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belief-dependent continuous partially
observable Markov decision processes via
adaptive multilevel simplification
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Abstract
Continuous Partially Observable Markov Decision Processes (POMDPs) with general belief-dependent rewards are
notoriously difficult to solve online. In this paper, we present a complete provable theory of adaptive multilevel sim-
plification for the setting of a given externally constructed belief tree and Monte Carlo Tree Search (MCTS) that constructs
the belief tree on the fly using an exploration technique. Our theory allows to accelerate POMDP planning with belief-
dependent rewards without any sacrifice in the quality of the obtained solution. We rigorously prove each theoretical claim
in the proposed unified theory. Using the general theoretical results, we present three algorithms to accelerate continuous
POMDP online planning with belief-dependent rewards. Our two algorithms, SITH-BSP and LAZY-SITH-BSP, can be
utilized on top of any method that constructs a belief tree externally. The third algorithm, SITH-PFT, is an anytime MCTS
method that permits to plug-in any exploration technique. All our methods are guaranteed to return exactly the same
optimal action as their unsimplified equivalents. We replace the costly computation of information-theoretic rewards with
novel adaptive upper and lower bounds which we derive in this paper, and are of independent interest. We show that they
are easy to calculate and can be tightened by the demand of our algorithms. Our approach is general; namely, any bounds
that monotonically converge to the reward can be utilized to achieve a significant speedup without any loss in performance.
Our theory and algorithms support the challenging setting of continuous states, actions, and observations. The beliefs can
be parametric or general and represented by weighted particles. We demonstrate in simulation a significant speedup in
planning compared to baseline approaches with guaranteed identical performance.
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1. Introduction

Efficiently solving Partially Observable Markov Decision
Processes (POMDPs) implies enabling autonomous agents
and robots to plan under uncertainty (Garg et al., 2019;
Kurniawati et al., 2008; Silver and Veness, 2010; Smith and
Simmons, 2004; Sunberg and Kochenderfer, 2018; Ye et al.,
2017). Typical sources of uncertainty are the imprecise
actions, sensor type, sensor noise, imprecise models, and
unknown agent surroundings. However, solving a POMDP
is notoriously hard. Specifically, it was proven to be
PSPACE-complete (Papadimitriou and Tsitsiklis, 1987).

The actual POMDP state is hidden. Instead, at each time
step, the robot shall decide which action to take based on the
distribution over the state, given the corresponding history
of performed actions and observations received so far. Such
a distribution received the name “belief.” In a planning

session, the robot has to take into account all possible future
actions interleaved with possible observations. Each such
future history of the length of predefined horizon defines a
lace of the future beliefs (blue lace in Figure 1) and cor-
responding cumulative rewards named return. Solving
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POMDP in the most common sense means finding a
mapping from belief to action called policy, which maxi-
mizes the expected return.

Earlier offline solvers such as Kurniawati et al. (2008)
and Smith and Simmons (2004) are applicable to small or
moderately sized discrete POMDPs. These methods re-
quire passage over all possible states and observations
(Kochenderfer et al., 2022) since they are built on value
iteration of α-vectors, so called full-width methods (Silver
and Veness, 2010). More recent online solvers are suitable
for POMDPs with large but discrete action, state, and
observation spaces (Silver and Veness, 2010; Ye et al., 2017).
Still, continuous state, action, and observation spaces remain to
be an open problem (Sunberg and Kochenderfer, 2018).
Another challenging aspect of solving POMDP and the subject
of interest in this paper is general belief distributions repre-
sented by weighted particles. Further in the manuscript we will
regard the combination of both, nonparametric beliefs and a
fully continuous POMDP as a nonparametric fully contin-
uous setting.

In a fully continuous setting with parametric or general
beliefs one shall resort to sampling of future possible
actions and observations. In a sampled form, this abun-
dance of possible realizations of action–observation pairs
constitutes a belief tree. Building the full belief tree is
intractable since each node in the tree repeatedly branches
with all possible actions and all possible observations as
illustrated in Figure 1. The number of nodes grows ex-
ponentially with the horizon. This problem is known as the
curse of history.

The reward function in a classical POMDP is assumed to
have a specific structure, namely, to be the expectation with
respect to the belief of the state-dependent reward function.
While alleviating the solution, this formulation does not
support more general, belief-dependent reward functions,
such as information-theoretic rewards.

However, POMDP planning with belief-dependent re-
wards is essential for various problems in robotics and
Artificial Intelligence (AI), such as informative planning
(Hollinger and Sukhatme, 2014), active localization
(Burgard et al., 1997), active Simultaneous Localization and
Mapping (SLAM) (Stachniss et al., 2005), and Belief Space
Planning (BSP) (Indelman et al., 2015; Platt et al., 2010;
Van Den Berg et al., 2012). Araya et al. (2010) provide an
extensive motivation for general belief-dependent rewards.
One of the widely used such rewards is Information Gain,
which involves the difference between differential entropies
of two consecutive in time beliefs. Such a reward is crucial
in exploration tasks because, in these tasks, the robot’s goal
is to decrease uncertainty over the belief. For instance,
uncertainty measures such as differential entropy and de-
terminant of the covariance matrix of the belief cannot be
represented as expectation over a state-dependent reward
with respect to the belief. Another example of a belief-
dependent reward is entropy over discrete variables that
correspond to data association hypotheses (Pathak et al.,
2018). Computationally-efficient information-theoretic
BSP approaches have been investigated in recent years,
considering Gaussian distributions (Elimelech and
Indelman, 2022; Kitanov and Indelman, 2024; Kopitkov
and Indelman, 2017, 2019).

Yet, POMDP planning with general belief-dependent
rewards in particular, when the beliefs are represented by
particles exacerbate the computational challenge of the
solution even more. For example information theoretic
rewards such as differential entropy, are computationally
expensive.

Let us focus for the moment on differential entropy. Even
if the belief is parametric but not Gaussian, calculating the
exact value of differential entropy involves intractable in-
tegrals. This fact also motivates to use a weighted particles
representation for the belief. In this case differential entropy

Figure 1. Schematic visualization of the belief tree and the inplace simplification. The superscript in this visualization denotes the index
in the belief tree. By bs we denote the simplified version of the belief b.
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can be estimated, for instance by Kernel Density Estimation
(KDE) (Fischer and Tas, 2020) or a model-based estimator
(Boers et al., 2010). However, these estimators have qua-
dratic cost in the number of samples and are usually the
bottleneck of planning algorithms. The reason is that this
increased computational burden is incurred for all nodes in
the belief tree. Importantly, the estimation errors of these
estimators with respect to differential entropy over theo-
retical belief are out of the reach due to the unavailability of
both, the theoretical belief and the entropy on top of it. Yet,
due to the convergence of the belief represented by particles
to the theoretical belief (almost sure convergence (Crisan
and Doucet, 2002)), the mentioned above estimators con-
verge to the exact differential entropy. This prompts us to
use as many belief particles as possible to get closer to the
theoretical belief. Nevertheless, increasing the number of
belief particles severely impacts planning time.

In this paper, we accelerate online decision making in the
setting of nonparametric fully continuous POMDPs with
general belief-dependent rewards. Crucially, planning
performance of our accelerated approach is the same as that
of the baseline approaches without our acceleration. Before
stating our contributions, we review the most relevant works
in this context.

1.1. Related work

Allowing general belief-dependent rewards in POMDP while
solving such a problem efficiently is a long standing effort.
Some previous seminal works such as ρ-POMDP (Araya et al.,
2010; Fehr et al., 2018) as well as Dressel et al. (2017) have
focused on discrete domains, small sized spaces and have
tackled the offline solvers. Furthermore, these approaches are
limited to piecewise linear and convex or Lipschitz-continuous
rewards. Another work named POMDP-IR (Spaan et al., 2015)
suggests an interesting framework for specific form of infor-
mation rewards involving manipulations on the action space.
Still, in Araya et al. (2010), Dressel et al. (2017), and Fehr et al.
(2018), the state, action, and observation spaces are discrete and
small sized. Another line of works is Belief Space Planning
(BSP) (Indelman et al., 2015; Platt et al., 2010; Van Den Berg
et al., 2012). These approaches are designed for fully continuous
POMDPs, but limited to Gaussian beliefs. In striking contrast,
our approach is centered in the more challenging fully con-
tinuous domain and nonparametric general beliefs represented
by particles while at the same time our framework is general and
supports also exact parametric beliefs.

One way to tackle a nonparametric fully continuous
setting with belief-dependent rewards is to reformulate
POMDP as a Belief-MDP (BMDP). On top of this re-
formulation one can utilize MDP sampling-based methods
such as Sparse Sampling (SS) proposed by Kearns et al.
(2002). However, this algorithm still suffers from the curse
of history and such that increasing the horizon is still
problematic.

Monte Carlo Tree Search (MCTS) made a significant
breakthrough in overcoming the course of history by

building the belief tree incrementally and exploring only the
“promising” parts of the tree using the exploration strategy.
An inherent part of MCTS-based algorithms is the explo-
ration strategy designed to balance exploration and ex-
ploitation while building the belief tree. Most widely used
exploration technique is Upper Confidence Bound (UCB)
(Kocsis and Szepesvári, 2006).

MCTS algorithms assume that calculating the reward
over the belief node does not pose any computational
difficulty. Information-theoretic rewards violate this as-
sumption. When the reward is a general function of the
belief, the origin of the computational burden is shifted
towards the reward calculation. Moreover, in a non-
parametric setting, belief-dependent rewards require a
complete set of belief particles at each node in the belief
tree. Therefore, algorithms such as POMCP (Silver and
Veness, 2010) and its numerous predecessors are inap-
plicable since they simulate each time a single particle
down the tree when expanding it. DESPOT-based algo-
rithms behave similarly (Ye et al., 2017), with the
DESPOT-α as an exception (Garg et al., 2019). DESPOT-
α simulates a complete set of particles. However, the
DESPOT-α tree is built using α-vectors, such that they are
an indispensable part of the algorithm. The standard
α-vectors technique requires that the reward is state de-
pendent, and the reward over the belief is merely ex-
pectation over the state reward. In other words, DESPOT-
α does not support belief-dependent rewards since it
contradicts the application of the α-vectors.

The only approach posing no restrictions on the
structure of belief-dependent reward and not suffering
from limiting assumptions is Particle Filter Tree (PFT).
The idea behind PFT is to apply MCTS over Belief-MDP
(BMDP). Sunberg and Kochenderfer (2018) augmented
PFTwith Double Progressive Widening (DPW) to support
continuous spaces in terms of actions, states, and obser-
vations, and coined the name PFT-DPW. PFT-DPW uti-
lizes the UCB strategy and maintains a complete belief
particle set at each belief tree node. Recently, Fischer and
Tas (2020) presented Information Particle Filter Tree
(IPFT), a method to incorporate information-theoretic
rewards into PFT. The IPFT simulates small subsets of
particles sampled from the root of the belief tree and
averages entropies calculated over these subsets, enjoying
a fast runtime. However, differential entropy estimated
from a small-sized particle set can be significantly biased.
This bias is unpredictable and unbounded, therefore, se-
verely impairs the performance of the algorithm. In other
words, celerity comes at the expense of quality. Often-
times, the policy defined by this algorithm is very far from
optimal given a time budget. Fischer and Tas (2020)
provide guarantees solely for the asymptotic case, that
is, the number of subsampled from the root belief state
samples (particles) tends to infinity. Asymptotically their
algorithm behaves precisely as the PFT-DPW in terms of
running speed and performance. Yet, in practice the per-
formance of IPFT in terms of optimality can degrade
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severely compared to PFT-DPW. Moreover, Fischer and
Tas (2020) do not provide any study of comparison of IPFT
against PFT-DPW with an information-theoretic reward.
Another undesired characteristic of IPFT is that the averaging
of the differential entropies is done implicitly and the number
of averaged entropies per belief is the visitation count of the
corresponding belief. Therefore, to properly compare IPFT
with PFT-DPWone shall increase the number of simulations
inside the IPFT algorithm. We explain this aspect more
thoroughly in Section 8.3.5. Prompted by these insights, we
chose the PFT-DPWas our baseline approach, which we aim
to accelerate. In contrast to IPFT designed specifically for
differential entropy, our approach is suitable for any belief-
dependent reward and explicitly guarantees an identical
solution to PFT-DPW with an information-theoretic reward,
for any size of particle set representing the belief and serving
as input to PFT-DPW.

The computational burden incurred by the complexity of
POMDP planning inspired many research works to focus on
approximations of the problem on top of existing solvers, for
example, multilevel successive approximation of a motion
model (Hoerger et al., 2019), lazy belief extraction on top of a
particle-based representation (Hoerger and Kurniawati,
2021), linearity-based solvers (Hoerger et al., 2020), and
averaging differential entropy estimated from tiny subsets of
particles (Fischer and Tas, 2020). Typically, these works
provide only asymptotical guarantees (Fischer and Tas, 2020;
Hoerger et al., 2019) or no guarantees at all. In addition many
of these approximations leverage the assumption that the
belief-dependent reward is an averaged state-dependent re-
ward (e.g, Hoerger et al., 2019; Hoerger and Kurniawati,
2021), and therefore cannot accommodate belief-dependent
rewards with general structure (e.g., do not support
information-theoretic rewards such as differential entropy).

Recently, the novel paradigm of simplification has ap-
peared in literature (Barenboim and Indelman, 2022, 2023;
Elimelech and Indelman, 2022; Kitanov and Indelman,
2024; Lev-Yehudi et al., 2024; Shienman and Indelman,
2022; Sztyglic and Indelman, 2022; Zhitnikov and
Indelman, 2022b, 2024). The simplification is concerned
with carefully replacing the nonessential elements of the
decision-making problem and quantifying the impact of this
relaxation. Specifically, simplification methods are ac-
companied by stringent guarantees. A prominent aspect of a
simplification paradigm is the usage of the bounds over the
reward or the objective function. As opposed to approxi-
mations, the simplification framework always keeps some
sort of connection to the original unsimplified problem and
by that provides deterministic guarantees relative to the
given solver. Despite that various objective function bounds
have been practiced in Kochenderfer et al. (2022), Smith
and Simmons (2004), Walsh et al. (2010), and Ye et al.
(2017), these techniques are not applicable in the realm of
belief-dependent rewards and a fully continuous setting. In
addition, commonly these approaches assume that the state
dependent reward is trivially bounded from below and
above by some constant.

1.2. Contributions

This work is about accelerating online decision making
while obtaining exactly the same solution as without ac-
celeration. Specifically, we contribute an adaptive multi-
level simplification framework that accounts for belief-
dependent rewards, possibly nonparametric beliefs, and
continuous state, observation and action spaces.

Our framework accepts as input adaptive monotonical
and computationally inexpensive bounds over the exact or
estimated reward. Given such reward bounds, it accelerates
online decision making. Specifically, given such adaptive
monotonical reward bounds, it is possible to adaptively
bound the value function for any given policy and expedite
decision making. If the value function bounds for different
candidate policies do not overlap, we do not pay in terms of
quality, namely, we obtain the same solution as the
equivalent unsimplified method. In the case these bounds do
overlap, then we can progressively tighten them by in-
voking a process that we shall call simplification adaptation
or resimplification until they no longer overlap.

Our techniques return exactly the same solution as the
unsimplified equivalent. Such an unsimplified baseline can
correspond to decision-making problems where the reward
can be exactly calculated (analytically), or where the reward
is estimated. In either case, if the bounds over the corre-
sponding reward are provided and satisfy the assumptions
stated in Section 3.3, one can apply our framework to speed
up the decision-making process while obtaining the same
best action as with the original rewards instead of the
bounds. Such a capability is therefore particularly appealing
in light of the information-theoretic rewards that are es-
sential in numerous problems in robotics, but are often the
computational bottleneck.

Further, there are two settings that we separately and
explicitly discuss in this paper. We start from a given belief
tree, that can be constructed by a POMDP solver that is not
coupled with the solution, for example, SS. In this setting,
we can prune branches of the belief tree whenever the
mentioned objective bounds for different candidate policies
or actions do not overlap.

We then discuss an anytime setting of MCTS, where the
belief tree construction is coupled with the solution due to
an exploration strategy (e.g., UCB). The exploration
strategy builds upon an exploratory objective. Since the
exploratory objective typically requires access to the ob-
jective estimates to select an action at each arrival to a belief
node, we cannot prune suboptimal candidate actions. In-
stead, we can only dismiss them until the next arrival to this
belief node. The simplification and reward bounds are used
here to bound the exploratory objective and the value
function at the root of the belief tree.

Finally, we focus on a specific simplification of non-
parametric beliefs represented by particles and a differential
entropy estimator as the reward function. Our simplification
is subsampling of the original belief to a smaller sample
size. We contribute novel computationally cheaper bounds
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over the differential entropy estimator on top of such a
simplified belief and incorporate these bounds into our
framework. By that, we produce a specific embodiment of
the general framework presented earlier.

To summarize, we list down the contributions of this
work, in the order they are presented in the manuscript.

1. Building on any adaptive monotonically convergent
bounds over belief-dependent reward, we present in this
paper a provable general theory of adaptive multilevel
simplification with deterministic performance guarantees.

2. For the case of a given belief tree as in Sparse Sampling,
we develop two algorithms, Simplified Information
Theoretic Belief Space Planning (SITH-BSP) and a
faster variant, LAZY-SITH-BSP. Both are comple-
mentary to any POMDP solver that does not couple
belief tree construction with an objective estimation
while exhibiting a significant speedup in planning with
a guaranteed same planning performance.

3. In the context of MCTS, we embed the theory of
simplification into the PFT-DPW algorithm and in-
troduce SITH-PFT. We provide stringent guarantees
that exactly the same belief tree is constructed by
SITH-PFT and PFT-DPW. We focus on a UCB ex-
portation technique, but with minor adjustments, an
MCTS with any exploration method will be suitable
for acceleration.

4. We derive novel lightweight adaptive bounds on the
differential entropy estimator of (Boers et al., 2010) and
prove the bounds presented are monotonic and con-
vergent. Moreover, these bounds can be incrementally
tightened. We believe these bounds are of interest on
their own. The bounds are calculated using the sim-
plified belief (See Figure 1). We emphasize that any
other bounds fulfilling assumptions declared in Section
3.3 can be utilized within our framework.

5. We present extensive simulations that exhibit a sig-
nificant improvement in planning time without any
sacrifice in planning performance.

