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Measurement Simplification in ρ-POMDP with
Performance Guarantees

Tom Yotam and Vadim Indelman

Abstract—Decision making under uncertainty is at the heart of
any autonomous system acting with imperfect information. The
cost of solving the decision-making problem is exponential in the
action and observation spaces, thus rendering it unfeasible for
many online systems. This article introduces a novel approach
to efficient decision making, by partitioning the high-dimensional
observation space. Using the partitioned observation space, we
formulate analytical bounds on the expected information-theoretic
reward, for general belief distributions. These bounds are then used
to plan efficiently while maintaining performance guarantees. We
show that the bounds are adaptive and computationally efficient,
and that they converge to the original solution. We extend the par-
titioning paradigm and present a hierarchy of partitioned spaces
that allows greater efficiency in planning. We then propose a specific
variant of these bounds for Gaussian beliefs and show a theoretical
performance improvement of at least a factor of 4. Finally, we
compare our novel method to other state-of-the-art algorithms in
active simultaneous localization and mapping scenarios, in simu-
lation and in real experiments. In both cases, we show a significant
speedup in planning with performance guarantees.

Index Terms—Autonomous agents, localization, mapping,
partially observable Markov decision process.

I. INTRODUCTION

AUTONOMOUS agents must operate with imperfect infor-
mation about their environments, dynamics, and measure-

ments. Belief space planning (BSP) is one of the fundamental
problems one must solve for these autonomous agents to interact
with the environment successfully. The problem is modeled
such that we maintain a probability density function over the
true state of the agent, which is unknown. We then reason
about the evolution of this distribution in the future for different
actions and possible observations. BSP uses two main models to
evolve the distribution over the state: motion and measurement
models. The two models often have very distinct and different
effects. The motion model introduces noise by state uncertainty.
The measurement model on the other hand, although noisy by
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itself, usually provides valuable information about the agent’s
pose and the map of the environment, which in turn reduces state
uncertainty.

One advantage of using the BSP formulation is the capacity
to incorporate belief-dependent reward functions, particularly,
information-theoretic rewards, which is important for tasks such
as search and rescue, informative path planning, and active clas-
sification. The ability to measure belief uncertainty and reduce it
is key in solving such tasks; however, it comes with added com-
putational complexity, especially when the observation space is
high dimensional. In a typical active simultaneous localization
and mapping (SLAM) setting, future observations may include
hundreds or even thousands of landmarks. Moreover, in a visual-
based partially observable Markov decision process (POMDP)
setting, even a single observation can be high dimensional when
the measurement model uses raw image inputs.

Solving the corresponding POMDP problem involves reason-
ing about different actions or policies and, for each, accounting
for different possible observations. This leads to exponential
growth of the posterior beliefs, which in turn makes the planning
problem NP-hard [19].

A possible approach to addressing this issue is to simplify
the planning problem. One specific simplification method of
interest is forming analytical bounds on the expected reward
and using the bounds to decide on the optimal action. Given
that the bounds are easier to calculate than the expected reward,
planning becomes more efficient.

In this work, we present a novel approach of simplification of
the POMDP planning problem, specifically to the multivariate
observation space. When the observation space is high dimen-
sional, the calculation of expected information-theoretic rewards
becomes expensive. We show that by partitioning the random
variables that model future possible measurements into sets, this
calculation becomes more efficient by developing novel bounds
on the expected reward.

To illustrate, consider a factor graph representation for a given
belief at planning time t = 2, as in Fig. 1. In this toy example,
we sketch out how in planning, a specific action leads to three
new random observations involving different landmarks. One
can think of a simplified setting, which takes into account only a
subset of these random observations. This subset of observations
is a partition of the multivariate random variable representing the
three original observations. This multivariate random variable
defines in this case the observation space for this specific time
step, such that its partitioning is a partition of the observation
space. Similarly, in visual-based POMDP setting, a partition
of the observation space may correspond to a partition of the
random variables representing future image pixels into subsets.
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Fig. 1. Prior factor graph is shown in the gray blob; considering an action that
leads to the factor f3, we see the posterior factor graph in the yellow blob. The
posterior graph includes the future + random measurements Z1, Z2, and Z3.
Different sets of random measurements are assigned different colors, which
represents one possible partitioning. These sets are used to bound the conditional
entropy of the entire posterior graph.

Specifically, our main contributions are as follows. We in-
troduce the novel concept of observation space partitioning.
Using the partitioned space, we show the relation to the orig-
inal problem by deriving analytical bounds on the expected
entropy that hold for all families of belief distributions. We
present a partition tree that allows greater efficiency as we go
down its hierarchy. We show that these bounds are adaptive
and computationally cheaper, and that they converge to the
original solution. Moreover, we show one possible realization of
this general framework for an active SLAM scenario involving
multivariate Gaussian distributions and present a hierarchy of
efficient implementations. The speedup ranges from a factor
of 4 for the least efficient one, and a speedup from a cube to
linear time for the most efficient one. We demonstrate the use
of this framework in both simulated and real experiments with
a significant speedup.

II. RELATED WORK

POMDP has been widely used as a model for decision making
under uncertainty, despite the fact that obtaining the optimal
solution for the planning problem is known to be intractable [9],
[19]. While the standard POMDP is formulated with state-
dependent reward functions, it is possible to extend this frame-
work to include belief-dependent reward as well; examples for
such frameworks are ρ-POMDP proposed in [1] and BSP in [20]
and [29]. This extension is essential for tasks such as terrain mon-
itoring [21], information gathering [26], and active SLAM [14].
Various approximation methods for solving POMDPs were pro-
posed; however, even approximating a solution is challenging
since most real-world problems incorporate continuous spaces.
A sparse tree representation combined with a Monte Carlo tree
search was explored in [25], in order to approximate near-
optimal policies; however, it is not suitable for information-
theoretic rewards. A particle-based approach to represent the
belief was taken by Sunberg and Kochenderfer [27], proposing
two different algorithms, one of them catering specifically to
belief-dependent rewards. An abstraction of the observation
model was studied in [2], for a low-dimensional state-space and
nonparametric beliefs, allowing speedup compared with other
approximation methods. Similarly to our method, it uses the
observations as a means for simplification, where the main dif-
ference is that the mechanism for simplification is clustering of
observation samples (post hoc), while our method is aimed at the
observation space directly, by partitioning the high-dimensional
observation space and reducing its dimensionality.

Early works have identified the importance of quantifying the
information contained in observations. The quantitative value
of possible measurements is presented in [5], in an effort to
incorporate this value measure in inference. While it did allow
for better selection of measurements using heuristics, it did not
provide any optimality guarantees. Using the submodularity of
mutual information, Krause et al. [17] formulated a near-optimal
algorithm for sensor placement, which can alternatively cast as a
myopic planning algorithm; however, it was limited to Gaussian
processes.

