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Abstract

Partially Observable Markov Decision Process (POMDP) planning is one of the fun-
damental problems an agent must solve when operating with imperfect information
about its environment, dynamics, and measurements. The agent maintains a probability
density function (belief) over its true state which is unknown. A motion model describes
to probability of moving from one state to another and an observation model describes
the probability of obtaining measurements from a given state. In planning, the agent is
set to find the optimal action policy such that a certain reward function is maximized.

The rapid exponential growth of posterior beliefs makes the planning problem
NP-complete. We present a novel approach of simplification to the POMDP problem,
specifically by partitioning the underlying observation space. Using the partitioned
observation space, we show the relation to the original problem by deriving analytical
bounds on the expected entropy that hold for all families of belief distributions. We
show that these bounds are adaptive and that they converge to the original solution.
We show one possible realization of this general framework, specifically for Gaussian
distributions, that speeds up the planning time by a factor of 4 with the same optimal
action, or with bounds over the loss.

We later extend this concept to introduce a partition hierarchy, where each parti-
tioned set is divided further into children sets. This hierarchy is encoded in a partition
tree, which opens the door for a family of efficient implementations for the expected
reward bounds.

Finally, we demonstrate this new concept in an active, high-dimensional, Simultane-
ous Localization and Mapping (SLAM) scenario, both simulated and real. We show
substantially speed-up compared to other State of the Art (SOTA) methods.
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Abbreviations and Notations

BSP : Belief Space Planning
POMDP : Partially Observable Markov Decision Process
X : State space
A : Action space
T : Probabilistic transition model
r(·) : Reward function (over state or belief)
ρ(·) : Reward function over the belief
Z : Observation space
O : Probabilistic observation model
xk : State at time index k
ak : Action at time index k
zk : Observation at time index k
hk : History of all actions observations and prior belief up to time k
h−k : Similar to hk but not including observations from time step k

b[x] : Belief - Posterior distribution over the state x
bk : Belief at time index k given hk

b−k : Belief at time index k given h−k
b0 : Initial/Prior belief (time index k = 0)
η : Normalization term
�k:k+L : Sequence from time index k to time index k + L

πk+ : Policy sequence from time index k to the predefined horizon
β : Data association vector
X
βi(j)
i : Involved state in the jth measurement, at the ith time step

X inv : Set of all involved state variables for a given time step

3



N (·, ·) : Gaussian distribution
Σ : Covariance matrix
Λ : Information matrix
Wk+1 : Noise covariance matrix of the motion model
Vk+1 : Noise covariance matrix of the observation model
F : Jacobian of the motion function
H : Jacobian of the observation function
Ãk : Collective jacobian for time index k
Ak+i : Collective jacobian for time indices k : k + i

Z : Multivariate random observations vector
Zi : Component of Z, defined by observation model
Zs : Partition of Z
Z s̄ : Partition of Z, complementary to Zs

Zni|mj : nth node at ith partitioning level, descendant of mth node at jth partitioning level
J(bk, πk+) : Objective (Value) function over the belief at time k given a policy
J?(bk) : Optimal objective function
π? : Optimal Policy
V π(bk) : Value (objective) function over the belief at time k given a policy
Qπ(bk, ak) : Belief-Action value function given a policy
γ : Discount factor
H(·) : Differential Entropy
LB, UB : Lower and upper bounds over the reward functions
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Chapter 1

Introduction

1.1 Planning under uncertainty

Autonomous agents must operate with imperfect information about their environments,
dynamics, and measurements. Belief Space Planning (BSP) is one of the fundamental
problems one must solve for these autonomous agents to interact with the environment
successfully. The modeling of the problem is such that we maintain a probability density
function over the true state of the agent, which is unknown. We then reason about the
evolution of this distribution in the future for different actions and possible observations.
BSP uses two main models to evolve the distribution over the state: motion and
measurement models. The two models often have very distinctive and different effects.
The motion model introduces noise by state uncertainty. The measurement model on
the other hand, although noisy by itself, usually provides valuable information about the
agent’s pose and the map of the environment, which in turn reduces state uncertainty.

One advantage of using the BSP formulation is the capacity to incorporate belief
dependent reward functions, particularly, information-theoretic rewards, which is im-
portant for tasks such as; search and rescue, informative path planning and active
classification. The ability to measure belief uncertainty and reduce it is key in solving
such tasks, however, it comes with added computational complexity, especially when the
observation space is high-dimensional. In a typical active Simultaneous Localization And
Mapping (SLAM) setting, future observations may include hundreds or even thousands
of landmarks. Moreover, in a visual-based POMDP setting, even a single observation
can be high-dimensional when the measurement model uses raw image inputs.

Solving the corresponding POMDP problem involves reasoning about different
actions or policies, and for each, account for different possible observations. This leads
to an exponential growth of the posterior beliefs, which in turn makes the planning
problem NP complete [18].

A possible approach to addressing this issue is to simplify the planning problem. One
specific simplification method of interest, is forming analytical bounds on the expected
reward and using the bounds to decide on the optimal action. Given that the bounds
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Figure 1.1: A prior factor graph is shown in the gray blob, considering an action that leads to the factor f3.
The posterior graph includes the future measurements Z1, Z2, Z3, the addition to the posterior factor graph
is shown in yellow. Different sets of measurements are assigned different colors which represents one possible
partitioning, these sets are used to bound the expected Entropy of the entire posterior graph.

are easier to calculate than the expected reward, planning becomes more efficient.
In this work, we present a novel approach of simplification of the POMDP planning

problem, specifically to the multivariate observation space. When the observation
space is high-dimensional, the calculation of information-theoretic rewards becomes
expensive. We show that by partitioning the random variables that model future
possible measurements into sets, this calculation becomes more efficient. To illustrate,
Consider a factor graph representation for a given belief at planning time t = 2, as in
Fig 1.1. In this toy example, we sketch out how in planning, a specific action leads to 3
new random observations involving different landmarks. One can think of a simplified
setting, that takes into account only a subset of these random observations. This
subset of observations is a partition of the multivariate random variable representing
the 3 original observations. This multivariate random variable defines in this case the
observation space for this specific time step, such that, its partitioning is a partition
of the observation space. Similarly, in visual based POMDP setting, a partition of the
observation space may correspond to a partition of the random variables representing
future image pixels into subsets.

Using the partitioned observations, we show the relation to the original problem by
deriving analytical bounds on the expected entropy that hold for all families of belief
distributions. We present a partition tree that allows greater efficiency as we go down
its hierarchy. We show that these bounds are adaptive, computationally cheaper, and
that they converge to the original solution. Moreover, we show one possible realization
of this general framework for an active SLAM scenario involving multivariate Gaussian
distributions and present a hierarchy of efficient implementations. The speed up ranges
from a factor of 4 for the least efficient one, and a speed up from a cube to linear time
for the most efficient one.

6



1.2 Related Work

1.2.1 POMDP

POMDP has been widely used as a model for decision-making under uncertainty, despite
the fact that obtaining the optimal solution for the planning problem is known to be
intractable [18] [8]. While the standard POMDP is formulated with state dependent
reward functions, it is possible to extend this framework to include belief dependent
reward as well; examples for such frameworks are ρ-POMDP proposed by [1] and BSP
by [19] and [27]. This extension is essential for tasks such as terrain monitoring [20],
information gathering [25], and active SLAM [13]. Various approximation methods to
solving POMDPs were proposed, however even approximating a solution is challenging
since most real-world problems incorporate continuous spaces. [24] combined a sparse
tree representation and Monte Carlo Tree Search to approximate near-optimal policies,
however, it is not suitable for information-theoretic rewards. A particle-based approach
to represent the belief was taken by [26], proposing two different algorithms, one of them
catering specifically to belief-dependent rewards. An abstraction of the observation
model was studied in [2], allowing a speed-up compared with other approximation
methods.