This paper is an extension of the work presented in
Sztyglic and Indelman (2022), which proposed novel
adaptive bounds on the differential entropy estimator of
Boers et al. (2010) and introduced the simplification
paradigm in the context of a given belief tree. To be precise
we explicitly clarify how this work differs from the
conference version of this paper (Sztyglic and Indelman,
2022). In this version, we extend the simplification
framework to the rewards depending on a pair of
consecutive-in-time beliefs, for example, Information
Gain as opposed to the conference version where such an
extension was only mentioned. In this version, we provide
alternative proof of these bounds and prove that these
reward bounds are monotonic. In the setting of a given
belief tree, we present an additional algorithm, that we call
LAZY-BSP. This algorithm is faster than SITH-BSP
suggested in Sztyglic and Indelman (2022). Importantly,

we extend our simplification framework to support also
anytime MCTS planners. Additionally, we provide ex-
tensive performance evaluation of our methods in
simulations.

1.3. Paper organization

The remainder of this paper is structured as follows. Section 2
provides background in terms of POMDPs, theoretical ob-
jective and commonly used objective estimators. We devote
Section 3 to our general adaptive multi-level simplification
framework. In Section 4, we consider a given belief tree
setting in which the belief tree construction is not coupled
with the solution. In Section 5, we delve into the MCTS
approach in the context of our multilevel simplification. In
Section 6, we consider a specific simplification and develop
novel bounds on an information-theoretic reward function.
Section 7 assesses the general adaptation overhead of our
methodology. Finally, Section 8 presents simulations and
results corroborating our ideas. In order not to disrupt the
flow of the presentation, proofs are presented in appropriate
Appendices.

2. Background

In this section, we present the background. To elaborate, we
present a POMDP with belief-dependent rewards followed
by theoretical and estimated objectives that correspond to
different online POMDP solvers. Our techniques work with
estimated objectives.

2.1. POMDPs with belief-dependent rewards

A POMDP is a tuple

hX ,A,Z,T ,O, ρ, γ, b0i, (1)

where X ,A,Z are state, action, and observation spaces,
respectively. In this paper, we consider continuous state,
observation and action spaces. Tðx, a, x0Þ ¼ PT ðx0jx, aÞ is
the stochastic transition model from the past state x to the
subsequent x0 through action a, O z, xð Þ ¼ PO zjxð Þ is the
stochastic observation model, γ 2 (0, 1] is the discount
factor, b0 is the belief over the initial state (prior), and ρ is
the reward function. Let hk = {b0, a0, z1,…, ak�1, zk} denote
history of actions and observations obtained by the agent up
to time instance k and the prior belief. The posterior belief at
time instant k is given by bkðxkÞ ¼ Pðxk jhkÞ.

In our generalized formulation, the reward is a function
of two subsequent in time beliefs, an action and an
observation:

ρ bk , ak , zkþ1, bkþ1ð Þ ¼ 1� λð Þρx bk , ak , bkþ1ð Þþ (2)

þλρI bk , ak , zkþ1, bkþ1ð Þ, (3)

where λ ≥ 0. The first reward component ρxðbk , ak , bkþ1Þ is
the expectation over the state and action-dependent reward r
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(xk, ak) or r (ak, xk+1). Correspondingly, these two possi-
bilities yield

ρx bk , ak , bkþ1ð Þ ¼ E
xkebk r xk , akð Þ½ � ≈ 1

nx

Xnx
ξ¼1

r xξk , ak
� �

, (4)

or

ρx bk , ak , bkþ1ð Þ ¼ E
xkþ1ebkþ1

r ak , xkþ1ð Þ½ � ≈ 1

nx

Xnx
ξ¼1

r ak , x
ξ
kþ1

� �
:

(5)

which is commonly approximated by sample mean using
nx samples of the belief. The second reward component
ρI ðbk , ak , zkþ1bkþ1Þ is an information-theoretic reward
weighted by λ, which in general can be dependent on
consecutive beliefs and the elements relating them, for
example, information gain or specific estimators as Boers
et al. (2010) for nonparametric beliefs represented by
particles. For instance, in Section 6.1, we consider the
entropy estimator introduced by Boers et al. (2010). As will
be seen in the sequel, although the theoretical entropy is
only a function of a single belief bk+1, the mentioned es-
timator utilizes bk, ak, zk+1, and bk+1; hence the second
reward component, ρI ðbk , ak , zkþ1bkþ1Þ, depends on these
quantities.

The policy is a mapping from belief to action spaces ak =
πk (bk). Let πl+ be a shorthand for policy forl� k + L
consecutive steps ahead starting at indexl, namely, πl:k+L�1

forl≥ k.

2.2. Theoretical objective

The decision-making goal is to find an optimal policy πk+
maximizing the value function as such:

V ðbk , πkþÞ s:t: blþ1 ¼ ψðbl, πlðblÞ, zlþ1Þ, (6)

where V (bk, πk) is defined by

E
zkþ1 : kþL

" XkþL�1

l¼k

γl�kρðbl, πlðblÞ, zlþ1, blþ1Þ
�����bk , πkþ

#
(7)

and ψ is the Bayesian belief update method. Utilizing the
Bellman formulation (7) takes the form of

V ðbk , πkþÞ ¼ E
zkþ1

½ρðbk , πkðbkÞ, zkþ1, bkþ1Þjbk , πk �
þγ E

zkþ1

½V ðψðbk , ak , zkþ1Þ, πðkþ1ÞþÞjbk , πk �: (8)

The action-value function under arbitrary policy is given by

Qðbk , fak , πðkþ1ÞþgÞ ¼ E
zkþ1

½ρðbk , ak , zkþ1, bkþ1Þjbk , ak �
þγ E

zkþ1

½V ðψðbk , ak , zkþ1Þ, πðkþ1ÞþÞjbk , ak �: (9)

The relation between (8) and (9) is V (bk, πk+) = Q (bk, {πk
(bk), π(k+1)+}). If π is the optimal policy, we denote it by π*.
For clarity, let us designate for action-value function under
optimal future policy Qðbk , fak , π∗ðkþ1ÞþgÞ a short notation

Q (bk, ak). IfQ (bk, ak) can be calculated, the online POMDP
solution for the current belief bk will be

π*k ðbkÞ 2 argmax
ak

Qðbk , akÞ: (10)

Linearity of the expectation and the structure displayed by
equations (2) and (3) lead to a similar decomposition of
action-value function (9) as such

Qð�Þ ¼ ð1� λÞQxð�Þ þ λQIð�Þ, (11)

where Qx is induced by state-dependent rewards and QI by
the information-theoretic rewards.

From here on, for the sake of clarity, we will use the
notation of history hk and the belief bk interchangeably for
any time k. In a similar manner, we shall use the notations
bk, ak and hkak interchangeably.

2.3. Estimated objective

The continuous observation space makes the theoretical
expectations in (7) and (9) attainable in very limited
cases. Generally we shall resort to estimators. Similar to
theoretical counterparts, the relation between the esti-
mated optimal value and action-value function readsbV�bk , π∗

kþ
� ¼ max

ak

bQðbk , akÞ: (12)

Also in equation (10), the theoreticalQ (bk, ak) is substituted
by the estimator bQðbk , akÞ. Naturally, we expect from the
estimator to admit the decomposition

bQðbk , akÞ ¼ ð1� λÞbQxðbk , akÞ þ λbQIðbk , akÞ: (13)

Typically the bQx
element is easy to calculate, thus it is out of our

focus, whereas bQI
is computationally expensive to compute.

Below we present two common sample based estimators
that will be used in this paper.

2.3.1.Objective estimator in case of a given belief tree. We
turn to the setting of a given externally-constructed belief
tree, for example, by a SS algorithm. For the sake of clarity
and to ease the explanation, we assume that the number of
child posterior beliefs is constant at each nonterminal belief
and denoted by nz. Relaxing this assumption is straight-
forward. The Bellman form representation of (7) using such
an estimator is

bV ðbk , πkþÞ ¼ 1

nz

Xnz
i¼1

ρ
�
bk , πkðbkÞ, zikþ1, b

i
kþ1

�
þγ

1

nz

Xnz
i¼1

bV�ψ�bk , πkðbkÞ, zikþ1

�
, πðkþ1Þþ

�
,

(14)

and the corresponding estimator for (9) under an optimal
future policy reads
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bQðbk , akÞ ¼ 1

nz

Xnz
i¼1

ρ
�
bk , ak , z

i
kþ1, b

i
kþ1

�
þγ

1

nz

Xnz
i¼1

bV�ψ�bk , ak , zikþ1

�
, π∗

ðkþ1Þþ
�
,

(15)

where nz is the number of children of blunder the execution
policy πl+ and i is the child index.

2.3.2. Interchangeability between the history and
belief. The purpose of this section is to clarify why
further we will use interchangeably belief and the his-
tory. The belief is merely a reinterpretation of the
knowledge about the POMDP state stored in history in
the form of a PDF. The belief bk is a function of the
history hk. Therefore, different histories may yield the
same belief. To avoid ambiguity and relate the objec-
tives and their position in the belief tree with some abuse
of notation, we sometimes switch the dependence on the
belief to dependence on corresponding history. In
general, we can write bl(hl).

2.3.3. Coupled action-value function estimation and belief
tree construction. The estimator presented above leverages
symmetric, in terms of observations, Bellman form.
However, in MCTS methods, due to exploration driven by,
for example, UCB (16), the estimators are assembled from
laces of the returns. In each simulation, a single lace is added
to the estimator at each posterior belief. Whenever a new
posterior belief node is expanded, a rollout is commenced
such that the lace is complemented to the whole horizon.

MCTS repetitively descends down the tree, adding a lace
of cumulative rewards (or updates visitation counts of an
existing lace) and ascends back to root. On the way down it
selects actions according to an exploration strategy, for
example, (16). This results in a policy tree that represents a
stochastic policy represented by visitation counts N (ha)/
N(h). Further we will focus on UCB exploration strategy,
however, all derivations of our approach are general and are
valid for any exploration strategy, for example, P-UCT
(Auger et al., 2013) or ϵ-greedy exploration (Sutton and
Barto, 2018).

A UCB-basedMCTS over a Belief-MDP (BMDP) (Auer
et al., 2002; Sunberg and Kochenderfer, 2018) constructs a
policy tree by executing multiple simulations. Each simu-
lation adds a single belief node to the belief tree or ter-
minates by terminal state or action. To steer toward more
deeper and more beneficial simulations, MCTS selects an
action a* at each belief node according to the following rule
a* ¼ argmax

a2A
UCBðhaÞ, where

UCBðhaÞ ¼ bQðhaÞ þ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
, (16)

where N (h) is the visitation count of the belief node defined
by history h, N (ha) is the visitation count of the belief–
action node, c is the exploration parameter and, bQðhaÞ is the

estimator of the action-value function Q for node ha
obtained by simulations. The rule described by (16) is a
result of modeling exploration as a Multi-Armed Bandit
(MAB) problem (Auger et al., 2013; Kocsis and Szepesvári,
2006; Munos, 2014). When the action is selected, a question
arises either to open a new branch in terms of observation and
posterior belief or to continue through one of the existing
branches. In continuous action, and observation spaces, this
can be resolved by the Double Progressive Widening (DPW)
technique (Auger et al., 2013; Sunberg and Kochenderfer,
2018). If a new branch is expanded, an observation z0 is created
from state x0 drawn from the belief b propagated with an
action a.

Let the return, corresponding to lace i starting from
some belief bilat depthl� k, be g bil, al, z

i
lþ1 : kþL

� �
forl2

[k : k + L � 1]. More specifically, suppose the new
posterior belief was expanded at depth di of the belief tree
such that di >l. We have that g bil, al, z

i
lþ1 : kþL

� �
is com-

posed from two parts, the already expanded tree part and
the rollout added part such that

g
�
bil, al, z

i
lþ1 : kþL

� ¼ ρ
�
bil, al, z

i
lþ1, b

i

lþ1

�
þ
Xkþdi�1

l¼lþ1

γl�lρ
�
bil, π

*, i
l

�
bil
�
, zilþ1, b

i
lþ1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

belief tree

þ (17)

þ
XkþL�1

l¼kþdi

γl�lρ
�
bil, μ

�
bil
�
, zilþ1, b

i

lþ1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rollout

, (18)

where L is the horizon (tree depth), π*,i is an optimal tree
policy depending on the number of the simulation i throughbQ and visitation counts in (16) and μ is the rollout policy.
Importantly, in rollout the observations are drawn randomly
and since we are in continuous spaces the beliefs in the
rollouts are unique. A new belief node is added for l = k + di.
If due to DPW no new belief node was added to the belief
tree, no rollout depicted by (18) is commenced and the
return sample takes the form of

g
�
bil, al, z

i
lþ1 : kþL

� ¼
ρ bil, al, z

i
lþ1, b

i
lþ1

� �þ XkþL�1

l¼lþ1

γl�lρ bil, π*l
, i bil
� �

, zilþ1, b
i
lþ1

� �
:

(19)

The estimate for (9) under optimal future policy is as-
sembled from laces in accordance to

bQ hlalð Þ ¼ 1

N hlalð Þ
XN hlalð Þ

i¼1

g bil, al, z
i
lþ1 : kþL

� �
, (20)

where each reward ρðb, a, z0, b0Þ in the belief tree appears the
number of times according to the visitation count of the
node b0, namely,N (h0). We note that for both estimators (15)
and (20), the formulation in (13) holds.

Now we move to the details of our general approach.
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3. Our approach

This section is the core of our general approach. We first
describe bounds over the theoretical and the estimated ob-
jectives. We then endow the rewards bounds with discrete
simplification levels. Finally, instead of calculating rewards,
we calculate the bounds over them and if they are not tight
enoughwe tighten them sowe can make faster decisions with
bounds over the objectives instead of objectives themselves.

3.1. Theoretical simplification formulation

Simplification is any kind of relaxation of POMDP tuple (1)
elements, accompanied by guarantees that quantify the
(worst-case or potential) impact of a particular simplifica-
tion technique on planning performance. In this section, we
present a general simplification framework that is applicable
to any reward bounds that satisfy the assumptions stated in
Section 3.3.

Our framework applies without any change to parametric
and non-parametric beliefs, and to closed-form belief-
dependent rewards (that can be calculated exactly,
i.e., analytically), as well as to estimated rewards. There-
fore, in this paper, we do not differentiate between these
cases and denote the belief-dependent reward by ρ (bl, al,
zl+1, bl+1), without using the notation □̂ for estimators. In
other words, depending on the setting, ρ() and bl can
represent, respectively, an analytical reward and a para-
metric belief, or a reward estimator and a nonparametric
belief. In all cases, if one can provide monotonically
adaptive bounds on the reward, our framework will return
an identical solution as if the decision making was per-
formed with original reward calculations (i.e., depending on
the setting, either an analytical reward calculation or reward
estimator calculation). In Section 6, we provide a specific
incarnation of the framework considering non-parametric
beliefs represented by a set of weighted samples and a
reward estimator, and where the simplification corresponds
to utilizing only a subset of the samples.

As mentioned, we aim to simplify the belief-dependent
reward ρ (bl, al, zl+1, bl+1) calculations. Namely, the original
reward ρ is bounded using the simplified belief bs instead of
original belief b. This operation materializes in the form of
following inequality

ρ
�
bsl, bl, al, zlþ1, blþ1, b

s
lþ1

�
≤ ρðbl, al, zlþ1, blþ1Þ
≤ ρ
�
bsl, bl, al, zlþ1, blþ1, b

s
lþ1

�
,

(21)

where ρ and ρ are the corresponding lower and upper
bounds, respectively. The superscript s denotes the fact that
the corresponding belief was simplified as we depict in
Figure 1. Notice that in (21) the pair of consecutive beliefs,
bland bl+1, can be simplified differently.

Henceforth, in order to avoid unnecessary clutter we
will omit the dependence on the observation and denote
the bounds over the reward using simplified beliefs as
follows

ρsðb, a, b0Þ ≤ ρðb, a, b0Þ ≤ ρsðb, a, b0Þ: (22)

It should be stressed that since in the belief tree b0 always
has a single parent b, the reader should think about such a
reward as one corresponding to b0.

A key requirement is reduced computational com-
plexity of these bounds compared to the complexity of
the original reward. Instead of calculating the expensive
reward ρ (b, a, b0) for each pair of beliefs b, b0, we first
obtain the corresponding simplified beliefs bs and b0s, as
illustrated in Figure 1, and then formulate the bounds ρs

and ρs from (22). However, we note that the form (22)
is actually more general and not limited to belief
simplification.

Further we formulate bounds over the value function
Equation 8 and action-value function Equation 9, both
under the optimal policy. In fact, our bounds hold under
an arbitrary policy. We narrow the discussion to optimal
polices solely for the clarity of the explanation and this
is not a limitation of our approach.

Suppose inequality (22) holds for any possible pair of
consecutive beliefs, for example, these are analytical
bounds, as opposed to (Zhitnikov and Indelman, 2022b). A
direct consequence of this fact, alongside the structure of
(7), is that

V
�
bl, π

∗
lþ
�
≤V
�
bl, π

∗
lþ
�
≤V
�
bl, π

∗
lþ
�
, (23)

holds for any belief blandl2 [k, k + L � 1]. Using the
Bellman representation as in (8) the bounds (23) take the
form of

V
�
bl,π

∗
lþ
�¼ E

zlþ1

	
ρs
�
bl,π

∗
lðblÞ,bilþ1

�þV
�
bilþ1,π

∗
ðlþ1Þþ

�

V
�
bl,π

∗
lþ
�¼ E

zlþ1

	
ρs
�
bl,π

∗
lðblÞ,bilþ1

�þV
�
bilþ1,π

∗
ðlþ1Þþ

�

:

(24)

The bounds over the value function Equation 8 in (24)
are initialized at the Lth time step in the planning horizon as
V ðbkþL, πkþLÞ ¼ 0 and V ðbkþL, πkþLÞ ¼ 0. Similarly the
bounds over the action-value function (9) under an optimal
future policy are

Q
�
bl,
�
al, π

∗
ðlþ1Þþ

��
≤Qðbl, alÞ ≤Q

�
bl,
�
al, π

∗
ðlþ1Þþ

��
,

(25)

where the policy π∗ðlþ1Þþ is optimal. Note, as we observe in
(24), the simplification assumed herein does not affect the
distribution of future observations with respect to which the
expectation is taken.
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3.1.1. Bounding the belief-dependent element of the
reward. At this point, we want to recall that commonly, the
state-dependent element (2) is much easier to calculate than
the belief-dependent one. Leveraging the structure man-
ifested by (11) the immediate bounds over (3) induce
bounds over QI(�) as such

QIðbk , akÞ ≤QIðbk , akÞ ≤QIðbk , akÞ, (26)

and utilizing (11), we arrive at

Qðbk , akÞ ¼ ð1� λÞQxðbk , akÞ þ λQ
Iðbk , akÞ (27)

Qðbk , akÞ ¼ ð1� λÞQxðbk , akÞ þ λQIðbk , akÞ: (28)

Importantly, the belief-dependent element (3) does not have
to be information-theoretic. The simplification paradigm is
general and works for any belief-dependent operator given
appropriate bounds.

