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Advanced Autonomy

Involves autonomous navigation, active SLAM, informative gathering, active sensing, etc.
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Advanced Autonomy

Decision-Making
Under Uncertainty
What should | be doing next?

Determine best action(s) to
accomplish a task, account for
different sources of uncertainty

Perception and

Inference Key required
capabilities

Where am I? What is the
surrounding environment?

Perception and Inference {eeeeeeed)  Decision-Making Under Uncertainty
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Partially Observable Markov Decision Process (POMDP)

« POMDP tuple: <X, Z, A, T7 07 IO7 bk>

state, observation, and action spaces

observation,

transition and observation models roward

Belief-dependent reward function '
~

@
Belief at planning time instant k \\/

action
k+L
* Value function V™(by) = E [Z p(bi, mi(br))]

Zk+1:k+L
=k

Belief-dependent reward function
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Challenge

eye oo Example - grid world
Probabilistic Inference ple-8

b [X]

Maintain a distribution over the state given data

A _ , Ltk
b ko b [Xk] o H:D(Xk | Ao.t-12 Zl:k)

True location

state actions observations

Future action

Decision-making under uncertainty

Involves reasoning about the entire observation

and action spaces along planning horizon Future observation 7 2
Z’k+]

bk” [X] et ||| I [ il || || hila mtlemlL
Computationally intractable (O ) (L] [l | (sl

I.|.||...|_’:;i.|x l / \ | ) / \ .
_

More so, in high dimensional settings ] ] ]

Poses:

ct autonomously online and efficiently
:asks in a safe and reliable fashion??

3D points:
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Experience Reuse in POMDP Planning
POMDP Planning with Hybrid Beliefs
Simplification of POMDP with Formal Guarantees
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Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.



Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
« The probability of sampling the same belief/observation twice is zero

Zk+1

i ﬁR

dw e s

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
« The probability of sampling the same belief/observation twice is zero

Online SOTA POMDP solvers typically perform
calculations from scratch at each planning session

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
» The probability of sampling the same belief/observation twice is zero
» Previously sampled beliefs can still provide useful info in the current planning session

Online SOTA POMDP solvers typically perform
calculations from scratch at each planning session

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.




Experience Reuse in POMDP Planning

« Consider POMDPs with continuous state, action, and observation spaces
» The probability of sampling the same belief/observation twice is zero
» Previously sampled beliefs can still provide useful info in the current planning session

Key idea: Reuse previous trajectories/calculations to get an efficient estimation of
k+L 1

Z Y (biy mi(bi), big) | b = b,ap = a] £ EL[G | by = b, ay = a

* Instead of calculatmg each planning session from scratch (state of the art)

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider a planning session at time instant k

b
a

Qw(blm ak’)

[Current time]

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

« Consider a planning session at time instant k

J i /%
a/kj a’k,- a/kff
—) —1 I—2
T bk"—l—l bkz—l-l ki+1
Q" (bx, ax) i
Ok +1 k;+1 Oki—l—l

bj 1 2

—1 /—1
bk +d bkﬁd k;+d
7 17
Ok: +d Oki+d Ok;+d
1 11
Dh, +a D+ kstd
{ Previous data ]{Current time ]

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

» Key idea: multiple importance sampling (MIS) estimator

—J
bkﬁj +d
J

J
bkj +d

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.
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M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience Reuse in POMDP Planning

» Key idea: multiple importance sampling (MIS) estimator

Eﬁb (::) bzi <::)bk ! bii(::) O

J ) 17 z
U, A, ~ Ay, ar. Q)
—j —t r—3 —1
J i 1
0 Or.. 0 O :
ki+1 ki+1 ki+1 ki+1 1
b O b /i O , Z A IP)(7_511%]"]%'513 |bk7 Ak, 7T)
kj+1 ki+1 ki+1 7t +1O w; = P i
. . . & i (Tsuffix‘ k. 7ak ) )
Ty £1ir

bk: +d ka_F( MIS estimator: /A\

return

J ( M ~l,m
Ok +d OIfiz’—Hl Q (b a ) § : E : suffzm|bk7a’k7 )G
b/ i MIS\Yk, Uk m=1 [=1 j{: n. ( |b a’ )'
k;+d kH—T j=1"7" suffza: k‘ ) k )T
E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv’'21.