Probabilistic graphical models have seen substantial trac-
tion in the world of inference; one of the most popular one
was introduced by Kaess et al. [11] and was later extended
in [10]. The latter utilized the structure of SLAM problems to
be encoded in a Bayes tree, which allowed for an incremental
update of the posterior belief with incoming information. The
computational complexity for big SLAM problems is still very
high, and there have been many works that have tried to reduce
the computational complexity of inference, considering prob-
abilistic graphical models. Some of the more popular SLAM
methods using graphical models were introduced: Khosoussi
et al. [13] presented a graph-theoretic approach to the problem
of designing sparse reliable pose-graph SLAM in the context of
measurement selection, Carlevaris-Bianco et al. [4] and Kret-
zschmar and Stachniss [18] showed methods for compressing
a factor graph, and Zhang and Vela [30] reviewed how feature
selection based on some defined scores can improve localization
and data association, proposing a greedy algorithm that relies
submodularity as well.

Other works have studied simplification methods for planning
problems: Smith and Simmons [24] presented a heuristic-based
bound on the value function, to guide local updates; a belief
compression method was proposed in [22], but it lacked guaran-
tees on planning performance. Several works have put forward
simplified methods while providing guarantees: for a Gaussian
high-dimensional state, Indelman [7] proposed a transformation
of the original information space to a conservative one, by
decoupling all state variables. More general approaches were
studied in [6] and [31]; the former outlined a theoretical frame-
work for simplification in general while demonstrating said
framework for a sparse approximation of the initial belief, while
the latter studied a simplification in risk averse planning, while
considering a distributional perspective. A multilevel adaptive
simplification framework considering belief-dependent rewards
was developed in [28] and [32], based on novel bounds [28]
on a differential entropy estimator [3] that utilize a reduced
number of state samples. However, similarly to many nonpara-
metric methods, these works aimed at a low-dimensional state-
space setting. These works and other simplification methods are
complmentary to ours and can be used alongside one another, as
none of these works considered simplification to the observation
space itself.

III. NOTATIONS AND PRELIMINARIES

A. ρ-POMDP

A discrete-time POMDP models an agent decision process by
outlining the dynamics of the interaction between the agent and
its environment. It is defined as the tuple (X ,A,Z, T,O, ρ),
consisting of state, action, and observation spaces, transition
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and observation models, and a reward function. We assume a
Markovian transition model, i.e., T (X, a,X ′) = P(X ′|X, a),
and that each measurement is conditionally independent given
the state, i.e., O(X, z) = P(z|X).

Since the agent only observes the environment through noisy
measurements, it must maintain a probability distribution over
the true state; we denote this distribution as a belief. The belief
and the propagated belief are defined as follows:

bk � b[Xk] = P(Xk|z0:k, a0:k−1) � P(Xk|hk) (1)

b−k � b[X−
k ] = P(Xk|z0:k−1, a0:k−1) � P(Xk|h−

k ). (2)

At each discrete-time step, this belief is updated with new motion
and observation information according to Bayes’ rule. Given an
action ak and observation zk+1, the belief is updated according
to

bk+1 = η

∫
Xk

P(Xk+1|Xk, ak)P(zk+1|Xk+1)bkdXk

where η is a normalization constant. A policy π : B �→ A maps
belief states to actions. Usually, only state-dependent rewards are
considered in the POMDP setting. BSP and later on ρ-POMDP
extend the POMDP model to include belief-dependent rewards.
For some finite planning horizon �, the value of a policy π is
defined as the expected cumulative reward received by following
π with initial belief bk:

V π(bk) = ρ(bk, πk(bk)) + E
Zk+1:k+�

[
k+�∑

i=k+1

ρ(bi, πi(bi))

]
. (3)

Solving a POMDP is equivalent to finding the optimal policy π∗
such that the value function is maximized.

A general form of the reward function ρ(bi, πi(bi)) can be
expressed as a sum of a belief-dependent component R(bi) and
a state-dependent component RX(bi, πi(bi))

ρ(bi, πk(bi)) = R(bi) + α ·RX(bi, π(bi)) (4)

whereα is some weight. The belief-dependent component could
correspond to an information-theoretic reward, such as differen-
tial entropy and information gain. The state-dependent compo-
nent can be expressed as RX(bi, π(bi)) = E

Xi∼bi
[r(Xi, πi(bi))].

For instance, r(Xi, πi(bi)) could represent distance to goal or
obstacle and control effort.

In most cases,R(bi) is the computationally expensive compo-
nent, and as such, it is the focal point of this work. We consider a
particular instance of this reward function, namely, differential
entropy

R(b) � −H(X) ≡ E
X∼b

(log b[X]) (5)

where X is a random variable distributed according to b[X].
If both X and Z are treated as random variables, the expected

reward becomes the conditional entropy of these random vari-
ables, i.e.,

E
Z
[R(b)] = −H(X | Z) = −E

Z
[H(X | Z = z)]. (6)

Thus, the expected reward at each ith look ahead step can be
equivalently written as

E
Zk+1:i

[R(bi, π(bi))]=−H(Xi|Zk+1:i) (7)

where the future observations are drawn from the distribution
P(Zk+1:i | bk, π) and i ∈ [k + 1, k + �].

In this article, we consider an open-loop setting, as formulated
in the next section.

B. Active SLAM

Let xk be the state of the agent at time k, and Xk be the joint
state of the agent’s trajectory and environment, e.g., landmarks,
up to, and including time k. We define zk � {z0k, . . ., zmk } as
the set of all measurements observed at time k, and z0:k �
{z0, . . ., zk} as the set of all measurements until time k. Simi-
larly, we define a0:k � {a0, . . ., ak} as the set of all actions until
time k . Assuming static landmarks, the motion of the agent, and
the observations it receives are modeled as:

xk+1 = f(xk, ak) + wk, zk = h(Xk) + vk (8)

where f and h are some deterministic functions, and wk and vk
are their process noise, respectively.

We denote the data association vector at time k as βk. The
dimensionality of βk is equal to Xk excluding xk and is com-
posed of binary entries, where each entry indicates whether
the corresponding state was involved in a measurement at that
given time step. We assume that each measurement involves
the current pose xi, such that β does not account for it. For
example, at time step k = 3, for a prior state vector of dimen-
sionality 5 and a measurement involving the third and fifth
components of the state (e.g., observation of two landmarks),

β3 =
(
0 0 1 0 1

)T

.