Early works have identified the importance of quantifying the information contained
in observations. The quantitative value of possible measurements is presented in [4],
in an effort to incorporate this value measure in inference. While it did allow for
better selection of measurements using heuristics, it did not provide any optimality
guarantees. Using the sub-modularity of mutual information, [16] formulated a near-
optimal algorithm for sensor placement, which can alternatively cast as a myopic
planning algorithm, however it was limited to Gaussian processes.

1.2.2 Inference

Probabilistic graphical models have gained substantial traction in the world of inference,
one of the most popular one was introduced by [10] and was later extended at [9]. The
latter utilized the structure of SLAM problems to be encoded in a Bayes-tree, which
allowed for an incremental update of the posterior belief with incoming information.
The computational complexity for big SLAM problems is still very high, and there
have been many works that have tried to reduce the computational complexity of
inference, considering probabilistic graphical models. Some of the more popular SLAM
methods using graphical models for were introduced by [12] presented a graph-theoretic
approach to the problem of designing sparse reliable pose-graph SLAM in the context
of measurement selection, both [3] and [17] showed methods for compressing a factor
graph, and [28] reviewed how feature selection based on some defined scores can improve
localization and data association, proposing a greedy algorithm that relies sub-modularity
as well.

7



1.2.3 Simplification

Other works have studied simplification method for planning problems; [23] presented a
heuristic-based bounds on the value function, to guide local updates; a belief compression
method was proposed in [21], but it lacked guarantees on planning performance. Several
works have put forward simplified methods while providing guarantees; For a Gaussian
high-dimensional state, [6] proposed a transformation of the original information space
to a conservative one, by decoupling all state variables. More general approaches were
studied in [5] and [29], the former outlined a theoretical framework for simplification in
general while demonstrating said framework for a sparse approximation of the initial
belief, while the latter studied a simplification in risk averse planning, while considering
a distributional perspective. However, none of these works considered a simplification
to the observation space itself.

1.3 Contributions

We put forth a novel concept of observation space partitioning that is used to speed up
POMDP planning with continuous or discrete spaces. We lay the theoretical foundations
for this concept by outlining the partitioning in the common case where observations
are modeled as a multivariate random variable. For general belief distributions, we show
bounds on the expected reward which is differential entropy over the state. We show
that these bounds; are computationally more efficient, can be adaptively changed, and
converge to the actual reward. In addition, we show a specific form for these bounds
when the belief is normally distributed.

Further more, we double down on the concept of observation space partitioning by
introducing a partition tree, which encodes a hierarchy of partitions. We show that this
hierarchy too can be used to form bounds on the expected reward and we present a
hierarchy of efficient implementations for both general and Gaussians beliefs.

Finally, we demonstrate the speed up that can be obtained by this method. We
show a significant performance gains for a simulated active SLAM scenario as well as
on an actual robot using visual odometery for planning.
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Chapter 2

Background

2.1 ρ-POMDP

A discrete-time POMDP models an agent decision process by outlining the dynamics
of the interaction between the agent and its environment. It is defined as the tuple
(X ,A,Z, T,O,R), consisting of a state, action and observation spaces, a transition and
observation models, and a reward function. We assume a Markovian transition model,
i.e. T (X, a,X ′) = P(X ′|X, a), and that each measurement is conditionally independent
given the state, i.e. O(X, z) = P(z|X).

Since the agent only observes the environment through noisy measurements, it must
maintain a probability distribution over the true state; we denote this distribution as a
belief. The belief and the propagated belief, are defined as, respectively:

bk , b[Xk] = P(Xk|z0:k, a0:k−1) , P(Xk|hk) (2.1)

b−k , b[X
−
k ] = P(Xk|z0:k−1, a0:k−1) , P(Xk|h−k ). (2.2)

At each discrete time step this belief is updated with new motion and observation
information according to Bayes’ rule. Given an action ak and observation zk+1 the belief
is updated according to:

bk+1 = η

∫
Xk

P(Xk+1|Xk, ak)P(zk+1|Xk+1)bkdXk,

where η is some normalization factor. A policy π : B 7→ A maps belief states to actions.
Usually, only state dependent reward are considered in the POMDP setting. BSP and
later on ρ-POMDP, extend the POMDP model to include belief dependent rewards.
For some finite planning horizon ` ∈ [1, L], the value of a policy π, is defined as the
expected cumulative reward received by following π with initial belief bk:

V π(bk) = R(bk, πk(bk)) + E
zk+1:k+`

 k+∑̀
i=k+1

R(bi, πi(bi))

 . (2.3)

9



Solving a POMDP is equivalent to finding the optimal policy π∗ such that the value
function is maximized.

In this work, we consider information-theoretic rewards, specifically, differential
Entropy:

R(b, π(b)) , −H(X) ≡ E
X∼b

(log b[X]) , (2.4)

where X is a random variable distributed according to b[X].

If both X,Z, are treated as random variables, the expected reward becomes the
conditional entropy of these random variables, i.e.

E
Z

[R(b)] = −H(X | Z) = −E
Z

[H(X | Z = z)]. (2.5)

Thus, the expected reward at each ith look ahead step, can be equivalently written as:

E
Zk+1:i

[R(bi, ai−1)]=−H(Xi|Zk+1:i), (2.6)

where the future observations are drawn from the distribution P(Zk+1:i | bk, π) and
i ∈ [k + 1, k + `].

2.2 Active SLAM

Let xk be the state of the agent at time k, and Xk be the joint state of the agent’s
trajectory and environment, e.g. landmarks, up to, and including time k. We define
zk , {z0

k, ..., z
m
k } as the set of all measurements observed at time k, and z0:k , {z0, ..., zk}

as the set of all measurements until time k. Similarly we define a0:k , {a0, ..., ak} as
the set of all actions until time k. Assuming static landmarks, the motion of the agent,
and the observations it receives are modeled as:

xk+1 = f(xk, ak) + wk , zk = h(Xk) + vk, (2.7)

where f and h are some deterministic functions, and wk and vk are their process noise,
respectively.

We denote the Data Association vector at time k as βk. The dimensionality of βk, is
equal to Xk excluding xk, and is composed of binary entries, where each entry indicates
whether the corresponding state was involved in a measurement at that given time
step. We assume that each measurement involves the current state xi, such that β
does not account for it. For example, at time step k = 3, for a prior state vector of
dimensionality 5 and a measurement involving the third and fifth components of the
state (e.g. observation of two landmarks): β3 =

(
0 0 1 0 1

)T
.

