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Data Association Aware POMDP Planning With
Hypothesis Pruning Performance Guarantees

Moran Barenboim , Idan Lev-Yehudi , and Vadim Indelman

Abstract—Autonomous agents that operate in the real world
must often deal with partial observability, which is commonly mod-
eled as partially observable Markov decision processes (POMDPs).
However, traditional POMDP models rely on the assumption of
complete knowledge of the observation source, known as fully
observable data association. To address this limitation, we propose
a planning algorithm that maintains multiple data association
hypotheses, represented as a belief mixture, where each component
corresponds to a different data association hypothesis. However,
this method can lead to an exponential growth in the number of
hypotheses, resulting in significant computational overhead. To
overcome this challenge, we introduce a pruning-based approach
for planning with ambiguous data associations. Our key contri-
bution is to derive bounds between the value function based on
the complete set of hypotheses and the value function based on a
pruned-subset of the hypotheses, enabling us to establish a trade-off
between computational efficiency and performance. We demon-
strate how these bounds can both be used to certify any pruning
heuristic in retrospect and propose a novel approach to determine
which hypotheses to prune in order to ensure a predefined limit on
the loss. We evaluate our approach in simulated environments and
demonstrate its efficacy in handling multi-modal belief hypotheses
with ambiguous data associations.

Index Terms—Autonomous agents, planning under uncertainty.

I. INTRODUCTION

AUTONOMOUS agents have become integral to our lives,
from self-driving cars to delivery robots. These agents

must reason about partial observability when interacting with
the real world. For instance, an autonomous vehicle has to reason
about uncertain and incomplete information from its sensors to
make decisions such as choosing the correct lane or changing
speed. Nevertheless, most planning literature assumes complete
knowledge of the source of the observation, i.e., the observed
environmental instance, but this may not be true in practice.
For example, self-driving cars use camera sensors to observe
the scene and relate surrounding objects to an a-priori known
map. When a car approaches a controlled intersection, it has
to determine which of the visible traffic lights correspond to
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Fig. 1. Fig. (a) depicts an agent aiming to reach a goal (green star) while
receiving an observation that could come from two sources, β1 or β2. In Figs.
(b) and (c), incorrect assumptions about the origin of the observation lead to
changes in the robot’s belief (blue and pink ellipses) and the optimal action,
which can vary significantly. Notably, in (c), the calculated best action results
in unsafe states. Instead, Fig. (d) showcases a data association aware belief and
action, in which the agent holds two distinct hypotheses. Consequently, the agent
chooses an action to gather information rather than traveling directly towards
the goal.

the traffic light in the map and subsequently apply to the lane
it is driving. This is a simple problem if the localization is
perfect. However, sensor noise, changing lighting conditions,
and occlusions can cause the car to associate observations with
an incorrect traffic light. Ignoring the possibility of inconsistent
observation associations could lead to an erroneous distribution
shift of the state and potentially fatal consequences.

Fig. 1 provides an example of a robot attempting to reach a
destination, represented as a star. In Fig. 1(a), the robot perceives
a potential future observation, but its exact pose is unknown and
expressed as a unimodal distribution. Equipped with a sensor
having a limited field of view, the robot detects a portion of a wall,
which could be part of a corridor leading to the goal (high reward)
or a pit (low reward). In Fig. 1(b) and (c), the robot assumes
a deterministic source for the observation, leading to potential
selection of an incorrect and possibly unsafe action. Fig. 1(d)
demonstrates a multi-modal posterior belief with different data
association possibilities. Consequently, the agent decides to
gather more information rather than directly moving toward the
goal. This example highlights the importance of accounting for
data association ambiguity to avoid poor performance and unsafe
policies where the agent might mistakenly head towards the pit
instead of the star.
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In general POMDPs, a plan that accounts for uncertainty
maintains a distribution over the possible states of the world.
Accounting for ambiguous data associations adds another layer
of complexity by having to consider multiple hypotheses, lead-
ing to a mixture distribution, where each component of the
mixture corresponds to a single hypothesis. Additionally, as
the planning horizon grows, the number of hypotheses grows
exponentially [1], adding a significant computational burden.

In response to the challenges posed by ambiguous data associ-
ations in POMDPs, we propose a simplification approach, which
maintains a small subset of the hypotheses instead of maintaining
an exponential number thereof. Importantly, we derive bounds
on the utility function between the POMDP with the simplified
and the non-simplified beliefs. We use these bounds to establish
a trade-off between computational efficiency and performance
for state-dependent rewards. Further, using this relationship, we
propose a novel pruning approach that balances computational
efficiency with performance loss by adaptively selecting which
hypotheses to prune online.