M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Experience-Based Value Function Estimation

~N

MIS estimator:
l,

m b, : él,m
QMIS(bkaa'k) Zm 121 1 SUffw:| k0K, T)

j= 11y ( suffza;|bk; 7a'k- s ) .
- Y
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M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Incremental Belief Space Planning

ML-BSP: BSP with ML observations |
. (one sample per look ahead step) !

____________________________________________

Basic simulation — autonomous navigation in unknown environments:

ML-BSP -2 .
Goal 2 ;4= L
iML-BSP . N | 12 8
60 .
— 80 _ L € |
~ . O . E =
40*1 LI |: ol . L 8 _:_ —_ O 6
X e c 1 1 C_U
[m] + 1 1
> é ..(—3 | I S % %
20 — 1 . o 1 ! L
* C 40 1 |
+ + é E 4+ E 4+
| - -
» o
LLl zZ

N
=
T

. . I |
Initial belief |, | % | ! - 2"

220 ' 20 ' 60 ML iML ML iML ML iML

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.
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Incremental Reuse Particle Filter Tree (IR-PFT)

« Extend PFT-DPW?!, incorporating trajectories from previous planning sessions for fast
estimation of Q(bg, ax)

s 0
0. ©
S FSpeedup g

e Mean Belief I o —50 i
Goal o
Q
)
O

5 —100¢
-
S5
o
O

5 10 15 20 < _150t ', - ' '
Particles 5 10 15 20

Particles

17. Sunberg and M. Kochenderfer. "Online algorithms for POMDPs with continuous state, action, and observation spaces." ICAPS, 2018.

E. Farhi and V. Indelman, “iX-BSP: Incremental Belief Space Planning,” ICRA’19, arXiv'21.
M. Novitsky, M. Barenboim, and V. Indelman, “Previous Knowledge Utilization In Online Anytime Belief Space Planning,” arXiv’24.



Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs

{—

I. Lev-Yehudi, M. Novitsky, M. Barenboim, R. Benchetrit, and V. Indelman, “Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs”, arXiv’25. 20
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Semantic Perception & SLAM

e Usually, semantics and geometry are considered separately
e Cannot use coupled observation models or priors

e Can lead to absurd & unsafe performance
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Coupled Models

* View-dependent semantic observation model:

Y coordinate [m]

50

404

© 201

104

4 i =
n o
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N
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Class Probability

Class Probability
)

o e I
o

=3

1 2 3

50

Semantic observation

P(Zs ‘ c, Xrel)
Object class

(from a classifier)

* Class and poses can be coupled via learned prior probabilities

e Reward/constraint can depend on both classes and poses

Y. Feldman and V. Indelman, “Bayesian Viewpoint-Dependent Robust Classification under Model and Localization Uncertainty,” ICRA’18.

Agent’s viewpoint
relative to object

V. Tchuiey, Y. Feldman, and V. Indelman, “Data Association Aware Semantic Mapping and Localization via a Viewpoint Dependent Classifier Model,” IROS’19.
V. Tchuiev and V. Indelman, “Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning,” Artificial Intelligence, 2023.
T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness”, arXiv’25.
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Hybrid Belief

Hybrid Belief at time instant k:

b| Xy, Cl =P( X, C | Hi)

History (actions, geometric &

Robot’s and objects’ poses Objects’ classes
semantic observations)

* Classes and agent poses are dependent

» Classes of different objects are dependent

As opposed to:
e Per-frame classification
* Modeling semantic observations as viewpoint independent

Y. Feldman and V. Indelman, “Bayesian Viewpoint-Dependent Robust Classification under Model and Localization Uncertainty,” ICRA’18.

V. Tchuiey, Y. Feldman, and V. Indelman, “Data Association Aware Semantic Mapping and Localization via a Viewpoint Dependent Classifier Model,” IROS’19.

