
Simplifying Complex Observation Models in Continuous
POMDP Planning with Probabilistic Guarantees and Practice

Idan Lev-Yehudi 1 Moran Barenboim 1 Vadim Indelman 2

1Technion Autonomous System Program (TASP) 2Department of Aerospace Engineering, Technion

POMDPswith Visual Observations

Planning under uncertainty can be formalized as a Partially Observable Markov Decision Process

(POMDP). Optimally solving POMDPs is computationally infeasible except for only the smallest

tasks.

Visual observations are complex to model for planning. Learned observation models are imprac-

tical for use in solving the POMDP in real-time due to the many samples required in POMDP

solvers.

Contribution

We explore planning with a simpler observation model with formal guarantees of the solution

quality for computational reasons.

Our main contributions:

Bound the theoretical loss with observation model discrepancy

Probabilistic bound for the empirical simplified performance

Practical computation of the bounds in state-of-the-art planners

Problem Formulation

A POMDP is the tuple 〈X , A, Z, pT , pZ, r, γ, L, b0〉

X , A, Z are state, action and observation spaces

pT , pZ are probabilistic transition and observation models

rt : X × A → R is a bounded reward function at time t

γ is the reward discount for future time steps

L is the time limit (horizon)

b0 is the starting distribution (belief) of states

During planning we replace the original observation model pZ with a simplified observation

model qZ .

The original and simplified action-value functions:

Q
pZ
P (bt, a) , rt(bt, a) + EpZ

t+1:L[
L∑

i=t+1
γi−tri(bi, πi)]

Q
qZ
P (bt, a) , rt(bt, a) + EqZ

t+1:L[
L∑

i=t+1
γi−tri(bi, πi)]

We denote the original POMDP as P, and its particle-belief MDP as MP (approximating with a

finite number of particles).

Bounds Using Total-Variation Distance

State-dependent total-variation distance between observation models:

∆Z(x) ,
∫

Z
|pZ(z | x) − qZ(z | x)| dz

mi quantifies a one-timestep bound over the loss in value function (intuitive):

mi(xi, a) , V max
i+1 ·Exi+1∼pT (·|xi,a)[∆Z(xi+1)]

mi(bi, a) , Exi∼bi
[m(xi, a)]

We extend with the definition of the cumulative bound function Φ:

ΦP(bt, a) , mt(bt, a) + EqZ
t+1:L−1[

L−1∑
i=t+1

mi(bi, πi)]

An illustration of our bounds approach. The scattered dots are the pre-sampled states, and the dot size is relative to

∆Z(x). For the two policies, we compute the bound as a summation over ∆Z weighted by the transition model. The

bottom policy chooses actions that give higher weights to states with greater ∆Z , resulting in looser bounds.

Deterministic Value Loss Bound (Theorem 2)

For every belief bt, action a, policy π, observation models pZ and qZ , the following bound holds

deterministically:

|QpZ
P (bt, a) − Q

qZ
P (bt, a)| ≤ ΦP(bt, a)

Generalized PB-MDPs Convergence (Theorem 3, Informal)

For every bounded state-action function (ri/mi), its finite-sample cumulative function

(Q
qZ
MP

/ΦMP) has probabilistic concentration bounds from its theoretical counterpart (Q
qZ
P /ΦP)

under certain regularity conditions of the POMDP.

Empirical Concentration Inequalities (Corollary 3)

For arbitrary ε, δ > 0 there exist numbers of particles and state samples for which

|QpZ
P (bt, a) − Q̂

qZ
MP

(b̄t, a)| ≤ Φ̂MP(b̄t, a) + ε

with probability of at least 1 − δ for any planner with performance guarantees, where b̄t is the

particle-approximation of the belief bt.
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Summary of Corollary 3 for probably approximately bounding |QpZ
P − Q̂

qZ
MP

| ≤ Φ̂MP. (A) is Theorem 2, connecting

theoretical value functions with the theoretical local state bound. (B) is Theorem 3, connecting theoretical action

value functions with their PB-MDP approximation. (C) is given by any planner with performance guarantees.

Practical Computation of Bounds

It is impractical to calculate mi explicitly. Therefore, we propose estimating mi with samples,

and separating calculations to offline/online stages.

During offline we pre-sample states at which we compute ∆Z(x), and the proposal distribution

likelihood.

During online, we only reweight the states based on the transition model, and perform the

summation.

Online

Offline

To optimize run-time:

Discard x∆
n with low ∆Z values

Consider x∆
n based on KD-Tree and truncation distance

Monte Carlo estimate - sample belief particles

Results in Simulation

We show that even with bounds calculation, we achieve a significant speedup when planning

with the simplified model.
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We set up a 2D light-dark simulation, with different original and simplified observation models in the light region.

The initial belief is multi-modal, so the agent has to move up to the light region for better localizing before moving to

the goal region (blue rectangle). We plan with the simplified observation model and compute Φ̂MP. The simplified

value policy chooses the left action, whereas the lower bound policy chooses down.
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