Unlike current state-of-the-art POMDP planners that rely on
particlepropagation, e.g. POMCP or DESPOT, our proposed
approach overcomes the challenge of particle depletion by
introducing a novel estimator for the objective function. This
estimator is agnostic to the inference mechanism being used, it
supports both nonparametric and parametric inference mecha-
nisms to enable long planning horizons. Through experiments in
simulated environments, we demonstrate the effectiveness of our
proposed approach in handling multi-modal belief hypotheses
with ambiguous data associations.

In this letter we make the following main contributions: (a)
we derive a theoretical relation between the POMDP with a
complete set of hypotheses and the pruned set of hypotheses,
enabling us to establish a trade-off between computational
efficiency and performance; (b) we develop an estimator that
enables parametric and nonparametric belief mixture represen-
tation to address particle depletion; (c) we establish a similar
relation between an estimated value function based on the com-
plete set of hypotheses and the value function of the pruned
set of hypotheses; (d) our bounds can be utilized to provide
guarantees in terms of worst-case loss in planning performance
given some pruning method; (e) moreover, we derive a scheme
that utilizes our bounds to adaptively decide which hypotheses
to prune to meet a user-defined allowable loss in planning
performance. Finally, we demonstrate the effectiveness of our
planning algorithm in a simulated environment with unresolved
data associations leading to multi-modal belief. This letter is
accompanied by supplementary material [2] that provides proofs
for the claims in this letter.

II. RELATED WORK

While addressing the challenge of ambiguous data associ-
ations (DA) has been extensively researched in the passive
inference community, [3], [4], [5], [6], the planning community
has had relatively few attempts at supporting ambiguous DA.
General state-of-the-art POMDP planners, such as DESPOT,
POMCPOW or PFT-DPW [7], [8] do not directly support DA
out-of-the-box. Although they can be altered to support DA, e.g.
by replacing the observation model with a mixture of observation
models, an ad-hoc variation will often result in particle depletion
due to the multi-modal nature of a multiple hypotheses belief.
Particle depletion results in an overconfident and potentially

incorrect action selection due to the low representation of likely
state particles in a belief.

A more dedicated approach for handling ambiguous DA could
be to explicitly maintain multiple representations of conditional
beliefs, each depending on different DA history. A naive attempt
to perform planning with all hypotheses results in an exponen-
tially increasing number of hypotheses which is computationally
infeasible. Instead, DA-BSP, [1], solves POMDPs by explicitly
maintaining hypotheses within the search tree and performs
pruning by keeping only a fixed number of the most promising
hypotheses, or by keeping only the hypotheses above some
threshold on their probabilistic values. However, these pruning
methods lack mathematical guarantees and are merely used as
a tool to reduce the computational burden. More recently, [9],
[10] considered different settings for planning with hypotheses
pruning and suggested an algorithm that actively plans to reduce
hypotheses ambiguity by defining an objective function over
the hypotheses distribution. Their approach provides bounds
with respect to that unique objective function and is specifi-
cally tailored for that task. Lastly, [11] proposed an adaptive
approach that invests computational efforts in the most promis-
ing branches of both the planning and hypotheses trees. Their
method considers arbitrary state-dependent rewards but comes
only with asymptotic guarantees.

III. PRELIMINARIES

In this section, we formally define a POMDP with a belief
that considers ambiguous data associations. The POMDP M
is a tuple 〈X ,A,Z, T,O,R〉, where X , A, and Z represent the
state, action, and observation spaces, respectively. The transition
density function T (xt, at, xt+1) � P(xt+1|xt, at) defines the
probability of transitioning from state xt ∈ X to state xt+1 ∈
X by taking action at ∈ A. The observation density function
O(xt, zt) � P(zt|xt) expresses the probability of receiving ob-
servation zt ∈ Z from state xt ∈ X .

Given the limited information provided by observations, the
true state of the agent is uncertain and a probability distribu-
tion function over the state space, also known as a belief, is
maintained. The belief depends on the entire history of ac-
tions and observations, and is denoted Ht � {z1:t, a0:t−1}. We
also define the propagated history as H−t � {z1:t−1, a0:t−1}.
At each time step t, the belief is updated using Bayes’ rule
and the transition and observation models, given the pre-
vious action at−1 and the current observation zt, b(xt) =
ηt

∫
P(zt|xt)P(xt|xt−1, at−1)b(xt−1)dxt, where ηt denotes a

normalization constant and bt � P(xt | Ht) denotes the belief
at time t. The updated belief, bt sometimes referred to as the
posterior belief, or simply the posterior. We will use them
interchangeably throughout the letter.