Alternatively, we can define the objective function using the data association vector:

10



J(bk, πk(bk)) , Ẽ
β

 Ẽ
Z|β̃

 k+∑̀
i=k+1

R(bi, πi(bi))

 , (2.8)

where β̃ , βk+1:k+` and Z̃ , Zk+1:k+`. In this scenario, β̃ dictates the number of
measurements and the states involved, while Z̃ encodes the information about the
distribution of those measurements. Combining Bayes rule and the properties of the
models, we can factorize a posterior belief b[Xk+`] given β̃, into prior belief, motion and
measurement factors:

b[Xk+`] ∝ b[Xk]
k+∏̀
i=k+1

P(xi|xi−1, ai−1)P(zi | Xi, βi), (2.9)

where

P(zi | Xi, βi) =
mi(βi)∏
j=1

P(zi,j |xi, Xβi(j)
i ), (2.10)

where mi is the number of measurements at the ith time step, and X
βi(j)
i represents

the involved state in the jth measurement, at the ith time step, both as a function of
βi. We denote the set of all involved state variables for a given time step as:

X inv
k = {Xβk(j)

k |j ∈ J }, (2.11)

where J = {1, 2, ..,mk(βk)}.
When the models in (2.7) are linear, with zero-mean Gaussian noise, i.e. wk ∼ N (0,Wk)
and vk ∼ N (0, Vk), and the prior belief is Gaussian, it can be shown that the posterior
belief is also Gaussian. In such case, the Entropy of the posterior belief can be expressed
as:

H(X) = 1
2(ln |Σ|+N ln(2πe)). (2.12)

where b[X] ∼ N (µ,Σ), with mean µ ∈ RN and covariance matrix Σ ∈ RN×N . The
inverse of the covariance is known as the information matrix, such that Σ−1

k = Λk.
At each given time step, the information matrix of a posterior belief bk+1, can be
decomposed into:

Λk+1 = ΛAug
k + F TW−1

k+1F +HTV −1
k+1H, (2.13)

where ΛAug
k is the prior information matrix of bk, augmented with zeros to accommo-

date new states, Wk+1 and Vk+1 are the noise covariance matrices of the motion and
measurement models respectively, and F , ∇f and H , ∇h are the Jacobians of the
motion and measurement functions respectively. The stacked matrices of F TW−1

k+1F

and HTV −1
k+1H are denoted as the collective Jacobian Ãk, see [7] for details.

11



If we combine the collective Jacobians of consecutive time steps, i.e. Ãk+1, Ãk+2, . . . , Ãk+i

we get the following update rule:

Λk+i = ΛAug
k + ÃTk+1:k+i · Ãk+1:k+i, (2.14)

where Ãk+1:k+i is the collective Jacobian of the motion and measurement factors of
(2.9), from the time step k + 1 until k + i.

For the sake of readability, we drop the notation of the history hi from now on, but
assume all distributions of a given time step are conditioned on the history available
at the beginning of the planning session. We denote the collective Jacobian of a given
horizon Ãk+1:k+i simply as Ak+i.

2.3 Planning using reward bounds

In this section we show how to use measurement selection to simplify the BSP problem.
In order to choose the optimal action from a pool of candidate actions, we need to
evaluate the reward function for each action. Instead, one can evaluate bounds on the
expected reward function as a proxy,

LBi ≤ E
Zk:i

(R(bi)) ≤ UBi. (2.15)

In the same manner we can bound the objective function by summing up the bounds
over the reward function for each of the time steps,

k+∑̀
i=k+1

LBi ≤ J (bk, ak:k+`−1) ≤
k+∑̀
i=k+1

UBi. (2.16)

!! !" !! !"
! !

Figure 2.1: The expected reward is highlighted with the bounds. On the left we can select the optimal action
based on the bounds alone, on the right the worst-case loss is shaded in gray.
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Under the assumption that these bounds can be efficiently calculated, it is easier to
select actions based on the reward bounds; see illustration in Fig. 2.1. We can think
about two distinct actions, a1 and a2 . For each action we calculate the expected reward
bounds and face two cases: in the first, the bounds do no overlap and we can select the
optimal action, in the second, the bounds do overlap and we choose between tightening
the bounds such that they do not overlap, or selecting an action while bounding the loss.
Previous works have developed such bounds considering various simplification methods,
as discussed in Section 1.2.

In this work, we put forward a fundamental simplification that applies to the
observation space itself. Specifically, we propose a partitioning of the observation space
and develop expected reward bounds that are a function of this partitioning.
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Chapter 3

Approach

3.1 Partitioning of Multivariate Observation Space

Consider a multivariate random variable Z that represents future observations and the
corresponding observation space Z. In general, Z can be represented by

Z = (Z1, Z2, . . . , Zm), (3.1)

where Zi is a random variable defined by a given measurement model, and m is the
number of such random variables. We can now partition Z into different subset of
components, for example, consider the partitioning Zs ∈ Zs and Z s̄ ∈ Z s̄, such that:

Zs = {Z1, Z2, . . . , Zn},

Z s̄ = {Zn+1, Zn+2, . . . , Zm},
(3.2)

where Z = Zs ∪ Z s̄, and their corresponding subspaces Z = Zs + Z s̄.
In the subsequent section, we derive bounds on the expected reward that are a function
of this partitioning, such that LB and UB from (2.15) become:

LBi(bi, Zsk:i, Z
s̄
k:i) (3.3)

UBi(bi, Zsk:i). (3.4)

The partitioning can be applied (but not limited) to two different observation spaces
—a raw measurement such as pixels in an image, or to a SLAM scenario where the mea-
surement model is defined by (2.7), and β dictates the dimension of the measurements,
e.g. number of observed landmarks considering a future camera pose.

Taking the former as a toy example, we apply partitioning to a raw image mea-
surement of size 20× 20 binary pixels. Each pixel is represented by a random variable
Zx,y ∈ {0, 1}, where x, y denote the pixel location on the sensor, and Z ∈ Z ⊆ (F2)400.
We must consider all of the different permutations for each of those pixels, 2400 in total,
which defines |Z| in this case. For example, if we partition Zs to represent the left
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half of the image, and Z s̄ to represent the right half, we need only to consider 2200

permutations for Zs, and another 2200 for Z s̄, 2201 in total.

Hierarchical Partitioning there can be higher levels of partitioning, breaking down
further a given measurement set into two sets. To encode this partitioning scheme
we index the partitioning depth, and the number of nodes at a given depth. Each
partitioned set is given a unique encoding denoted as Zni|mj , where n is the node number
at the ith partitioning level, and m is the node number at the parent partitioning level
j. We note this slight abuse of notation in regards to (3.2), but it should be clear from
the context, which notation is used. If two sets share a parent set, we consider them a
base subset and its compliment. For example, Z43|21 represents the 4th node of level 3,
where the parent set is the 2nd node of level 1. In this new notation, Zs, Z s̄ becomes
Z11|10 , Z21|10 or equivalently Z11|10 , Z 1̄1|10 . Overall, for Z ∈ Rm, it is possible to create
a partition hierarchy of depth log2m, as illustrated in Fig. 3.1.

⋱⋱ ⋱⋱ ⋱⋱

⋯
⋱⋱ ⋱

!#!|%!"# !&!|&/#!"#

!%$|%# !#$|%# !($|##
⋱⋱

!)$|##

!%!|%!"#

!%#|%% !##|%%
!

Figure 3.1: An Illustration of a possible partition tree. At each level of partitioning, we split a measurement
set into two. For Z ∈ Rm, the depth of the tree is d = log2 m.

3.2 Bounds on Expected Entropy

In this section we use measurement partitioning to derive information theoretic reward
bounds considering arbitrary distributions.