V. Tchuiev and V. Indelman, “Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning,” Artificial Intelligence, 2023.
T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness”, arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

k+L—1
» Value function VT(br) =Byl Y p(br mi(br), big]
=k
* Semantic Risk Awareness S ™
A L 0] (0] ) "I_ I
IP>saf€ — P({At:k+1$t ¢ Xunsafe(ca X )} |[bk [xka Ca X ﬂa 7T) Lo L
Objects’ classes  Objects’ poses T ‘ . T *

The number of classification hypotheses is MmN (N: number of objects, M: number of cIasses)] — —
How to sample w/o pruning hypotheses? How to estimate Py ¢ ? "

S
(o))
oo -
=
o

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.
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POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version
Expected Reward vs Time Step

1.0 A -
° * X g ¢
& g s
0.8+ x 4
by ¢
9 X
? 0.6 +
kS = %
2 9 ¢ &
= e +
2 0.4
% Q b x ® Exact-all-hyp
a (0] O Exact-pruned
0.2 X PF-all-hyp
' PF-pruned
+ MCMC-Our
$ SNIS-Our
0.0 A
X  GS-MAP
0 2 4 6 8
Time Step

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version o
Sensitivity to number of classes

6_

—8®— Theoretic Belief ~ —— e X —8— Theoretic Belief
—©— Theoretic Beliefprun . SR —6— Theoretic Belief-prun
0.35 A Particle Filter e 5 4 Particle Filter
Particle Filter-prun | .. N Particle Filter-prun
0304 —+-Our e e —+- Our
—- SNIS 44 —#- SNIS
0.5 -.%- Geometric MAP | g g =%+ Geometric MAP

w M T 0 3
0
0.20 o
= E
'_
0.15 2
0101 #——= = *——
N _ —— . - 14
0.05 A
o— —_— - o - -
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4 6 8 10 12 4 6 8 10 12
Number of classes Number of classes

T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.



POMDP Planning with Hybrid Semantic-Geometric Beliefs

Experiments - Estimation of Psare with different methods

e Exact-all-hyp — belief computed exactly e MCMC-Our — MCMC samples
Our methods
e Exact-pruned — pruned version e SNIS-Our — self-normalized importance sampling
— Particle filter * GS-MAP — separate semantic and geometric

— pruned version
Sensitivity to number of objects
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§ 0.15 Particle Filter-prun g
« Our £ 4
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T. Lemberg and V. Indelman, “Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness,” arXiv’25.
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Ambiguous Scenarios

* Have to reason about data association hypotheses within inference and planning

An observation: L
(e.g. LIDAR)

[How should the agent act? ]

Unsafe!

a""---__—v

5 5 -
°° ‘ / B B
(c) (d)

S. Pathak, A. Thomas, and V. Indelman, “A Unified Framework for Data Association Aware Belief Space Planning and Perception”, IJRR’18.

@ P(Blz,)
- @ Ll_._>
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Autonomous Semantic Perception & Ambiguous Environments

Viewpoint dependent semantic models Data association hypotheses
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* Hybrid beliefs (over continuous and discrete RVs)

* The number of hypotheses can grow exponentially

* Impact on safe decision making?

~
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Continuous-Discrete State Spaces - the Challenge

 The number of hypotheses may grow exponentially with the planning horizon!

Belief tree Hypothesis tree
bo

AN

.
i

M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE RA-L'23.
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Continuous-Discrete State Spaces - the Challenge

 The number of hypotheses may grow exponentially with the planning horizon!

Belief tre/_wthesis tree Sample a subset of hypotheses
bo

N
® S e

@ © o

7 \ 7
/ \ // \'\
/ \ / 5

| /A //' \\
O O O S & b &

o

[Impact on safe decision making?}

M. Barenboim, M. Shienman, and V. Indelman, “Monte Carlo Planning in Hybrid Belief POMDPs,” IEEE RA-L'23.



Simplification of POMDP with Hybrid Beliefs

* Deterministic bound to relate the full set of hypotheses to a subset thereof,

Corollary

For any policy m, and selection of hypotheses set {5(",:7}',5'0 the
following holds,

