19	15 20	12	1 21	7 17	121	123	200	175	13	95	218	195	206	123	207	177	121	123	200	175	13	96	218

Multivariate Observation Space

Or a factor graph



Partitioning of Multivariate Observation Space

• Consider the partitioning $Z^s \in \mathcal{Z}^s$ and $Z^{\overline{s}} \in \mathcal{Z}^{\overline{s}}$, such that:

$$Z^s = \{Z^1, Z^2, \dots, Z^n\}$$

$$Z^{\bar{s}} = \{Z^{n+1}, Z^{n+2}, \dots, Z^m\}$$

• $\mathcal{Z} = \mathcal{Z}^s \oplus \mathcal{Z}^{\bar{s}}$ (addition of subspaces)

Partitioning of Multivariate Observation Space

But why is this a good idea?

- Apply partitioning to a raw image measurement of size 20×20 binary pixels.
- Each pixel is represented by a random variable $Z^{x,y} \in \{0,1\}$, and $Z \in \mathcal{Z} \subseteq (\mathbb{F}_2)^{400}$.

Partitioning of Multivariate Observation Space

But why is this a good idea?

- Consider all of the different permutations for each pixel, 2^{400} in total, which defines $|\mathcal{Z}|$.
- If we partition Z^s ≜ {Z^{x,y} | y ≤ 10} and Z^{s̄} ≜ {Z^{x,y} | y > 10}, we need only to consider 2²⁰⁰ permutations for each random variable.
 2²⁰¹ vs 2⁴⁰⁰

- Planning involves thinking about future observations (and actions), and evaluating a reward function
- This process is computationally expensive
- Partitioning the observation space makes this less expensive

$$\mathcal{LB} \leq \mathcal{H}(X|Z) \leq \mathcal{UB}$$

$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

$$\mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

Lemma 1

The conditional Entropy can be factorized as

$$\mathcal{H}(X|Z) = \mathcal{H}(Z|X) + \mathcal{H}(X) - \mathcal{H}(Z)$$

Theorem 1

The conditional Entropy can be bounded from above by

$$\mathcal{H}(X|Z) \le \mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

Theorem 1

The conditional Entropy can be bounded from above by

$$\mathcal{H}(X|Z) \le \mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

•
$$\mathcal{H}(X|Z^s) - \mathcal{H}(X|Z) = \mathcal{I}(X|Z^s; Z \setminus Z^s)$$

Theorem 1

The conditional Entropy can be bounded from above by

$$\mathcal{H}(X|Z) \le \mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

- $\mathcal{H}(X|Z^s) \mathcal{H}(X|Z) = \mathcal{I}(X|Z^s; Z \setminus Z^s)$ • $\mathcal{H}(X|Z^s; Z \setminus Z^s) \rightarrow \mathcal{H}(X|Z) \leq \mathcal{H}(X|Z^s)$
- $0 \leq \mathcal{I}(X|Z^s; Z \setminus Z^s) \to \mathcal{H}(X|Z) \leq \mathcal{H}(X|Z^s)$

Theorem 1

The conditional Entropy can be bounded from above by

$$\mathcal{H}(X|Z) \le \mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

•
$$\mathcal{H}(X|Z^s) - \mathcal{H}(X|Z) = \mathcal{I}(X|Z^s; Z \setminus Z^s)$$

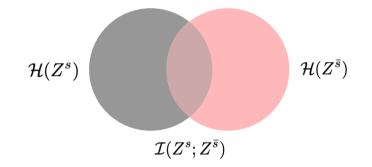
- $0 \leq \mathcal{I}(X|Z^s; Z \setminus Z^s) \to \mathcal{H}(X|Z) \leq \mathcal{H}(X|Z^s)$
- $\mathcal{H}(X|Z^s) = \mathcal{H}(Z^s|X) + \mathcal{H}(X) \mathcal{H}(Z^s)$

Lemma 2

Given two sets of expected measurements $(Z^s, Z^{\overline{s}})$, the conditional Entropy can be factorized as

$$\mathcal{H}(X|Z) = \mathcal{H}(Z^{s}|X) + \mathcal{H}(Z^{\bar{s}}|X) - \mathcal{H}(Z^{s}, Z^{\bar{s}}) + \mathcal{H}(X)$$

$$\mathcal{H}(Z^s, Z^{\bar{s}}) = \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}}) - \mathcal{I}(Z^s; Z^{\bar{s}})$$



Theorem 2

The conditional Entropy can be bounded from bellow by:

$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

Theorem 2

The conditional Entropy can be bounded from bellow by:

$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

Proof.