Alternatively, we can express the objective function using the
data association vector. For a given action sequence ak:k+�, the
objective function is defined as

J(bk, ak:k+�) � E
β̃

[
E
Z̃|β̃

[
k+�∑

i=k+1

R(bi, ai)

]]
(9)

where β̃ � βk+1:k+� and Z̃ � Zk+1:k+�. In this scenario, β̃
dictates the number of measurements and the states involved,
while Z̃ encodes the information about the distribution of those
measurements. Combining Bayes rule and the properties of the
models, we can factorize a posterior belief b[Xk+�] given β̃ into
prior belief, motion, and measurement factors

b[Xk+�] ∝ b[Xk]

k+�∏
i=k+1

P(xi|xi−1, ai−1)P(zi | Xi, βi) (10)

where

P(zi | Xi, βi) =

mi(βi)∏
j=1

P(zi,j |xi, X
βi(j)
i ) (11)

where mi is the number of measurements at the ith time step,
andXβi(j)

i represents the involved state in the jth measurement,
at the ith time step, both as a function of βi. We denote the set
of all involved state variables for a given time step as

X inv
k = {Xβk(j)

k |j ∈ J } (12)

where J = {1, 2, ..,mk(βk)}.
When the models in (8) are linear, with zero-mean Gaussian

noise, i.e., wk ∼ N (0,Wk) and vk ∼ N (0, Vk), and the prior
belief is Gaussian, it can be shown that the posterior belief is
also Gaussian. In such a case, the entropy of the posterior belief
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can be expressed as

H(X) =
1

2
(ln |Σ|+N ln(2πe)) (13)

where b[X] = N (μ,Σ), with mean μ ∈ R
N and covariance

matrix Σ ∈ R
N×N . The above also holds when the belief is

modeled or approximated as Gaussian for nonlinear models. The
inverse of the covariance is known as the information matrix,
such that Σ−1

k = Λk. At each given time step, the information
matrix of a posterior belief bk+1 can be decomposed to

Λk+1 = ΛAug
k + FTW−1

k+1F +HTV −1
k+1H (14)

where ΛAug
k is the prior information matrix of bk, augmented

with zeros to accommodate new states, Wk+1 and Vk+1 are
the noise covariance matrices of the motion and measurement
models, respectively, and F � ∇f and H � ∇h are the Jaco-
bians of the motion and measurement functions, respectively.
The stacked matrices of FTW−1

k+1F and HTV −1
k+1H are de-

noted as the collective Jacobian Ãk; see [8] for details. If we
combine the collective Jacobians of consecutive time steps, i.e.,
Ãk+1, Ãk+2, . . . , Ãi, we get the following update rule:

Λi = ΛAug
k + ÃT

k+1:i · Ãk+1:i (15)

where Ãk+1:i is the collective Jacobian of the motion and
measurement factors of (10), from the time step k + 1 until i.

For the sake of readability, we drop the notation of the history
hi from now on, but assume that all distributions of a given time
step are conditioned on the history available at the beginning
of the planning session. We denote the collective Jacobian of a
given horizon Ãk+1:i simply as Ai.

IV. PROBLEM FORMULATION AND APPROACH

In the following section, we show how to use observation
space partitioning to simplify the BSP problem. In order to
choose the optimal action from a pool of candidate actions, one
needs to evaluate the expected reward function EZk:i

(ρ(bi, ai))
at each future time instant i in the planning horizon � for each
action sequence ak:k+�. Instead, one can evaluate bounds on the
expected reward function as a proxy

LBρ
i ≤ E

Zk:i

(ρ(bi, ai)) ≤ UBρ
i . (16)

In this work, we focus on bounding the information-theoretic
reward R(bi), since it is typically the computational bottleneck
with respect to the state-dependent reward

LBi ≤ E
Zk:i

(R(bi)) ≤ UBi (17)

and thus

UBρ
i � UBi + αEZk:i

[RX(bi, ai)] (18)

LBρ
i � LBi + αEZk:i

[RX(bi, ai)]. (19)

Note that, considering an open-loop setting, the ex-
pected state-dependent reward EZk:i

[RX(bi, ai)] compo-
nent in ρ(bi, ai) does not depend on future observations,
which marginalize out: since RX(bi, ai) = E

Xi∼bi
[r(Xi, ai)],

EZk:i
[RX(bi, ai)] can be expressed as∫

Zk:i

P(Zk:i | bk, ak:i)RX(bi, ai)dZk:i

Fig. 2. Expected reward is shown in red within its bounds. On the left, we can
select the optimal action based on the bounds alone; on the right, the worst-case
loss is shaded in gray.

=

∫
Xi

P(Xi | bk, ak:i)r(Xi, ai)dXi

= EXk∼bkEXk+1∼P(.|Xk,ak) · · ·EXi∼P(.|Xi−1,ai−1)[r(Xi, ai)].

Therefore, the bounds from (18) assume the form

UBρ
i � UBi + αEXi∼P(.|bk,ak:i−1)[r(Xi, ai)] (20)

LBρ
i � LBi + αEXi∼P(.|bk,ak:i−1)[r(Xi, ai)] (21)

which means that the considered simplification of the observa-
tion space does not have an impact on the state-dependent reward
component in an open-loop setting, which in any case does not
depend on future observations.

As stated, this result is only valid for the open-loop setting
considered herein, while in a closed-loop setting, we would
remain with the bounds (18) and (19) (with appropriate replace-
ment of actions to policies; see also [2]).

In the same manner, we can bound the objective function by
summing up the bounds over the expected reward function for
each of the time steps

k+�∑
i=k+1

LBρ
i ≤ J (bk, ak:k+�−1) ≤

k+�∑
i=k+1

UBρ
i . (22)

Under the assumption that these bounds can be efficiently
calculated, it is easier to select actions based on the reward
bounds; see illustration in Fig. 2. We can think about two distinct
actions a1 and a2. For each action, we calculate the expected
reward bounds and face two cases: in the first, the bounds do
no overlap and we can select the optimal action; in the second,
the bounds do overlap, and we choose between tightening the
bounds such that they do not overlap and selecting an action
while bounding the loss. Previous works have developed such
bounds considering various simplification methods, as discussed
in Section II.

In this work, we put forward a fundamental simplification that
applies to the observation space itself. Specifically, we propose
a partitioning of the observation space and develop expected
reward bounds that are a function of this partitioning.

A. Partitioning of a Multivariate Observation Space

Consider a multivariate random variable Z that represents
future observations and the corresponding observation space Z .
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In general, Z can be represented by

Z = (Z1, Z2, . . . , Zm) (23)

where Zi is a random variable defined by a given measurement
model, and m is the number of such random variables. We
can now partition Z into different subset of components, for
example, consider the partitioning Zs ∈ Zs and Z s̄ ∈ Z s̄, such
that

Zs = {Z1, Z2, . . . , Zn}
Z s̄ = {Zn+1, Zn+2, . . . , Zm} (24)

where Z = Zs ∪ Z s̄, and their corresponding subspaces Z =
Zs + Z s̄.

In the subsequent section, we derive bounds on the expected
reward that are a function of this partitioning, such that LB and
UB from (17) become

LBi(bi, Z
s
k:i, Z

s̄
k:i) (25)

UBi(bi, Z
s
k:i) (26)

whereZs
k:i and Z s̄

k:i are subsets of measurements from time step
k to i. The partitioning can be applied (but not limited) to two
different observation spaces—a raw measurement such as pixels
in an image, or to a SLAM scenario where the measurement
model is defined by (8), and β dictates the dimension of the
measurements, e.g., number of observed landmarks considering
a future camera pose.

To illustrate the computational advantage of these bounds, we
apply partitioning to a raw image measurement of size 20× 20
binary pixels. Each pixel is represented by a random variable
Zx,y ∈ {0, 1}, where x and y denote the pixel location on the
sensor, andZ ∈ Z ⊆ (F2)

400. We must consider all the different
permutations for each of those pixels, 2400 in total, which defines
|Z| in this case. For example, if we partition Zs to represent the
left half of the image and Z s̄ to represent the right half, we need
only to consider 2200 permutations for Zs and another 2200 for
Z s̄ and 2201 in total.