3.2.Bounds over the estimated objective

As we explained in Section 2.3 in practice the value and
action-value function are estimated. Instead of using (23)
and (25), we have

bV �
bl, π

∗
lþ
�
≤ bV�bl, π∗

lþ
�
≤ bV�bl, π∗

lþ
�
, (29)

and

bQ �bl,�al, π∗
ðlþ1Þþ

��
≤ bQðbl, alÞ ≤ bQ�bl,�al, π∗

ðlþ1Þþ
��

,

(30)

respectively.
The bounds, in case of symmetric estimators from

Section 2.3.1, are

bV�bl, π∗
lþ
� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, π

∗ðblÞ, bilþ1

�
þ γ

1

nz

Xnz
i¼1

bV�bilþ1, π
∗
ðlþ1Þþ

�
bV �bl, π∗

lþ
� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, π

∗ðblÞ, bilþ1

�
þγ

1

nz

Xnz
i¼1

bV �bilþ1, π
∗
ðlþ1Þþ

�
, (31)

where to clarify we repeat that nz is the number of children
of blunder the execution policy πl+ and i is the child index.
The bounds over the estimated value function in (31) are
initialized at the Lth time step in the planning horizon asbV ðbkþL, πkþLÞ ¼ 0 and bV ðbkþL, πkþLÞ ¼ 0.

In a similar manner, we define also bounds over (15) as
such

bQ�bl,�al, π∗
ðlþ1Þþ

�� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, al, b

i
lþ1

�
þ γ

1

nz

Xnz
i¼1

bV�bilþ1, π
∗
ðlþ1Þþ

�
bQ �bl,�al, π∗

ðlþ1Þþ
�� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, al, b

i
lþ1

�
þγ

1

nz

Xnz
i¼1

bV�bilþ1, π
∗
ðlþ1Þþ

�
,

(32)

We emphasize that the superscript i in (31) and (32) denotes
the child posterior nodes of bl.

The bounds over MCTS estimator (20) are

bQ hað Þ ¼ 1

N hað Þ
XN hað Þ

i¼1

�
ρs bil, al, b

i
lþ1

� �
þ
Xkþdi�1

l¼lþ1

γl�lρs bil, π
∗, i
l bil
� �

, bilþ1

� �
þ
XkþL�1

l¼kþdi

γl�lρs bil, μ bil
� �

, bilþ1

� ��
bQ hað Þ ¼ 1

N hað Þ
XN hað Þ

i¼1

ðρs bil, al, b
i
lþ1

� �
þ
Xkþdi�1

l¼lþ1

γl�lρs bil, π
∗, i
l bil
� �

, bilþ1

� �
þ
XkþL�1

l¼kþdi

γl�lρs bil, μ bil
� �

, bilþ1

� ��
:

(33)

Let us clarify again that in (33) the superscript i denotes the
number of the simulation.Moreover, the reward boundswithin
the tree repeat in more than a single simulation according to the
visitation count of the corresponding posterior belief. Clearly,
the decomposition displayed by equations (27) and (28) is
valid for both bounds (32) and (33). We have that

bQðbk , akÞ ¼ ð1� λÞbQxðbk , akÞ þ λbQI

ðbk , akÞ (34)

bQ ðbk , akÞ ¼ ð1� λÞbQxðbk , akÞ þ λbQ Iðbk , akÞ: (35)

3.2.1. Impact of the information weight λ. Allow us to
linger on the λ from equations (11) and (13). It is hard to
predict how the objective will behave with various values of
λ. Nevertheless, if the bounds are over the belief-dependent
element of the reward, by subtracting (35) from (34), we
arrive at

bQðbk , akÞ � bQ ðbk , akÞ ¼ λ
�bQI

ðbk , akÞ � bQIðbk , akÞ
�
:

(36)
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The width of the bounds is monotonically increasing with λ.
Of course, it will also happen to a theoretical analog of such
a bounds displayed by equations (27) and (28). We can
envision more speedup from applying the simplification
paradigm with lower values of λ and will see it in the
simulations.

Further we will consider the estimated action-value or
value functions and therefore omit the word “estimated.”
We will also omit mentioning each time that our bounds are
under the optimal policy.

3.3. Multi-level simplification

We now extend the definition of simplification as we en-
vision it to be an adaptive paradigm. We denote level of
simplification as how “aggressive” the suggested simplifi-
cation is. Observe an illustration in Figure 2.

With this setting, we can naturally define many discrete
levels such that s 2 {1, 2, …, nmax} represents the sim-
plification level, where 1 and nmax correspond to the
coarsest and finest simplification levels, respectively. For
instance, suppose the belief is represented by a set of
samples (particles), as in Section 6. Taking a small subset of
particles to represent the simplified belief corresponds to a
coarse simplification. If one takes many particles, this
corresponds to a fine simplification.

Remark. From now on the superscript s denotes the
discrete simplification level. Importantly we always
have a finite number, denoted by nmax, of simplifi-
cation levels.
Further, we assume bounds monotonically become

tighter as the simplification level is increased and that the
bounds for the finest simplification level nmax converge to
the original reward without simplification. More formally,
denote Δ

sðb, a, b0Þbρsðb, a, b0Þ � ρðb, a, b0Þ and
Δsðb, a, b0Þbρðb, a, b0Þ � ρsðb, a, b0Þ.

Assumption 1. Monotonicity. Let nmax ≥ 2, "s 2 [1,
nmax � 1] we get: Δ

sðb, a, b0Þ ≥Δsþ1ðb, a, b0Þ and
Δsðb, a, b0Þ ≥Δsþ1ðb, a, b0Þ.

Assumption 2. Convergence. "b, a, b0 we get:
ρs¼nmaxðb, a, b0 Þ ¼ ρs¼nmaxðb, a, b0Þ ¼ ρðb, a, b0Þ.
In Section 6, we derive novel bounds on top of a par-

ticular simplification that takes a subset of belief samples
instead of a complete set. We prove that these bounds indeed
satisfy both assumptions.

The simplification levels of the reward bounds for dif-
ferent posterior belief nodes in the belief tree determine how
tight the bounds over the value or action-value function are.
To tighten the bounds over the objective, we have the
freedom to select any rewards the belief tree and tighten the
bounds over these selected rewards by increasing their
simplification levels; this, in turn, would contract the
bounds over the objective.

We call a particular algorithmic scheme to select the
rewards a resimplification strategy. A general valid re-
simplificaiton strategy is defined as follows.

Definition 1. Resimplification strategy. Given a pair

of lower bV ðbl, πlþÞ
�bQ ðbl, fal, πðlþ1Þþ* gÞ

�
and upper

bounds bV ðbl, πlþÞ ðbQðbl, fal, πðlþ1Þþ* gÞÞ over the esti-
mated objective, the resimplification strategy is a rule
to promote one or more simplification levels of the
rewards in the the subtree rooted at bland defined by
the mentioned above estimated objective. If the re-
simplification does not promote the simplification
level for any reward, so bQðbl, fal, πðlþ1Þþ* gÞ�bQ ðbl, fal, πðlþ1Þþ* gÞ ¼ 0.
Note that, all the rewards within a subtree defined bybQðbl, fal, πðlþ1Þþ* gÞ, bQ ðbl, fal, πðlþ1Þþ* gÞ are being at the

maximal simplification level implies bQðbl, fal, πðlþ1Þþ* gÞ�bQ ðbl, fal, πðlþ1Þþ* gÞ ¼ 0, but the inverse implication is not

necessarily true. Once initiated, a valid strategy can select
no reward for simplification level promotion only ifbQðbl, fal, πðlþ1Þþ* gÞ� bQ ðbl, fal, πðlþ1Þþ* gÞ ¼ 0.

Theorem 1. Monotonicity and Convergence of Esti-
mated Objective Function Bounds. If the bounds over the
reward are monotonic (assumption 1) and convergent
(assumption 2), for both estimators (32) and (33), the
bounds on the sample approximation (30) are monotonic
as a function of the number of resimplifications and
convergent after at most nmax � M resimplifications for
any resimplification strategy. Here M is the number of
posterior beliefs in (32) or (33). Namely, if all the re-
wards are at the maximal simplifciation level nmax we
have to reach

bQ ð�Þ ¼ bQð�Þ ¼ bQð�Þ: (37)

Similarly for optimal value function the equalitybV ð�Þ ¼ bV ð�Þ ¼ bV ð�Þ holds.
The reader can find the proof in the Appendix 11.1.

Theorem 1 ensures that if the resimplification strategy is
valid (Definition 1), we do not get stuck in an infinite loop of

Figure 2. Reward bounds and different levels of the
simplification. Here, nmax = 5. Warmer colors visualize tighter
bounds, whereas colder colors (blue) indicate looser bounds and
cheaper to calculate.
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resimplifications if instead of bQð�Þ we use its bounds. In
particular, if (37) is reached, there is no reason to activate the
resimplification routine.

Importantly, as we discuss next and corroborate by
simulations in many cases we can identify the optimal
action before reaching the maximal number of
resimplificaitons.

3.4. Adaptive simplification mechanics

Our adaptive simplification approach is based on two
key observations. The first key observation is that we can
compare bounds over (30) constituted by rewards at
different levels of simplification. Our second key ob-
servation is that we can reuse calculations between
different simplification levels avoiding recalculation of
the simplification from scratch.

Naturally we do not want to reach (37). Let us begin by
explaining how we determine an optimal action by using
bounds over the action-value function instead of its explicit
calculation and obtain a significant speedup in planning
time. If there is no overlap between the intervals originated
from the upper and lower bounds (30) of each candidate
action, we can determine the optimal action and therefore
there is no reason to call the resimplification routine.

Contemplate about some belief blin the belief tree. We
annotate by superscript j candidate actions emanating from
bl, such that the index j corresponds to the jth candidate
action. We first select a candidate action using the lower
bound (30) over bQðbl, ajlÞ as
j†ðblðhlÞÞ ¼ arg max

j

nbQ�blðhlÞ,�ajl,πðlþ1Þþ*
��þ c jðhla jÞ

o
,

(38)

where c j is an action-dependent constant. In case of a given
belief tree c j = 0 "j, whereas in case of MCTS, it is a
constant originated from UCB as in (16).

We then ask the question whether or not an overlap with
another candidate action exists,

bQ �bl,�aj†l , πðlþ1Þþ*
��þ c j†

?

≥
z}|{

≥ max
j2f1…g∖fj†g

nbQ�bl,�ajl, πðlþ1Þþ*
��þ cj

o
(39)

See a visualization in Figure 3(a).
If the condition displayed by equation (39) is not ful-

filled, as depicted in Figure 3(a), we shall tighten the bounds
(30) by calling a resimplification strategy. Importantly, in
case of a given belief tree, even if an overlap is present
similar to branch-and-bound technique (Kochenderfer et al.,
2022) we can prune any subtree obtained with action j
satisfying

bQ �bl,�a j †

l , πðlþ1Þþ*
��þ c j† ≥ bQ�bl,�al j, πðlþ1Þþ*

��þ c j:

(40)

We illustrated this aspect in Figure 3(b). If the belief tree
is constructed gradually as in MCTS based methods and
anytime setting, instead of pruning, we still can use (40) to
dismiss suboptimal, at current simulation of MCTS, actions
(See Figure 4).

Once no overlap is present (the condition (39) is fulfilled)
we can declare that the selected action is optimal
ðπl*ðblÞ ¼ aj

†ðblÞ
l Þ. Utilizing the optimal action we can

bound the optimal value function bV ðbl, πlþ* Þ as such

bV ðbl, fπl*, πðlþ1Þþ* gÞbbQ�bl,�a j†ðblÞ
l , πðlþ1Þþ*

��
, (41)

Figure 3. In this illustration we have three candidate actions {a1, a2, a3} that can possibly be taken by the robot from the belief node bl.

(a)We observe that bQ (bl, a1l) >
bQ (bl, a3l) and prune action a

2. (b) After the resimplification no overlap an we can safely decide that a3l is

optimal. Moreover we prune the withered interval corresponding to the a2l. (c) Another situation where we are not concerned about
optimal action, we solely want to send up to the tree the bounds over optimal value function.
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bV ðbl, fπl*, πðlþ1Þþ* ÞgÞbbQ �bl,�aj†ðblÞl , πðlþ1Þþ*
��

: (42)

Let us recite that the bounds (41) and (42) are con-
ditioned on the fact that there is no overlap of the
bounds intervals that correspond to different candidate
actions, namely the condition (39) is met for each belief
bl in the belief tree. This situation is visualized in
Figure 3(b).

On the other hand, to identify the optimal immediate
action ak*, we require no overlap between bounds of dif-
ferent actions only at the root of the belief tree (where the
belief is bk). This means that at each belief node bl in the
tree, besides the root, we only want to bound the value
function for the optimal action (and under optimal future
policy). While it is possible to do so by first determining the
optimal action, as in (41) and (42), we can bypass this step
and directly bound the value function over the optimal
action as follows,

bV ðbl, fπl*, πðlþ1Þþ* gÞbmax
j
bQðbl, faj, πðlþ1Þþ* gÞ, (43)

bV ðbl, fπl*, πðlþ1Þþ* gÞbmax
j
bQ ðbl, faj, πðlþ1Þþ* gÞ, (44)

that is, relaxing the requirement of no overlap between
bounds for different actions at any node blbesides bk. See
illustration of (43) and (44) in Figure 3(c). In turn, elimi-
nating a single overlap at the root results in lower rewards
simplification levels in the tree, although such a value
bounds may be looser. As we shall see, this approach would
typically yield more speedup.

Nevertheless, when we need a policy tree we still have
to obtain an optimal action at each belief node within the
tree. This requires no bounds overlap at each node, as in
the former setting. This situation arises for example when

the action and observation spaces are large but discrete. In
this case the robot sometimes does not do re-planning
at each time step. Instead the robot uses the policy tree
as a representation of the policy and selects an optimal
action that corresponds to the received observation. In
addition, such a strategy accommodates possible reuse
calculations in such a solved belief tree (Farhi and
Indelman, 2019, 2021).

To conclude this section, let us summarize. As discussed,
we have the following two variants:

· The resimplification is initiated at each nonterminal
posterior belief node bl up until no overlap between
candidate actions is present and the optimal action πl∗ðblÞ
is selected. This way we bound the optimal value
function of the descendant to bk nodes using an optimal
action according to (41) and (42). We named this ap-
proach Policy Tree (PT).

· The resimplification is commenced solely at the root bk
of the whole belief tree. We eliminate the overlap and
obtain an optimal action only at bk. This way we use (43)
and (44) to bound the optimal value function of the
descendant to bk nodes. We shall refer to this variant of
our approach as LAZY.

3.5. Specific resimplification strategies

In this paper we consider two specific resimplification
strategies that are elaborated in the next sections: Simpli-
fication Level (SL) and Gap. We note that additional valid
resimplification strategies exist and can be plugged-in into
the above-proposed general theory.

3.5.1. Simplification level. The resimplification strategy
can be directly tied to the simplification level. In this sit-
uation the resimplifcation strategy promotes simplification
level of the rewards inside the belief tree corresponding to
bounds in (29) or (30) based on the simplification level
itself. We provide further details in the setting of a given
belief tree, considering a PT variant in Section 4.

3.5.2. Gap. Another possibility is that the resimplification
is tied to the gap ρs � ρs. Such a resimplification promotes
the simplification level if the reward bounds gap satisfies a
certain condition. We describe thoroughly this re-
simplification flavor in the setting of a given belief tree,
considering LAZY variant in Section 4.2, and in MCTS
setting, considering a PT variant in Section 5.4.

Each of these strategies can be used in conjunction with
any of the variants PT and LAZY. In the sequel, we shall
denote these combinations explicitly, for example, PT-SL,
LAZY-Gap and PT-Gap.

The preceding discussion raises the question of how do
we actually incorporate the proposed bounds into online
decision making. This brings us to the next section. We first
consider a given belief tree and then coupled belief tree

Figure 4. Demonstration of our approach in the setting of MCTS.
In contrast to Figure 3(b), we cannot prune action a2 and can
only dismiss it to not participate in resimplifications. This is
because, in the next tree queries, a2 may be the best action for the
robot to take.
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construction and solution as in MCTS methods. It shall be
noted that further presented resimplification strategies are
also suitable for static candidate action sequences, with
minor modifications.

4. Adaptive simplification in the setting of a
given belief tree

We start with the assumption that the belief tree was
generated in some way and that it is given, for example,
Sparse Sampling (SS) algorithm introduced by Kearns
et al. (2002). In other words the belief tree construction is
not coupled with rewards calculation and estimation of
the objective.

In this setting, we contribute two resimplification
strategies. The first strategy is described in Section 4.1.
The general idea is to break down recursively a given
belief tree T into its sub-problems (subtrees), denoted as
fTjgjAj

j¼1 (each subtree j at the root belief has a single action
j), and solve each sub-problem with its own simplification
level of the corresponding belief subtree. Ultimately this
would lead to the solution of the entire problem via
action-value function bounds (32). This strategy is based
on Simplification Level and it is a PT strategy. The action-
value bounds should not overlap at each node in the
given belief tree.

The second strategy is described in Section 4.2. This
resimplification strategy is based on Gap and it is a
LAZY strategy. Here, the general idea is to first sub-
stitute all the rewards in a given belief tree by bounds
with the coarsest simplification level. We then eliminate
an overlap between candidate actions only at the root
belief node bk by a repetitive descending to the belief
tree, promoting the simplification levels along a single
lace chosen according to largest gap and ascending
back. We emphasize that in this setting, the action-value
bounds should not overlap only at the root node in the
given belief tree.

As mentioned in the beginning of Section 2.3.1, only
for simplicity we consider a symmetric setting in terms
of sampled actions and the observations, but the ap-
proach is applicable without any limitations to any given
belief tree.

4.1. Resimplification strategy: PT-SL

This section presents our first resimplification strategy. We
now turn to thorough description.

Not to be confused with policy tree represented by
the (14) or (15) the given belief tree ðTÞ has more than a
single action emanating from each belief node besides
the leaves.