‘ VW(bO)_ \_/W(EO)‘ S 7zmax

T6§+2T: Zk:EZM [55}] .

k=1 r1=1

Full tree Any subset \
Importantly, the bound relies on the
available hypotheses

@ @ Can bound the theoretical value with
/ access only to the simplified tree
J AL /)
é} Cé S Cé Cé g S é) [Bounds can be evaluated onImeJ

M. Barenboim, . Lev-Yehudi, and V. Indelman, “Data Association Aware POMDP Planning with Hypothesis Pruning Performance Guarantees,” IEEE RA-L'23.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide (adaptive) performance guarantees

-

Specific simplifications include:

TR

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

~

J

[Indelman RAL16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ’22, TRO'24; Shienman & Indelman ICRA22;

Kitanov & Indelman [JRR'24; Zhitnikov et al. JRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]

36



Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide (adaptive) performance guarantees

-

Specific simplifications include:

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

e

Utilize a subset of hypotheses (hybrid beliefs)

~

J

[Indelman RAL16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ’22, TRO'24; Shienman & Indelman ICRA22;

Kitanov & Indelman [JRR'24; Zhitnikov et al. JRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Simplification of POMDPs with Nonparametric Beliefs

, 0.30
* Value function S
L—-1
V:(bk) — Jk(bk,ﬂ') - E{Z r(bk+/,7rk+,(bk+,)) + r(bk+L)} 0.15
1=0

Simplification:

~* Utilize a subset of samples for planning

(&
1
——

RN.

SN.
N\,—/
TN
-

'+ Information-theoretic reward (entropy) ;

'+ Analytical (cheaper) bounds over the reward Ib(b,b°,a) < r(b,a) < ub(b,b°,a)

_______________________________________________________________________________________________________________________

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.
A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of POMDPs with Nonparametric Beliefs

* Adaptive multi-level simplification in a Sparse Sampling setting:

PO00000  OOOOOO#
A AN
/
OO e O OgOOé}O Typical speedup of 20% - 50%,

Same performance!

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.
A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of POMDPs with Nonparametric Beliefs

* Adaptive multi-level simplification in an MCTS setting:

Overlap

Bounds

| |
CLl CL2

A
>

O. Sztyglic and V. Indelman, “Speeding up POMDP Planning via Simplification”, IROS’22.

A. Zhitnikoyv, O. Sztyglic, and V. Indelman, “No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive Multilevel Simplification”, IJRR’24.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide (adaptive) performance guarantees

-

Specific simplifications include:

TR

~

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ’22, TRO'24; Shienman & Indelman ICRA22;

Kitanov & Indelman [JRR'24; Zhitnikov et al. JRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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POMDPs with Deterministic Guarantees

SOTA sampling based approaches come with probabilistic theoretical guarantees

Theorem 2 Let 7 be an ()plmm/ policy at a belief by. Lel r be a ]mll( y d(mul from a DESPOT

DESPOT that has heicbt g el g S J nlad cconasiae far holiof ha  Ear any
T, € (0,

Theorem 1. Suppose that ‘111 dssumpuons lmud above hold. L(.l N = |bo| > Mymin. Fore > 0,

Theorem 1. For suitable choice of ¢, the value function constructed by PO-UCT converges
AdaOPS —ml holds wit| in p'/'r)bubilil,l/ to the optimal value _/'uu(-[/t)lf. V(h) 5 \"(h). "fo.r all /I}.s‘l(.)l‘l'('.\' h that are
prefized by hy. As the number of {1s1l~ N(h) approaches infinity, the bias of the wvalue

Ve (bo) 3 function, E[V(h) — V*(h)] is O(log N(h)/N(h)).

where 1,

POMCP wertle peobg SUp, o P

Can we get deterministic guarantees?

We show that deterministic guarantees are indeed possible!

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.
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Online POMDP Planning with Anytime Deterministic Guarantees

Concept:

Instead of solving the original POMDP, consider a simplified version of that POMDP.

M- N M

Derive a mathematical relationship between the solution of the simplified, and the
theoretical POMDP.

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.