1) Hierarchical partitioning: There can be higher levels of
partitioning, breaking down further a given measurement set
into two sets. To encode this partitioning scheme, we index the
partitioning depth and the number of nodes at a given depth.
Each partitioned set is given a unique encoding denoted as
Zni|mj , where n is the node number at the ith partitioning level,
and m is the node number at the parent partitioning level j.
We note this slight abuse of notation in regard to (24), but it
should be clear from the context which notation is used. If two
sets share a parent set, we consider them a base subset and its
complement. For example, Z43|12 represents the fourth node of
level 3, where the parent set is the first node of level 2. In this new
notation, Zs and Z s̄ become Z11|10 and Z21|10 or equivalently
Z11|10 and Z 1̄1|10 . Overall, for Z ∈ R

m, it is possible to create
a partition hierarchy of depth log2 m, as illustrated in Fig. 3.

B. BOUNDS ON EXPECTED ENTROPY

In this section, we use measurement partitioning (MP) to
derive novel information-theoretic reward bounds considering
arbitrary distributions; we begin by introducing some helpful
lemmas.

Fig. 3. Illustration of a possible partition tree. At each level of partitioning,
we split a measurement set into two. For Z ∈ Rm, the depth of the tree is
d = log2 m.

Lemma 1: The conditional entropy can be factorized as

H(X|Z) = H(Z|X) +H(X)−H(Z). (27)

Proof: For two random variables that have a joint en-
tropy H(X,Z), we know that conditioning on Z yields
H(X,Z) = H(X|Z) +H(Z). Similarly, conditioning on
X yields H(X,Z) = H(Z|X) +H(X). Combining both
equations and rearranging terms, we obtain the desired
equality. �

There are three quantities we need to evaluate in (27): 1)
the entropy of the likelihood of a measurement, which is done
via the measurement model; 2) the prior entropy; and 3) the
entropy of the measurement given the history. The prior entropy
is common to all actions and can be calculated once. The rest
of the terms involve future random measurements, and we shall
apply partitioning to these terms.

Lemma 2: Given two sets of expected measurements and the
partitioning Z = Zs ∪ Z s̄ from (24), the conditional entropy
can be factorized as

H(X|Z)=H(Zs|X) +H(Z s̄|X)−H(Zs, Z s̄) +H(X).
(28)

Proof: Using (27), we can rewrite the conditional en-
tropy asH(X|Z) = H(Zs, Z s̄|X)−H(Zs, Z s̄) +H(X). The
measurements are independent given the state, such that
P(Zs, Z s̄|X) = P(Zs|X)P(Z s̄|X). The entropy of two inde-
pendent random variables is just the sum of individual entropies
such that H(Zs, Z s̄|X) = H(Zs|X) +H(Z s̄|X). �

Having established what MP looks like in (24), we can use
it to bound the expected reward. The following two theorems
present our main result.

Theorem 1: The conditional entropy can be bounded from
above by

H(X|Z) ≤ UB � H (Zs|X) +H(X)−H (Zs) . (29)

Proof: It is not difficult to show thatH(X|Zs)−H(X|Z) =
I(X|Zs;Z \ Zs). Recalling that the mutual information be-
tween two random variables is always nonnegative, we get

H(X|Z) ≤ H (X|Zs) . (30)

We denote this as the conditioning argument, i.e., condition-
ing on a random variable always reduces entropy, and refer
to it later. Using Lemma 1, we get H(X|Zs) = H(Zs|X) +
H(X)−H(Zs). �
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Fig. 4. Visualizing the marginal entropies of two measurement variables;
the lower bound double counts the overlapping region, which is the mutual
information between those variables.

Theorem 2: The conditional entropy can be bounded from
below by

H(X|Z) ≥ LB � H(Zs | X) +H(Z s̄|X)

−H(Zs)−H(Z s̄) +H(X). (31)

Proof: The joint entropy of the measurements can be writ-
ten as H(Zs, Z s̄) = H(Zs|Z s̄) +H(Z s̄). From the condition-
ing argument in (30), we get H(Zs|Z s̄) ≤ H(Zs), such that
H(Zs, Z s̄) ≤ H(Z s̄) +H(Zs). Rearranging the last inequality
concludes the proof. �

We can think of this lower bound from the perspective of
mutual information: the difference between the original quantity
H(Zs, Z s̄) and the quantities H(Zs) and H(Z s̄) is exactly
I(Zs;Z s̄), such that the lower bound double counts the mutual
information between the measurement sets (see Fig. 4).

In some specific cases, it might be easier to work with poste-
rior beliefs, i.e., with expressions of the formP(X|·). Such cases
include situations where we have closed-form expression to a
Bayesian belief update, for example when the belief is modeled
as a Gaussian. In such cases, it makes sense to rearrange the
bounds as follows.

Corollary 1: The conditional entropy can be bounded by

LB = H(X|Zs) +H(X|Z s̄)−H(X) (32)

UB = H(X|Zs). (33)

This can be obtained directly from (29) and (31) using
Lemma 1.

We note that if one does not have access to the underlying
belief distribution, one must resort to approximation of the
expected reward, i.e., conditional entropy. This is usually done
by sampling the closed-form expressions for the motion and
measurement models. Such cases are outside of the scope of
this work.

C. BOUNDS WITH HIERARCHICAL PARTITIONING

In the previous section, we formed bounds based on a par-
titioning of measurement sets, by double counting the mutual
information between said sets. This intuition applies to the
hierarchical partitioning from Section IV-A as well, allowing
us to create a hierarchical notion of the bounds, starting with the
lower bound. To formulate this idea, we define a new operator

g(Zs, Z s̄) = H(X|Zs) +H(X|Z s̄)−H(X) (34)

Fig. 5. Any combination of children nodes, that their union equals the parent
node, can make up a lower bound on that parent node. Any child node at any
depth can make up an upper bound on a parent node. For instance, the node
highlighted in yellow can form an upper bound, while the nodes highlighted in
gray and yellow can form a lower bound.

where g(Z, ∅) = g(∅, Z) � H(X|Z)−H(X), and g(∅, ∅) �
−H(X).

Using this operator, (32) can be expressed asLB = g(Zs, Z s̄)
and (33) can be expressed as UB = g(Zs, ∅) +H(X). Given
that measurements sets can be hierarchically partitioned further,
we can formulate their bounds.

Theorem 3: For the sets Zs and Z s̄, and their respective
children Zs1 , Zs2 , Z s̄1 , and Z s̄2 , the following holds:

g(Zs, Z s̄) ≥
g(Zs1 , Zs2) + g(∅, Z s̄) ≥
g(Zs1 , Zs2) + g(Z s̄1 , Z s̄2) + g(∅, ∅).

Proof: From (32), we know that

H(X|Z) ≥ H(X|Zs) +H(X|Z s̄)−H(X).

