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Motivation

Decision Making Under Uncertainty

(a) Informative Planning (b) Autonomous Agents (c) Reinforcement Learning
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Partially Observable Markov Decision Process

A POMDP formally: (X ,A,Z, T, O,R)

state, action and observation spaces

transition and observation models

reward function
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Partially Observable Markov Decision Process

Markovian transition model, i.e. T (X, a,X ′) = P(X ′|X, a)

Each measurement is conditionally independent given the state, i.e.
O(X, z) = P(z|X)

The reward is a function of the state
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Partially Observable Markov Decision Process

The true state is unknown

The agent only observes the environment through noisy
measurements

It must maintain a probability distribution over the true state

bk ≜ b[Xk] = P(Xk|z0:k, a0:k−1) ≜ P(Xk|hk)

Background 6 / 67



POMDP - computational complexity
Curse of dimensionality
Curse of history

Figure: DESPOT Ye et al 2007
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Plan-act-sense-infer

Infer Plan

ActSense

b[X]

π∗

a

z
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Plan

What is a policy?

Maps belief states to actions, π : B 7→ A

For some finite planning horizon ℓ, the value of a policy π:

V π(bk) = R(bk, πk(bk)) + E
zk+1:k+ℓ

[
k+ℓ∑

i=k+1

R(bi, πi(bi))

]
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Plan

Solving a POMDP is equivalent to finding the optimal policy π∗

such that the value function is maximized.

Can replace the optimal policy with the optimal action sequence
(open loop)
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ρ-POMDP
Reasoning about uncertainty is key for planning, AI, Machine
Learning

Quantifying uncertainty allows us to identify actions that reduce it

Stachniss et al. RSS’05
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ρ-POMDP

Extends the POMDP model to include belief dependent rewards

R(b, π(b)) ≜ −H(X) ≡ EX∼b (log b[X])

If both X,Z, are treated as random variables, the expected reward
becomes the conditional entropy of these random variables
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ρ-POMDP

E
Z
[R(b)] = −H(X | Z) = −E

Z
[H(X | Z = z)]

The expected reward at each ith look ahead step:
E

Zk+1:i

[R(bi, ai−1)]=−H(Xi|Zk+1:i)

Future observations are drawn from the distribution
P(Zk+1:i | bk, π) and i ∈ [k + 1, k + ℓ]
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Related Work

POMDP online solvers
▶ Sunberg and Kochenderfer - ICAPS’18
▶ Ye et al. - JAIR’17

Simplification in inference
▶ Khosoussi et al. - WAFR’20
▶ Zhang and Vela - CCVP’15
▶ Carlevaris-Bianco, Kaess and Eustice - TRO’14

Simplification in planning
▶ Zhitnikov and Indelman - AI’22
▶ Elimelech and Indelman - IJRR’22
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Contributions

Novel observation space partitioning

Analytical bounds on the expected reward, as function of
partitioned space, that hold for all families of belief distributions.

Partition tree that allows greater efficiency as we go down its
hierarchy.

Bounds that are adaptive and converge to the original solution.

Hierarchy of efficient implementations for Gaussian beliefs
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Approach - simplification

To choose the optimal action from a pool of candidate actions -
need to evaluate the reward function for each action.

Instead, one can evaluate bounds on the expected reward function
as a proxy

LBi ≤ E
Zk:i

(R(bi)) ≤ UBi

k+ℓ∑
i=k+1

LBi ≤ J (bk, ak:k+ℓ−1) ≤
k+ℓ∑

i=k+1

UBi
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Approach - reward bounds

!! !"
!
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Approach - reward bounds overlap

!! !" !! !"
! !
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Multivariate Observation Space

Consider a multivariate random variable Z ∈ Z, that represents
future observations:

Z = (Z1, Z2, . . . , Zm)

Z i is a random variable defined by a given sensing modality, and m
is the number of such random variables
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Multivariate Observation Space

For example, raw measurement of an image sensor
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Multivariate Observation Space

Or a factor graph
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Partitioning of Multivariate Observation Space

Consider the partitioning Zs ∈ Zs and Z s̄ ∈ Z s̄, such that:

Zs = {Z1, Z2, . . . , Zn}

Z s̄ = {Zn+1, Zn+2, . . . , Zm}
Z = Zs ⊕Z s̄ (addition of subspaces)
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Partitioning of Multivariate Observation Space

But why is this a good idea?

Apply partitioning to a raw image measurement of size 20× 20
binary pixels.

Each pixel is represented by a random variable Zx,y ∈ {0, 1}, and
Z ∈ Z ⊆ (F2)

400.
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Partitioning of Multivariate Observation Space

But why is this a good idea?

Consider all of the different permutations for each pixel, 2400 in
total, which defines |Z|.
If we partition Zs ≜ {Zx,y | y ≤ 10} and Z s̄ ≜ {Zx,y | y > 10}, we
need only to consider 2200 permutations for each random variable.