Lemma 3.2.1. The conditional Entropy can be factorized as:

H (X|Z) = H (Z|X) +H (X)−H (Z) . (3.5)

Proof. For two random variables that have a joint Entropy H(X,Z), we know that
conditioning on Z yields H(X,Z) = H(X|Z) + H(Z). Similarly, conditioning on X

yields H(X,Z) = H(Z|X) +H(X). Combining both equations and rearranging terms
we obtain the desired equality.
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There are three quantities we need to evaluate in (3.5); the Entropy of the likelihood
of a given measurement which is done via the measurement model, the prior Entropy
and finally, the Entropy of the measurement given the history. The prior Entropy is
common to all actions and can be calculate once, the rest of the terms involve future
measurement and we shall apply selection to these terms.

Lemma 3.2.2. Given two sets of expected measurements, the conditional Entropy can
be factorized as:

H(X|Z) = H(Zs|X) +H(Z s̄|X)−H(Zs, Z s̄) +H(X). (3.6)

Proof. Using (3.5), we can rewrite the conditional Entropy asH (X|Z) = H(Zs, Z s̄|X)−
H(Zs, Z s̄) + H(X). The measurements are independent given the state, such that
P
(
Zs, Z s̄|X

)
= P (Zs|X)P

(
Z s̄|X

)
. The Entropy of two independent random variables

is just the sum of individual Entropies such thatH
(
Zs, Z s̄|X

)
= H (Zs|X)+H

(
Z s̄|X

)
.

Having established what measurement partitioning looks like in (3.2), we can use it to
bound the expected reward. The following two Theorems present our main result.

Theorem 3.1. The conditional Entropy can be bounded from above by:

H(X|Z) ≤ UB , H (Zs|X) +H (X)−H (Zs) . (3.7)

Proof. It is not difficult to show that H (X|Zs)−H (X|Z) = I(X|Zs;Z \Zs). Recalling
that the mutual information between two random variables is always non-negative, we
get:

H (X|Z) ≤ H (X|Zs) . (3.8)

We denote this the conditioning argument, i.e. conditioning on a random variable
always reduces Entropy, and refer to it later. Using lemma 3.2.1 we get H (X|Zs) =
H (Zs|X) +H (X)−H (Zs).

Theorem 3.2. The conditional Entropy can be bounded from bellow by:

H(X|Z) ≥ LB , H(Zs | X) +H(Z s̄|X)−H(Zs)−H(Z s̄) +H(X). (3.9)

Proof. The joint Entropy of the measurements can be written asH
(
Zs, Z s̄

)
= H

(
Zs|Z s̄

)
+

H
(
Z s̄
)
. From the conditioning argument in (3.8), we get H

(
Zs|Z s̄

)
≤ H (Zs), such that

H
(
Zs, Z s̄

)
≤ H

(
Z s̄
)

+H (Zs). Rearranging the last inequality concludes the proof.

We can think of this lower bound from the perspective of mutual information:
the difference between the original quantity H

(
Zs, Z s̄

)
and the quantities H (Zs) and

H
(
Z s̄
)

is exactly I
(
Zs;Z s̄

)
, such that the lower bound double counts the mutual

information between the measurement sets, see Fig. 3.2.
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Figure 3.2: Visualizing the marginal Entropies of two measurement variables, the lower bound double counts
the overlapping region which is the mutual information between those variables.

The bounds in (3.9) and (3.7) have a beneficial form when the belief is non-parametric.
In such cases we do not have access to the underlying belief distribution and we resort
to approximation, usually by sampling. In such cases the only closed-form expressions
we have are for the motion and measurement models, so we use them for sampling.

On the other hand, for parametric beliefs, we have a closed form expression for
P(X|Z). In such cases it makes sense to rearrange the bounds as follows:

Corollary 3.3. The conditional Entropy can be bounded by:

LB = H(X|Zs) +H(X|Z s̄)−H(X), (3.10)

UB = H(X|Zs). (3.11)

This can be obtained directly from (3.7) and (3.9) using Lemma 3.2.1.

3.3 Bounds with Hierarchical Partitioning

In the previous section, we formed bounds based on partitioning of measurement sets,
by double counting the mutual information between said sets. This intuition applies to
the hierarchical partitioning from Section 3.1 as well, allowing us to create a hierarchical
notion of the bounds, starting with the lower bound. To formulate this idea we define a
new operator:

g(Zs, Z s̄) = H(X|Zs) +H(X|Z s̄)−H(X), (3.12)

where g(Z, ∅) = g(∅, Z) , H(X|Z)−H(X), and g(∅, ∅) , −H(X).
Using this operator, (3.10) can be expressed as LB = g(Zs, Z s̄). Given that measure-
ments sets can be hierarchically partitioned further we can formulate their bounds.
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Theorem 3.4. For the sets Zs, Z s̄, and their respective children Zs1 , Zs2 , Z s̄1 , Z s̄2 the
following holds:

g(Zs, Z s̄) ≥

g(Zs1 , Zs2) + g(∅, Z s̄) ≥

g(Zs1 , Zs2) + g(Z s̄1 , Z s̄2) + g(∅, ∅)

Proof. From (3.10) we know that

H(X|Z) ≥ H(X|Zs) +H(X|Z s̄)−H(X),

substituting H(X|Zs) instead of H(X|Z) yields

H(X|Zs) ≥ H(X|Zs1) +H(X|Zs2)−H(X),

which proves the first inequality. Doing the same for H(X|Z s̄) proves the second
inequality.

Each of the quantities in Theorem 3.4 is a lower bound on the expected reward by itself.
As for the upper bound, the Entropy of each of the child sets of a given set, is an upper
bound on the Entropy of that given parent set.

Theorem 3.5. For the set Zs, and its children Zs1 , Zs2 the following holds:

H(X|Zs) ≤ H(X|Zs1) ∧H(X|Zs) ≤ H(X|Zs2) (3.13)

Proof. This follows directly from the conditioning argument.

We can use the above theorems to perform further partitioning of the measurement
sets. Theorem 3.4 shows that we can mix different partition depths for the lower bound,
while Theorem 3.5 shows that any node in the partition tree is an upper bound, see
partition tree Fig. 3.3 for example.

⋱⋱ ⋱⋱ ⋱⋱
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Figure 3.3: Any combination of children nodes, that their union equals to the parent node, can make up a
lower bound on that parent node. Any child node at any depth can make up an upper bound on a parent node.
For instance,g(Z s̄1 , ∅) and g(Zs1 , Zs2 ) + g(∅, Z s̄) are upper and lower bound bound on g(Z, ∅), respectively.

We also note that we have the ability to adaptively change those bounds, by moving
between partitioning levels, as well as by moving measurements from one set to its
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compliment. In the next section we show the convergence of the bounds, so by adaptively
changing the bounds we also control how tight they are.

3.4 Analysis of the Bounds

In this section, we analyze the properties of the derived bounds. We look at the
convergence and monotonicity of the bounds, both as a function of the sets, for a
given partition depth, and as a function of the partition depth. We then examine the
computational complexity of obtaining the bounds.

3.4.1 Convergence

For a given partition depth of d ∈ [1, log2m], we show that the bounds converge to the
bounds of the parent depth, d − 1. In particular, when the partition depth is 1 the
bounds converge to the original expected reward. For Zs ∪ Z s̄ ⊆ Z, the upper bound
converges when we add variables to the set Zs, while the lower bound converges when
we remove variables from the set Z s̄ and add them to the set Zs. We show the proof
for the first partition depth, but it is valid for any arbitrary depth.