A policy functionat = π(bt) determines the action to be taken
at time step t, based on the current belief bt. In the rest of the
paper we writeπt ≡ π(bt) for conciseness. The reward is defined
as an expectation over a state-dependent function, ρ(bt, at) =
Ex∼bt [rx(x, at)]. The value function for a policy π over a finite
horizon T is defined as the expected cumulative reward received
by executing π,

V π(bt) = ρ(bt, πt) + E
zt+1:T

[
T∑

τ=t+1

ρ(bτ , πτ )

]
. (1)
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The action-value function is defined by executing action at and
then following policy π for a finite horizon T . The goal of the
agent is to find the optimal policy π∗ that maximizes the value
function.

A. Ambiguous Data Associations as Mixture Belief

To represent ambiguous data associations within the POMDP
framework we define the belief as a mixture distribution, that
encompasses both continuous and discrete random variables.
The discrete variables, βt, represent different associations to
seen observations at time t. We formally define the mixture belief
at each time t as,

b (xt) =
∑
β0:t

P(β0:t | Ht)P(xt|β0:t, Ht), (2)

where P(β0:t | Ht) is the marginal belief over discrete variables
which can be considered as the mixture weight. An hypothesis,
β0:t, denote the entire sequence of associations up to time
step t. P(xt|β0:t, Ht) is the conditional belief over continuous
variables, given that the history and associations are known.
The marginal belief over the hypothesis, β0:t, can be updated by
applying Bayes rule followed by chain rule,

P(β0:t | Ht) = ηtP(zt | β0:t, H−t )P(β0:t | H−t )

= ηtP(zt | β0:t, H−t )P(βt | β0:t−1, H−t )P(β0:t−1 | H−t ). (3)

The conditional belief is updated for each realization of discrete
random variables as

P(xt|β0:t, Ht) = ψ (P(xt−1|β0:t−1, Ht−1), at−1, zt) , (4)

where ψ(.) represents the Bayesian inference method. Last, the
reward function can now be written in terms of hypothesis de-
pendency, r(bt, at) = Ex∼bt [rx(x, at)] = Eβ0:t

[Ex[rx(x, at) |
β0:t]]. For conciseness, we will denote

r(bβt , πt) � Ex[rx(x, at) | β0:t]. (5)

B. IS and SN Estimators

Importance sampling (IS) is a Monte Carlo simulation tech-
nique for estimating the expected value of a target function with
respect to a probability distribution. The IS estimator involves
drawing samples from a proposed distribution and weighting
them by the ratio of the target distribution, P(·) to the proposal
distribution, Q(·),

Ê
IS

[r(x)] � 1

N

N∑
i=1

ω(xi)r(xi) =
1

N

N∑
i=1

P(xi)

Q(xi)
r(xi). (6)

The estimator is unbiased and consistent [12], when the proposal
distribution is non-zero wherever the target distribution is non-
zero. Self-normalized importance sampling sometimes serves
as a lower-variance estimator by normalizing the importance
weights. The SN-estimator is described as,

Ê
SN

[r(x)] �
N∑
i=1

ω(xi)∑N
j=1 ω(x

j)
r(xi), (7)

which converts the weights to a probability distribution. The
SN-estimator is biased, but consistent estimator.

IV. PLANNING WITH AMBIGUOUS DATA ASSOCIATIONS

In this section, we provide an overview of our algorithm, DA-
MCTS, and the baseline algorithm, vanilla Hybrid Belief-MCTS
(HB-MCTS) [11]. To facilitate understanding, we present the
pseudo-code for both algorithms jointly in Algorithm 1. We
adopt a unified view, with comments indicating the lines unique
to each algorithm.

DA-MCTS is built upon the vanilla HB-MCTS algorithm,
which itself is an adaptation of PFT-DPW [7] and MCTS [13].
While we have chosen to use these algorithms as the foundation
for our work, we acknowledge that other approaches may also be
applicable, and we leave exploration of these avenues to future
research.

Vanilla HB-MCTS, a variant of belief-Markov Decision Pro-
cess (BMDP), reframes the POMDP into a belief-state model.
In this, states are replaced by belief-states reflecting an agent’s
environmental uncertainty. The transition and observation func-
tions update prior to posterior beliefs based on action and
observation, mirroring the stochastic state changes in a stan-
dard MDP. By transforming POMDP to a BMDP, many MDP
planning algorithms, including MCTS, can be used as planning
solvers. Notably, single particle propagation algorithms, such
as POMCPOW, are also possible, but may suffer from particle
depletion as mentioned in Section II.