•
$$\mathcal{H}(Z^s, Z^{\bar{s}}) = \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}}) - \mathcal{I}(Z^s; Z^{\bar{s}})$$

Theorem 2

The conditional Entropy can be bounded from bellow by:

$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

Proof.

•
$$\mathcal{H}(Z^s, Z^{\bar{s}}) = \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}}) - \mathcal{I}(Z^s; Z^{\bar{s}})$$

• $\mathcal{I}(Z^s; Z^{\bar{s}}) \ge 0 \to \mathcal{H}(Z^s, Z^{\bar{s}}) \le \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}})$

Theorem 2

The conditional Entropy can be bounded from bellow by:

$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

Proof.

•
$$\mathcal{H}(Z^s, Z^{\bar{s}}) = \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}}) - \mathcal{I}(Z^s; Z^{\bar{s}})$$

- $\mathcal{I}(Z^s; Z^{\bar{s}}) \ge 0 \to \mathcal{H}(Z^s, Z^{\bar{s}}) \le \mathcal{H}(Z^s) + \mathcal{H}(Z^{\bar{s}})$
- Plug-in to lemma 3

$$\mathcal{LB} \leq \mathcal{H}(X|Z) \leq \mathcal{UB}$$

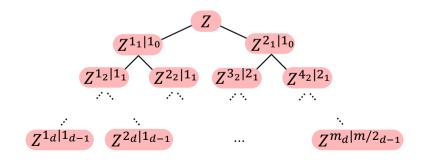
$$\mathcal{LB} \triangleq \mathcal{H}(Z^s \mid X) + \mathcal{H}(Z^{\bar{s}} \mid X) - \mathcal{H}(Z^s) - \mathcal{H}(Z^{\bar{s}}) + \mathcal{H}(X)$$

$$\mathcal{UB} \triangleq \mathcal{H}\left(Z^{s}|X\right) + \mathcal{H}\left(X\right) - \mathcal{H}\left(Z^{s}\right)$$

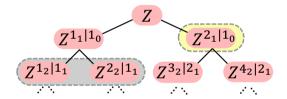
Hierarchical Partitioning

Can we simplify further?

• Unique encoding denoted as $Z^{n_i|m_j}$, n is the node number at the ith partitioning level, m is the node number at the parent partitioning level j



Bounds with Hierarchical Partitioning



Lemma 2

Given two sets of expected measurements $(Z^s, Z^{\overline{s}})$, the conditional Entropy can be factorized as

$$\mathcal{H}(X|Z) = \mathcal{H}(Z^{s}|X) + \mathcal{H}(Z^{\bar{s}}|X) - \mathcal{H}(Z^{s}, Z^{\bar{s}}) + \mathcal{H}(X)$$

• Baseline Expected Reward

 $\mathcal{H}(X|Z)$

Using lemma 2:

 $\mathcal{H}(Z^s|X), \mathcal{H}(Z^{\bar{s}}|X), \mathcal{H}(X), \mathcal{H}(Z^s, Z^{\bar{s}})$

• Baseline Expected Reward

 $\mathcal{H}(X|Z)$

Using lemma 2:

$$\mathcal{H}(Z^s|X), \mathcal{H}(Z^{\bar{s}}|X), \mathcal{H}(X), \mathcal{H}(Z^s, Z^{\bar{s}})$$

• Expected Reward Bounds

$$\mathcal{H}(Z^s|X), \mathcal{H}(Z^{\bar{s}}|X), \mathcal{H}(Z^{\bar{s}}), \mathcal{H}(Z^s), \mathcal{H}(X)$$