Theorem 3.6. If Zs → Z and Z s̄ → ∅, then g(Zs, Z s̄) − H(X) → H(X|Z) and
g(Zs)→ H(X|Z)

Proof. WLOG, assuming Zs ∈ Rn and Z s̄ ∈ Rm−n as in (3.2), we start with the
upper bound, UB = H(X|Zs). Using the conditioning argument, H(X|Zs ∪ {Zn+1}) ≤
H(X|Zs) where Zn+1 ⊆ Z s̄ but Zn+1 6⊂ Zs. We continue adding variables to the set Zs

in this way, until Zs∪{Zn+1}∪. . .∪{Zm} = Zs and H(X|Zs ∪ {Zn+1} ∪ . . . ∪ {Zm}) =
H(X|Z).
As for the lower bound: LB = H(X|Zs)+H(X|Z s̄)−H(X). We use the same argument,
while working in the opposite direction with Z s̄: H(X|Z s̄) ≤ H(X|Z s̄ \ {Zn+1}), where
Zn+1 ⊆ Z s̄. We continue removing variables from the set Z s̄ in this way until Z s̄ \
{Zn+1} \ . . . \ {Zm} = ∅ and H(X|∅) = H(X). Plugging into the expression for LB we
get H(X|Z) +H(X|∅)−H(X) = H(X|Z)

3.4.2 Monotonicity

Note that from the conditioning argument, we can see that UB monotonically converges
to the expected reward, or in different words, the Entropy is monotone in the size of
measurement set. This applies for both between different partitioning depth, and for a
given one. However, we cannot say the same about LB since it depends on the change
of both H(X|Zs) and H(X|Z s̄). We always move measurements from one set to the
other, such that these two quantities change in opposition to one another. We cannot
say a-priori what change is greater and thus cannot deduce monotonicity. In fact, it can
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be proven that this bound is non-monotone using the sub-modularity of the Entropy in
the measurements, but it is beyond the scope of this work.

3.4.3 Computational Complexity

It is only rational to use the bounds instead of the full calculation of the expected
reward function, if computing the bounds is cheaper computationally. We are now going
to compare these two calculations.

For general distributions, we can compare the calculation as a function of the
observation space size. The baseline calculation involves evaluating the following
quantities (omitting history and actions, see lemma 3.2.2):

H(Zs|X),H(Z s̄|X),H(X),H(Zs, Z s̄). (3.14)

Using the bounds we need to evaluate (see theorems 3.2 and 3.1):

H(Zs|X),H(Z s̄|X),H(Z s̄),H(Zs),H(X). (3.15)

Since that the prior Entropy is not a function of the action or expected measurements,
we can calculate it once for each planning session. Overall, the difference between the
the expected reward and the bounds boils down to the difference between the joint
versus the marginal Entropy of the measurements, i.e. H(Zs, Z s̄) versus H(Z s̄) and
H(Zs). The baseline calculation is:

H (Z) = −
∫
Zs

∫
Z s̄

P(Zs, Z s̄) logP(Zs, Z s̄)dZsdZ s̄. (3.16)

Assuming that the observation space is finite and countable, the cost of evaluating
the integral terms is a function of the random variables. Evaluating (3.16) is of the
order of O(|Zs||Z s̄|) , while evaluating the simplified terms H (Zs) ,H

(
Z s̄
)
, is of the

order of O(|Zs|+ |Z s̄|). Zs and Z s̄ are entirely defined by the measurement model, see
example on section 3.1

Note that, in practice we do not have access to the joint or marginal distribution
over the measurements, only the measurement model. Marginalization over the state
yields:

H (Z) =−
∫
Z

∫
X
P(Z,X) log

∫
X′

P(Z,X ′)dX ′dZdX (3.17)

=−
∫
Z

∫
X
P(Z|X)P(X) log

∫
X′

P(Z|X ′)P(X ′)dX ′dZdX (3.18)

The simplification is of the same factor, only now it is magnified by the state vector
size to the second power; O(|Zs||Z s̄||X 2|) for the baseline, and O((|Zs|+ |Z s̄|)|X 2|) for
the bounds.
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3.5 High Dimensional State

In this section we discuss what the measurement simplification looks like when the state
space is high dimensional. Specifically, we consider an active SLAM formulation as in
Section 2.2. Utilizing data association information from (2.9) and (2.11), we can further
simplify the bounds (3.7) and (3.9):

LB , H
(
Zs|X invs

)
+H

(
Z s̄|X invs̄

)
−H (Zs)−H

(
Z s̄
)

+H (X) , (3.19)

UB , H
(
Zs|X invs

)
+H (X)−H (Zs) , (3.20)

where X invs and X invs̄ , are the states involved in the random measurements Zs and Z s̄,
respectively, as determined by β.

3.6 Gaussian Belief

The bounds shown in the previous section, hold for general belief distributions. In this
section we develop a specific form of the bounds, considering Gaussian distributions
and a high-dimensional state in the context of active SLAM.
In the case of Gaussian distributions, we can replace the Entropy term in (2.5) for its
closed form expression, combining (2.12) and (2.14). For a lookahead step i ∈ [k+1, k+`]
the expected Entropy can be expressed as:

E
Zk+1:i

[H(Xi|hi)] = C − 1
2 E
Zk+1:i

[ln
∣∣∣ΛAug
k +Ai(z)TAi(z)

∣∣∣], (3.21)

where Ai(z) = Ãi(zk+1:i), is the collective Jacobian for the entire planning horizon as a
function of the measurements, and C , N ln(2πe).
For convenience we define: f(Λ, A) , |Λ+ATA|. Since we are interested in the Jacobian
of the measurement but not the motion factors, we choose to present the expected
Entropy in the following form:

E
Zk+1:i

[H(Xi|hi)] = C − 1
2 E
Zk+1:i

[ln f
(
ΛAug−
k , Ai(z)

)
], (3.22)

where ΛAug−
k is the propagated belief, i.e. without taking into account measurements

until time step i, augmented with zeros and the measurements vector defined in (3.1)
becomes Zk+1:i.
Utilizing (3.10), (3.11) and (3.21), we are ready to present the expected reward bounds
for the Gaussian case. The bounds apply in expectation, and are more efficient to
calculate than SOTA methods per sample of measurements under the expectation
operator.
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Figure 3.4: Illustration of a possible partitioning of a measurement collective Jacobian, given some partitioning
of Zi.

Theorem 3.7. For the ith look ahead step, the expected Entropy of a Gaussian belief
can be bounded by:

LB = C − 1
2 E
Zk+1:i

[ln
f
(
ΛAug−
k , Asi

)
· f
(
ΛAug−
k , As̄i

)
|ΛAug−
k |

], (3.23)

UB = C − 1
2 E
Zk+1:i

[ln f
(
ΛAug−
k , Asi

)
], (3.24)

where Asi and As̄i are the Jacobian rows associated with the measurements Zsi and Z s̄i ,
respectively, see Fig. 3.4.

Proof. We have obtained a closed form expression (3.21) for the expected Entropy. If
we plug in these expressions into (3.10) we get:

H (Xi|Zi) ≥ C −
1
2 E
Zk+1:i

[ln f
(
ΛAug−
k , Asi

)
]

+ C − 1
2 E
Zk+1:i

[ln f
(
ΛAug−
k , As̄i

)
]

− C + 1
2 E
Zk+1:i

[ln
∣∣∣ΛAug−
k

∣∣∣].
In a similar way, using (3.11) we obtain the upper bound.