44

Online POMDP Planning with Anytime Deterministic Guarantees

* Givena POMDP: M = (X, Z, A, by, Pr, Pz, p,7)

* Define a simplified POMDP,
M <X Z A b()aPTvPZ?lO? >

l |

(H) C bo(z) 2 {8"@) g
(Ht) , otherwise

\\ad

P(xsy1 | xe,ae) , Tpp1 € X(Ht+1)
, otherwise

— P(Zt | .’L't) AR = Z(Ht)
WAY )
Pz | 2) = { , otherwise

P(zit1 | e, 0:) = {

)

)

e Simplified value function

\_/W(Bt) = r(BtaWt) + I_EZH—I:'T [\_/W(Et‘ﬂ)]

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.
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Online POMDP Planning with Anytime Deterministic Guarantees

* Deterministic guarantees (assuming discrete spaces)

bo
Simplified tree @

— Tx’ |x,a _

- - Nd
DetermmlstliGuira“tees II- @9 ‘eﬁ
Vi(bo) —V(bo)| <€|
. T & &

[ Bounds can be evaluated onIine}

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.



Online POMDP Planning with Anytime Deterministic Guarantees

Importantly, the bounds can be calculated during planning.

How can we use them?
* Pruning of sub-optimal branches

—— Made possible by the deterministic guarantees
e Stopping criteria for the planning phase

— Made possible by the deterministic guarantees
* Finding the optimal solution in finite time

—— Without recovering the theoretical tree

M. Barenboim and V. Indelman, “Online POMDP Planning with Anytime Deterministic Guarantees,” NeurlPS’23.

-

N

Deterministic Guarantees

~

[V (bo) — V(bo)| <€

/

Bounds

I(Hy)
——
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Simplifying Complex Observation Models with Probabilistic Guarantees

* We replace the (learned) observation model pz with a cheaper model ¢z
* Simpler GMM, Shallower Neural Network, etc.
* Example:

pz(z | ) qz(z | x) e
fy T Simplified models

p,(zlx)

Original, expensive

/Y

q,z1x)

T ?
Can we simplify the (learned) models? Simplified, cheap

What is the impact on planning performance?

I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” AAAI’24.
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Simplifying Complex Observation Models with Probabilistic Guarantees

* We replace the (learned) observation model pz with a cheaper model ¢z
« Simplified action-value function: Q%

Corollary 3 Th\e}glrggsf: al pg_MDP  Planner
For arbitrary €,0 > 0 there exists a number of particles for which - - N\
oREm (o (o , for,) (ot
pZ o QZ 1. S 1 \ -_— \ -_—
Sim léﬁled { Q (o [z
- \\_, P Mp
with probability of at least 1 — ¢ for.any guaranteed planner o , \ .,} \ .,}

\
\

\ * Importance sampling

. lculati ffli li
Estimator of the Q function of a Separate calculations to offline/online
particle-belief POMDP, with

simplified models

——— -

Theoretical Q function
of the POMDP, with

original models

I. Lev-Yehudi, M. Barenboim, and V. Indelman, “Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice,” AAAI'24
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Simplified POMDP Planning with an Alternative Observation Space

* Switch to an alternative observation space and model = 2z
Y -
Model Definition {::} @:}
POMDP tuple: (X, A, Z,Pr, Pz, b, r) — (X, A, O, Pr, Po, by, r) 00770 O
@ a

* Only at certain levels and branches of the tree

original observation alternative observation
space and model space and simplified model

D. Kong and V. Indelman, “Simplified Belief Space Planning with an Alternative Observation Space and Formal Performance Guarantees,” ISRR’24.



Simplified POMDP Planning with an Alternative Observation Space

* Switch to an alternative observation space and model = 2z
Y -
Model Definition {::} @
POMDP tuple: (X, A, Z,Pr, Pz, b, r) — (X, A, O, Pr, Po, by, r) 00770 O
@ a

* Only at certain levels and branches of the tree

topology 7 é}

/Main guestions addressed: ) \ alfernative ~original
 How to decide online where to simplify in belief tree? o
 How to provide formal performance guarantees? /.\ .
 How to adaptively transition between the different levels of simplification? () 0 X
AN
C{\O e S

D. Kong and V. Indelman, “Simplified Belief Space Planning with an Alternative Observation Space and Formal Performance Guarantees,” ISRR’24.



Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

~

TR

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) | Simplification of Risk-Averse POMDP Planning

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ’22, TRO'24; Shienman & Indelman ICRA22;

Kitanov & Indelman [JRR'24; Zhitnikov et al. JRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]
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Simplification of Risk Averse POMDP Planning

* Impact of simplification on distribution over returns/rewards

e Simplified risk aware decision making with belief-dependent rewards

y.HM gk = fg.(Pr+1:k+L)

: S simplification
original
: 1 He+ L
- simplified
P(gr | br, )

V7(by) = @(P(Pk—klzlﬁ—L‘bkaWk:k—kL—l)an\

Y. Pariente and V. Indelman, “Simplification of Risk Averse POMDPs with Performance Guarantees,”, arXiv’24.
A. Zhitnikov and V. Indelman, “Simplified Risk Aware Decision Making with Belief Dependent Rewards in Partially Observable Domains,” Artificial Intelligence, 2022.

52



53

Probabilistically Constrained Belief Space Planning

k+L—1
max K Pr+1 bk, T+
subject to P(c(bk.krr;¢,0) = 1|bg, mpy) > 1 — ¢ o

Information gain®: [Ok+1

C(bk:k—l-L; (/b? 5) = 1{( fi_,f’_l ¢(bt,bt+1)) >4} (bk:k+L) 2’1’”/ i l

O O

c(bpek+r; ¢, 0) = H Lip,:p(b,)>61 (be)
=k

Safety?:

IA. Zhitnikov and V. Indelman, “Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints,” T-RO’24.
2A. Zhitnikov and V. Indelman, “Anytime Probabilistically Constrained Provably Convergent Online Belief Space Planning,” arXiv’24.
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Simplification of Decision-Making Problems

Concept:

 |dentify and solve a simplified (computationally) easier decision-making problem

* Provide performance guarantees

-

Specific simplifications include:

TR

Sparsification of Gaussian beliefs (high dim. state) e Simplified models and spaces

Topological metric for Gaussian beliefs (high dim. state) ¢ Simplification of Risk-Averse POMDP Planning

~

Utilize a subset of samples (nonparametric beliefs) * Simplification in a multi-agent setting

Utilize a subset of hypotheses (hybrid beliefs)

J

[Indelman RAL16; Elimelech & Indelman IJRR'22; Sztyglic & Indelman IROS'22, Zhitnikov & Indelman AlJ’22, TRO'24; Shienman & Indelman ICRA22;

Kitanov & Indelman [JRR'24; Zhitnikov et al. JRR'24, Barenboim & Indelman NIPS'23; Lev-Yehudi, Barenboim & Indelman AAAI'24, Kong & Indelman ISRR 2024]

55



Multi-Robot Belief Space Planning

A common assumption: Beliefs of different robots are consistent at planning time

* Requires prohibitively frequent data-sharing capabilities!

A
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of Technology
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

Available only to robot r Common history, e.g. from the last Available only to robot r’
data-sharing

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’'24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

* Decentralized POMDP tuple from the perspective of robot r:
T
<X727A7 T,O,,O, bk>

e Obijective function:

J(bg,apt) = E [Z P(bktis ki) + p(bptr)]

T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.
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Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

e Can lead to a lack of coordination and unsafe and sub-optimal actions
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T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.
T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification

Algorithms with Formal Guarantees,” arXiv’25.



Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

* Histories & beliefs of the robots may differ due to limited data-sharing capabilities

=Pz, | Hy) by = P(xy | Hy ) My # Hy

e Can lead to a lack of coordination and unsafe and sub-optimal actions

/;1 R\ ‘ ﬁ !

Challenge: Guarantee a consistent joint action selection by individual robots, despite

!
the robots having inconsistent beliefs; otherwise, self-trigger communication {a" a’’
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T. Kundu, M. Rafaeli, and V. Indelman, “Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach,” IROS’24.

T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, “Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification
Algorithms with Formal Guarantees,” arXiv’25.
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