We now assign a simplification level to the bounds on
the value and action-value functions. Consider again
some belief node bl in the belief tree, and assume re-
cursively for each of its children belief nodes bl+1

we already calculated the optimal policy πðlþ1Þþ* ðblþ1Þ
and the corresponding upper and lower boundsbVsðblþ1, πðlþ1Þþ* Þ and bVs

ðblþ1, πðlþ1Þþ* Þ. In general, these
bounds for each child sub-policy tree of bl can corre-
spond to different simplification levels.

From now on let the superscript s over the action-value
function bounds from (32) and (31) denote the simpli-
fication level stemmed from pertaining reward bounds.
The bounds previously described by equation (32) for
belief node bl, incorporating simplification level, are now
modified to

bQs j�
bl,
�
ajl, πðlþ1Þþ*

�� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, a

j
l, b

i
lþ1

�
þ γ

1

nz

Xnz
i¼1

bVsi�
bilþ1, πðlþ1Þþ*

�
bQ s j�

bl,
�
ajl, πðlþ1Þþ*

�� ¼ 1

nz

Xnz
i¼1

ρs
�
bl, a

j
l, b

i
lþ1

�
þγ

1

nz

Xnz
i¼1

bV si�
bilþ1, πðlþ1Þþ*

�
, (45)

as illustrated in Figure 5. We shall pinpoint the abuse
of notation here. In contrast to (32) the superscript s
over the immediate reward bounds denotes a specific
simplification level instead of indicating a general
simplification.

Note equation (45) applies for each ajl2A, and as
mentioned, each belief node bilþ1 (one for each observation
zilþ1) has, in general, its own simplification level si. In other
words, for each bilþ1, s

i is the simplification level that was

sufficient for calculating the bounds
nbVsi

ðbilþ1, πðlþ1Þþ* Þ,bVsiðbilþ1, πðlþ1Þþ* Þ
o

and the corresponding optimal policy

πðlþ1Þþ* . Thus, when addressing belief node blin (45), for

Figure 5. Pruning the subtrees by adaptively promoting the
simplification levels of the rewards inside. Here, the
simplification levels of a subtrees are not equal. It is possible that
si ≠ si+1. Note that here the superscripts are relative to blas opposed
to Figures 1 and 6.
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each belief node bilþ1 and its corresponding simplification
level si, these bounds are already available.

Further, as seen in (45), the immediate reward and the
corresponding bounds ρ and ρ, in general, can be calculated
with their own simplification level s. In particular, when
starting calculations, s could correspond to a default coarse
simplification level, for example, coarsest level s = 1.
Another possibility is to set s = si for corresponding sim-
plification level of value function bounds of the ith child
belief.

To define simplification level sj of the bounds (45), we
leverage the recursive nature of the Bellman update and
define

sjbminf s|{z}
ρs

ρs

, si¼1, si¼2…si¼nz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}bVsi�
bilþ1, π

∗
ðlþ1Þþ

�
bVsi�

bilþ1, π
∗
ðlþ1Þþ

�
g, (46)

where fsi¼1, si¼2,…, si¼nzg represent the (generally dif-
ferent) simplification levels of optimal value functions of
belief nodes bilþ1 considered in the expectation approx-
imation in (45).

We now wish to decide which action aj
†ðblÞ

l 2A is op-
timal from belief node bl; the corresponding optimal policy
would then be πlþ* ¼ fal*, πðlþ1Þþ* g, where πðlþ1Þþ* is the
already-calculated optimal policy for belief nodes fbilþ1gnzi¼1
that al* leads to. See illustration in Figure 5.

Let us utilize now a general simplification approach
described in Section 3.4. Overall in each belief node
we have na candidate actions indexed by superscript j
in (45).

At each belief node we first select an optimal ac-
tion candidate according to (38) with a nullified action-
dependent constant ("j c j = 0). Further, in any PT
resimplification strategy there are three possible
scenarios.

· No overlap is present ((39) is satisfied) and we are at the
root, that is, bl= bk. In this case the optimal action shall
be returned.

· No overlap is present ((39) is satisfied) and we not at the
root bk. In this case, using the optimal action we bound
optimal value function using the (41) and (42).

· Equation (39) is not satisfied, meaning an overlap is
present. In the presence of overlap we shall prune actions
according to (40) and commence resimplification routine
based on resimplification strategy.

We now discuss how the simplification level is updated
recursively from the simplification level of pertaining re-
ward bounds, and revisit the process to calculate the op-
timal policy and the corresponding bounds. For some
belief node bl in the belief tree, consider the boundsbQs j

ðbl, falj, πðlþ1Þþ* gÞ and bQs jðbl, faj
l, πðlþ1Þþ* gÞ from (45)

for different actions aj
l2A, that partially overlap and

therefore could not be pruned. Each policy tree corre-
sponding to action aj

l can generally have its own simpli-
fication level s j. We now iteratively increase the
simplification level by 1. This can be done for each of the
branches, if sj is identical for all branches, or only for the
branch with the coarsest simplification level.

Consider now any such branch whose simplification level
needs to be adapted from sj to sj + 1. Recall, that at this point, the
mentioned bounds were already calculated, thus their ingredi-

ents, in terms of
n
ρsðbl, ajl, bilþ1Þ, ρ sðbl, ajl, bilþ1Þ

onz

i¼1
andnbVsi

ðbilþ1, π
*
ðlþ1ÞþÞ, bVsiðbilþ1, π

*
ðlþ1ÞþÞ

onz

i¼1
, involved in ap-

proximating the expectation in (45), are available. Recall also
(46), that is, each element in fs, si¼1, si¼2,…, si¼nzg is either
equal or larger than sj. We now discuss both cases, starting from
the latter.

As we assumed bounds to improve monotonically as
simplification level increases, see Assump. 1, for any si > sj

+ 1 we already have readily available bounds bVsi

ðbilþ1,

πðlþ1Þþ* Þ, bVsiðbilþ1, πðlþ1Þþ* Þ which are tighter than those that
would be obtained for simplification level sj + 1. Thus, we
can safely skip the calculation of the latter and use the
existing bounds from level si as is.

For the former case, that is, si = sj, we now have to adapt
the simplification level of a child tree i to sj + 1 by cal-

culating the bounds bVsiþ1
ðbilþ1, πðlþ1Þþ* Þ, bVsiþ1 ðbilþ1,

πðlþ1Þþ* Þ. Here, our key insight is that, instead of calculating
these bounds from scratch, we can re-use calculations be-
tween different simplification levels, in this case, from level
si. As the bounds from that level are available, we can
identify only the incremental part that is “missing” to get
from simplification level si to si + 1, and update the existing

bounds bVsi

ðbilþ1, πðlþ1Þþ* Þ, bV si ðbilþ1, πðlþ1Þþ* Þ to recoverbVsiþ1
ðbilþ1, πðlþ1Þþ* Þ, bV siþ1 ðbilþ1, πðlþ1Þþ* Þ exactly. The

same argument applies also for bounds over momentary
rewards. In Section 6.2.3, we apply this approach to a
specific simplification and reward function.

We can repeat iteratively the above process of in-
creasing the simplification level until we can prune all
branches but one. This means each subtree will be solved
maximum once, per simplification level. Since we as-
sumed the reward bounds converge monotonically to the
original reward for the finest level s = nmax (See Figure 2),
from Theorem 1, we are guaranteed to eventually dis-
qualify all sub-optimal branches. Our described approach
is summarized in Algs. 1 and 2.

4.1.1. Illustrative example. We now illustrate the described
above resimplification strategy in a toy example. Before we
start this section, let us clarify that in the example the su-
perscripts are global over the belief tree in contrast to the
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previous section. Consider Figure 6 and assume the subtrees
to b1lwere solved using simplification levels that hold s2 = s1

+ 1, s2 < s3, s4. Further assume the immediate reward
simplification is s = s1. According to definitions above this
means that for subtree starting at b1l and action a1l the
simplification level is min{s1, s2} and for action a2l
the simplification level is min{s3, s4}. Now, we consider
the case the existing bounds of the subtrees were not
tight enough to prune, we adapt simplification level starting
from b1l and promote s ← s1 + 1. Since s1 < s1 + 1 we re-
simplify the subtree corresponding to simplification level of
s1 to simplification level s1 + 1, that is, to a finer
simplification.

However we do not need to re-simplify subtrees cor-
responding to s2, s3, s4: The tree corresponding to s2 is
already simplified to the currently desired level; thus we can
use its existing bounds. For the two other trees, their current
simplification levels, s3 and s4, are higher (finer) than the
desired s1 + 1 level, and since the bounds are tighter as
simplification level increases we can use their existing
tighter bounds without the need to “go-back” to a coarser
level of simplification. If we can now prune one of the
actions, we keep pruning up the tree. If pruning is still not
possible, we need to adapt simplification again with sim-
plification level s1 + 2.

Figure 6. An example of the simplification paradigm. The
superscript here denotes global number of the belief,
observation or action in the belief tree as opposed to equation (45)
and Figure 5.
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4.1.2. A detailed algorithm description. Let us thor-
oughly describe Alg. 1. We are given a belief tree T.
First at the line 10, Alg. 1 recursively descend to the
leaves. When the line 11 is hit for the first time
the corresponding rewards are set to the initial
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simplification level or also possible that minimal level of
child optimal value bounds is used. In our simulations, we
used minimal reward level. Further the algorithm calculates
bounds over action-value function represented by (45). This
happens in line 15 of Alg. 1. The next step is to try to prune all
subtrees but one utilizing Alg. 1. Note, at this point all the
subtrees T

j are already policy trees, namely, only a single
action emanating from each posterior belief. In there is more
that single action left after pruning, at the line 20, Alg. 1 calls
routine ResimplifyTree to initiate resimplification for se-
lected subtree corresponding to action aj. The simplification
level of a single step ahead reward is always have to be
promoted as we do in line 27. Further, Alg. 1 treats similarly
subtrees, if they are present.

4.2. Resimplification strategy: LAZY-Gap

The PT resimplification strategy from the previous
section assures that no overlap is present (Figure 3(b))
at each non-leaf posterior belief and we know the op-
timal action to take. However, it can inflict a redundant
computational burden. We can handle the overlap only
at the root of the belief tree and use the bounds over
optimal value function according to (43) and (44). Since
we already presented the resimplification strategy based
on the simplification levels, our second resimplification
strategy will be based on the distance between reward
bounds. However, the bounds (43) and (44) can be
utilized directly also with the resimplifcation strategy
based on simplification levels. Yet, this is out of the
scope of this paper.

In this section, we present a lazy variant of the re-
simplifcation strategy. In a LAZY variant, the overlap is
checked solely at the root bk of the whole belief tree. In this
approach three scenarios can be encountered at each belief
node.

· The belief node is not root. We bound optimal value
according to (43) and (44).

· At the root bk we shall check for overlap. If no overlap is
present ((39) is satisfied) we prune all suboptimal actions
according to Alg. 2 and return an optimal action as
described in Section 3.4.

· In the presence of an overlap at the root bk (equation (39)
is not satisfied), we shall prune actions according to (40)
and Alg. 2 and commence a resimplification routine for
the nonpruned actions based on the resimplification
strategy.

Having presented general steps of any LAZY variant of
resimplification strategy, we are ready to delve into specific
gap driven resimplfication strategy. Let us introduce the
following notation

GðhaÞbbQðhaÞ � bQ ðhaÞ: (47)

We remind the reader that sometimes, for simplicity of
explanation, we will make the gap dependent on belief
and an action, and denote G(ba). We use this gap to steer
the resimplification procedure toward more promising
lace. The lace with actions inducing largest gap (47) at
each belief action node along the lace will be selected to
resimplification. In fact, we use similar gap for value
function to select observations along the lace. Now let us
proceed to the detailed algorithm description.

4.2.1. A detailed algorithm description. This approach is
summarized in Alg. 5 When we apply this re-
simplification strategy, we first use the lowest simpli-
fication level for each pair of consecutive beliefs in the
given belief tree. In other words, Alg. 5 first descends to
the leaves of the given belief tree. Then it bounds each
optimal value function using the initial simplification
level using (43) and (44). This initial passage over the
given belief tree is enclosed by routine BoundOpti-
malValue. In the procedure ActionSelection, we in-
crease the simplification level of the reward bounds in
the given tree until there is no overlap at the root, as in
Figure 3(b). In this way, we can prune entire given
subtrees at the root, corresponding to candidate actions.
The procedure LazyResimplify descends back to some
leaf through the lace with largest gaps on the way. It
selects action in line 15. It then select observation/belief
according to largest gap of a single step ahead rewards if
these rewards are leafs (line 17) or the largest gap of the
optimal value function bounds (line 19).

5. Adaptive simplification in the setting
of MCTS

In the previous sections, we described the application
of the adaptive simplification paradigm when the
belief tree is given or its construction is not coupled with
the solution. We now turn to an anytime setting where
the belief tree is not given. Instead, the belief tree
construction is coupled with the estimation of the action-
value function (20) at each belief action node. Such an
approach is commonly used in Monte Carlo tree search
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(MCTS) methods based on an exploration strategy, for
example, Upper Confidence Bound (UCB) as in (16).
Our goal is to suggest a resimplifcation strategy so that
exactly the same belief tree as without simplification
would be constructed. Also the same optimal action is
identified with and without simplification. To support
general belief-dependent rewards, we select PFT-DPW
as the baseline, as mentioned in Section 1.1.

Common exploration strategies conform to the structure
presented in (38). Without losing generality, we focus on the
most advanced, to our knowledge, exploration strategy,
named UCB and portrayed by (16).

5.1. UCB bounds

With this perspicuity in mind, we now introduce bounds
over (16)

UCBðhaÞbbQðhaÞ þ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
, (48)

UCB ðhaÞbbQ ðhaÞ þ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
: (49)

Similar to the given belief tree setting we now proceed to the
explanation how the reward bounds (22) yield (48) and (49).

5.2. Guaranteed belief tree consistency

Since the simplification paradigm substituted UCB (16) by
the bounds (48) and (49), the belief tree construction is
coupled with these quantities, as opposed to the situation
with the given belief tree. If there is an overlap between
bounds on UCB for different actions, we can no longer
guarantee the same belief tree will be constructed with and
without simplification.

In this and the following sections, we address this key issue.
Specifically, we define the notion of Tree Consistency and prove
the equivalence of our algorithm to our baseline PFT-DPW.

Definition 2. Tree consistent algorithms. Imagine two
algorithms, constructing a belief tree. Assume every
common sampling operation for the two algorithms uses
the same seed. The two algorithms are tree consistent if
two belief trees constructed by the algorithms are
identical in terms of actions, observations, and visitation
counts.

18 The International Journal of Robotics Research 0(0)



Our approach relies on a specific procedure for selecting
actions within the tree. Since in each simulation the MCTS
descends down the tree with a single return lace as in (20),
on the way down it requires the action maximizing UCB
(16) we shall eliminate overlap at each belief node as de-
scribed in Section 3.4. Further we restate the action selection
procedure described in Section 3.4 with particular action-
dependent constant from equations (38) and (39) rendering
the UCB bounds from (48) and (49).

Our action selection is encapsulated by Alg. 8, which
is different from the procedure used in PFT-DPW. On top
of DPW as in Sunberg and Kochenderfer (2018) with
parameters ka and αa, instead of selecting an action
maximizing the UCB (16), at every belief node, we mark
as a candidate action the one that maximizes the lower
bound UCB as such

~a ¼ argmax
a2CðhÞ

UCB ðhaÞ: (50)

If "a ≠ ~a, UCB ðh~aÞ ≥UCBðhaÞ, there is no overlap
(Figure 7(c)) and we can declare that ~a is identical to a*, that
is, the action that would be returned by PFT using (16) and
the tree consistency has not been affected. Otherwise, the
bounds must be tightened, so ensure the tree consistency.
We examine the ha siblings of h~a, which satisfy
a ≠ ~a : UCB ðh~aÞ<UCBðhaÞ (Figure 7(a)). Our next step is
to tighten the bounds by resimplification (Figure 7(b)) until

there is no overlap using the valid resimplification strategy
according to Definition 1.

Remark. Note that here we cannot use the “lazy variant”
from Section 4.2 due to the fact that the MCTS requires
selecting an action going down to the tree, see line 12 of
Alg. 7. Therefore, if the UCB bounds do still overlap, we
cannot assure that the same act on will be selected as in
case of UCB itself.

5.3. A detailed algorithm description

Now we introduce our efficient variant of the Particle Filter
Tree (PFT) presented in Sunberg and Kochenderfer (2018).
We call our approach Simplified Information-Theoretic
Particle Filter Tree (SITH-PFT). SITH-PFT (Alg. 7) in-
corporates the adaptive simplification into PFT-DPW. We
adhere to the conventional notations as in Sunberg and
Kochenderfer (2018) and denote by GPF(m)(bao) a gener-
ative model receiving as input the belief b, an action a and
an observation o (For clarity we substituted z0 by o.), and
producing the posterior belief b0. For belief update, we use a
particle filter based on nx state samples. A remarkable
property of our efficient variant is the consistency of the
belief tree. In other words, PFT and SITH-PFT have the
same belief tree constructed with (16), while SITH-PFT
enjoys substantial acceleration. By C(ha), we denote the set
of the children (posterior beliefs corresponding to the
myopic observations) of the belief action node uniquely

Figure 7. Illustration of our approach. The circles denote the belief nodes, and the rectangles represent the belief-action nodes. Rollouts,
emanating from each belief node, are indicated by dashed lines finalized with triangles. (a) The simulation starts from the root of the
tree, but at node b31 it can not continue due to an overlap of the child nodes (colored red) bounds. (b) One of the red colored belief-action
nodes is chosen, and resimplification is triggered from it down the tree to the leaves (shaded green area in the tree). The beliefs and rollouts
inside the green area (colored by light brown) undergo resimplification if decided so. This procedure results in tighter bounds. (c) After
the bounds got tighter, nothing prevents the SITH-PFT from continuing down from node b31 guaranteeing the tree consistency. If needed,
additional resimplifications can be commenced.
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indexed by the history h with concatenated action a. Line
13 in Alg. 7 is the DPW technique from Sunberg and
Kochenderfer (2018) with parameters ko and αo. The N(�)
is the visitation count of belief or belief action nodes. InMCTS,
theQ estimate is assembled by averaging the laces of the returns
over simulations see equation (20). Each simulation yields a
sum of discounted cumulative rewards. Therefore, by replacing
the reward with adaptive lightweights bounds (22), we get
corresponding discounted cumulative upper and lower bounds
over the returns. Averaging the simulations (Alg. 7 lines 28–29),
yields the bounds over the action-value function and the UCB
bounds used in the routine ActionSelection () to be explained in
the next paragraph.