Algorithm 1 presents a pseudo-code for the vanilla HB-MCTS
algorithm. In the SIMULATE procedure, an action is selected
based on the Upper Confidence Bound (UCB) heuristic in line 4.
Depending on whether the budget on the number of observations
has been met, the algorithm either expands a new posterior
node, which includes its belief and reward function, and then
performs a rollout, or uniformly samples an existing posterior
node and continues recursively to the next node. Finally, the
action value of the current node and its relevant counters are
updated. The vanilla HB-MCTS algorithm is flexible in that the
number of maintained posterior hypotheses can be controlled
and remain fixed based on a pre-defined hyperparameter. For
instance, a vanilla HB-MCTS with low compute resources can
have a pruning budget, where onlyK hypotheses are maintained
in each node of the planning tree. The pruned hypotheses are
usually chosen heuristically, e.g. based on their probability
value.

However, Vanilla HB-MCTS is limited in its ability to provide
guarantees when pruning is performed. While the performance
guarantees we present in the next section are applicable to any
pruning heuristic, such as the one used in vanilla HB-MCTS, we
introduce a slightly different approach. Instead of pre-defining a
fixed number of hypotheses to maintain, we propose an adaptive
approach that determines which hypotheses to prune online
based on a pre-defined maximum allowable loss, εD̄. We then
modify the HB-MCTS algorithm to adaptively determine which
hypotheses to prune, while maintaining performance guarantees
with respect to the complete set of hypotheses. This modification
is reflected in line 7.

In addition, DA-MCTS can provide even tighter guarantees in
hindsight without incurring additional computational complex-
ity, denoted by ε̂hs

D̄
, shown in line 18. The increased accuracy

of these guarantees is due to the granularity of the hypotheses
weights. For instance, when there is only a single hypothesis,
no hypotheses are pruned, resulting in zero additional loss to
the value function. The specific bounds and estimators used are
discussed in the following section.
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Algorithm 1: HB-MCTS and DA-MCTS.
Procedure:SIMULATE(b, h, d, εD̄)
/*Init: N(b), N(ba), Q(ba), ε̂hs

D̄
(b), δ̂β

D̄
(b) to 0*/

1: if d = 0 then
2: return 0
3: end if
4: a←− argmax

ā
Q(bā) + c

√
log(N(b))
N(bā)

5: if |C(ba)| ≤ koN(ba)αo then
6: b′ ←− PRUNEDPOSTERIOR(b, a) /*Vanilla HB-MCTS*/
7: b′, δβ

D̄
←− PRUNINGWITHGUARANTEES(b, a, εD̄)

/*DA-MCTS. (13)*/
8: r ←− REWARD(b, a)
9: C(ba) ∪ {(b′, r)}

10: R←− r+ ROLLOUT (b′, d− 1)
11: else
12: b′, r ←− Sample uniformly from C(ba)
13: R, ε̂hs

D̄
←− r+SIMULATE(b′, d− 1, εD̄)

14: end if
15: N(b)←− N(b) + 1
16: N(ba)←− N(ba) + 1

17: Q(ba)←− Q(ba) + R−Q(ba)
N(ba)

18: ε̂hs
D̄
←− GETGUARANTEES(ε̂hs

D̄
, δ̂β

D̄
) /*DA-MCTS.

(12)*/
19: return R, ε̂hs

D̄

V. MATHEMATICAL ANALYSIS

In this section, we mathematically analyze the impact of
pruning on the performance of the agent. We establish a novel
relationship between the complete and pruned value functions
for state-dependent reward functions and provide bounds on the
loss of approximation. Due to restricted space we defer most
proofs and derivations to the supplementary file [2].

We defineDt = {β1
t , β

2
t , . . ., β

|Dt|
t } the set of associations at

time step t, and Dt ⊆ Dt as the subset of hypotheses survived
after the pruning procedure. We define the pruned belief as,

bt � P̄(xt | Ht) =
∑

βt∈Dt

P(xt | βt, Ht)P̄(βt | Ht), (8)

where the �̄ notation indicates a pruned distribution after nor-
malization. This can be explicitly written as,

bt=

∫
xt−1

bt−1

∑
βt∈Dt

P(zt | xt, βt)P(βt | xt)P(xt | xt−1, πt−1)
P
(
zt | H−t

) ,

(9)
where, P(zt | H−t ) =

∫
xt−1:t

∑
βt∈Dt

P(zt | xt, βt)P(βt | xt)
P(xt | xt−1, π(zt−1))bt−1. Note that the summation is over the
pruned set of hypotheses.