Substituting H(X|Zs) instead of H(X|Z) yields

H(X|Zs) ≥ H(X|Zs1) +H(X|Zs2)−H(X)

which proves the first inequality. Doing the same for H(X|Z s̄)
proves the second inequality. �

Each of the quantities in Theorem 3 is a lower bound on the
expected reward by itself. As for the upper bound, the entropy
of each of the child sets of a given set is an upper bound on the
entropy of that given parent set.

Theorem 4: For the set Zs, and its children Zs1 and Zs2 , the
following holds:

H(X|Zs) ≤ H(X|Zs1) ∧H(X|Zs) ≤ H(X|Zs2). (35)

Proof: This follows directly from the conditioning
argument. �

We can use the above theorems to perform further partitioning
of the measurement sets. Theorem 3 shows that we can mix
different partition depths for the lower bound, while Theorem 4
shows that any node in the partition tree can be used to form
upper bound; see partition tree Fig. 5 for example.

We also note that we have the ability to adaptively change
those bounds, by moving between partitioning levels, as well
as by moving measurements from one set to its compliment. In
the next section, we show the convergence of the bounds, so by
adaptively changing the bounds, we also control how tight they
are.

D. ANALYSIS OF THE BOUNDS

In this section, we analyze the properties of the derived
bounds. We look at the convergence and monotonicity of the
bounds, both as a function of the sets, for a given partition depth,
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and as a function of the partition depth. We then examine the
computational complexity of obtaining the bounds.

1) Convergence

For a given partition depth of d ∈ [1, log2 m], we show that
the bounds converge to the bounds of the parent depth, d− 1.
In particular, when the partition depth is 1, the bounds converge
to the original expected reward. For Zs ∪ Z s̄ ⊆ Z, the upper
bound converges when we add variables to the set Zs, while the
lower bound converges when we remove variables from the set
Z s̄ and add them to the set Zs. We show the proof for the first
partition depth, but it is valid for any arbitrary depth.

Theorem 5: If Zs → Z and Z s̄ → ∅, then H(X|Zs) →
H(X|Z) and g(Zs, Z s̄) → H(X|Z).

Proof: Without loss of generality, assuming Zs ∈ R
n

and Z s̄ ∈ R
m−n as in (24), we start with the up-

per bound, UB = H(X|Zs). Using the conditioning argu-
ment, H(X|Zs ∪ {Zn+1}) ≤ H(X|Zs), where Zn+1 ⊆ Z s̄

but Zn+1 �⊂ Zs. We continue adding variables to the set
Zs in this way, until Zs ∪ {Zn+1} ∪ · · · ∪ {Zm} = Z and
H(X|Zs ∪ {Zn+1} ∪ · · · ∪ {Zm}) = H(X|Z).

As for the lower bound, LB = g(Zs, Z s̄) = H(X|Zs) +
H(X|Z s̄)−H(X). We use the same argument, while
working in the opposite direction with Z s̄: H(X|Z s̄) ≤
H(X|Z s̄ \ {Zn+1}), where Zn+1 ⊆ Z s̄. We continue remov-
ing variables from the set Z s̄ in this way until Z s̄ \ {Zn+1} \
. . . \ {Zm} = ∅ and H(X|∅) = H(X). Plugging into the
expression for LB, we get H(X|Z) +H(X|∅)−H(X) =
H(X|Z) �

2) Monotonicity

From the conditioning argument, we can see that UB mono-
tonically converges to the expected reward, or in different words,
the entropy is monotone in the size of the measurement set. This
holds true both across different partitioning depths and within
a given partitioning depth. However, we cannot say the same
about LB since it depends on the change of both H(X|Zs) and
H(X|Z s̄). We always move measurements from one set to the
other, such that these two quantities change in opposition to one
another. We cannot say a priori what change is greater and thus
cannot deduce monotonicity. In fact, it can be proven that this
bound is nonmonotone using the submodularity of the entropy
in the measurements, but it is beyond the scope of this work.

3) Computational Complexity

It is only rational to use the bounds instead of the full calcu-
lation of the expected reward function, if computing the bounds
is cheaper computationally. We are now going to compare these
two calculations.

For general distributions, we can compare the calculation as a
function of the observation space size. The baseline calculation
involves evaluating the following quantities (omitting history
and actions, see Lemma 2):

H(Zs|X),H(Z s̄|X),H(X),H(Zs, Z s̄). (36)

Using the bounds, we need to evaluate (see Theorems 1 and 2)

H(Zs|X),H(Z s̄|X),H(Z s̄),H(Zs),H(X). (37)

Since the prior entropy is not a function of the action or
expected measurements, we can calculate it once for each
planning session. Overall, the difference between the expected
reward and the bounds boils down to the difference between
the joint versus the marginal entropy of the measurements, i.e.,
H(Zs, Z s̄) versus H(Z s̄) and H(Zs). The baseline calculation
is

H(Z)=−
∫
Zs

∫
Zs̄

P(Zs, Z s̄) logP(Zs, Z s̄)dZsdZ s̄. (38)

Assuming that the observation space is finite and countable,
the cost of evaluating the integral terms is a function of the
random variables. Evaluating (38) is of the order ofO(|Zs||Z s̄|),
while evaluating the simplified terms H(Zs) and H(Z s̄) is of
the order of O(|Zs|+ |Z s̄|). Zs and Z s̄ are entirely defined by
the measurement model; see example in Section IV-A.

Note that, in practice, we do not have access to the joint or
marginal distribution over the measurements, only the measure-
ment model. Marginalization over the state yields

H(Z) = −
∫
Z

∫
X

P(Z,X) log

∫
X ′

P(Z,X ′)dX ′dZdX

=−
∫
Z

∫
X

P(Z|X)P(X) log

∫
X ′

P(Z|X ′)P(X ′)dX ′dZdX.

(39)

The simplification is of the same factor; only now it is magnified
by the state vector size to the second power: O(|Zs||Z s̄||X 2|)
for the baseline and O((|Zs|+ |Z s̄|)|X 2|) for the bounds.

E. HIGH-DIMENSIONAL STATE

In this section, we discuss what the measurement simpli-
fication looks like when the state space is high dimensional.
Specifically, we consider an active SLAM formulation as in
Section III-B. Utilizing data association information from (10)
and (12), we can further simplify the bounds (29) and (31)

LB � H (
Zs|X invs

)
+H (

Z s̄|X invs̄
)

−H (Zs)−H (
Z s̄

)
+H(X) (40)

UB � H (
Zs|X invs

)
+H(X)−H (Zs) (41)

where X invs and X invs̄ are the states involved in the random
measurements Zs and Z s̄, respectively, as determined by β.

F. GAUSSIAN BELIEF

The bounds shown in the previous section hold for general
belief distributions. In this section, we develop a specific form
of the bounds, considering Gaussian distributions and a high-
dimensional state in the context of active SLAM.