Consider a belief-action node ha at level d with bQðhaÞ,bQ ðhaÞ. Suppose the algorithm selects it for bounds nar-

rowing, as described in Section 5.2 and Alg. 8 line 7. All
tree nodes of which ha is an ancestor, contribute their

immediate ρs, ρs bounds to bQðhaÞ, bQ ðhaÞ computation.

Thus, to tighten bQðhaÞ, bQ ðhaÞ, we can potentially choose

any candidate node(s) in the subtree of ha. Each child
belief node of ha is sent to the resimplification routine
(Alg. 8 lines 11� 13), which performs the following tasks.
First, it selects the action (Alg. 9 line 7) that will participate
in the subsequent resimplification call and sends all its
children beliefs nodes to the recursive call further down the
tree (Alg. 9 line 8–10). Second, it refines the belief node
ρ, ρ according to the specific resimplification strategy (Alg.

9 lines 3, 4, 12, and18). Third, it reconstructs bQðhaÞ, bQ ðhaÞ
once all the child belief nodes of ha have returned from the
resimplification routine (Alg. 9 line 11) as we thoroughly ex-
plain in the next section. Fourthly, it engages the rollout re-
simplification routine according to the specific resimplification
strategy (Alg. 9 lines 4 and 13). Upon completion of this re-
simplification call initiated at ha, we obtain tighter immediate
bounds of some of ha descendant belief nodes (including
rollouts nodes). Accordingly, appropriate descendant of ha

belief-action nodes bounds
�bQ, bQ� shall be updated.

Many resimplification strategies are possible, below we
present our approach. In Section 4.2 we presented a re-
simplicifation strategy based on gap. Now we adapt it to the
MCTS setting.

5.4. Specific resimplification strategy: PT-gap

In this section, we explain the resimplification procedure in
more detail. In particular we present a specific re-
simplification strategy and further show that this strategy is
valid according to Definition 1. When some sibling belief
action nodes have overlapping bounds (Figure 3(a) and 7),
we strive to avoid tightening them all at once since fewer
resimplifications lead to greater acceleration (speedup).
Thus, we choose a single ha-node that causes the largest
“gap,” denoted by G, between its bounds (see Alg. 8 lines
24–30), where G is defined by (47).

Further, we tighten the bounds down the branch of the chosen
node (seeAlg. 8 lines 11–13) for eachmember ofC(ha), the set
of children of ha. Since the bounds converge to the actual
reward (Assumption 2)we can guarantee that Alg. 8will pick a
single action after a finite number of resimplifications; thus,
tree consistency is assured.

Specifically, we decide to refine ρs, ρs of a belief node
indexed by h0 at depth d0 within the subtree starting from a
belief action node indexed by ha at depth d when

γd�d0 � ðρs � ρsÞ ≥ 1
d
GðhaÞ, (51)

whereG(ha) corresponds to the gap (47) of the belief-action
node ha that initially triggered resimplification in Alg.
8 line 24.

The explanation of resimplification strategy based on
(51) is rather simple. The right hand side of (51) is the mean
gap per depth/level in the sub-tree with ha as its root and
spreading downwards to the leaves. Naturally, some of the
nodes in this subtree have ρs � ρs above or equal to the
mean gap and some below. We want to locate and refine all
those above or equal to it. For the left side of (51), the
rewards are accumulated and discounted according to their
depth. Thus, we must account for the relative discount
factor. Note that the depth identified with the root is the
horizon dmax ¼ L, as seen in Alg. 7 line 4, and the leaves are
distinguished by depth d = 0. For each rollout originating
from a tree belief node, we find the rollout node with the
largest ρ� ρ satisfying (51) term locally in the rollout and
resimplify it (Alg. 9 lines 4 and 13). To choose the action to
continue resimplification down the tree, we take the action
corresponding to the belief action node with the largest gap,
weighted by its visitation count (Alg. 9 line 7). With this
strategy, we aim to keep the belief tree at the lowest possible
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simplification level while maintaining belief tree
consistency.

If the action selection procedure triggers resimplification,
it modifies the bounds through the tree. Since the re-
simplification works recursively, it reconstructs the belief-
action node bounds coming back from the recursion (Alg.
9 line 11). Similarly, the action dismissal procedure re-
constructs bQ and bQ of the belief-action node at which the
action dismissal is performed (Alg. 8 line 14). Moreover, on
the way back from the simulation, we shall update the
ancestral belief-action nodes of the tree. Specifically, we
need to reconstruct each bQ and bQ that is higher than the
deepest starting point of the resimplification (Alg. 7 line 23–
25). The reconstruction is essentially a double loop. To
reconstruct bQðhaÞ, bQ ðhaÞ we first query for all belief
children nodes hao. We then query all belief-action nodes
that are children to the hao, that is, haoa0. The possibly
modified immediate bounds ρ and ρ are taken from hao
nodes and the bQð�Þ, bQ ð�Þ bounds are taken from the haoa0

nodes. Importantly, each of the bounds is weighted ac-
cording to the proper visitation count.

5.5. Guarantees

In this section, we first show that the resimplification
strategy suggested in the previous section is valid.

Lemma 1. Validity of the suggested resimplification
strategy. The resimplification strategy presented in
Section 5.4 promotes the simplification level of at least
one reward in the rollout or belief tree. Alternatively, all
the rewards are at the maximal simplification level nmax. In
other words, the suggested resimplifcation strategy is valid.
We provide the complete proof in Appendix 11.2.

Having proved the validity of the suggested resimplification
strategy, we proceed to the monotonicity and convergence
of UCB bounds from (48) and (49).

Lemma 2. Monotonicity and convergence of UCB
bounds. The UCB bounds are monotonic as a function of
the number of resimplifications and after at most nmax�M
resimplifications we have that

UCBðhaÞ ¼ UCB ðhaÞ ¼ UCBðhaÞ: (52)

We provide the proof in Appendix 11.3. Now, using
Lemma 2, we prove that SITH-PFT (Alg. 7) yields the same
belief tree and the same best action as PFT.

Theorem 2. SITH-PFT and PFT are Tree Consistent
Algorithms for any valid resimplification strategy.
Theorem 3. SITH-PFT provides the same solution as
PFT for any valid resimplification strategy.
We provide the full proofs of Theorems 2 and 3 in

Appendix 11.4 and 11.5, respectively. We showed that for
any valid resimplification strategy SITH-PFT is guaranteed
to construct the same belief tree as PFT and select the same
best action at the root. From Lemma 1, our resimplification
strategy is valid. Thus, we achieved the desired result.

6. Specific simplification and
information-theoretic bounds

In this section, we focus on a specific simplification in the
context of a continuous state space and nonparametric
beliefs represented by nx weighted particles,

bbfwi, xignxi¼1: (53)

Suggested Simplification: Given the belief representation
(53), the simplified belief is a subset of nsx particles, sampled
from the original belief, where nsx ≤ nx. More formally:

bskb
��

xik ,w
i
k

���i2As
k4f1, 2,…, nxg,

��As
k

�� ¼ nsx
�
, (54)

where As
k is the set of particle indices comprising the

simplified belief bsk for time k.
Increasing the level of simplification is done incre-

mentally. Specifically, when resimplification is carried out,
new indices are drawn from the sets f1, 2,…, nxg∖As

k and
and included to the set As

k . This operation promotes the
simplification level to s + 1 and defines Asþ1

k .

6.1. Novel bounds over differential
entropy estimator

As one of our key contributions, we now derive novel
analytical bounds for the differential entropy estimator
from Boers et al. (2010). These bounds can then be used
within our general simplification framework presented
in the previous sections. To calculate differential
entropy

HðbðxkÞÞb�
Z

bðxkÞ � logðbðxkÞÞdxk ,

One must have access to the manifold representing
the belief. In a nonparametric setting this manifold is
out of reach. We have to resort to approximations.
Several approaches exist. One of them is using Kernel
Density Estimation (KDE) as done, for example, by
Fischer and Tas (2020). Here, however, we consider the
method proposed by Boers et al. (2010). This method
builds on top of usage of motion and observation
models such that

bH bk , ak , zkþ1, bkþ1ð Þblog
Xnx
i¼1

PO zkþ1

��xikþ1

� �
wi

k

" #

�
Xnx
i¼1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
:

(55)

One can observe this method requires access to samples
representing both bk and bk+1; thus, this corresponds to
an information-theoretic reward of the form
ρI ðbk , ak , zkþ1, bkþ1Þ. Note that as explained in Section 3
such a reward is tied to bk+1.

Zhitnikov et al. 21



For the sake of clarity and to remove unnecessary clutter we
apply an identical simplification described by (54) to both
beliefs bk and bk+1. The simplification indices for both beliefs
are defined by As

kþ1. However this is not an inherent limitation.
One can easily maintain two sets of indices so as the theory
presented below is developed to this more general setting.
Moreover, as mentioned in Section 3, we have the same belief
bk+1 also participating in ρI ðbkþ1, akþ1, zkþ2, bkþ2Þ. In this
reward, the simplification indices for bk+1 will according to
As
kþ2 (and not according to As

kþ1).
Utilizing the chosen simplification (54), we now intro-

duce the following upper and lower bounds on (55).

Theorem 4. Adaptive bounds on differential entropy
estimator. The estimator (55) can be bounded by

l
�
bk , ak , zkþ1, bkþ1;A

s
k ,A

s
kþ1

�
≤� bHðbk , ak , zkþ1, bkþ1Þ
≤u
�
bk , ak , zkþ1, bkþ1;A

s
k ,A

s
kþ1

�
,

(56)

where

ub� log
Xnx
i¼1

PO zkþ1

��xikþ1

� �
wi

k

" #
(57)

þ
X
iÏAs

kþ1

wi
kþ1 � log m � PO zkþ1

��xikþ1

� �	 

þ
X
i2As

kþ1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #

lb� log
Xnx
i¼1

PO zkþ1

��xikþ1

� �
wi

k

" #

þ
Xnx
i¼1

wi
kþ1 � log PO zkþ1

��xikþ1

� �X
j2As

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35
(58)

and where superscript s is the discrete level of simplification
s 2 {1, 2, …, nmax}, mbmax

x0
x, a

PT ðx0jx, aÞ and As
k ,

As
kþ14f1, 2,…, nxg.
See proof in Appendix 11.6. Theorem 4 accommodates

different sets As
k ≠A

s
kþ1. These sets denote sets of particle

indices from bk and bk+1 for simplification level s. In general,
each of these sets can have its own simplification level.
However, this is out of the scope of this paper. Here, both sets
As
k , A

s
kþ1 have the same simplification level, as well as the

number of levels. Yet, the number of particles at each level can
vary between As

k and As
kþ1. Each subsequent level (low to

high) defines a larger set of indices such that higher levels of
simplification (i.e. more samples) correspond to tighter and
lower levels of simplification correspond to looser bounds.
Note that the bounds (57) and (58) actually use the original and
simplified beliefs so it settles with equations (21) and (22).

Importantly, by caching the shared calculations of both
bounds in the same time instance, we never repeat the
calculation of these values and obtain maximal
speedup. Without compromising on the solution’s quality
we are accelerating the online decision making process.

6.2. Bounds properties and analysis

We now turn to analysis of the bounds and investigation of
their properties. Allow us to start from computational
complexity. We then examine monotonicity and conver-
gence of the bounds and reuse of calculations.

6.2.1. Computational complexity. Equations (57) and (58)
suggest that the bounds are cheaper to calculate than bH
from (55), with complexity of Oðnsx � nxÞ instead of Oðn2xÞ,
where nsxbjAs

k j≡ jAs
kþ1j. Altogether, time saved for all

belief nodes in the tree will result in the total speedup of
our approach.

6.2.2. Monotonicy and convergence. Theorem 5. Mono-
tonicity and convergence. The bounds from (56) are
monotonic (Assumption 1) and convergent (Assumption
2) to (55).
See proof in Appendix 11.7. Finally, bounding (55) using

Theorem 4 corresponds, in our general framework from
Section 3, to (21).

6.2.3. Re-use of calculations. The bounds can be tightened
on demand incrementally without an overhead. Moving from
simplification level s to level s+ 1, corresponds to adding some
m additional particles to bs to get bs+1. For bounds calculation,
we store the highlighted elements of the matrix in Figure 8.
This allows us to reuse the calculations when promoting the
simplification level and between the lower and the upper
bounds in a particular time index. Namely, after a few bounds-
contracting iterations they are just the reward itself and the
entire calculation is roughly time-equivalent to calculating the
original reward. This will happen in a worst-case scenario.

Figure 8. Schematic visualization of calculations reuse principle in
bounds. We select columns using indexes from set As

k and rows by
As
kþ1. We marked by olive color resulting constituents of the bounds.
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We provide the theoretical time complexity analysis
using the specific bounds (from Section 6.1) in Appendix
11.8. Now we are keen to present our simulations.

7. Adaptation overhead

Whereas the bounds presented in Section 6 are incremental
repeated resimplifications may lead to actually slower decision
making. This overhead is caused by additional algorithmics
introduced by the resimplification routine. We can anticipate
such scenarios when the actions are symmetrical in terms of
the reward. However, as we empirically observed and will
shortly present in the next section, in the setting of given belief
tree the cases where the simplification is beneficial prevail.
Especially in the LAZY variant since there Alg. 5 engages
resimplification routine only at the root of the belief tree.

In the setting of MCTS the situation is slightly more
complicated. In UCBwe cannot prune actions for eternity but
only dismiss up until the next arrival to the belief node. This
is because whenMAB (defined in Section 2.3.3) converges it
switches the current best action with arrivals to the belief
node; such a behavior necessitates our simplification ap-
proach to tighten the bounds for many candidate actions. As a
result in a MCTS setting we obtain less speedup than in the
setting of a given belief tree considering LAZYvariant (Alg.
5). Nevertheless in some problems the simplification ap-
proach is invaluable, as for example, in the problem described
in Section 8.1.3 and investigated in Section 8.3.5. Impor-
tantly, we can further accelerate resimplification routines by
parallelization. However, this is out of the scope of this paper.
All our implementations are single threaded.

8. Simulations and results

We evaluate our proposed framework and approaches in
simulation considering the setting of nonparametric fully
continuous POMDP. Our implementation is built upon the
JuliaPOMDP package collection (Egorov et al., 2017). For our
simulations, we used a 16 cores 11th Gen Intel(R) Core(TM)
i9-11900K with 64 GB of RAM working at 3.50 GHz.

First, we study empirically the specific simplification
and bounds fromSection 6 and show that they become tighter
as the number of particles increases. We, then benchmark our
algorithms for planning in the setting of a given belief tree
(Section 4) and in an anytime MCTS setting (Section 5). In
the former setting, we compare SITH-BSP and LAZY-BSP
against Sparse Sampling (Kearns et al., 2002). In an anytime
MCTS setting, we compare SITH-PFT with PFT-DPW
(Sunberg and Kochenderfer, 2018) and IPFT (Fischer and
Tas, 2020). This performance evaluation is conducted con-
sidering three problems, as discussed next.

8.1. Problems under consideration

We proceed to the description of the evaluated problems. In
two first problems, the immediate reward for b0 is

ρðb, a, z0, b0Þ ¼ �ð1� λÞ E
x0 ∼ b0

½rðx0Þ� � λbHðb, a, z0, b0Þ:
(59)

8.1.1. Continuous light dark. Our first problem is 2D
continuous Light-Dark problem. The robot starts at some
unknown point x0 2R

2. In this world, there are spatially
scattered beacons with known locations. Near the beacons,
the obtained observations are less “noisy.” The robot’s
mission is to get to the goal located at the upper right corner of
the world. The state dependent reward in this problem is
rðxÞ¼ �kx� xgoalk22. The initial belief is b0 ¼ Nðμ0, I � σ0Þ,
where we select x0 = μ0 for actual robot initial state. The
motion and observation models are

PT ðx0jx, aÞ ¼ N ðxþ a, I � σT Þ, (60)

and

O ¼ PO zjxð Þ ¼ N x� xb, I � σO �max d xð Þ, dminf g� �
,

(61)

respectively, where d (x) is thel2 distance from robot’s state
x to the nearest beacon with known location denoted by xb,
and dmin is a tuneable parameter.

8.1.2. Target tracking. Our second problem is 2D contin-
uous Target Tracking. In this problem, we have a moving
target in addition to the agent. In this problem the belief is
maintained over both positions, the agent and the target. The
state dependent reward in this problem is
rðxÞ¼ �kxagent � xtargetk22. The motion model of the target
and the agent follows

PT ð�jx, aÞ ¼ N ðxagent þ aagent,ΣTÞ � N ðxtarget þ atarget,ΣT Þ,
where by x we denote the concatenated {xagent, xtarget}. For
target actions we use a circular buffer with {↑, ↑, ←} action
sequence of unit length motion primitives. For simplicity we
assume that in inference as well as in the planning session the
agent knows the target action sequence. The observation
model is also the multiplication of the observation model from
the previous section with the additional observation model due
to a moving target. Thus, the overall observation model is

PO

��jx; xb, i
� �

i¼1

� ¼ N �xagent,ΣO

�
xagent; xb, i

� �
i¼1

��
�N xagent � xtarget,ΣO xagent, xtargetð Þð Þ,

where ΣOðxagent; fxb, igi¼1Þ conforms to the observation
model covariance described in Section 8.1.1 and

ΣO xagent, xtargetð Þ (62)

¼
(
σ2T Ikxagent � xtargetk2, if kxagent � xtargetk2 ≥ dmin

σ2OI , else
:

Before the planning experiments we study of the entropy
estimators and the bounds presented in Theorem 4.
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8.1.3. Safe autonomous localization. Our third problem is
a variation of the problem presented in Section 8.1.1.
Here we change the reward to be the combination of
localization reward and safety reward (Zhitnikov and
Indelman, 2022a)

ρðb, a, z0, b0Þ ¼ �bHðb, a, z0, b0Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{localization reward

þsð2 � 1fPðfx0 2X safe, 0 gjb0Þ ≥ δgðb0Þ � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
safety reward

: (63)

Such a safety reward divides the candidate actions into
two sets, the safe set and the unsafe. If the safety pa-
rameter s is sufficiently large to assure that safe action is
selected, these two sets are detached enough in terms of
safety reward and the unsafe set is substantially inferior
such that there is no point to calculate localization reward
precisely over this set of actions. There, we can, without
any harm for decision-making outcome, substitute dif-
ferential entropy by the bounds at the low simplification
levels. This aspect makes the simplification paradigm
invaluable.