• Baseline Expected Reward

 $\mathcal{H}(X|Z)$

Using lemma 2:

$$\mathcal{H}(Z^s|X), \mathcal{H}(Z^{\bar{s}}|X), \mathcal{H}(X), \mathcal{H}(Z^s, Z^{\bar{s}})$$

• Expected Reward Bounds

$$\mathcal{H}(Z^s|X), \mathcal{H}(Z^{\bar{s}}|X), \mathcal{H}(Z^{\bar{s}}), \mathcal{H}(Z^s), \mathcal{H}(X)$$

$\mathcal{H}(Z^s,Z^{ar{s}})$ vs. $\mathcal{H}(Z^{ar{s}}),\mathcal{H}(Z^s)$

•
$$\mathcal{H}(Z^s, Z^{\bar{s}}) = -\int_{Z^s} \int_{Z^{\bar{s}}} \mathbb{P}(Z^s, Z^{\bar{s}}) \log \mathbb{P}(Z^s, Z^{\bar{s}}) dZ^s dZ^{\bar{s}}$$

• $\mathcal{H}(Z^s) = -\int_{Z^s} \mathbb{P}(Z^s) \log \mathbb{P}(Z^s) dZ^s$
• $\mathcal{H}(Z^{\bar{s}}) = -\int_{Z^{\bar{s}}} \mathbb{P}(Z^{\bar{s}}) \log \mathbb{P}(Z^{\bar{s}}) dZ^{\bar{s}}$

$\mathcal{H}(Z^s,Z^{ar{s}})$ vs. $\mathcal{H}(Z^{ar{s}}),\mathcal{H}(Z^s)$

- $O(|\mathcal{Z}^s||\mathcal{Z}^{\bar{s}}|)$
- $O(|\mathcal{Z}^s| + |\mathcal{Z}^{\bar{s}}|)$
- Same logic applies to the hierarchical partitions

Gaussian Belief - preliminaries $b[X] \sim \mathcal{N}(\mu, \Sigma)$, with mean $\mu \in \mathbb{R}^N$ and covariance matrix $\Sigma \in \mathbb{R}^{N \times N}$

•
$$\Sigma_{k+1}^{-1} = \Lambda_{k+1}$$

• $\Lambda_{k+i} \triangleq \Lambda_k^{\operatorname{Aug}} + A_{k+1:k+i}^T \cdot A_{k+1:k+i}$

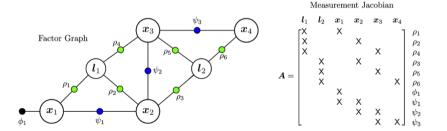


Figure: Caesar.jl'21

Gaussian Belief - preliminaries

 $b[X] \sim \mathcal{N}(\mu, \Sigma)$

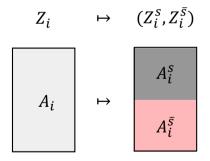
•
$$\mathcal{H}(X_{k+1}) = \frac{1}{2}(N\ln(2\pi e) - \ln|\Lambda_{k+1}|)$$

•
$$\mathbb{E}_{Z_{k+1:i}}[\mathcal{H}(X_i|h_i)] = C - \frac{1}{2} \mathbb{E}_{Z_{k+1:i}}[\ln\left|\Lambda_k^{\mathsf{Aug}} + A_i(z)^T A_i(z)\right|]$$

• $C = N \ln(2\pi e)$

Partitioning of Gaussian Belief

- $\Lambda_i = \Lambda_k^{\mathsf{Aug}} + A_i^T A_i$
- Observation partitioning corresponds to splitting the Jacobian into blocks



Gaussian Bounds

$$\begin{split} f(\Lambda, A) &\triangleq |\Lambda + A^{T}A| \\ \mathcal{LB} &= C - \frac{1}{2} \mathop{\mathbb{E}}_{Z_{k+1:i}} [\ln \frac{f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{s}\right) \cdot f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{\bar{s}}\right)}{|\Lambda_{k}^{\mathrm{AUG}-}|} \\ \mathcal{UB} &= C - \frac{1}{2} \mathop{\mathbb{E}}_{Z_{k+1:i}} [\ln f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{s}\right)] \end{split}$$