Theorem 1: Let time-step 0 denote the root of the planning
tree. Then, the expected reward for the pruned POMDP, M ,
is bounded with respect to the full POMDP, M , through the
factor of the pruned weight values, and the maximum immediate

reward,

∣∣∣E[r(bt, at)]−E[r(bt, at)]∣∣∣≤Rmax

[
δβ0 +

t−1∑
τ=1

Ez1:τ

[
δβτ

]]
,

(10)

where δβτ �
∑

βτ∈Dτ \Dτ
P(βτ | Hτ ), i.e. the sum of pruned

hypotheses weights at time-step τ .
Crucially, in order to calculate the value of δβτ , the values of

the hypotheses weights which are descendent of past pruned hy-
potheses are not required, as they cannot be obtained without ex-
plicitly calculating all hypotheses. More formally, P(βt | Ht) =
P(zt|βt,H

−
t )

∑
β0:t−1∈D

P(βt|β0:t−1,Ht−1)P(β0:t−1|H−t )
P(zt|H−t )

has summation

only over the survived hypotheses.
The generalization of Theorem 1 to the entire value function,

is straightforward due to linearity of the expectation,
Corollary 1.1: Without loss of generality, assume that the

time step at the root node of the planning tree is t = 0. Then, for
any policy π, the following holds,

∣∣V π(b0)−V̄ π(b̄0)
∣∣≤Rmax

[
Tδβ0 +

T∑
k=1

k∑
τ=1

Ez1:τ

[
δβτ

]]
. (11)

For conciseness, we denote this bound as εhs
D̄

. As we will
derive in the following sections, an equivalent bound can be
derived for estimated value functions, that is,

|V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ Rmax

[
T δ̂β0 +

T∑
k=1

k∑
τ=1

Êz1:τ

[
δ̂βτ

]]
,

(12)
where �̂ denotes an estimator. Similarly, we denote ε̂hs

D̄
as the

(deterministic) bound for the estimated value functions.

A. Adaptive Pruning With Performance Guarantees

The theoretical value bound in (11) and the estimator value
bound in (12) can be used to provide guarantees for various
pruning heuristics, including those presented in prior work such
as [1], [11] by providing guarantees after the planning session
has ended.

In this section, we go a step further, and propose a novel mech-
anism for selecting the surviving hypotheses. Unlike previous
approaches that use a fixed budget on the number of allowed
hypotheses [1], our algorithm requires the user to specify the
maximum allowable loss, εD̄, on the value function. Using this
allowable loss, our algorithm dynamically selects the cardinality
and instances of hypotheses to prune online, while maintaining
the performance guarantees provided in advance.

To achieve this, we set the value of εD̄ and by construction
determine δβτ to be a constant, denoted as Δ, for all Hτ and all
time steps τ . We use Δ to determine which hypotheses to prune
in order to meet the budget. The resulting bound can then be
expressed as follows,

∣∣V π(b0)− V̄ π(b̄0)
∣∣ ≤ RmaxΔ

[
T +

T∑
k=1

k∑
τ=1

1

]

= RmaxΔ

[
T 2 + 3˜T

2

]
� εD̄. (13)
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The hyperparameter εD̄ controls the maximum allowable loss
and is set a priori, as a result Δ can easily be derived. During
planning, we sum over δβτ , until its value is as close as possible
to Δ without crossing its value. The difference between these
two values allows us to obtain a tighter guarantee in hindsight,
εhs
D̄

, which satisfies the inequality εhs
D̄
≤ εD̄. A similar claim can

be made for the sampling-based bound. The formal derivation
of these estimators is presented in the next section.

B. Estimated Expected Reward

In this section, we first develop an estimator for the value
function, assuming the availability of a complete set of hy-
potheses at each posterior belief. Then, we derive a similar,
pruning-based estimator. In the next section, we will show a
deterministic relation between the estimators. However, before
delving into the details, we first give a motivation for deriving
guarantees with respect to the estimators.

As stated in Corollary 1.1, the value function based on the
complete set of hypotheses should not deviate significantly from
the value function based on the pruned hypotheses set, as long
as the pruned hypotheses have low weight values. However, in
practice, current state-of-the-art algorithms cannot compute the
full nor the pruned value functions due to intractable integrals
involved with expectations. Online POMDP algorithms provide
performance guarantees based on estimated value functions,
where a sampled set of observations and states approximate
expectations and the belief distribution, e.g., [14], [15].