3.6.1 Estimation of Expected Entropy

An empirical expectation is generally calculated by sampling the observation model;
for each such sampled observation a posterior distribution of the belief needs to be
obtained. The latter usually involves solving a non-linear optimization problem via
some iterative linearization method. For each posterior belief, one can calculate the
corresponding reward bounds using (3.23) and (3.24), where the expectation operator
is approximated by samples. In this case, the performance guarantees are asymptotic,
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since one assumption that was used to obtain the bounds is only asymptotically valid,
namely, the non-negativity of the Mutual Information between measurements. We note
that it is possible to formulate non-asymptotic guarantees in this case, but it is outside
of the scope of this work and we leave it for future work.

A different approach, would be to make a common assumption for the optimization
process within planning, by taking a single iteration step. In the context of planning,
this is usually a good approximation for the linearization point when the state prior is
informative, and is accurate when the measurement model uses a linear function or for
Maximum Likelihood estimation for the measurements [7, 19]. Under said assumption,
the Jacobian is only a function of β and not of any particular measurement realization.
When the Jacobian is independent of the actual measurement values, we can drop the
expectation operator from (3.21) and still represent the expected Entropy:

H (Xi|Zk+1:i) = C − 1
2(ln

∣∣∣ΛAug
k + (Ai)T ·Ai

∣∣∣). (3.25)

In this case, the bounds in (3.23) and (3.24), as well as other SOTA calculations should
be computed only once per action, i.e., without the expectation operator.

3.6.2 Methods for Determinant Calculation

The computational cost of the bounds in the Gaussian case, is the cost of evaluating
the appropriate determinants, |ΛAug−

k + (Asi )TAsi | and |ΛAug−
k + (As̄i )TAs̄i | . At a first

glance, it is not clear that evaluating the bounds is indeed more efficient than evaluating
the expected reward, we will now show one method which is, in fact, efficient.

There are three main methods to calculating the Entropy of the posterior belief:
calculating the determinant of the posterior information matrix (denoted to as baseline),
calculating the determinant of the posterior information matrix in its square root form
(denoted as R), and using the Augmented Matrix Determinant Lemma (rAMDL) [14,15].
In essence, rAMDL utilizes the well known Matrix Determinant Lemma, combined with
some clever calculation re-use, to efficiently evaluate the determinant of the posterior
information matrix. It requires a one time calculation of some specific covariance entries,
and its general form is as follows:

|Λ +ATA| = |Λ| · |∆| ·
∣∣∣(Anew)T ·∆−1 ·Anew

∣∣∣ , (3.26)

where ∆ = Im +Aold · Σ · (Aold)T , Σ is the prior covariance matrix, and Aold and Anew

are the blocks of the Jacobian matrix A, with respect to states at planning time (old)
and states added by future actions (new), i.e., A = [Aold, Anew]
Applying measurement partitioning to the baseline method is not efficient: the baseline
cost is O(n3), where n is the dimension of Λ. Since n remains the same given a partition,
the overall calculation would be worse than O(n3).
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We choose to apply measurement partitioning to rAMDL and not R for two reasons:
Firstly, it has been shown that rAMDL is faster than R within planning [14,15]. Secondly,
applying measurement partitioning in R does not make sense - although calculating the
determinants in R is O(n), most of the computational burden lies in the update of the
posterior R matrix. This update involves a QR decomposition and by partitioning we
split it into two separate QR decompositions that on average, are less efficient than the
original one. We are then left with the most efficient method, which is rAMDL.

3.6.3 Computational Complexity

One main insight, is that the cost of calculating the determinant using rAMDL (not
including the one-time calculation which is common across all actions), is O(m3), where
m is the dimension of A. In a typical high-dimensional scenario, m � n, and by
partitioning the measurements we reduce the dimension of A even further so it becomes
even more efficient.

Applying (3.26) to the determinants required for (3.23) and (3.24) results in:

|ΛAug−
k + (Asi )TAsi | = |Λk| · |∆s

k| ·
∣∣∣(Asnew)T (∆s

k)−1Asnew

∣∣∣ ,
where ∆s

k = Im + Asold · Σk · (Asold)T , and Asold and Asnew are the old and new blocks
of the matrix As, i.e., As = [Asold, Asnew]. In a similar way we apply rAMDL to
|ΛAug−
k + (As̄i )TAs̄i |.

The most efficient partitioning, for the first depth, is when s = s̄, so the resulting
matrices are of rank m

2 . The cost of evaluating each of the determinants for the
partitioned Jacobians is O(m3

8 ). Compared to rAMDL, the cost is reduced from O(m3)
to O(m3

4 ) by using the bounds.
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Chapter 4

RESULTS

In this section, we start off by demonstrating the properties of the bounds as presented
in 3.4, for a typical active SLAM scenario. We then show that compared to the other
SOTA method our approach is faster while achieving similar reward, both in a simulated
scenario and in real-world experiment.

4.1 Setup

The setting considered is a high-dimensional SLAM, where the belief is normally
distributed and the reward function is differential Entropy. The state includes past
poses, current poses, and landmarks. For simplicity, we generate observations assuming
Maximum-Likelihood. All scenarios assume a prior belief containing poses and landmarks
is available at the beginning of the planning session, represented as factor graph shown
in figure 4.1.

GTSAM 4.1.0 and Python 3.9.7 were used for the simulated scenarios, running on
Ubuntu 18.04 and AMD Ryzen 7 3700X 8-Core Processor. For the real-world experiment
GTSAM 4.1.0 and Python 3.8 were used, running on Ubuntu 20.04 and Intel(R) Xeon(R)
CPU E5-1620.

4.2 Bounds Analysis

4.2.1 Inter Depth Properties

We show the properties of each of the bounds, as individual measurements are moved
from on partition to the other, specifically, as Zs → Z and Z s̄ → ∅. We can see
that both bounds converge to the actual expected Entropy, the upper bounds does so
monotonically while the lower bounds does not, as expected. As proposed in Section 3.4,
the lower bound does not converge monotonically because it is a function of the mutual
information between the measurement partitions. Since the assignment to partitions is
random, so is the value of the mutual information between them.
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Figure 4.1: Illustration of the prior belief showing a subset of the state landmarks. The uncertainty associated
with the joint covariance matrix is shown for every fifth pose.

0 20 40 60 80 100 120
Zs Z

540

550

560

570

580

590

En
tro

py

Upper Bound
Lower Bound
Actual Reward

Figure 4.2: Empirical demonstration of the bounds’ behavior, for Zs → Z.

4.2.2 Intra Depth Properties

We show the properties of the bounds, as we go deeper in the partition tree. Figure
4.3 shows, as expected, that the lower we go down the partition tree, the efficiency
of the bounds comes at the expanse of their tightness. We can see that both bounds
monotonically converge to the real expected reward as we go up the partition tree.
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Figure 4.3: Empirical demonstration of the bounds’ behavior, as d→ log2 m.

4.2.3 Correlation and Tightness

Here we demonstrate the usefulness of the bounds in the general case, by presenting the
expected reward bounds, for a set of myopic random actions. Looking at figure 4.4, we
can see that although some bounds overlap, we can safely prune around 60 percent of
the actions which are sub-optimal.