Estimation of Expected Entropy

Assumption - the measurement Jacobian is not a function of \boldsymbol{Z}

$$\mathcal{H}\left(X_{i}|Z_{k+1:i}\right) = C - \frac{1}{2} \left(\ln f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}\right)\right) \rightarrow$$
$$\mathcal{LB} = C - \frac{1}{2} \ln \frac{f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{s}\right) \cdot f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{\bar{s}}\right)}{|\Lambda_{k}^{\mathrm{AUG}-}|}$$
$$\mathcal{UB} = C - \frac{1}{2} \ln f\left(\Lambda_{k}^{\mathrm{AUG}-}, A_{i}^{s}\right)$$

Methods for Determinant Calculation

Need to evaluate
$$f\left(\Lambda_k^{
m AUG-},A_i^s
ight),f\left(\Lambda_k^{
m AUG-},A_i^{ar{s}}
ight)$$

• Baseline:

$$|\Lambda + A^T A|$$

• Square root form:

$$|R^T R|$$

• rAMDL:

$$|\Lambda| \cdot |I_m + A\Lambda^{-1}A^T|$$

rAMDL

- Apply Matrix Determinant lemma to posterior Information matrix (Kopitkov and Indelman IJRR'17)
- Baseline is $O(N^3)$ while rAMDL is $O(m^3)$, Partitioning the measurements reduces m.

• Applying rAMDL to the determinants required for $\mathcal{LB}, \mathcal{UB}$:

$$\begin{split} |\Lambda_k^{\text{Aug}-} + (A_i^s)^T A_i^s| \\ |\Lambda_k^{\text{Aug}-} + (A_i^{\bar{s}})^T A_i^{\bar{s}}| \end{split}$$

• When
$$s = \bar{s} \rightarrow |\Lambda_k^{\text{Aug}-} + (A_i^s)^T A_i^s| = O(\frac{m^3}{8})$$

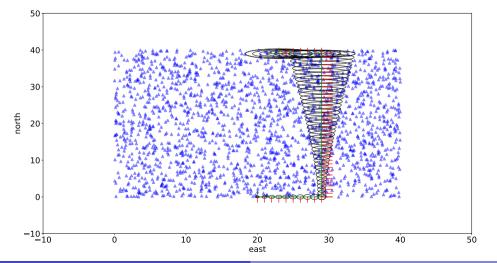
Outline

• Background

• Approach

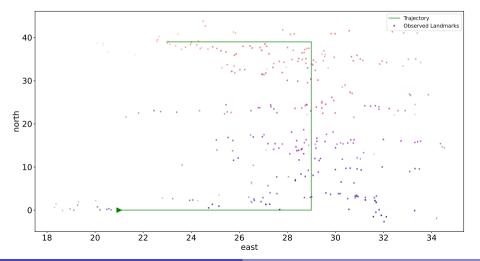
- Reward Bounds
- Observation Space Partitioning
- Computational Complexity
- Gaussian Beliefs
- Results
 - Bounds Analysis
 - Simulation
- Recap

Scenario



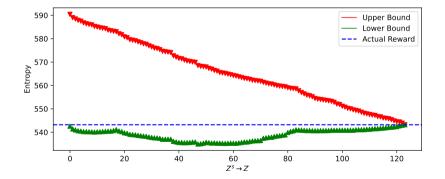
Results

Scenario



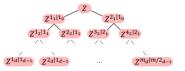
Results - Bounds Analysis

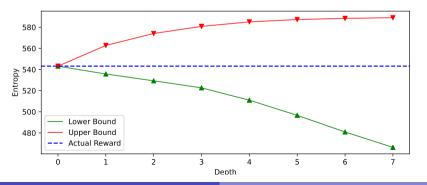
For a specific action, $Z^s \to Z$ while $Z_{\bar{s}} \to \emptyset$