8.2. Entropy estimators and bounds study

In this section, we experiment with a passive case of the
continuous 2D Light Dark problem from Section 8.1.1. Our
goal is to study the various entropy estimators and our
derived bounds from Section 6 over the estimator developed
in Boers et al. (2010). In this study, we manually supply the
robot with an action sequence to conduct. This results in a
single lace of the beliefs corresponding to observations that
the robot actually obtained by executing a given externally
action sequence. We also provide some attempt in this

section to compare estimated reward with the exact ana-
lytical counterpart.

Over this sequence of the beliefs, at each time instance
of the sequence we calculate minus differential entropy
estimator (information) in four ways. The first is the
Boers estimator (Boers et al., 2010) and our bounds from
Theorem 4. The second is KDE approximation as done
by Fischer and Tas (2020). The third is the naive cal-
culation of discrete entropy over the particles weights:bHðbÞ ¼ �P

i
wi � logwi. The fourth estimator is analytical

and it requires additional explanation. If we make an
unrealistic assumption that robot’s ground truth state
from which the observation has been taken is known,
plug it into the covariance matrix of (61) and set prior
belief to be Gaussian; the motion and observation
models met all the requirement for the exact update by
the Kalman filter (linear additive models). For the proof,
see Thrun et al. (2005). In this case, the belief stays
Gaussian and the differential entropy has closed form
solution.

We have two scenarios. In the first scenario, the robot
moves diagonally to the goal using a unit length actionb
(Figure 9(a)) 15 times. Along the way, it passes close-by
two beacons. Consequentially, the robot’s information
about its state peaks twice. In our second scenario, the
robot moves five times to the right → followed by
10 times ↑ and again five times to the right →
(Figure 9(b)).

The prior belief in this setting follows a Gaussian dis-

tribution b0 ¼ N
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0:0

�
,



2:0 0:0
0:0 2:0

��
, the motion and

observation models parameters are
σO ¼ σT ¼ 0:075, dmin ¼ 0:0001. The number of un-
simplified belief weighted particles is nx = 300. For creating
initial weighted particles, we use the following proposal

Figure 9. The plot shows the evolution of belief in terms of sets of particles along the actual trajectory of the robot. The color of the
particles from yellow to red illustrates the evolution of the belief over time. The green ellipses represent the parametric Gaussian belief
covariances obtained from update by the Kalman filter. The canvas color here is σO ¼ σT ¼ 0:075 as in equations (60) and (61),
respectively. (a) Our first scenario. (b) Our second scenario.
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The initial weights are the ratio w(x) = b0(x)/q(x).
To examine the bounds monotonical convergence with a

growing number of simplified belief particles we plot the
bounds (57) and (58) for minus entropy estimator (55)
alongside estimators described above for the entire robot
trajectory of the beliefs.

The results for the first and second scenarios are pro-
vided in Figures 10 and 11, respectively. For both sce-
narios, we observe that the bounds become tighter as the
number of particles of simplified belief nsx increases. We
also witness that all estimators vary but the overall trend is
similar, putting aside the discrete entropy over the weights.

Figure 10. Bounds convergence for our first scenario nx = 300: (a)
nsx ¼ 30 particles, (b) nsx ¼ 150 particles, and (c) nsx ¼ 270 particles.

Figure 11. Bounds convergence for our second scenario nx = 300:
(a) nsx ¼ 30, (b) nsx ¼ 150 particles, and (c) nsx ¼ 270 particles.
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The discrete entropy over the weights fails to ade-
quately represent the uncertainty of the belief. This is an
anticipated result. Let us proceed to the planning
experiments.

8.3. Planning

In this section, we study and benchmark our efficient
planning algorithms. In our algorithms 1 and 5, the tree is
built by SS (Kearns et al., 2002) such that the given belief

tree is obtained when the algorithm descends to the leaves.
We first compare Alg. 1 and 5 versus SS.We then proceed to
simulations in an anytime MCTS setting.

For all further experiments, the belief is approximated by
a set of nx weighted samples as in (53). The robot does
replanning after each executed action.

8.3.1. Acceleration measures. Let us begin this section by
describing our measures of acceleration. We report planning
time speedup in terms of saved accesses to particles.

Figure 12. Exemplary 2D light dark problem planning scenario. Here, we present the first trial of configuration λ = 0.5 of Table 1.

Table 1. This table shows cumulative results of 20 consecutive alternating planning and execution sessions of the continuous light dark
problem averaged over 15 trials. Each planning session creates a single belief tree to perform a search for optimal action. This given belief
tree has 4,809 belief nodes. Overall, in 20 planning sessions, we have 96,180 belief nodes. The horizon in each planning session is L = 3.
The number of observations sampled from each belief action node is n1z ¼ 1, n2z ¼ 3, and n3z ¼ 3 at the corresponding to superscripts
depths 1, 2, and 3, respectively. This table examines the influence of various values of λ.

BSP Alg. nx λ
Particles
speedup (64)

Time speedup
(66)

Resimpl. calls
(recursive) Motion model calls

Obs. model
calls Return ðbV Þ

Alg 1 SITH 100 0.1 78.76 ± 0.20 64.44 ± 1.51 2.05 � 105 ± 0.05 � 105 3.13 � 108 ± 0.02 � 108 9.62 � 106 ± 0.0 �115.49 ± 16.58
Alg 5 LAZY 85.46 ± 1.22 71.59 ± 1.52 10.71 � 105 ± 4.61 � 105 2.38 � 108 ± 0.13 � 108 9.62 � 106 ± 0.0 �115.49 ± 16.58
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �115.49 ± 16.58
Alg 1 SITH 100 0.2 68.82 ± 0.32 53.59 ± 2.05 3.36 � 105 ± 0.06 � 105 4.22 � 108 ± 0.03 � 108 9.62 � 106 ± 0.0 �103.51 ± 14.91
Alg 5 LAZY 80.09 ± 1.52 65.01 ± 1.88 25.65 � 105 ± 6.17 � 105 3.01 � 108 ± 0.18 � 108 9.62 � 106 ± 0.0 �103.51 ± 14.91
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �103.51 ± 14.91
Alg 1 SITH 100 0.3 58.33 ± 0.52 42.76 ± 2.96 4.13 � 105 ± 0.05 � 105 5.40 � 108 ± 0.01 � 108 9.62 � 106 ± 0.0 �91.86 ± 13.88
Alg 5 LAZY 74.85 ± 2.63 58.94 ± 3.04 42.66 � 105 ± 9.80 � 105 3.59 � 108 ± 0.29 � 108 9.62 � 106 ± 0.0 �91.86 ± 13.88
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �91.86 ± 13.88
Alg 1 SITH 100 0.4 45.66 ± 0.83 29.33 ± 4.78 4.70 � 105 ± 0.04 � 105 6.84 � 108 ± 0.08 � 108 9.62 � 106 ± 0.0 �80.44 ± 11.77
Alg 5 LAZY 69.94 ± 1.89 53.85 ± 2.56 59.05 � 105 ± 8.76 � 105 4.16 � 108 ± 0.22 � 108 9.62 � 106 ± 0.0 �80.44 ± 11.77
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �80.44 ± 11.77
Alg 1 SITH 100 0.5 34.46 ± 0.79 18.98 ± 4.16 5.27 � 105 ± 0.05 � 105 7.92 � 108 ± 0.01 � 108 9.62 � 106 ± 0.0 �66.3 ± 8.0
Alg 5 LAZY 63.6 ± 2.23 46.67 ± 2.81 81.48 � 105 ± 8.52 � 105 4.87 � 108 ± 0.24 � 108 9.62 � 106 ± 0.0 �66.3 ± 8.0
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �66.3 ± 8.0
Alg 1 SITH 100 0.6 25.09 ± 0.89 12.05 ± 4.83 5.85 � 105 ± 0.05 � 105 8.64 � 108 ± 0.05 � 108 9.62 � 106 ± 0.0 �55.36 ± 6.93
Alg 5 LAZY 56.32 ± 2.72 38.45 ± 3.65 113.26 � 105 ± 11.45 � 105 5.71 � 108 ± 0.28 � 108 9.62 � 106 ± 0.0 �55.36 ± 6.93
SS 9.62 � 108 ± 0.0 9.62 � 106 ± 0.0 �55.36 ± 6.93
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The following speedup is based on the final number of
simplified beliefs particles required for planningP

i

�
n2i, x � nsi, xni, x

�
P

in
2
i, x

� 100, (64)

where the summation is over the future posterior beliefs
in all the belief trees in a number of a consecutive
planning sessions in particular scenario. Equation (64)
measures relative speedup without time spent on re-
simplifications. It is calculated at the end of several
consecutive planning sessions. To calculate speedup
according to (64) one shall pick up the final number of
particles of simplified belief nsi, x used for the simplified
reward for each belief node i, sum over all the nodes of the
belief trees (given or constructed on the fly) from plan-
ning sessions, make a calculation portrayed by (64).
Importantly, acceleration measure (64) assumes that time
of evaluating the motion and observation models do not
vary from one evaluation to another. If the number of

belief particles is not depending on the belief (ni,x = nx),
we can further simplify the (64) to

P
i

�
nx � nsi, x

�
P

inx
� 100: (65)

To calculate planning time speedup, we use the following
metric

tbaseline � tour
tbaseline

� 100: (66)

If the quantities (64) and (66) are identical we can
conclude that there will be no overhead from re-
simplifications and adapting the bounds. Note also that
in the first place it is not clear how many particles nx for
belief representation to take. The number of particles nx
shall be as large as possible due to fact that we do not
know when the belief represented by weighted particles
will converge to the corresponding theoretical belief.

Table 2. This table shows cumulative results of 20 consecutive alternating planning and execution sessions averaged over 15 trials of
continuous light dark problem. The given belief tree in a single planning session has 4,809 belief nodes. Overall, in 20 planning sessions,
we have 96,180 belief nodes. The horizon in each planning session is L = 3. The number of observations sampled from each belief action
node is n1z ¼ 1, n2z ¼ 3, and n3z ¼ 3 at the corresponding to superscripts depths 1, 2, and 3, respectively. In this table, we examine influence
of various number of belief particles.

BSP Alg. nx λ
Particles
speedup (64)

Time
speedup (66)

Resimpl. calls
(recursive) Motion model calls

Obs. model
calls Return ðbV Þ

Alg 1 SITH 200 0.5 34.1 ± 0.8 25.01 ± 5.11 5.30 � 105 ± 0.04 � 105 31.80 � 108 ± 0.25 � 108 19.24 � 106 ± 0.0 �69.36 ± 7.95
Alg 5 LAZY 64.0 ± 2.98 51.71 ± 4.9 83.95 � 105 ± 10.24 � 105 19.35 � 108 ± 1.29 � 108 19.24 � 106 ± 0.0 �69.36 ± 7.95
SS 38.47 � 108 ± 0.0 19.24 � 106 ± 0.0 �69.36 ± 7.95
Alg 1 SITH 300 0.5 33.84 ± 0.83 18.67 ± 2.02 5.30 � 105 ± 0.04 � 105 71.74 � 108 ± 0.58 � 108 28.85 � 106 ± 0.0 �68.29 ± 8.42
Alg 5 LAZY 63.39 ± 3.44 47.34 ± 3.72 84.09 � 105 ± 10.66 � 105 43.91 � 108 ± 3.09 � 108 28.85 � 106 ± 0.0 �68.29 ± 8.42
SS 86.56 � 108 ± 0.0 28.85 � 106 ± 0.0 �68.29 ± 8.42
Alg 1 SITH 400 0.5 33.97 ± 0.85 25.34 ± 3.44 6.65 � 105 ± 0.06 � 105 181.50 � 108 ± 1.41 � 108 54.51 � 106 ± 0.0 �67.92 ± 11.52
Alg 5 LAZY 66.06 ± 2.3 53.74 ± 3.4 106.90 � 105 ± 15.73 � 105 105.35 � 108 ± 5.75 � 108 54.51 � 106 ± 0.0 �67.92 ± 11.52
SS 218.05 � 108 ± 0.0 54.51 � 106 ± 0.0 �67.92 ± 11.52

Figure 13. Simplification levels at each depth of the given belief tree of light dark problem (Section 8.1.1) after determining best action
for one of the planning sessions. Here, we present planning session 6 of the first trial of configuration λ = 0.5 of Table 1. The radius of
circles represents the fraction of all nodes at a particular depth that have a particular simplification level. This figure is associated with
Table 3. (a) LAZY-SITH-BSP Alg 5 and (b) SITH-BSP Alg 1.
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To thoroughly study the acceleration yielded by our
simplification paradigm, we calculate total speedup over a
number of the consecutive planning sessions in terms of
particles in accordance to (64) and in terms of time in
accordance to (66).

8.3.2. Results for 2D continuous light-dark in the setting of
a given belief tree. We start from the problem described in
Section 8.1.1. Our action space is constituted by motion
primitives of unit length A ¼ f→ ,b, ↑,_,←,c, ↓,ag.
In this problem the selected parameters are σT ¼ σO ¼ 0:1,
dmin = 0.0001, γ = 0.95. We simulate 15 trials of 20 con-
secutive alternating planning and action execution sessions.
Figure 12 shows an exemplary trial of 20 executions of the
best action identified by the robot.

We investigate the influence of the parameter λ on
speedup in Table 1 and the impact of changing the number
of particles in Table 2. In both tables, we see the particles
speedup (column 4) and the time speedup (column 5). As
expected with increasing values of λ (column 3) the
speedup diminishes. LAZY-BSP (Alg. 5) produces larger
speedup in terms of particles (column 4) and time (column
5) than SITH-BSP (Alg. 1). All three algorithms always
selected the same optimal action. We observe that the
return is always identical (column 9). Significant time
speedup is obtained in the range of 35%�70% for LAZY-
BSP depending on the values of λ. For the SITH-BSP we
see less time speedup ranging from 65% to 10% with
increasing λ.

In all tables, the number of motion and observation
model calls does not include belief update calls but only the
calls for reward or bounds calculation. The number of
accesses to the observation model is always the same for all
three algorithms (column 8). This agrees with the structure
of the bounds (57) and (58). For the baseline SS, up to
rounding errors, the number of motion model accesses, as
we anticipated, is the squared number of unsimplified belief
particles multiplied by number belief nodes in the tree
minus one for root belief, multiplied by number of planning
sessions (column 7 in the tables). This is in agreement with
(55). Also, for all three algorithms the number of accesses to
the observation model was the number of particles of un-
simplified belief minus one for root belief, multiplied by the
number of belief nodes in the tree, multiplied by the number
of planning sessions.

We see that, while having larger particle speedup (col-
umn 3), LAZY-BSP makes more resimplification calls
(column 6) than SITH-BSP. Observing the histograms of
simplification levels in Figure 13, we understand that LAZY
variant of resimplification strategy leads to lower simpli-
fication levels of the rewards at the deepest level of a given
belief tree. This was expected since the rewards at the upper
levels of the belief tree participate in more laces and
therefore their simplification level is promoted more times
(See Alg. 5). In addition, at the lowest levels reside more
beliefs and corresponding rewards. This fact is corroborated
by Table 3 where we witness that LAZY-BSP yields more T
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beliefs, in the given in belief tree, with lower simplification
levels than SITH-BSP.

8.3.3. Results for 2D continuous target tracking in the
setting of a given belief tree. Our action space is
A ¼ f→ ,b, ↑,_,←,c, ↓,a, Nullg, where action Null
means that agent doesn’t take any action. In this problem we
selected the parameters to be dmin = 0.0001, ΣT = I � σT,
where σT = 0.1 and σO ¼ 0:1, γ = 0.95.

We simulate 15 trials of 15 consecutive alternating
planning sessions and the executions by the robot of the
selected optimal action. Figure 14 shows an exemplary

trial. We show the agent particles in Figure 14(a) and the
target particles in Figure 14(b). Similar to the previous
section, we study speedup with growing λ in Table 4 and
as function of various amounts of belief particles in
Table 5. Again we observe that speedup diminishes with
growing λ; LAZY-BSP (Alg. 5) produces a larger
speedup in terms of particles (column 4) and time
(column 5) than SITH-BSP (Alg. 1); accesses to motion
and observation models are as expected; the return is
identical for three algorithms.

In Figure 15, which is associated with Table 6, we
observe that to select an optimal action LAZY-BSP

Figure 14. In this illustration we show second trial of Table 5, configuration nx = 250. The canvas color here is σO ¼ σT ¼ 0:1. (a) Agent
particles. (b) Target particles.

Table 4. This table shows cumulative results of 15 consecutive alternating planning and action execution sessions averaged over 15 trials
of continuous target tracking problem. The given in a single planning session belief tree has 6,814 belief nodes. Overall, in 15 planning
sessions, we have 102,210 belief nodes. The horizon in each planning session is L = 3. The number of observations sampled from each
belief action node is n1z ¼ 1, n2z ¼ 3, and n3z ¼ 3 at corresponding to superscripts depths 1, 2, and 3, respectively. In this table, we examine
influence of various values of λ.