Figure 4.4: Expected Entropy bounds for each sampled action.

We can observe that the lower bound is very strongly correlated to the actual reward
while the upper bound shows slightly weaker correlation to the reward. Again, a possible
explanation for this behavior is the random assignment of the individual observations
to their corresponding set. Since the lower bounds accounts for both sets, it is only a
function of the their mutual information, while the lower bound is a function of this
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random assignment.
Next we compare two specific actions, taken from the previous random action set,

by showing their respective hierarchical bounds. Figure 4.5 shows, that for actions that
lead to rewards which are distinct, it is possible to select the optimal action based on
a very efficient calculation of the bounds. Specifically, we compare an action which
explores a new part of the map, to another which re-observes previously seen landmarks.

Figure 4.5: Hierarchical bounds for two distinct actions, the lighter the color the more efficient the bounds are.
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4.3 Planning Using Bounds

4.3.1 Simulation

We now demonstrate the use of the bounds in a simulated SLAM scenario using the
GTSAM library and a Probabilistic Roadmap (PRM) generator [11], the goal is to
demonstrate a typical use-case in active SLAM setting. We start the planning session
with a prior belief as in figure 4.1. We then use the PRM to randomly generate a set
of candidate paths, shown in figure 4.6. As seen in figure 4.7, the paths start at the
green dot and the goal shown in red, each path consisting of around 12 actions. For
each path from a set of the shortest ones, we evaluate the expected cumulative reward
and its bounds, and choose the optimal one.
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Figure 4.6: PRM generator is used to construct a viable path from the agent’s pose at the start of the planning
session to the desired goal. We then select a number of the shortest ones.

We start by comparing our proposed method using Measurement Partitioning (MP)
to rAMDL. Since our method uses rAMDL to compute the determinants required for
the bounds, many of the calculations are common and are not accounted for in the
comparison. When compared to iSAM2, these will be accounted for. We compared the
performance for three different scenarios, while two of them utilize re-planning. In a
re-planning scenario, the agent chooses an optimal path, takes the first action, re-draws
paths to the goal from the new pose. The number of re-planning steps is 5, since the
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Figure 4.7: Illustration of the simulated scenario, showing a subset of the landmarks and paths.

goal is fixed, each consecutive trajectory is shorter than its predecessor, see Fig 4.8 for
details.

From Table [4.1] we can see that the speed-up increases with the number of factors.
That is expected since the speed-up is correlated with the number of Jacobian rows.
Since most of the prior factors relate to landmarks, a higher number of factors results
in a higher number of observation. We can also see that the speed-up is approaching
the theoretical value of O(m4 ), shown in sub-section 3.6.3. Similar to all of the following
scenarios, we use the bound to prune sub-optimal paths; when the bounds overlap we
choose the path that has the lowest lower bound and bound the possible loss we might
incur. For example, for the third scenario in table [4.1], the bound on the expected loss
was 109.578 and the optimal cumulative reward was 5215.999. The ratio of loss divided
by the optimal cumulative reward was 0.021, such that in the worst case, the trajectory
chosen would set us off from the optimal one by two percent. Although unknowable in
planning, in this specific case as in many others, the lowest lower bound was indeed
associated with the optimal cumulative rewards, and the loss in practice was equal to
zero.

Next we compare our method to iSAM2 and rAMDL, including all one-time calcula-
tions. We use iSAM2 [9] to incrementally update the square root of the information
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Figure 4.8: Re-planning scenario, each green dot represents the new pose for planning.

# Paths # Factors RP rAMDL MP (ours)
100 2956 No 11.521± 0.537 6.888 ± 0.155
100 2956 Yes 24.636± 1.381 11.758 ± 0.372
100 5904 Yes 84.376± 14.458 32.069 ± 4.913

Table 4.1: Total planning time in seconds (lower is better), not including all common one-time
calculations.

matrix, then use the updated R matrix to calculate the reward as in sub-section 3.6.2.
The number of factors in the prior graph was 12185 and number of paths evaluated was
2500. Figure 4.9 shows the bounds for this simulated scenario, that evaluated paths
without re-planning, where we can see that about 85 percent of the sub-optimal paths
can be safely pruned using the bounds. Table [4.2] shows the total planning time for each
method. Table [4.3] shows separately the time it takes to recover the required entries
from the prior covariance matrix: worst-case is the time it takes to recover the full
matrix, while the actual is the time it takes to recover only the entries required for the
states involved in the measurements for the set of all trajectories. Generally, the earlier
in the robot’s past trajectory the involved states are, the more of the covariance matrix
entries we would need to recover, which is time consuming. However, in a scenario such
as that, the time it would take to update the posterior R matrix needed for iSAM2
would be significant as well. Including the covariance recovery, we can observe that
our method is about 45 percent faster than rAMDL, and about 65 percent faster than
iSAM2.
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Figure 4.9: Bounds for simulated scenario, showing a subset of the lowest Entropy paths.

Method time [sec]
MP (ours) 323.445 ± 0.175
rAMDL 590.584± 0.463
iSAM2 728.854± 0.348

Table 4.2: Total planning time

worst-case [sec] actual [sec]
21.05 6.055

Table 4.3: Covariance recovery time

4.3.2 Experiment

Next, we demonstrate the use of the bounds in a real-world experiment using a DJI
Robomaster S1, equipped with a stereo ZED camera. GTSAM is used for the backend
while the frontend is handled by SuperGlue [22]. The planning session starts after a
partial mapping of the room which is stored as a prior factor-graph. From its current
pose, the robot is given a goal, it then uses the PRM to generate possible trajectories
to its goal. For each method 1000 paths were evaluated, each consists of 20 actions.

Figure 4.10 shows the hardware setup for the experiment, figure 4.11 shows how
feature matching is done. Visual odometry is used as motion model factors, and
projection factors are used as observation factors.

Table [4.4] summarizes the planning time for each of the methods. We see again that
our method allows for a meaningful speed-up. Additionally, we can observe that MP
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Figure 4.10: Robomaster S1 robot, equipped with a ZED camera

Figure 4.11: SuperGlue feature matching.

and rAMDL are substantially faster than iSAM2 compared to the simulated experiment.
The run-time of iSAM2 depends on the degree of connectivity of the factor graph, more
connections are a results of the same landmarks being observed from multiple poses,
which in turn, results in a denser R matrix. Generally, a denser prior R matrix would
require more QR operations to update a posterior R matrix, and thus, resulting in a
longer time for iSAM2 to perform the R update before obtaining the R determinant,
which is relatively fast (as it is linear in the dimension of the state). Since rAMDL
and MP are not affected by the density of the prior R matrix, we conjecture that this
difference in running time can be explain by the difference in R sparsity between the
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simulated and real experiments. The sparsity difference occurs since the real experiment
relies on visual measurements, in this setting, the same features tend to be observed at
many consecutive poses, which results in higher degree of factor graph connectivity.