For clarity, we derive the estimator by considering separately
each expected reward along the planning horizon. Using lin-
earity of the expectation, the value function may be written as,

V π(b0) = ρ(b0, π0) +

T∑
t=1

Ez1:t [ρ(bt, πt)]. (14)

We handle each term in the summation individually, and make
the following proposition as a first step towards deriving an
estimated expected reward,

Proposition 1: Let z1:t denote an observation sequence,
ρ(bt, πt) be the reward value for a given belief, bt and policy
πt. The expected reward value can be written as,

Ez1:t [ρ(bt, πt)]

=

∫
z1:t

Eβ0

t∏
τ=1

Eβτ |β0:τ−1

[
P
(
zτ | β0:τ , H−τ

)
r
(
bβt , πt

)]
,

(15)

where r(bβt , πt) denotes the reward value of a single hypothesis
realization, β0:t, as shown in (5).

From the proposition we derive a standard Monte-Carlo
sampling approach, where we iteratively sample sequences of
hypotheses β0:t and observation samples, z1:t,

Ê
MC

z1:t
[ρ(b̂t, πt)] =

1

N

∑
i

r̂
(
bβ

i

t , πt

)
, (16)

where �MC denotes Monte-Carlo estimation and bβ
i

t � P(xt |
βi
0:t, z

i
1:t, π0:t−1). However, since the observation space is con-

tinuous, different realizations of β0:t, denoted βi
0:t, will never

sample the same observation sequence zi1:t twice. In the planning
tree, it means that after an observation sample, there is only

Fig. 2. Planning trees with nodes representing beliefs, and inner blue shapes
illustrate distributions of the conditional posteriors. (a) A belief tree with
standard Monte-Carlo estimator leads to an overconfident, fully observed data
association after a single step. (b) A planning tree with Self-Normalized Im-
portance Sampling estimators to account for different hypotheses at posterior
nodes.

a single hypothesis in any posterior node, resulting in a fully
observed data association. However, if the agent obtains an
observation in the real world, the data association ambiguity is
generally not fully resolved. A result, the Monte Carlo sampling
approach is an over-optimistic, erroneous planner which only
considers ambiguity at the root node of the planning tree. See
Fig. 2 for an illustration.

Inspired by [7] for standard POMDPs, and [11] for hybrid
POMDPs, we derive an Importance Sampling (IS) estimator,
which may sample observations from different distributions,
and weigh each hypothesis with an importance weight, ω(zτ ).
The importance weight reflects the probability of observing zt
given hypothesis β0:τ and history H−τ , normalized to the actual
sampling distribution being used, Q(·). We may write (15) to
reflect the change,

Ez1:t [ρ(bt, πt)]

=

∫
z1:t

Eβ0

t∏
τ=1

Q
(
zτ | H−τ

)
Eβτ |β0:τ−1

[
ω (zτ ) r

(
bβt , πt

)]
(17)

where ω(zτ ) =
P(zτ |β0:τ ,H

−
τ )

Q(zτ |H−τ ) and Q(.) is the proposal distri-
bution from which the sampling-based estimator will sample
observations. Clearly, the two terms are equivalent. From (17)
we can directly derive the IS-estimator,

Ê
IS

z1:t
[ρ(b̂t)] = Êz1:tEβ1:t

[
r̂
(
bβt , πt

)]

�
∑
zc
1:t

∑
β0:t∈D0:t

P(β0)

t∏
τ=1

P
(
βτ | β0:τ−1, H−τ

) ω (zcτ )

N
r̂
(
bβt , πt

)
,

(18)

where, r̂(bβt , πt) is the sample-based mean for the state-reward
over the conditional belief, as defined in (5). In contrast to
the standard Monte-Carlo estimator (16), using an importance
sampling estimator enables us to reason about all hypotheses for
every observation sequence, shown by the summation over β0:t
for each sampled zc1:t.

Although the IS estimator is theoretically justified as a con-
sistent and unbiased estimator, we make another step in deriving
the estimator and use a Self-Normalized Importance Sampling
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(SN) estimator,

Ê
SN

z1:t
[ρ(b̂t)] = Êz1:tEβ1:t

[
r̂
(
bβt , πt

)]

�
∑
zc
1:t

∑
β0:t∈D0:t

P(β0)

t∏
τ=1

P(βτ |β0:τ−1, H−τ )
ω (zcτ )∑
zk
τ
ω (zkτ )

r̂
(
bβt , πt

)
(19)

The SN-estimator is no longer unbiased, but is known to be
consistent [12]. The main reason for that step is to achieve a
bounded deterministic difference between the full and pruned
estimators, as we will describe in the following section.

Last, we derive a similar estimator for the pruned posterior
belief,

Êz1:t

[
ρ
(
b̂t, πt

)]
= Êz1:tĒβ1:t

[
r̂
(
bβt , πt

)]

�
∑
zc
1:t

∑
β0:t∈D0:t

P(β0)
t∏

τ=1

P(βτ | β0:τ−1, H−τ )
ω (zcτ )∑
zk
τ
ω (zkτ )

r̂
(
bβt , πt

)
.

