
A Slices Perspective for Incremental 

Nonparametric Inference in High 

Dimensional State Spaces

Moshe Shienman, Ohad Levy-Or, 
Michael Kaess and Vadim Indelman
Technion, Israel Institute of Technology



Motivation

Modern autonomous robots perform a wide range of tasks

Localization Mapping Object manipulation



Motivation

Operating under different sources of uncertainty

Noisy measurements Imprecise actions Dynamic environments

Posterior distributions estimates



Motivation

▪Handling high-dimensional state spaces and operating in real-time

▪ In real-world problems the posterior distribution is often non-Gaussian

Challenges



Background

Factor Graph – a probabilistic graphical model
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Background

The forward-backward algorithm
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Background

The forward-backward algorithm
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𝑝(𝑥0, 𝑥1, 𝑥2, 𝑙1) = 𝑝(𝑙1) 𝑝(𝑥2|𝑙1) 𝑝(𝑥1|𝑥2, 𝑙1) 𝑝(𝑥0|𝑥1)

forward pass: when completed
 the joint distribution is expressed via conditionals



Background

The forward-backward algorithm
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backward pass:
 marginal distributions are calculated using backsubstitution

𝑝(𝑥0, 𝑥1, 𝑥2, 𝑙1) = 𝑝(𝑙1) 𝑝(𝑥2|𝑙1) 𝑝(𝑥1|𝑥2, 𝑙1) 𝑝(𝑥0|𝑥1)

Problem :
No closed-form solution in the general non-parametric case! 



Previous Works

Non-Parametric High Dimensional Settings

[Fourie et al. IROS 2016] [Huang et al. ICRA 2021] 



Key Observation

Distributions can be directly reconstructed without the need 

for any additional learning techniques or KDE

Example:

joint:      𝑝 𝑋, 𝑌 = 𝑝 𝑋 𝑌 𝑝(𝑌) 

marginal:      𝑝 𝑋 = 𝑌 𝑝 𝑋 𝑌 𝑝 𝑌 𝑑𝑌= 𝔼
𝑦~𝑝(𝑌)

[𝑝 𝑋 𝑌 = 𝑦 ]

estimated marginal:      Ƹ𝑝 𝑋 =
1
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Our Contribution (#1)

Leverage slices from high-dimensional surfaces to approximate joint and marginal 

posterior distributions without any further intermediate reconstructions
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Our Contribution (#1)

Leverage slices from high-dimensional surfaces to approximate joint and marginal 

posterior distributions without any further intermediate reconstructions
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Our Contribution (#1)

▪ Our approach supports the elimination of variables even in the absence of unary 

factors (e.g. no GPS)

▪ See Lemma 1 in the paper for details

no unary factors!

▪ For instance, elimination of       or     after eliminating 



Our Contribution (#2)

A novel early stopping heuristic criteria (backward pass) in the non-parametric case
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Our Contribution (#2)

A novel early stopping heuristic criteria (backward pass) in the non-parametric case
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Experimental Results

Plaza : a real-world dataset with range measurements [Djugash, et al. JFR 2009] 
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Experimental Results

Plaza : a real-world dataset with range measurements



Summary

• Leverage slices from high-dimensional surfaces to approximate joint and 

marginal posterior distributions without any further intermediate reconstructions

• A novel early stopping heuristic criteria to further speed up calculations

• Requires less samples and consistently outperforms state-of-the-art 

nonparametric inference algorithms in terms of accuracy and computational 

complexity



Thank 
you!
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