Method time [sec]
MP (ours) 523.507 ± 27.153
rAMDL 740.545± 25.651
iSAM2 2111.835± 26.521

Table 4.4: Total planning time in seconds (lower is better), number of factors in the prior graph is
8220, number of paths evaluated is 1000.
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Figure 4.12: Robotmaster experiment.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This work has presented the novel concept of observation space partitioning for BSP and
POMDP planning problems. The concept is general and applies to all belief distributions
and the underlying POMDP spaces. The partitioning of the underlying observation
space allows for an inherent speed up in planning. The partitioned space allows for a
more efficient way of identifying the optimal expected reward by using a simplification
paradigm and forming analytical bounds on the expected reward. We have extended
the idea of partitioning and introduced a partition tree which encodes a hierarchical
partitioning of observations, where each level of partitioning We have demonstrated one
possible use-case of this concept by studying a typical SLAM scenario with Gaussian
beliefs. We have shown that both for simulated and real-world experiments, our method
has a faster running time when compared to other SOTA methods, while reaching the
same optimal reward.

5.2 Future work

There are multiple different direction to extending this work, which include; implemen-
tations for non-parametric belief distributions which would include an estimator for
the expected reward function, an extension to policies over action-sequences, and the
possible partitioning of other POMDP spaces such as the action space.
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 תקציר 
 

יחסי הגומלין  על  על סביבתם,    , בין אםסוכנים אוטונומיים פועלים בהינתן מידע לא מושלם
לתכנן אל העתיד במצב כזה, על  על המדידות המתקבלות. כדי או  הדינמיים שלהם עם הסביבה

בעיה לפתור  בשם    בסיסית  הסוכן  חלקית הידועה  לצפייה  ניתן  מרקובי  החלטה    תהליך 
(POMDP  מכיוון  שהמצב האמיתי של הסוכן אינו נגיש לו, וכחלק מהמודל של הבעיה,  על .)

לתחזק   )  התפלגותהסוכן  אמונה  בשם  הידועה  המצב,  את    (.Beliefעל  מתארת  זו  התפלגות 
סיכויי הסוכן לאכלס מצב מסוים במרחב המצבים האפשריים. על ידי שימוש בפילוג במקום  

יכול יחיד,  אחד  למצב  אי  התחייבות  את  לכמת  ספציפי. -הסוכן  תרחיש  עבור     הודאות 
זאת בצורה בייסאנית,  גישה לשני מודלים שבהם הוא משתמש כדי לעדכן אמונה  יש  לסוכן 
בהינתן מידע חדש. מודל אחד הוא מודל התנועה שמתאר את ההסתברות לעבור ממצב אחד  

נתון. בבעיית התכנון,  לאחר, ומודל מדידה שמתאר את ההסתברות לקבל מדידות בהינתן מצב 
מקבלת ערך   מסוימתעל הסוכן למצוא את סט פעולות אופטימלי שיביא לכך שפונקציית גמול  

אפשרויות   של  גדול  ממספר  הנובע  עתידית,  אמונות  של  המהיר  המעריכי  הגידול  מקסימלי. 
 קשה.  -NPלפעולות ותצפיות עתידיות, משייך את בעיית התכנון למחלקת הבעיות מסוג 

מכיוון שרוב בעיות התכנון בעולם האמיתי אינן פתירות, עלינו לפתור בעיה מקורבת, למשל על  
מנסה לפשט חלקים מסוימים בבעיה, כך באופן כללי, פישוט בעיית התכנון    ידי פישוט הבעיה.

שאותו פתרון אופטימלי יתקבל, אך עבור זמני חישוב קצרים יותר. בשיטת פישוט כללית, ננסה  
ח על  למצוא  אנליטיים  הגמול תוחלת  סמים  זולים  .  פונקציית  יותר  הינם  שהחסמים  בהנחה 

תוחלת   את  לחשב  מבלי  בחסמים  שימוש  ידי  על  התכנון  תהליך  את  להאיץ  נוכל  לחישוב, 
מפורש.   באופן  הגמול  אלימינצי פונקציית  ידי  על  נעשה  בחסמים  מסלולים  של    ההשימוש 

תת שהינם  לדוגמה  -עתידיים  ניקח  אם  עליון    2אופטימליים.  חסם  נחשב  עבורם  מסלולים, 
ותחתון עבור תוחלת פונקציית הגמול של כל מסלול, נוכל להגיד בוודאות כי מסלול אחד הינו  
אופטימלי ביחס למסלול השני, אם החסם התחתון של מסלול הראשון הינו גבוה יותר מהחסם  

 המסלול השני.  העליון של 

זה, אנו מציגים גישה חדשנית לפישוט של בעיית התכנון, ספציפית על ידי פישוט מרחב   חקרבמ
בגישה זו, מרחב המדידות עובר חלוקה לסטים נפרדים המדידות מעליו מוגדר מודל המדידה.  
תוחלת  בסטים הללו, אנו מציגים חסמים אנליטיים על  של מדידות אפשריות. על ידי שימוש  

הוודאות המוכל בתוך האמונה של הסוכן על  -פונקציית הגמול מסוג אנטרופיה, שהיא מדד לאי
המצב. החסמים הללו הינם כלליים ומתאימים לכל פילוג של האמונה, בין אם הוא פרמטרי או  

פונקציית הגמול  תוחלת  הדוקים ביחס ל  ,או פחות  ,לא. בנוסף, הם ניתנים לשינויי כך שיהיו יותר
של    המקורית המקורי  לערך  הם מתכנסים  ניתן    זו.  תוחלת וכן  כיצד  מציגים  אנחנו  כן,  כמו 

סטים. אנו מציגים את הקידוד  -לעשות חלוקה היררכית של המדידות, כך שכל סט מחולק לתתי
על ידי חסמים מתאימים על תוחלת   ועושים בה שימוש  עבור ההיררכיה הזו בעץ של סטים, 

מציגים איך ככל שנרד לעומק עץ זה, נוכל לקבל חסמים שהינם  פונקציית הגמול הצפויה. אנו  
 יעילים יותר.

  אנו מדגימים כיצד ניתן לפתור בעיית תכנון עבור המקרה בו פילוג האמונה הינו נורמלי לבסוף, 
כאשר אנחנו    אנו מדגימים את יעילות החישוב עבור תרחיש מדומה  .ממדי- ומרחב המצב הינו רב

(. לאחר מכן אנחנו מדגימים את  SOTA)לשיטות החדישות ביותר    משווים את השיטה שלנו
השיטה שלנו בניסוי אמיתי, על רובוט שמשתמש במצלמה על מנת לקבל מדידות מהסביבה. 

 בכל המקרים אנחנו מראים שהשיטה שלנו מהירה משמעותית מכל שאר השיטות החדישות. 



 

  מתמטיקה, בפקולטה לפרופסור חבר ואדים אינדלמןהמחקר בוצע בהנחייתו של 
 . שימושית

כמאמרים מאת המחבר ושותפיו   או הוגשו חלק מן התוצאות בחיבור זה פורסמו 
של המחבר, אשר   מאסטר במהלך תקופת מחקר ה עת -למחקר בכנסים ובכתבי

 : גרסאותיהם העדכניות ביותר הינן

 

 

 

 

 

 
 

מחבר/ת חיבור זה מצהיר/ה כי המחקר, כולל איסוף הנתונים, עיבודם והצגתם,  
התייחסות והשוואה למחקרים קודמים וכו', נעשה כולו בצורה ישרה, כמצופה  
ממחקר מדעי המבוצע לפי אמות המידה האתיות של העולם האקדמי. כמו כן,  

אה, לפי אותן  הדיווח על המחקר ותוצאותיו בחיבור זה נעשה בצורה ישרה ומל
 .אמות מידה 
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