(20)

C. Estimators Analysis

In this section, we derive a bounded relationship between
the full and pruned estimators. Finally, we discuss how these
estimators relate to the theoretical value function.

Theorem 2: Let π be a policy, then the expected reward for

the estimated pruned POMDP, M̂ , is bounded with respect to
the estimated full POMDP, M̂ , as follows,

∣∣∣Êπ

z1:t
[ρ(b̂t)]− Ê

π

z1:t

[
ρ
(
b̂t

)]∣∣∣≤Rmax

[
δ̂β0 +

t∑
τ=1

δ̂βτ

]
. (21)

where, δ̂βτ = Êzc
1:t
Eβ0:t−1

∑
βt∈Dt\Dt

P(βt | β0:t−1, H−t ) for all
τ ∈ [1, t] represents the expected sum of conditional hy-
potheses’ weights which are myopically pruned and δ̂β0 =∑

β0∈D0\D0
P(β0 | H−t ).

In accordance with the theoretical case, as described in (17),
to evaluate δ̂βτ , only the surviving hypotheses from past time
steps are needed. The theorem can be generalized to the full
value function by re-introducing the summation. Under the
assumptions of Theorem 2 the following holds,

Corollary 2.1: The difference between the estimated value
function of the full POMDP, M̂ , and the estimated value function
of the pruned POMDP, M̂ , is bounded by,

|V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ Rmax

[
T δ̂β0 +

T∑
k=1

k∑
τ=1

δ̂βτ

]
. (22)

The corollary relates the complete but computationally ex-
pensive value function estimator to the efficient, pruning-based
estimator. Both estimators utilize the same sampled observations
since they share the same proposal distribution.

Finding a finite sample algorithm with practical guarantees
between the estimated value function and the theoretical remains
an open challenge in the POMDP literature and is aside from our
current contribution. Nevertheless, to fully justify our approach,
we formally state that given such an algorithm, denoted A, that

utilizes the importance sampling estimator defined in (19), our
simplified estimator provides a relationship to the theoretical
value function while being more efficient,

Corollary 2.2: Letπ be a policy and letAbe a sampling-based
estimator for the value function such that |V π(b0)− V̂ π(b̂0)| ≤
εA with probability at least 1− δA. Then, the loss in the value
function for the pruned hypotheses is bounded,

|V π(b0)− ˆ̄V π(ˆ̄b0)| ≤ (23)

|V π(b0)− V̂ π(b̂0)|+ |V̂ π(b̂0)− ˆ̄V π(ˆ̄b0)| ≤ εA+ ε̂hsD̄ , (24)

and holds with probability 1− δA. We use ε̂hs
D̄

as a shorthand
for the bounds provided in Corollary 2.1.

The results established so far hold for any policy, assuming
that both the theoretical and estimated value functions are based
on the same policy. However, planning based on the pruned
belief may result in a different policy from the optimal one for
the underlying POMDP. Nevertheless, we demonstrate that the
optimal policy for the pruned and potentially sampled-based
POMDP, denoted π̄, incurs bounded loss in performance com-
pared to the optimal policy for the full theoretical POMDP,
denoted π�.

Corollary 2.3: Let π̄ be the optimal policy for the pruned,
possibly sampled-based POMDP and π� be the optimal policy
for the full theoretical POMDP. Then,∣∣∣V π�

(bt)− ˆ̄V π̄(ˆ̄bt)
∣∣∣ ≤ 2

(
εA + ε̂hsD̄

)
. (25)

This is an unsurprising result, since the best policy for the
pruned approximation, π̄, should perform no worse than the
optimal policy, π�, for the simplified POMDP or otherwise it
would have been selected.

VI. EXPERIMENTS

In this section we experiment with different pruning ap-
proaches to validate our findings. We use MCTS as a baseline
algorithm and compare multiple hypothesis pruning approaches
to our adaptive scheme. The experimental evaluation of our
approach consists of two main parts. In the first part, we validate
the proposed bounds and investigate their sensitivity to the
level of simplification chosen. In the second part, we conduct a
simulation study to demonstrate the practical performance gains
of our adaptive pruning approach.

Importantly, we emphasize that the theoretical guarantees
presented in Section V are suitable for other hypotheses-based
algorithms as well, such as [1], [11] or PFT-DPW [7] if the latter
is adapted to multiple hypotheses.