In the case of Gaussian distributions, we can replace the en-
tropy term in (6) for its closed-form expression, combining (13)
and (15). For a lookahead step i ∈ [k + 1, k + �], the expected
entropy can be expressed as

E
Zk+1:i

[H(Xi|hi)] = C − 1

2
E

Zk+1:i

[
ln
∣∣∣ΛAug

k +Ai(z)
TAi(z)

∣∣∣]
(42)
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Fig. 6. Illustration of a possible partitioning of a measurement collective
Jacobian, given some partitioning of Zi.

where Ai(z) = Ãi(zk+1:i) is the collective Jacobian for the
entire planning horizon as a function of the measurements, and
C � N ln(2πe).

For convenience, we define f(Λ, A) � |Λ +ATA|. Since we
are interested in the Jacobian of the measurement but not the
motion factors, we choose to present the expected entropy in the
following form:

E
Zk+1:i

[H(Xi|hi)] = C − 1

2
E

Zk+1:i

[ln f
(
ΛAUG−
k , Ai(z)

)
] (43)

where ΛAUG−
k is the propagated belief, i.e., without taking into

account measurements until time step i, augmented with zeros,
and the measurement vector defined in (23) becomes Zk+1:i.

Utilizing (32), (33), and (42), we are ready to present the
expected reward bounds for the Gaussian case. The bounds apply
in expectation and are more efficient to calculate than state-of-
the-art (SOTA) methods per sample of measurements under the
expectation operator.

Theorem 6: For the ith look ahead step, the expected entropy
of a Gaussian belief can be bounded by

LB = C −1

2
E

Zk+1:i

[ln
f
(
ΛAUG−
k , As

i

)·f (
ΛAUG−
k , As̄

i

)
|ΛAUG−

k | ] (44)

UB = C − 1

2
E

Zk+1:i

[ln f
(
ΛAUG−
k , As

i

)
] (45)

where As
i and As̄

i are the Jacobian rows associated with the
measurements Zs

i and Z s̄
i , respectively (see Fig. 6).

Proof: We have obtained a closed-form expression (42) for
the expected entropy. If we plug in these expressions into (32),
we get

H (Xi|Zi) ≥ C − 1

2
E

Zk+1:i

[ln f
(
ΛAUG−
k , As

i

)
]

+ C − 1

2
E

Zk+1:i

[ln f
(
ΛAUG−
k , As̄

i

)
]

− C +
1

2
E

Zk+1:i

[ln
∣∣ΛAUG−

k

∣∣].
In a similar way, using (33), we obtain the upper bound. �

1) Estimation of Expected Entropy

An empirical expectation is generally calculated by sampling
the observation model; for each such sampled observation, a
posterior distribution of the belief needs to be obtained. The latter
usually involves solving a nonlinear optimization problem via

some iterative linearization method. For each posterior belief,
one can calculate the corresponding reward bounds using (44)
and (45), where the expectation operator is approximated by
samples. In this case, the performance guarantees are asymp-
totic, since one assumption that was used to obtain the bounds
is only asymptotically valid, namely, the nonnegativity of the
mutual information between measurements. We note that it is
possible to formulate nonasymptotic guarantees in this case, but
it is outside of the scope of this work and we leave it for future
work.

A different approach would be to make a common assumption
for the optimization process within planning, by taking a single
iteration step. In the context of planning, this is usually a good
approximation for the linearization point when the state prior is
informative and is accurate when the measurement model uses
a linear function or for maximum likelihood estimation for the
measurements [8], [20]. Under the said assumption, the Jacobian
is only a function of β and not of any particular measurement
realization. When the Jacobian is independent of the actual
measurement values, we can drop the expectation operator from
(42) and still represent the expected entropy

H (Xi|Zk+1:i) = C − 1

2

(
ln
∣∣∣ΛAug

k + (Ai)
T ·Ai

∣∣∣) . (46)

In this case, the bounds in (44) and (45), as well as other SOTA
calculations, should be computed only once per action, i.e.,
without the expectation operator.

2) Methods for Determinant Calculation

The computational cost of the bounds in the Gaussian case
is the cost of evaluating the appropriate determinants |ΛAUG−

k +

(As
i )

TAs
i | and |ΛAUG−

k + (As̄
i )

TAs̄
i |. At a first glance, it is not

clear that evaluating the bounds is indeed more efficient than
evaluating the expected reward; we will now show one method,
which is, in fact, efficient.

There are three main methods for calculating the entropy of
the posterior belief: calculating the determinant of the posterior
information matrix (denoted to as baseline), calculating the
determinant of the posterior information matrix in its square
root form (denoted as R), and using the augmented matrix
determinant lemma (rAMDL) [15], [16]. In essence, the rAMDL
utilizes the well-known matrix determinant lemma, combined
with some clever calculation reuse, to efficiently evaluate the
determinant of the posterior information matrix. It requires a
one-time calculation of some specific covariance entries, and its
general form is as follows:

|Λ +ATA| = |Λ| · |Δ| · ∣∣(Anew)
T ·Δ−1 ·Anew

∣∣ (47)

where Δ = Im +Aold · Σ · (Aold)
T , Σ is the prior covariance

matrix, and Aold and Anew are the blocks of the Jacobian matrix
A, with respect to states at planning time (old) and states added
by future actions (new), i.e., A = [Aold, Anew].

Applying MP to the baseline method is not efficient: the
baseline cost is O(n3), where n is the dimension of Λ. Since
n remains the same given a partition, the overall calculation
would be worse than O(n3).

We choose to apply MP to the rAMDL and not R for two
reasons: First, it has been shown that rAMDL is faster than
R within planning [15], [16]. Second, applying MP in R does
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not make sense—although calculating the determinants in R is
O(n), most of the computational burden lies in the update of the
posterior R matrix. This update involves a QR decomposition,
and by partitioning, we split it into two separate QR decomposi-
tions that, on average, are less efficient than the original one. We
are then left with the most efficient method, which is rAMDL.

3) Computational Complexity

One main insight is that the cost of calculating the determinant
using rAMDL (not including the one-time calculation which is
common across all actions) isO(m3), wherem is the dimension
of A. In a typical high-dimensional scenario, m � n, and by
partitioning the measurements, we reduce the dimension of A
even further, so it becomes even more efficient.

Applying (47) to the determinants required for (44) and (45)
results in

|ΛAUG−
k + (As

i )
TAs

i | = |Λk| · |Δs
k| ·

∣∣(As
new)

T (Δs
k)

−1As
new

∣∣
where Δs

k = Im +As
old · Σk · (As

old)
T , and As

old and As
new are

the old and new blocks of the matrix As, i.e., As = [As
old, A

s
new].

In a similar way, we apply the rAMDL to |ΛAUG−
k + (As̄

i )
TAs̄

i |.
The most efficient partitioning, for the first depth, is when

s = s̄, so the resulting matrices are of rank m/2. The cost of
evaluating each of the determinants for the partitioned Jacobians
is O(m

3

8 ). Compared to the rAMDL, the cost is reduced from

O(m3) to O(m
3

4 ) by using the bounds.

V. RESULTS

In this section, we start off by demonstrating the properties
of the bounds, as presented in Section IV-D, for a typical active
SLAM scenario. We then show that compared to the other SOTA
method, our approach is faster while achieving similar reward,
both in a simulated scenario and in the real-world experiment.