BSP Alg. nx λ
Particles
speedup (64)

Time speedup
(66) Resimpl. calls (recursive) Motion model calls Obs. model calls Return ðbV Þ

Alg 1 SITH 100 0.1 77.43 ± 0.26 60.3 ± 2.21 1.69 � 105 ± 0.04 � 105 3.48 � 108 ± 0.03 � 108 10.22 � 106 ± 0.0 �79.87 ± 9.69
Alg 5 LAZY 86.97 ± 1.28 71.18 ± 2.42 7.44 � 105 ± 3.09 � 105 2.32 � 108 ± 0.16 � 108 10.22 � 106 ± 0.0 �79.87 ± 9.69
SS 10.22 � 108 ± 0.0 10.22 � 106 ± 0.0 �79.87 ± 9.69
Alg 1 SITH 100 0.2 64.64 ± 0.57 46.39 ± 2.27 2.60 � 105 ± 0.04 � 105 5.03 � 108 ± 0.07 � 108 10.22 � 106 ± 0.0 �73.38 ± 9.8
Alg 5 LAZY 83.52 ± 1.7 67.24 ± 2.62 16.52 � 105 ± 5.56 � 105 2.75 � 108 ± 0.22 � 108 10.22 � 106 ± 0.0 �73.38 ± 9.8
SS 10.22 � 108 ± 0.0 10.22 � 106 ± 0.0 �73.38 ± 9.8
Alg 1 SITH 100 0.3 49.57 ± 0.93 29.25 ± 2.39 3.14 � 105 ± 0.05 � 105 6.86 � 108 ± 0.10 � 108 10.44 � 106 ± 0.0 �66.29 ± 9.3
Alg 5 LAZY 79.83 ± 2.55 63.34 ± 3.45 26.61 � 105 ± 8.41 � 105 3.21 � 108 ± 0.30 � 108 10.44 � 106 ± 0.0 �66.29 ± 9.3
SS 10.22 � 108 ± 0.0 10.44 � 106 ± 0.0 �66.29 ± 9.3
Alg 1 SITH 100 0.4 35.75 ± 1.09 14.45 ± 2.85 3.61 � 105 ± 0.06 � 105 8.33 � 108 ± 0.09 � 108 10.44 � 106 ± 0.0 �59.99 ± 8.05
Alg 5 LAZY 74.38 ± 3.5 55.69 ± 4.38 42.74 � 105 ± 12.16 � 105 3.90 � 108 ± 0.38 � 108 10.44 � 106 ± 0.0 �59.99 ± 8.05
SS 10.22 � 108 ± 0.0 10.44 � 106 ± 0.0 �59.99 ± 8.05
Alg 1 SITH 100 0.5 25.51 ± 1.04 6.44 ± 2.49 4.05 � 105 ± 0.06 � 105 9.18 � 108 ± 0.08 � 108 10.44 � 106 ± 0.0 �53.15 ± 7.03
Alg 5 LAZY 67.76 ± 3.88 47.94 ± 5.08 63.18 � 105 ± 15.71 � 105 4.75 � 108 ± 0.44 � 108 10.44 � 106 ± 0.0 �53.15 ± 7.03
SS 10.22 � 108 ± 0.0 10.44 � 106 ± 0.0 �53.15 ± 7.03
Alg 1 SITH 100 0.6 18.06 ± 1.0 2.63 ± 2.32 4.43 � 105 ± 0.06 � 105 9.65 � 108 ± 0.06 � 108 10.44 � 106 ± 0.0 �46.97 ± 7.14
Alg 5 LAZY 59.53 ± 3.78 38.14 ± 4.69 89.27 � 105 ± 15.03 � 105 5.77 � 108 ± 0.43 � 108 10.44 � 106 ± 0.0 �46.97 ± 7.14
SS 10.22 � 108 ± 0.0 10.44 � 106 ± 0.0 �46.97 ± 7.14
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leaves more beliefs with lower simplification levels at
the bottom of the given belief tree and produces more
beliefs with lower simplification levels than SITH-BSP.
A significant time speedup is obtained in the range of
30%�70% for LAZY-BSP depending on the values of λ.
For the SITH-BSP, we see less time speedup ranging
from 60% to 2% with increasing λ. The same best action
was identified by SITH-BSP, LAZY-BSP and SS in all
cases. Interestingly, in configuration nx = 350 of Table 5,
for the first time, we obtained that time speedup (66) is
larger than particle speedup (64). This points to the fact
that this run was so long due to large number of un-
simplified belief particles nx = 350 so that the time of
access to motion and observation models varied.

8.3.4. Experiments with MCTS. In an anytime setting of
MCTS we focus on the 2D-continuous light dark problem from
Section 8.1.1.We place a single “light beacon” in the continuous
world. Here we changed the reward. The agent’s goal is to get to
location (0, 0) and execute the terminal action -Null. Executing it
within a radius of 0.5 from (0, 0) will give the agent a reward of

200, and executing it outside the radius will yield a negative
reward of�200. For all other actions, themulti-objective reward
function is ρðb, a, z, b0Þ ¼ � E

x∼ b0
½kxk2� � bHðb, a, z, b0Þ. The

agent can move in eight evenly spread directions
A ¼ f→ ,b, ↑,_,←,c, ↓,a, Nullg. Motion and obser-
vation models, and the initial belief are PT ð�jx, aÞ ¼
N ðxþ a,ΣT Þ, PO zjxð Þ ¼ N x, min 1, kx� xbk22

n o
� ΣO

� �
,

and b0 ¼ Nðx0,Σ0Þ, respectively. xb is the 2D location of the
beacon and all covariance matrices are diagonal (i.e., Σ = I � σ2).

We selected the following parameters

x0 ¼ �5:5
0:0


 �
,Σ0 ¼ 0:2 0:0

0:0 0:2


 �
, σT ¼ σO ¼ 0:075. We

experiment with 10 different configurations (rows of
Table 7) that differ in nx (number of particles), L (MCTS
simulation depth), and #iter (number of MCTS simulation
iterations per planning session). Each scenario comprises
10 planning sessions, that is, the agent performs up to
10 planning action-executing iterations. The scenario stops
if the best action determined in planning is Null. We repeat
each experiment 25 times. In each such repetition we run

Table 5. This table shows cumulative results of 15 consecutive alternating planning and execution sessions averaged over 15 trials of
continuous target tracking problem. The given belief tree has 6,814 belief nodes. Overall, in 15 planning sessions, we have 102,210 belief
nodes. The horizon in each planning session is L = 3. The number of observations sampled from each belief action node is n1z ¼ 1, n2z ¼ 3,
and n3z ¼ 3 at corresponding to superscripts depths 1, 2, and 3, respectively. In this table, we examine various numbers of belief particles.

BSP Alg. nx λ
Particles
speedup (64)

Time speedup
(66) Resimpl. calls (recursive) Motion model calls Obs. model calls Return ðbV Þ

Alg 1 SITH 150 0.5 25.19 ± 0.94 8.72 ± 2.4 4.03 � 105 ± 0.03 � 105 20.71 � 108 ± 0.15 � 108 15.33 � 106 ± 0.0 �54.0 ± 8.16
Alg 5 LAZY 68.36 ± 2.66 50.23 ± 3.2 63.14 � 105 ± 9.15 � 105 10.55 � 108 ± 0.65 � 108 15.33 � 106 ± 0.0 �54.0 ± 8.16
SS 22.10 � 108 ± 0.0 15.33 � 106 ± 0.0 �54.0 ± 8.16
Alg 1 SITH 250 0.5 23.87 ± 0.98 11.01 ± 3.93 4.11 � 105 ± 0.05 � 105 58.10 � 108 ± 0.40 � 108 25.55 � 106 ± 0.0 �55.57 ± 9.59
Alg 5 LAZY 66.18 ± 3.35 51.51 ± 3.83 70.02 � 105 ± 12.74 � 105 30.79 � 108 ± 2.37 � 108 25.55 � 106 ± 0.0 �55.57 ± 9.59
SS 63.88 � 108 ± 0.0 25.55 � 106 ± 0.0 �55.57 ± 9.59
Alg 1 SITH 350 0.5 23.95 ± 1.07 40.18 ± 10.29 4.11 � 105 ± 0.03 � 105 113.81 � 108 ± 0.89 � 108 35.77 � 106 ± 0.0 �55.62 ± 8.73
Alg 5 LAZY 66.36 ± 2.58 67.17 ± 4.86 69.40 � 105 ± 10.08 � 105 60.19 � 108 ± 3.62 � 108 35.77 � 106 ± 0.0 �55.62 ± 8.73
SS 125.21 � 108 ± 0.0 35.77 � 106 ± 0.0 �55.62 ± 8.73

Figure 15. Simplification levels at each depth of the given belief tree of target tracking problem (Section 8.1.2) after determining best
action for one of the planning sessions. Here, we present planning session 6 of the first trial of configuration nx = 250 of Table 5. The
radius of circles represents the fraction of all nodes at particular depth that have a particular simplification level. This figure is associated
with Table 6. (a) LAZY-SITH-BSP Alg 5 and (b) SITH-BSP Alg 1.
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PFT-DPW and SITH-PFT with the same seed and calculate
the relative time speedup in percentage according to (66),
where tPFT�DPW and tSITH�PFT are running times of a
baseline and our methods, respectively.

In all different configurations, we obtained significant
time speedup of approximately 20% while achieving the
exact same solution compared to PFT. In Table 7, we report
the mean and standard error of (66) as well as maximum
and minimum value. Remarkably, we observe that we
never slowdown the PFT-DPW with SITH-PFT. We also
present total running times of 25 repetitions of at most 10
(the simulation stops if best identified action is Null)
planning sessions in Table 8. Note that we divided the total
planning time by the number of planning sessions in each
repetition.

An illustration of evaluated scenario can be found in
Figure 16. Note that SITH-PFT (Figure 16(a)) yields an
identical to PFT solution (Figure 16(b)) while IPFT demon-
strates a severely degraded behavior. We remind the purpose
of our work is to speedup the PFT approach when coupled
with information-theoretic reward. Since the two algorithms
produce identical belief trees and action at the end of each
planning session, there is no point reporting the algorithms
identical performances (apart from planning time).

8.3.5. Localization with collision avoidance solved by
MCTS. In this section, we investigate the application of
three algorithms, IPFT (Fischer and Tas, 2020), PFT-DPW
(Sunberg and Kochenderfer, 2018) and our SITH-PFT
encapsulated by Alg. 7. The algorithmic implementation of
IPFT boils down to making more simulations inside IPFT
with substantially less number of belief particles sub-
sampled from root belief.

Further, we discuss the quality and speed of IPFT. Rep-
resentation of the belief with a tiny amount of particles in-
duces larger error in differential entropy estimation and other
parts of the reward function such as, for example, soft safety
reward component in (63). The authors of (Fischer and Tas,
2020) claim that IPFT averages differential entropies cal-
culated from tiny subsets subsampled from the particle belief.
However, observing the SIMULATE routine (similar to our
in Alg. 7) in (Fischer and Tas, 2020), we see that in practice
this average is obtained through more simulations, starting
from a new subsample from the root belief, with less number
of particles, thereby averaging entropies calculated from
different beliefs with less number of particles, but same
history of actions and observations. The parameter K in
(Fischer and Tas, 2020) in practice is the visitation count N
(b) of each belief in the belief tree. There is no direct control
of this parameter. In other words, to make a proper com-
parison we shall increase the number of SIMULATE calls
inside IPFT by a factor K = nx/m, where m is the size of the
subsample from a belief represented by nx particles. In such a
way in both belief trees, built by IPFT and PFT-DPW, there
are the same number of total particles. This is in contrast to
using the same number of calls to SIMULATE in both trees.
If the number of calls to SIMULATE is the same the numberT
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of particles in the tree built by IPFTwill bemuch smaller than
in the tree built by PFT-DPW. Do note that we cannot assure
that the same K will be for each future history due to the
exploratory nature of MCTS.

The speed of IPFT is linked with the rollout policy of
MCTS. As we mentioned above, when the belief is rep-
resented by particles we know that asymptotically when
the number of particles tends to infinity this representation
converges to the theoretical belief for any given belief
(Crisan and Doucet, 2002). Therefore, we shall take as
many particles as possible for the belief representation.
Given that the size of subsample m in IPFT does not
change, this will increase the parameter K and therefore
slowdown IPFT. Because when the new belief node is
expanded in the belief tree there is always a rollout ini-
tiated, a more complex rollout policy will slowdown IPFT
more, yet, this is ultimately the question of how big the
parameter K is.

As we observe in Figure 17, IPFT is less accurate
compared to PFT-DPW and SITH-PFT in spite of a much
larger number of calls to SIMULATE routine compared to
PFT-DPW and SITH-PFT. Clearly, better localization is
closer to the beacons. In Figure 17(a) we see that more
trajectories went to completely different from beacons di-
rections as opposed to Figure 17(b) and (c) displaying
identical results. From Figure 18(a) we conclude that in
10 from 15 trials the information reward obtained in exe-
cution of the optimal action returned by IPFTwas inferior to
the corresponding reward obtained by SITH-PFT and PFT-
DPW. From Figure 18(b) we see that IPFT is slowest from
the three algorithms while SITH-PFT (Alg. 7) is the fastest
in all trials.

8.4. Discussion

Although the speedup was significant and steady for all
simulations, we did not observe growth in speed-up with
growth of number of belief particles in any simulation. This
can be explained by the fact that increasing number of
particles of the belief (nx) changes also the bounds because
the parameter nx is present in the bounds as well. The

Table 7. Time speedup (66) obtained SITH-PFT versus PFT-
DPW. The rows are different configurations of the number of belief
particles nx, maximal tree depth L, and the number of iterations per
planning session. In all simulations SITH-PFT and PFT-DPW
declared identical actions as optimal and exhibited identical belief
trees in terms of connectivity and visitation counts.

(nx, L, #iter.) mean ± std max. min.

(50, 30, 200) 19.35 ± 6.34 30.17 7.99
(50, 50, 500) 17.43 ± 5.4 33.49 10.72
(100, 30, 200) 21.97 ± 8.74 49.24 7.36
(100, 50, 500) 22.54 ± 6.33 36.09 13.65
(200, 30, 200) 26.27 ± 9.36 42.43 11.17
(200, 50, 500) 26.17 ± 7.64 44.31 14.43
(400, 30, 200) 21.88 ± 8.47 37.04 10.34
(400, 50, 500) 21.71 ± 6.01 32.69 9.67
(600, 30, 200) 20.27 ± 7.38 32.95 8.77
(600, 50, 500) 19.93 ± 6.48 31.26 6.49

Table 8. Total runtime of 25 repetitions of two algorithms.

(nx, L, #iter.) Algorithm Tot. plan. time (sec)

(50, 30, 200) PFT-DPW 49.7
SITH-PFT 40.25

(50, 50, 500) PFT-DPW 125.05
SITH-PFT 103.71

(100, 30, 200) PFT-DPW 185.47
SITH-PFT 145.08

(100, 50, 500) PFT-DPW 460.29
SITH-PFT 357.57

(200, 30, 200) PFT-DPW 709.66
SITH-PFT 526.18

(200, 50, 500) PFT-DPW 1755.08
SITH-PFT 1298.86

(400, 30, 200) PFT-DPW 2672.56
SITH-PFT 2099.0

(400, 50, 500) PFT-DPW 6877.24
SITH-PFT 5403.91

(600, 30, 200) PFT-DPW 6335.09
SITH-PFT 5056.96

(600, 50, 500) PFT-DPW 15,682.47
SITH-PFT 12,602.09

Figure 16. 2D continuous light dark. The agent starts from an initial unknown location and is given an initial belief. The goal is to get to
location (0, 0) (circled in red) and execute the terminal action. Near the beacon (white light) the observations are less noisy.We consider
multi-objective function, accounting for the distance to the goal and the differential entropy approximation (with the minus sign for
reward notation). Executing the terminal action inside the red circle gives the agent a large positive reward but executing it outside it, will
yield a large negative reward. (a) SITH-PFT. (b) PFT-DPW. (c) IPFT.
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limitation of our approach is that it leans on converging
bounds, which are not trivial to derive and specific for a
particular reward function. In addition, it requires slightly
more caching than the baseline. Our simplification approach
may still be ill-timed, since the resimplifications take an
additional toll in terms of running time.

9. Conclusions

We contributed a rigorous provable theory of adaptive
multilevel simplification that accelerates the solution of
belief-dependent fully continuous POMDP. Our theory
always identifies the same optimal action or policy as the
unsimplified analog. Our theoretical approach receives as
input adaptive bounds over the belief-dependent reward.
Using the suggested theory and any bounds satisfying

stated conditions we formulated three algorithms, con-
sidering a given belief tree and an anytime MCTS setting.
We also contributed a specific simplification for non-
parametric beliefs represented by weighted particles and
derived novel bounds over a differential entropy estimator.
These bounds are computationally cheaper than the latter.
Our experiments demonstrate that our algorithms are
paramount in terms of computation time while guaranteed
to have the same performance as the baselines. In the
setting of the given belief tree, we achieved a speedup up to
70%. In an anytime MCTS setting, our algorithm enjoyed
the speedup of 20%.
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Figure 17. The plot shows 15 differently colored robot trajectories. Each such trajectory comprises 10 time steps. In each such step the
robot performs re-planning and executes the best action selected by an appropriate BSP algorithm. The color of each trajectory matches
planning with the same seed in each plot. The canvas color here is σO ¼ σT ¼ 0:03 as in equations (60) and (61), respectively. The
parameters are nx = 300,m = 20, number of calls to SIMULATEof IPFT is 4,500, the number of calls to SIMULATE of PFT-DPWand SITH-
PFT is 300. In such a setting the constructed belief trees by these methods have the same number of total samples (see Section 8.3.5 for
details). (a) Safe IPFT. (b) Safe SITH-PFT (Alg 7). (c) Safe PFT-DPW.

Figure 18. This plot is associated with Figure 17. Each color matches the corresponding trajectory in Figure 17. The parameters are nx =
300,m = 20,andK = 300/20 = 15 number of calls to SIMULATE of IPFT is 4,500, the number of calls to SIMULATE of PFT-DPWand
SITH-PFT is 300. In such a setting the constructed belief trees by these methods have the same number of total samples (see Section 8.3.5
for details). (a) Cumulative information reward as in (63) in the execution of the trajectory. Here, the SITH-PFT curve and the PFT-DPW
curve overlap. This is because the rewards are identical since the same best action is calculated by SITH-PFT and PFT-DPW; (b)
average planning times of 10 planning sessions in each trial.

Zhitnikov et al. 33



Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research was supported by the Israel Science Foundation (ISF) and
by a donation from the Zuckerman Fund to the Technion Artificial
Intelligence Hub (Tech.AI).

ORCID iD

Andrey Zhitnikov  https://orcid.org/0000-0002-6316-0998

Supplemental Material

Supplemental material for this article is available online.

References

Araya M, Buffet O, Thomas V, et al. (2010) A pomdp extension
with belief-dependent rewards. In: Advances in Neural In-
formation Processing Systems (NIPS). Glasgow, Scotland:
Curran Associates, Inc, 64–72.

Auer P, Cesa-Bianchi N and Fischer P (2002) Finite-time analysis
of the multiarmed bandit problem. Machine Learning 47(2):
235–256.

Auger D, Couetoux A and Teytaud O (2013) Continuous upper
confidence trees with polynomial exploration–consistency.
In: Machine learning and knowledge discovery in databases:
European conference, ECML PKDD 2013, proceedings, part
I 13, Prague, Czech Republic, 23–27 September 2013,
194–209. Springer.

Barenboim M and Indelman V (2022) Adaptive information belief
space planning. In: The 31st international joint conference on
artificial intelligence and the 25th European conference on
artificial intelligence (IJCAI-ECAI), Vienna, Austria, 23–
29 July 2022.

