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Motivation

Modern autonomous robots perform a wide range of tasks

Localization Mapping Object manipulation
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Motivation

Operating under different sources of uncertainty
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Motivation
Challenges

= Handling high-dimensional state spaces and operating In real-time

" In real-world problems the posterior distribution is often non-Gaussian
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Background
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Background

The forward-backward algorithm

forward pass: f 1,1, 9

in each step a single variable is eliminated from the graph

f1new(x1) — ~fo [fo,1] f fo(xo)fo 1 (X0, x1)dxg
p(xo]x1)
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Background

The forward-backward algorithm

forward pass: when completed

the joint distribution is expressed via conditionals

p(xg, x1,%2,11) = p(ly) pCx2|ly) p(x1]|x2, 11) P(x0|x1)
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Background

The forward-backward algorithm

Problem
No closed-form solution in the general non-parametric case!

backward pass:
marginal distributions are calculated using backsubstitution

p(xg, x1,%2,11) = p(ly) pCx2|ly) p(x1]|x2, 11) P(x0|x1)
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Previous Works

Non-Parametric High Dimensional Settings
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Fig. 1.  Illustration of a Bayesian clique operation as part of a larger Fig. 2. A one-dimensional example of normalizing flow: histogram of
multi-modal belief propagation on a Bayes tree. Two incoming messages aample T “Efﬂu transformation function TI[I] {]’I‘liddlﬂ], and hiEt-Dgl‘ElI]’l of

are combined with local potentials to produce one outgoing message during
the upward pass procedure towards the root. Multi-modality is allowed to
exist amongst cliques, rather than selecting a single mode as a maximum-
product type algorithm would.

[Fourie et al. IROS 2016] [Huang et al. ICRA 2021]

transformed samples and reference variable y ~ N(0,1) (right).
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Key Observation

p(X,Y)
Distributions can be directly reconstructed without the need
for any additional learning techniques or KDE
\\ ,
Example: 4 /5
X_ SZAD
LS

joint:  p(X,Y) =pX|Y)p(Y) / v

marginal: - p(X) = f, pAIV)P(V)AY= E_ [p(XIY = )]

estimated marginal:  p(X) = %Z{-V:l p(X|Y = yb)

Autonomous Navigation I_Wy/_'T
and Perception Lab

\"F TECHNION
g — @ ANPL
- e

AAAAAAAA




Our Contribution (#1)

Leverage slices from high-dimensional surfaces to approximate joint and marginal
posterior distributions without any further intermediate reconstructions

fine
fo o

forward pass:

flnew(xl) — Uf fo(x0)fo,1 (X0, x1)dxg

X0

f1new Nz:fo 1(x0,x1)
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Our Contribution (#1)

Leverage slices from high-dimensional surfaces to approximate joint and marginal
posterior distributions without any further intermediate reconstructions

backward pass:

N
1 .
o0 =53 et (Yo)—
=1
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Our Contribution (#1)

= Qur approach supports the elimination of variables even in the absence of unary
factors (e.g. no GPS)

= For instance, elimination of x5 or [, after eliminating

no unary factors!

= See Lemma 1 in the paper for details Lemma I: Given a factor graph G = (F,©,€) and an

elimination order O, if each eliminated variable 6; € O either
has a unary factor connected to it, i.e. f(6;) € F,;-1(6;)
or, 30; € © such that 6; was previously eliminated and
f(6:,0;) € F, then samples of §; can be drawn from one
of the factors F,;_1(6;) (see proof in appendix).
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Our Contribution (#2)

A novel early stopping heuristic criteria (backward pass) In the non-parametric case

(W
Jo of 3,14
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Our Contribution (#2)

A novel early stopping heuristic criteria (backward pass) In the non-parametric case

Maximum Mean Discrepancy (MMD)

=20 B (o |xh) =~ 0 B (e [x) 1] < 8
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Experimental Results

Plaza : a real-world dataset with range measurements [Djugash, et al. JFR 20097

Ground truth Path and True Node Locations
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Experimental Results

Plaza : a real-world dataset with range measurements
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Summary

L_everage slices from high-dimensional surfaces to approximate joint and
marginal posterior distributions without any further intermediate reconstructions

A novel early stopping heuristic criteria to further speed up calculations

Requires less samples and consistently outperforms state-of-the-art
nonparametric inference algorithms in terms of accuracy and computational
complexity
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