A. Setup

The setting considered is a planar high-dimensional SLAM,
where the state includes past poses, current poses, and land-
marks. The belief over the state is normally distributed, and the
reward function is differential entropy. The action space is con-
tinuous, and each pose and landmark has three and two degrees
of freedom, respectively. Thus, for a planning session at time
instant k and planning horizon �, the joint state has the dimen-
sionality of 3(k + �) + 2L, where L is the number of mapped
landmarks. As mentioned in Section IV-F1, in our simulations,
we generate maximum-likelihood observations, although this is
not a limitation of our approach. In all scenarios, the agent uses
its sensor to map an unknown environment. In the simulation, we
use a range and bearing sensor; the real experiment uses cameras
and runs visual SLAM. After an initial mapping procedure,
a prior belief containing poses and landmarks is formed. The
agent then starts a planning session, where the objective is to
reach a certain goal while minimizing the uncertainty over the
high-dimensional state at the last planning step. A typical prior
belief is illustrated in Fig. 7.

GTSAM 4.1.0 and Python 3.9.7 were used for the simulated
scenarios, running on Ubuntu 18.04 and AMD Ryzen 7 3700X
eight-core processor. For the real-world experiment, GTSAM

Fig. 7. Illustration of the prior belief showing a subset of the state landmarks.
The uncertainty associated with the joint covariance matrix is shown for every
fifth pose. The time of each observed landmark is encoded in color—from a dark
one at the beginning to light at the end.

Fig. 8. Empirical demonstration of the bounds’ behavior, for Zs → Z.

Fig. 9. Empirical demonstration of the bounds’ behavior, as d → log2 m.

4.1.0 and Python 3.8 were used, running on Ubuntu 20.04 and
Intel(R) Xeon(R) CPU E5-1620.

B. Bound Analysis

1) Inter Depth Properties: Fig. 8 shows the properties of
each of the bounds, as individual measurements are moved from
one partition to the other, specifically, as Zs → Z and Z s̄ → ∅.
We can see that both bounds converge to the actual expected en-
tropy, the upper bounds does so monotonically, while the lower
bounds does not, as expected. As proposed in Section IV-D, the
lower bound does not converge monotonically because it is a
function of the mutual information between the measurement
partitions. Since the assignment to partitions is random, so is
the value of the mutual information between them.

2) Intra Depth Properties: We show the properties of the
bounds, as we go deeper in the partition tree. Fig. 9 shows,
as expected, that the lower we go down the partition tree, the
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Fig. 10. Expected entropy bounds for each sampled action. All actions whose
lower bound is above the purple dashed line are suboptimal and can be pruned
safely.

Fig. 11. Hierarchical bounds for two distinct actions “Explore” and “Observe.”
The lighter the color, the more efficient the bounds are.

efficiency of the bounds comes at the expanse of their tightness.
We can see that both bounds monotonically converge to the real
expected reward as we go up the partition tree.

3) Correlation and Tightness: Here, we demonstrate the use-
fulness of the bounds in the general case, by presenting the
expected reward bounds, for a set of myopic random actions.
Looking at Fig. 10, we can see that although some bounds
overlap, we can safely prune around 60% of the actions, which
are suboptimal.

We can observe that the lower bound is very strongly cor-
related with the actual reward, while the upper bound shows
slightly weaker correlation with the reward. Again, a possible
explanation for this behavior is the random assignment of the
individual observations to their corresponding set. Since the
lower bound accounts for both sets, it is only a function of their
mutual information, while the upper bound is a function of this
random assignment.

Next, we compare two specific actions, taken from the previ-
ous random action set, by showing their respective hierarchical
bounds. Fig. 11 shows that for actions that lead to rewards that are
distinct, it is possible to select the optimal action based on a very
efficient calculation of the bounds. Specifically, we compare
an action that explores a new part of the map to another that
reobserves previously seen landmarks.

Fig. 12. PRM generator is used to construct a viable path from the agent’s
pose at the start of the planning session to the desired goal. We then select a
number of the shortest ones.

Fig. 13. Illustration of the simulated scenario, showing a subset of the land-
marks and paths.

C. Planning Using Bounds

1) Simulation: We now demonstrate the use of the bounds
in a simulated SLAM scenario using the GTSAM library and
a probabilistic roadmap (PRM) generator [12]; the goal is to
demonstrate a typical use case in active SLAM setting. We start
the planning session with a prior belief as in Fig. 7. We then use
the PRM to randomly generate a set of candidate paths, shown in
Fig. 12. As seen in Fig. 13, the paths start at the green dot and the
goal shown in red, each path consisting of around 12 actions. The
PRM samples are drawn from a uniform continuous distribution.
The actions of a given path follow the trajectory dictated by the
PRM. For each path from a set of the shortest ones, we evaluate
the expected reward at the goal, and its bounds then choose the
optimal one. We emphasize that our approach is applicable also
to other methods for generating candidate action sequences and
not limited to the above-described specific method.

We start by comparing our proposed method using MP to the
rAMDL. Since our method uses the rAMDL to compute the
determinants required for the bounds, many of the calculations
are common and are not accounted for in the comparison. When
compared to iSAM2, these will be accounted for. We compared
the performance for three different scenarios, while two of them
utilize replanning. In a replanning scenario, the agent chooses
an optimal path, takes the first action, and redraws paths to the
goal from the new pose. The number of replanning steps is 5;
since the goal is fixed, each consecutive trajectory is shorter than
its predecessor; see Fig. 14 for details.
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Fig. 14. Replanning scenario; each green dot represents the new pose for
planning, and the goal is represented by a red dot.

TABLE I
TOTAL PLANNING TIME IN SECONDS (LOWER IS BETTER), NOT INCLUDING

ALL COMMON ONE-TIME CALCULATIONS

From Table I, we can see that the speedup increases with
the number of factors. That is expected since the speedup is
correlated with the number of Jacobian rows. Since most of the
prior factors relate to landmarks, a higher number of factors
results in a higher number of observations. We can also see
that the speedup is approaching the theoretical value of O(m4 ),
shown in Section IV-F3. This is because the higher the number of
observations, the smaller the impact of the one-time overhead on
the total planning time. Similar to all of the following scenarios,
we use the bound to prune suboptimal paths; when the bounds
overlap, we choose the path that has the lowest lower bound and
bound the possible loss we might incur. For example, for the
third scenario in Table I, the bound on the expected loss was
109.578, and the optimal expected reward was 5215.999. The
ratio of loss divided by the optimal reward was 0.021, such that
in the worst case, the trajectory chosen would set us off from
the optimal one by 2%. Although unknowable in planning, in
this specific case, as in many others, the lowest lower bound
indeed corresponded the optimal expected reward, and the loss
in practice was equal to zero.

Next, we compare our method to iSAM2 and rAMDL, includ-
ing all one-time calculations, in two different scenarios. The
first scenario uses a similar prior belief to the previous ones,
while the second uses a different prior that includes obstacles.
We use iSAM2 [10] to incrementally update the square root
of the information matrix and then use the updated R matrix
to calculate the reward as in Section IV-F2. Fig. 15 shows
the bounds for the first simulated scenario, 2500 paths were
evaluated without replanning, where we can see that about 85%
of the suboptimal paths can be safely pruned using the bounds.
Table II shows the total planning time for each method in the
first scenario. We show separately the time it takes to recover the
required entries from the prior covariance matrix in Table III:
worst case is the time it takes to recover the full matrix, while

Fig. 15. Bounds for the first simulated scenario, showing a subset of the lowest
entropy paths.