Results - Bounds Analysis

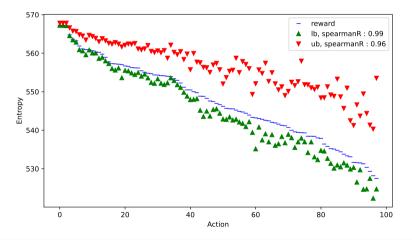
Going down the partition tree:



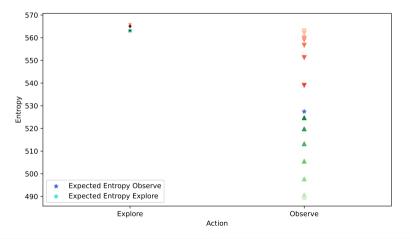


Results

Results - Bounds Analysis Myopic, random actions:



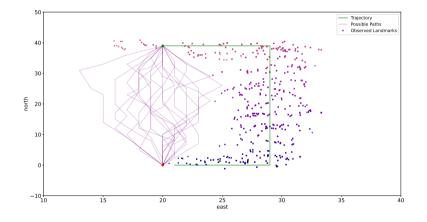
Results - Bounds Analysis Two actions, different depths:



100 different paths, not including common terms

- Scenario 1 2956 factors without re-planning
- Scenario 2 2956 factors with re-planning
- Scenario 3 5904 factors with re-planning

Illustration - Scenario 1



Bounds - Scenario 1

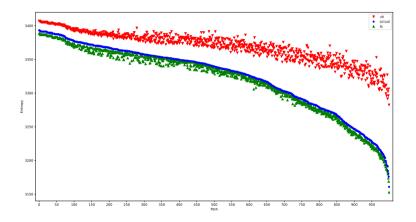
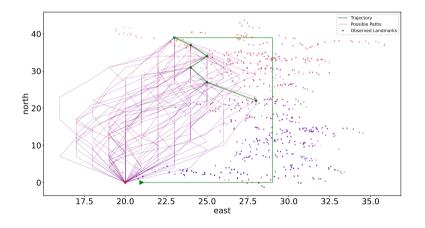


Illustration - Scenario 2



# Paths	# Factors	RP	rAMDL	MP (ours)
100	2956	No	11.521 ± 0.537	6.888 ± 0.155
100	2956	Yes	24.636 ± 1.381	11.758 ± 0.372
100	5904	Yes	84.376 ± 14.458	32.069 ± 4.913

Table: Total planning time in seconds (lower is better)

Results - Visual Odometery

$\mathsf{RoboMaster} + \mathsf{ZED}$

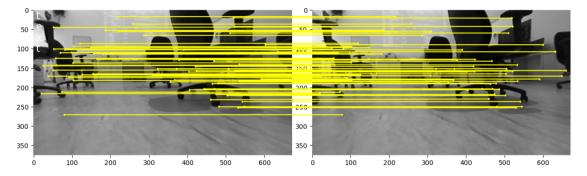
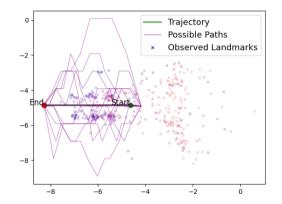
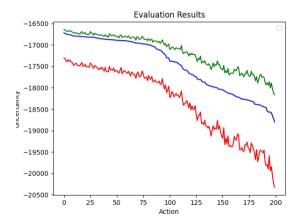


Illustration - Visual Odometery



Bounds - Visual Odometery



Results - run time

Method	time [sec]		
MP (ours)	585.507 ± 27.153		
rAMDL	802.545 ± 25.651		
iSAM2	1764.835 ± 26.521		

Table: Total planning time in seconds (lower is better)

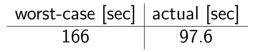


Table: Covariance recovery time

Conclusions

- We introduced a novel concept observation space partitioning
- We proposed a simplified method to solving the POMDP planning problem using this concept
- We presented both theoretical and empirical studies of this method
 - both showing performance gains
- Multiple future research directions

Questions