2201 vs 2400

Approach 26 / 67



The Big Picture

Planning involves thinking about future observations (and actions),
and evaluating a reward function

This process is computationally expensive

Partitioning the observation space makes this less expensive
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Bounds on Expected Reward

LB ≤ H(X|Z) ≤ UB

LB ≜ H(Zs | X) +H(Z s̄|X)−H(Zs)−H(Z s̄) +H(X)

UB ≜ H (Zs|X) +H (X)−H (Zs)
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Bounds on Expected Reward

Lemma 1
The conditional Entropy can be factorized as

H (X|Z) = H (Z|X) +H (X)−H (Z)
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Bounds on Expected Reward

Theorem 1

The conditional Entropy can be bounded from above by

H(X|Z) ≤ UB ≜ H (Zs|X) +H (X)−H (Zs)

Proof.

H (X|Zs)−H (X|Z) = I(X|Zs;Z \ Zs)

0 ≤ I(X|Zs;Z \ Zs) → H (X|Z) ≤ H (X|Zs)

H (X|Zs) = H (Zs|X) +H (X)−H (Zs)
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Bounds on Expected Reward

Lemma 2
Given two sets of expected measurements (Zs, Z s̄), the conditional
Entropy can be factorized as

H(X|Z)=H(Zs|X) +H(Z s̄|X)−H(Zs, Z s̄) +H(X)
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Bounds on Expected Reward

H(Zs, Z s̄) = H(Zs) +H(Z s̄)− I(Zs;Z s̄)
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Bounds on Expected Reward

Theorem 2

The conditional Entropy can be bounded from bellow by:

LB ≜ H(Zs | X) +H(Z s̄|X)−H(Zs)−H(Z s̄) +H(X)

Proof.

H(Zs, Z s̄) = H(Zs) +H(Z s̄)− I(Zs;Z s̄)

I(Zs;Z s̄) ≥ 0 → H(Zs, Z s̄) ≤ H(Zs) +H(Z s̄)

Plug-in to lemma 3
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Bounds on Expected Reward

LB ≤ H(X|Z) ≤ UB

LB ≜ H(Zs | X) +H(Z s̄|X)−H(Zs)−H(Z s̄) +H(X)

UB ≜ H (Zs|X) +H (X)−H (Zs)
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Hierarchical Partitioning
Can we simplify further?

Unique encoding denoted as Zni|mj , n is the node number at the
ith partitioning level, m is the node number at the parent
partitioning level j

⋱⋱ ⋱⋱ ⋱⋱
⋯

⋱⋱ ⋱
!#!|%!"# !&!|&/#!"#

!%$|%# !#$|%# !($|##
⋱⋱

!)$|##

!%!|%!"#

!%#|%% !##|%%
!

Approach 35 / 67



Bounds with Hierarchical Partitioning

⋱⋱ ⋱⋱ ⋱⋱

!"!|"" !$!|"" !%!|$"
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Computational Complexity

Lemma 2
Given two sets of expected measurements (Zs, Z s̄), the conditional
Entropy can be factorized as

H(X|Z)=H(Zs|X) +H(Z s̄|X)−H(Zs, Z s̄) +H(X)
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Computational Complexity
Baseline Expected Reward

H(X|Z)

Using lemma 2:

H(Zs|X),H(Z s̄|X),H(X),H(Zs, Z s̄)

Expected Reward Bounds

H(Zs|X),H(Z s̄|X),H(Z s̄),H(Zs),H(X)

Approach 38 / 67



Computational Complexity
Baseline Expected Reward

H(X|Z)

Using lemma 2:

H(Zs|X),H(Z s̄|X),H(X),H(Zs, Z s̄)

Expected Reward Bounds

H(Zs|X),H(Z s̄|X),H(Z s̄),H(Zs),H(X)

Approach 38 / 67



Computational Complexity

Baseline Expected Reward

H(X|Z)

Using lemma 2:

H(Zs|X),H(Z s̄|X),H(X),H(Zs, Z s̄)

Expected Reward Bounds

H(Zs|X),H(Z s̄|X),H(Z s̄),H(Zs),H(X)

Approach 39 / 67



Computational Complexity

H(Zs, Z s̄) vs. H(Z s̄),H(Zs)

H(Zs, Z s̄) = −
∫
Zs

∫
Z s̄

P(Zs, Z s̄) logP(Zs, Z s̄)dZsdZ s̄

H(Zs) = −
∫
Zs

P(Zs) logP(Zs)dZs

H(Z s̄) = −
∫
Z s̄

P(Z s̄) logP(Z s̄)dZ s̄
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Computational Complexity

H(Zs, Z s̄) vs. H(Z s̄),H(Zs)