TABLE II
TOTAL PLANNING TIME IN SECONDS (LOWER IS BETTER) FOR THE FIRST

SCENARIO; THE NUMBER OF FACTORS IN THE PRIOR GRAPH IS 12 185 AND

THE NUMBER OF PATHS EVALUATED IS 2500

TABLE III
COVARIANCE RECOVERY TIME

the actual is the time it takes to recover only the entries required
for the states involved in the measurements for the set of all
trajectories. Generally, the earlier in the robot’s past trajectory
the involved states are, the more of the covariance matrix entries
we would need to recover, which is time consuming. However,
in a scenario such as that, the time it would take to update the
posterior R matrix needed for iSAM2 would be significant as
well. Including the covariance recover, we can observe that our
method is about 45% faster than rAMDL and about 65% faster
than iSAM2.

Introducing a second scenario, illustrated in Fig. 16, we
compare the three methods again. The basic setting is similar;
the only differences are the prior mapping, start and end points,
and obstacles that were added to the map. The agent infers the
location of the obstacles during the prior mapping session.

Just like the previous scenario, the bounds are presented in
Fig. 17, and Table IV summarizes the total planning time for
each method. This scenario demonstrates a setting where there
are not many observations during planning. Fig. 16 shows that
most of the planning trajectories do not pass through previously
mapped areas, hence not generating future measurements, which
explains what we see in Table IV. Total planning time is shorter
for all methods, which is caused by the small number of future
measurements. We can see that our method is still the fastest
without incurring any loss. However, given fewer future mea-
surements and, as a consequence, the smaller number of Jacobian
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Fig. 16. Illustration of the second simulated scenario, showing a subset of the
landmarks and paths; obstacles are shown in black. Each trajectory starts from
the green dot and ends in the red one.

Fig. 17. Bounds for second simulated scenario, showing a subset of the lowest
entropy paths.

TABLE IV
TOTAL PLANNING TIME IN SECONDS (LOWER IS BETTER) FOR THE SECOND

SCENARIO; THE NUMBER OF FACTORS IN THE PRIOR GRAPH IS 17 394 AND

THE NUMBER OF PATHS EVALUATED IS 2500

rows, the difference in planning time is not as drastic as in the
previous scenario.

2) Sensitivity Study: In this section, we show the sensitivity
of the different methods to the density of the prior information
matrix. We use the same scenario from before, while adjusting
the density of the prior information matrix by pruning factors
from the prior factor graph. We use the number of landmarks
connected to a certain pose (via a measurement factor) as a metric
of density. This metric is then averaged across 300 evaluated
paths. The results are presented in Fig. 18. We can observe that
MP and rAMDL are largely unaffected by the change in prior
density. This is expected since the complexity of both of them
is a function of the Jacobian, as explained in Section IV-F3.
On the other hand, iSAM2 is much more sensitive to the prior

Fig. 18. Comparison of total planning time as a function of prior density.

Fig. 19. Comparison of planning time as a function of prior density. iSAM2
planning time grows as a function of the prior density, while the one-time
calculation needed for MP stays flat.

density as its planning time grows rapidly compared to the other
methods. In order to further dissect the difference between the
methods, we compare the iSAM2 planning time to the one-time
calculation associated with MP and rAMDL shown in Fig. 19.
The main components of the one-time are the recovery of the
prior information and prior covariance matrices. Theoretically,
both the one-time and iSAM2 should be affected by the change
in density. In practice, we can see that the one-time calculation is
affected by the change in density, but when compared to iSAM2,
it effectively becomes negligible. The reason for this gap is that
the one-time calculation, as its name suggests, is done only
once per a given prior belief. Conversely, the components of
the iSAM2 calculation that are affected by the change in density
have to be evaluated from scratch for each candidate path. When
comparing the total planning time of a pool of candidate paths,
the growing cost associated with the one-time calculation, as the
density increases, becomes negligible.

3) Experiment: Next, we demonstrate the use of the bounds
in a real-world experiment using a DJI Robomaster S1, equipped
with a ZED camera (used in a monocular configuration). GT-
SAM is used for the back end while the front end is handled
by SuperGlue [23]. The planning session starts after a partial
mapping of an indoor environment, which is stored as a prior
factor-graph. From its current pose, the robot is given a goal, it
then uses the PRM to generate possible trajectories to its goal.
For each method 500 paths were evaluated, each consists of 20
actions.

Fig. 20 shows the hardware setup for the experiment. Fig.
21 shows a typical feature matching on two consecutive-in-time
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Fig. 20. RoboMaster S1 robot, equipped with a ZED camera.

Fig. 21. SuperGlue feature matching.

TABLE V
TOTAL PLANNING TIME IN SECONDS (LOWER IS BETTER); THE NUMBER OF

FACTORS IN THE PRIOR GRAPH IS 8220 AND THE NUMBER OF PATHS

EVALUATED IS 500

Fig. 22. Robotmaster experiment.

images. Visual odometry is used as motion model factors, and
projection factors are used as observation factors.

Table V summarizes the planning time for each of the meth-
ods, and Fig. 22 shows the expected reward bounds. We can
see again that our method allows for a meaningful speedup.
About 70% of the paths can be pruned, while the lowest lower
bound corresponds to the optimal expected reward. The planning
time of our method is about 30% faster than rAMDL and about
70% faster than iSAM2. The larger difference between iSAM2
and the other two methods, compared to the same difference
in Section V-C1, can be explained by the sensitivity to the
density of the prior shown in the previous section. The average

number of landmarks per pose for the simulated scenario is
72.46, compared to 103.89 for the experiment.

VI. CONCLUSION

In this article, we introduced the novel concept of observation
space partitioning for BSP and POMDP planning problems. The
concept is general and applies to all belief distributions and the
underlying POMDP spaces. It allows for a more efficient way of
identifying the optimal action by using a simplification paradigm
and forming analytical bounds on the expected sum of rewards.
We have demonstrated one possible use case of this concept
by studying a typical active SLAM scenario with Gaussian
beliefs. We have shown that both for simulated and real-world
experiments, our method has a faster planning running time
when compared to other SOTA methods, while identifying the
same optimal trajectory.

A. Limitations and Future Work

While the theoretical foundation of the proposed method
is general, its implementation has some limitations. Tackling
such limitations can form the basis for future research. The
method presented is applicable for information-theoretic re-
wards (specifically, entropy), which are typically the compu-
tational bottleneck compared to state-dependent rewards. It is
not hard, however, to extend this approach to other information-
theoretic rewards such as information gain. In addition, future
work can evolve in multiple different directions, which might
include implementations for nonparametric belief distributions,
an extension to policies over action sequences, and the possible
partitioning of other POMDP spaces.
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