Barenboim M and Indelman V (2023) Online pomdp planning
with anytime deterministic guarantees. In: Advances in
Neural Information Processing Systems (NIPS). Glasgow,
Scotland: Curran Associates, Inc.

Boers Y, Driessen H, Bagchi A, et al. (2010) Particle filter based
entropy. In: 2010 13th international conference on infor-
mation fusion, Edinburgh, UK, 26–29 July 2010, pp. 1–8.
DOI: 10.1109/ICIF.2010.5712013.

Burgard W, Fox D and Thrun S (1997) Active mobile robot lo-
calization. In: 15th international joint conference on artificial
intelligence (IJCAI 97), Nagoya, Japan, 23–29 August 1997,
1346–1352. Citeseer.

Crisan D and Doucet A (2002) A survey of convergence results on
particle filtering for practitioners. IEEE Transactions on
Signal Processing 50(3): 736–746.

Dressel L, Kochenderfer MJ, Barbulescu L, et al. (2017) Efficient
decision-theoretic target localization. In: SF Smith (ed)
Mausam and proceedings of the twenty-seventh interna-
tional conference on automated planning and scheduling,
ICAPS 2017, Pittsburgh, PA, 18–23 June 2017, 70–78.
AAAI Press.

Egorov M, Sunberg ZN, Balaban E, et al. (2017) Pomdps. jl: a
framework for sequential decision making under uncer-
tainty. Journal of Machine Learning Research 18(1):
831–835.

Elimelech K and Indelman V (2022) Simplified decision making in
the belief space using belief sparsification. The International
Journal of Robotics Research 41(5): 470–496.

Farhi EI and Indelman V (2019) iX-BSP: belief space planning
through incremental expectation. In: IEEE Intl. Conf. on
robotics and automation (ICRA), Montreal, QC, 20–24 May
2019.

Farhi E and Indelman V (2021) ix-bsp: incremental belief space
planning.ArXiv Preprint arXiv:2102.09539.

Fehr M, Buffet O, Thomas V, et al. (2018) rho-pomdps have
lipschitz-continuous epsilon-optimal value functions. In: S
Bengio, H Wallach, H Larochelle, et al. (eds) Advances in
Neural Information Processing Systems. Glasgow, Scotland:
Curran Associates, Inc, 6933–6943.

Fischer J and Tas OS (2020) Information particle filter tree: an
online algorithm for pomdps with belief-based rewards
on continuous domains. In: International conference on
machine learning (ICML), Vienna, Austria, 12–18 July
2020.

Garg NP, Hsu D and Lee WS (2019) Despot-α: online pomdp
planning with large state and observation spaces. In:
Robotics: science and systems (RSS), Freiburg im
Breisgau, Germany, 22–26 June 2019.

Hoerger M and Kurniawati H (2021) An on-line pomdp solver for
continuous observation spaces. In: IEEE Intl. Conf. on ro-
botics and automation (ICRA), Xi’an, China, 30 May–5 June
2021, 7643–7649. IEEE.

Hoerger M, Kurniawati H and Elfes A (2019) Multilevel monte-
carlo for solving pomdps online. In: Proc. international
symposium on robotics research (ISRR), Hanoi, Vietnam,
6–10 October 2019.

Hoerger M, Kurniawati H, Bandyopadhyay T, et al. (2020) Lin-
earization in motion planning under uncertainty. In: Algo-
rithmic Foundations of Robotics XII: Proceedings of the
Twelfth Workshop on the Algorithmic Foundations of Ro-
botics. Berlin, Germany: Springer, 272–287.

Hollinger GA and Sukhatme GS (2014) Sampling-based robotic
information gathering algorithms. The International Journal
of Robotics Research 33: 1271–1287.

Indelman V, Carlone L and Dellaert F (2015) Planning in the
continuous domain: a generalized belief space approach
for autonomous navigation in unknown environments.
The International Journal of Robotics Research 34(7):
849–882.

Kearns M, Mansour Y and Ng AY (2002) A sparse sampling
algorithm for near-optimal planning in large markov decision
processes. Machine Learning 49(2): 193–208.

Kitanov A and Indelman V (2024) Topological belief space
planning for active slam with pairwise Gaussian poten-
tials and performance guarantees. The International
Journal of Robotics Research 43(1): 69–97. DOI: 10.1177/
02783649231204898.

34 The International Journal of Robotics Research 0(0)

https://orcid.org/0000-0002-6316-0998
https://orcid.org/0000-0002-6316-0998
https://doi.org/10.1109/ICIF.2010.5712013
https://doi.org/10.1177/02783649231204898
https://doi.org/10.1177/02783649231204898


Kochenderfer M, Wheeler T and Wray K (2022) Algorithms for
Decision Making. Cambridge, MA: MIT Press.
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Appendix

Proof for Theorem 1

To shorten the notations we prove the theorem for value
function under arbitrary policy. Note that by substituting the
policy π(l)+ by fπlðblÞ, πðlþ1Þþ* g, where al= πl(bl) we always
can obtain action-value function.Without loosing generality
assume the resimplification hits an arbitrary belief action
node. The new upper bound will be

bV ðbl,πlþÞþ 1

M

0@Δ
sþ1ðb,a,b0Þ�Δ

sðb,a,b0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≤0

1A≤ bV ðbl,πlþÞ:

(67)

The new lower bound will be
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bV ðbl, πlþÞ � 1

M

 
Δsþ1ðb, a, b0Þ � Δsðb, a, b0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≤0

!
≥ bV ðbl, πlþÞ, (68)

where M ¼ ndz depending on the depth d of resimplified
reward bound. Moreover if the inequalities involv-
ing increments are strict Δ

sðb, a, b0 Þ>Δsþ1ðb, a, b0 Þ
and Δsðb, aÞ>Δsþ1ðb, a, b0 Þ also the retracting the bounds
over Value function inequalities are strict. In case of
MCTS, we have that M = N(ha)/N(h0), where history ha
corresponds to bland action a, and h0 corresponds to b0.

Proof of Lemma 1

Recall that the bounds ρ, ρ of belief nodes and “weakest
link” rollout nodes are refined when the inequality (51) is
encountered.

Assume in contradiction that the resimplification
strategy does not promote any reward level and G(ha) >
0. This means that G(ha)/d > 0 and for all reward bounds
the inequality γd�d

0 � ðρ� ρÞ < 1=dGðhaÞ. This is not
possible since G(ha)/d is the mean gap with respect to
simulations of MCT and the depth of the belief tree,
multiplied by the appropriate discount factor, over
all the nodes that are the descendants to ha. See
equation (33).

Proof of Lemma 2

Observe that

UCBðhaÞ � UCB ðhaÞ ¼ bQðhaÞ � bQ ðhaÞ: (69)

We already proved the desired for bQðhaÞ, bQ ðhaÞ in

Theorem 1. Using the convergence bQ ð�Þ ¼ bQð�Þ ¼ bQð�Þ we
obtain

bQ ð�Þ þ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
¼ bQð�Þ þ c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
¼ bQð�Þ þ c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNðhÞÞ=NðhaÞ

p
: (70)

The proof is completed.

Proof of Theorem 2

We provide proof by induction on the belief tree
structure.

Base. Consider an initial given belief node b0. No
actions have been taken and no observations have been

made. Thus, both the PFT tree and the SITH-PFT tree
contain a single identical belief node, and the claim
holds.

Induction hypothesis. Assume we are given two iden-
tical trees with n nodes, generated by PFT and SITH-PFT.
The trees uphold the terms of Definition 2.

Induction step. Assume in contradiction that different
nodes were added to the trees in the next simulation (ex-
panding the belief tree by one belief node by definition).
Thus, we got different trees.

Two scenarios are possible:

Case 1: The same action-observation sequence a0, z1, a1,
z2…amwas chosen in both trees, but different nodes were
added.

Case 2: Different action-observation sequences were
chosen for both trees, and thus, we got different trees
structure.

Since the Induction hypothesis holds, the last action am
was taken from the same node denoted h0 shared and
identical to both trees. Next, the same observation model is
sampled for a new observation, and a new belief node is
added with a rollout emanating from it. The new belief
nodes and the rollout are identical for both trees since both
algorithms use the same randomization seed and observa-
tion and motion models. Case 2 must be true since we
showed Case 1 is false. There are two possible scenarios
such that different action-observation sequences were
chosen:

Case 2.1. At some point in the actions-observations se-
quence, different observations zi, zi0 were chosen.

Case 2.2. At some point in the actions-observations se-
quence, PFT chose action a† while SITH-PFT chose a
different action, ~a, or got stuck without picking any
action.

Case 2.1 is not possible since if new observations were
made, they are the same one by reasons contradicting Case
1. If we draw existing observations (choose some obser-
vation branch down the tree) the same observations are
drawn since they are drawn with the same random seed and
from the same observations “pool.” It is the same “pool”
since the Induction hypothesis holds. Case 2.2 must be true
since we showed Case 2.1 is false, that is, when both al-
gorithms are at the identical node denoted as h PFT chooses
action a†, while SITH-PFT chooses a different action, ~a, or
even got stuck without picking any action. Specifically, PFT
chooses action a† ¼ argmax

a
UCB and SITH-PFT’s candidate

action is ~a ¼ argmax
a2A

UCB ðhaÞ. Three different scenarios are
possible:
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Case 2.2.1. The UCB, UCB bounds over h~a were tight
enough and ~a was chosen such that a† ≠ ~a.

Case 2.2.2. SITH-PFT is stuck in an infinite loop. It can
happen if the UCB, UCB bounds over h~a, and at least one
of its sibling nodes ha, are not tight enough. However, all
tree nodes are at the maximal simplification level. Hence,
resimplification is triggered over and over without it
changing anything.

Case 2.2.1 is not possible as the bounds are analytical
(always true) and converge to the actual reward�
UCB ¼ UCB ¼ UCB

�
for the maximal simplification

level. Case 2.2.2 is not possible. If the bounds are not
close enough to make a decision, resimplification is
triggered. Each time some ha node - sibling to h~a and
maybe even h~a itself is chosen in SelectBest to
over-go resimplification. According to Lemmas 1 and 2,
after some finite number of iterations for all of the
sibling ha nodes (including h~a) it holds UCB ðhaÞ ¼
UCBðhaÞ ¼ UCBðhaÞ and some action can be picked. If
different actions have identical values we choose one by
the same rule UCB picks actions with identical values
(e.g. lower index/random). Since Case 2.2.2 is false,
after some finite number of resimplification iterations,
SITH-PFT will stop with bounds sufficient enough to
make a decision; as Case 2.2.1 is false it holds that
a† ¼ ~a. Thus we get a contradiction and the proof is
complete.

Proof of Theorem 3

Since same tree is built according to Theorem 2, the only
modification is the final criteria at the end of the planning
session at the root of the tree: a* ¼ argmax

a
QðhaÞ. Note

we can set the exploration constant of UCB to c = 0 and
we get that UCB is just the Q function. Thus if the bounds
are not tight enough at the root to decide on an action,
resimplification will be repeatedly called until SITH-PFT
can make a decision. The action will be identical to the
one chosen by UCB at PFT from similar arguments in the
proof of Theorem 2. Note that additional final criteria for
action selection could be introduced, but it would not
matter as tree consistency is kept according to Theorem
2 and the bounds converge to the immediate rewards and
Q estimations.

Proof for Theorem 4

Let us first prove that uþ bH ≥ 0. It holds

uþ bH ¼
X
iÏAs

kþ1

wi
kþ1 � log m � PO zkþ1

��xikþ1

� �	 
þ
X
i2As

kþ1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
�

Xnx
i¼1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
¼

:

(71)

The equation (71) equals toX
iÏAs

kþ1

wi
kþ1 � log m � PO zkþ1

��xikþ1

� �	 
�
X
iÏAs

kþ1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" # :
Fix arbitrary index iÏAs

kþ1. The log is monotonically
increasing function so it is left to prove that

mPO zkþ1

��xikþ1

� �
≥PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k :

If PO zkþ1jxikþ1

� � ¼ 0, we finished. Assume
PO zkþ1jxikþ1

� �
≠ 0. Recalling the definition max

x0
x, a

PT x0jx, að Þ,
it holds that

PO zkþ1

��xikþ1

� �Xnx
j¼1

max
xkþ1

xk , ak

PT xkþ1jxk , akð Þw j
k

≥ PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k : (72)

We reached the desired result. Now let us show the
second partlþ bH≤0. Observe, that

0 ≥lþ bH ¼Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �X
j2As

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35
�
Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" # :

(73)

Select arbitrary index i. We shall prove that

log PO zkþ1

��xikþ1

� �X
j2As

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35
�log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
≤ 0

:
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Again use that log is monotonically increasing and as-
sume that PO zkþ1jxikþ1

� �
≠ 0. We have thatX

j2As
k

PT xikþ1

��xjk , ak� �
wj

k �
Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

¼ �
X
jÏAs

k

PT xikþ1

��xjk , ak� �
wj

k ≤ 0
: (74)

Proof for Theorem 5

We first prove that

Δ
sðb, a, b0Þ ≥Δsþ1ðb, a, b0Þ ≥ 0: (75)

Recall that from the previous proof equation (71)

Δ
s
b, a, b0ð Þ ¼

X
iÏAs

kþ1

wi
kþ1 log m � PO zkþ1

��xikþ1

� �	 

�
X
iÏAs

kþ1

wi
kþ1 log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
:

(76)

Suppose we promote the simplification level. Without
loss of generality assume that Asþ1

kþ1 ¼ As
kþ1[fqg. From the

above we conclude that qÏAs
kþ1

Δ
sþ1

b, a, b0ð Þ ¼ Δ
s
b, a, b0ð Þ

�wq
kþ1ðlog m � PO zkþ1jxqkþ1

� �	 

� log PO zkþ1jxqkþ1

� �Xnx
j¼1

PT xqkþ1

��x j
k , ak

� �
w j

k

" #!
:

(77)

It is left to prove that

m � PO zkþ1jxqkþ1

� �
≥PO zkþ1jxqkþ1

� �Xnx
j¼1

PT xqkþ1

��x j
k , ak

� �
w j

k

: (78)

We already done that in previous theorem. Now we prove
the second part

Δsðb, a, b0Þ ≥Δsþ1ðb, a, b0Þ ≥ 0: (79)

The next equation is the minus equation (74)

Δs b, a, b’
� �

¼
Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #

�
Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �X
j2As

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35:
(80)

Assume again without loosing generality that
Asþ1
k ¼ As

k[fqg. In that case

Δsðb, a, b0Þ � Δsþ1ðb, a, b0Þ ¼ (81)

�
Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �X
j2As

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35
(82)

þ
Xnx
i¼1

wi
kþ1 log PO zkþ1

��xikþ1

� �X
j2Asþ1

k

PT xikþ1

��x j
k , ak

� �
w j

k

24 35:
(83)

Select arbitrary index i. We got back to end to previous
theorem.Note that by definition the bounds are convergent since
we are using all the particles. To see it explicitly suppose that
fiÏAs

kþ1g ¼ ∅ and fiÏAs
kg ¼ ∅. We have that

Δ
sðb, a, b0Þ ¼ Δsðb, a, b0Þ ¼ 0: (84)

This concludes the proof.

Bounds time complexity analysis

We turn to analyze the time complexity of our method
using the chosen bounds (57) and (58). We assume the
significant bottleneck is querying the motion PT ðx0jx, aÞ and
observation PO zjxð Þ models. Assume the belief is ap-
proximated by a set of nx weighted particles,

b ¼ fxi,wignxi¼1: (85)

Consider the Boers et al. (2010) differential entropy
approximation for belief at time k + 1,

bH bk , ak , zkþ1, bkþ1ð Þblog
i¼1

PZ zkþ1

��xikþ1

� �
wi

k

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

að Þ

þ (86)

Xnx
i¼1

wi
kþ1 � log PO zkþ1

��xikþ1

� �Xnx
j¼1

PT xikþ1

��x j
k , ak

� �
w j

k

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bð Þ

:

(87)

Denote the time to query the observation and motion
models a single time as tobs and tmot, respectively. It is clear
from (85), (86) (term a) and, (87) (term b) that:

"b as in ð86ÞΘ
�bHðbÞ

�
¼ Θ

�
nx � tobs þ n2x � tmot

�
: (88)

Since we share calculation between the bounds, the
bounds’ time complexity, for some level of simplification s, is:

Θðls þ usÞ ¼ Θ
�
nx � tobs þ nsx � nx � tmot

�
, (89)
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where nsx is the size of the particles subset that is currently
used for the bounds calculations, for example nsx ¼ jAsj (As

is as in (57) and (58)) andls, us denotes the immediate upper
and lower bound using simplification level s. Further, we
remind the simplification levels are discrete, finite, and satisfy

s2f1, 2,…, nmaxg,ls¼nmax ¼ �bH ¼ us¼nmax : (90)

Now, assume we wish to tightenls, us and move from
simplification level s to s + 1. Since the bounds are updated
incrementally (as introduced by Sztyglic and Indelman
(2022)), when moving from simplification level s to s +
1 the only additional data we are missing are the new values
of the observation and motion models for the newly added
particles. Thus, we get that the time complexity of moving
from one simplification level to another is

Θ
�
ls þ us →lsþ1 þ usþ1

� ¼ Θ
��
nsþ1
x � nsx

� � nx � tmot�,
(91)

whereΘ (ls + us→ls+1 + us+1) denotes the time complexity
of updating the bounds from one simplification level to the
following one. Note the first term from (89), nx�tobs, is not
present in (91). This term has nothing to do with

simplification level s and it is calculated linearly over all
particles nx. Thus, it is calculated once at the beginning
(initial/lowest simplification level).

We can now deduce using (89) and (91)

Θ
�
lsþ1 þ usþ1

� ¼
Θðls þ usÞ þ Θ

�
ls þ us →lsþ1 þ usþ1

�
:

(92)

Finally, using (88)–(92), we come to the conclusion that
if at the end of a planning session, a node’s b simplification
level was 1 ≤ s ≤ nmax than the time complexity saved for
that node is

Θ
��
nx � nsx

� � nx � tmot�: (93)

This makes perfect sense since if we had to resimplify
all the way to the maximal level we get s ¼ nmax0
ns¼nmax
x ¼ nx and by substituting nsx ¼ nx in (93) we saved

no time at all.
To conclude, the total speedup of the algorithm is de-

pendent on how many belief nodes’ bounds were not re-
simplified to the maximal level. The more nodes we had at
the end of a planning session with lower simplification
levels, the more speedup we get according to (93).
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