O(|Zs||Z s̄|)
O(|Zs|+ |Z s̄|)
Same logic applies to the hierarchical partitions
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Gaussian Belief - preliminaries
b[X] ∼ N (µ,Σ), with mean µ ∈ RN and covariance matrix Σ ∈ RN×N

Σ−1
k+1 = Λk+1

Λk+i ≜ ΛAug
k + AT

k+1:k+i · Ak+1:k+i

Figure: Caesar.jl’21
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Gaussian Belief - preliminaries

b[X] ∼ N (µ,Σ)

H(Xk+1) =
1
2(N ln(2πe)− ln |Λk+1|)

E
Zk+1:i

[H(Xi|hi)] = C − 1
2 E
Zk+1:i

[ln
∣∣∣ΛAug

k + Ai(z)
TAi(z)

∣∣∣]
C = N ln(2πe)
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Partitioning of Gaussian Belief

Λi = ΛAug
k + AT

i Ai

Observation partitioning corresponds to splitting the Jacobian into
blocks

!! (!!", !!"̅)

↦&!
&!"

&!"̅

↦
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Gaussian Bounds

f(Λ, A) ≜ |Λ + ATA|

LB = C − 1

2
E

Zk+1:i

[ln
f
(
ΛAug−
k , As

i

)
· f

(
ΛAug−
k , As̄

i

)
|ΛAug−

k |
]

UB = C − 1

2
E

Zk+1:i

[ln f
(
ΛAug−
k , As

i

)
]
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Estimation of Expected Entropy

Assumption - the measurement Jacobian is not a function of Z

H (Xi|Zk+1:i) = C − 1
2(ln f

(
ΛAug−
k , Ai

)
) →

LB = C − 1

2
ln

f
(
ΛAug−
k , As

i

)
· f

(
ΛAug−
k , As̄

i

)
|ΛAug−

k |

UB = C − 1

2
ln f

(
ΛAug−
k , As

i

)
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Methods for Determinant Calculation

Need to evaluate f
(
ΛAug−
k , As

i

)
, f

(
ΛAug−
k , As̄

i

)
Baseline:

|Λ + ATA|
Square root form:

|RTR|
rAMDL:

|Λ| · |Im + AΛ−1AT |
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rAMDL

Apply Matrix Determinant lemma to posterior Information matrix
(Kopitkov and Indelman - IJRR’17)

Baseline is O(N 3) while rAMDL is O(m3), Partitioning the
measurements reduces m.
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rAMDL + Bounds

Applying rAMDL to the determinants required for LB,UB:

|ΛAug−
k + (As

i )
TAs

i |

|ΛAug−
k + (As̄

i )
TAs̄

i |

When s = s̄ → |ΛAug−
k + (As

i )
TAs

i | = O(m
3

8 )
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Scenario
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Results - Bounds Analysis

For a specific action, Zs → Z while Zs̄ → ∅

0 20 40 60 80 100 120
Zs Z

540

550

560

570

580

590

En
tro

py

Upper Bound
Lower Bound
Actual Reward
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Results - Bounds Analysis

Going down the partition
tree: ⋱⋱ ⋱⋱ ⋱⋱

⋯
⋱⋱ ⋱

!#!|%!"# !&!|&/#!"#
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Results - Bounds Analysis
Myopic, random actions:
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reward
lb, spearmanR : 0.99
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Results - Bounds Analysis
Two actions, different depths:

Explore Observe
Action
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Results - Simulation

100 different paths, not including common terms

Scenario 1 - 2956 factors without re-planning

Scenario 2 - 2956 factors with re-planning

Scenario 3 - 5904 factors with re-planning
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Illustration - Scenario 1

10 15 20 25 30 35 40
east

10

0

10

20

30

40

50

no
rth

Trajectory
Possible Paths
Observed Landmarks

Results 58 / 67



Bounds - Scenario 1
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Illustration - Scenario 2
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Results - run time

# Paths # Factors RP rAMDL MP (ours)
100 2956 No 11.521± 0.537 6.888 ± 0.155
100 2956 Yes 24.636± 1.381 11.758 ± 0.372
100 5904 Yes 84.376± 14.458 32.069 ± 4.913

Table: Total planning time in seconds (lower is better)
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Results - Visual Odometery

RoboMaster + ZED
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Illustration - Visual Odometery
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Bounds - Visual Odometery
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Results - run time

Method time [sec]
MP (ours) 585.507 ± 27.153
rAMDL 802.545± 25.651
iSAM2 1764.835± 26.521

Table: Total planning time in seconds (lower is better)

worst-case [sec] actual [sec]
166 97.6

Table: Covariance recovery time
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Conclusions

We introduced a novel concept - observation space partitioning

We proposed a simplified method to solving the POMDP planning
problem using this concept

We presented both theoretical and empirical studies of this method
- both showing performance gains

Multiple future research directions
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Questions
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