To conduct the simulations, we utilized the GTSAM li-
brary [16] as our inference engine. Our belief model is based
on a Gaussian Mixture Model, in which each posterior belief in
the planning tree corresponds to multiple instances of GTSAM
factor graphs. Each instance represents a conditional posterior
over the continuous part of the belief, P(xt | β0:t, Ht), while the
discrete part of the belief, P(β0:t | Ht), is maintained as a list
of probability values, each corresponds to an hypothesis. Apart
from the pruning method, which is the focus of this section, all
hyper-parameters are shared across all solvers and remain fixed.
The planning is performed in a receding horizon manner, where
after each planning session, only the first action is executed, and
all calculations are done from scratch in the subsequent step.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on September 17,2023 at 17:28:26 UTC from IEEE Xplore.  Restrictions apply. 



BARENBOIM et al.: DATA ASSOCIATION AWARE POMDP PLANNING WITH HYPOTHESIS PRUNING PERFORMANCE GUARANTEES 6833

Fig. 3. (a) Bounds of our approach with respect to level of simplification. V̂ , ˆ̄V are the value functions of the full and pruned estimators respectively. ˆ̄V + ε̂hs
D̄

represent the bounds of the pruned estimator. Vmin, \Vmax represent the minimum and maximum theoretical values of the value function. All values are normalized
with respect to max{|Vmin|, |Vmax|}. Here |Vmax| ≡ 0 since the reward is defined as the negative Euclidean distance to goal. (b) Time for task completion with
respect to level of simplification. Each level corresponds to the bounds presented in figure (a).

In the first experiment the belief of the agent included the
pose of the agent and two ambiguous landmarks. The objective
of the agent was to reach a target destination, encoded into the
reward function as the expected Euclidean norm between the
agent pose samples and the target. The field of view of the agent
was chosen to be unbounded and with unlimited sensing range,
that is, at every time step, the agent obtains an observation from
two sources, but cannot identify its source. In this simple toy
example, the number of hypotheses quickly grows and becomes
intractable due to the exponential nature of the problem. Given a
horizon of 10 steps, the number of hypotheses becomes D10 =
210, each is a Gaussian conditional distribution. In this and the
next experiments the action space is defined as primitive actions,
up-down-left-right, in a fixed step size.

The estimated value function obtained from the complete
set of hypotheses and the simplified estimator generated using
the adaptive pruning approach, as outlined in Section V, are
illustrated in Fig. 3. The solver was endowed with an a-priori
budget, limiting the maximum loss, denoted as εD. Based on the
estimator value, the solver determined online which hypotheses
to prune and which to retain.

The results indicate that, as the bounds become looser, i.e.,
when the value of εD increases, the computation time efficiency
also increases, trading off efficiency with performance. As the
bounds increases beyond the value of 0.7, they become uninfor-
mative since the bounds are larger or smaller than Vmax, Vmin,
respectively. On the other hand, when the allowable loss budget
was set to zero, no hypotheses were pruned, resulting in identical
value estimations for both the pruned and the full estimators,
which leads to an identical result as the baseline method of no
pruning.

In the second experiment, we aimed to compare the abil-
ity of different pruning schemes to complete the task under
a limited time-budget of 20 seconds, identical to all solvers.
Specifically, we compare the performance of our approach to
three types of pruning baselines; no pruning (Full-HB-MCTS),
maintaining a fixed number of hypotheses (K-HB-MCTS) and
pruning below a threshold value (Pthresh-HB-MCTS). Notably,
Pthresh-HB-MCTS can be seen as an extension of DA-BSP [1],

TABLE I
REACHING WAYPOINTS PERFORMANCE OVER 10 TRIALS

to an MCTS-based algorithm instead of Sparse Sampling, as
the earlier is known to perform empirically better. For each
pruning method we have experimented with multiple hyper-
parameters, Pthresh ∈ {0.01, 0.1, 0.3} for Pthresh-HB-MCTS,
K∈ {1, 3, 10} for K-HB-MCTS, and

ε
D

Vmax
∈ {0.1, 0.2, 0.5} for

DA-MCTS. The best are shown in Table I.
In that experiment, the goal of the agent was to reach

an ordered set of waypoints, positioned on coordinates
[20,0], [20,20], [0,20], see Fig. 4 for an illustration. After
performing 60 steps in the environment, the simulation was
restarted. The reward was defined as the expected sum of dis-
tance to the next waypoint. The state space was defined as the
agent pose, and the positions of the landmarks. Ambiguous
landmarks were placed in the vicinity of each waypoint to
challenge the solvers by causing an exponential increase in the
number of hypotheses.

The results of this experiment are presented in Table I.
Our findings indicate that the performance of the HB-MCTS
algorithm improved when the number of hypotheses was re-
duced. Given the allocated time budget, maintaining a large
set of hypotheses significantly impeded efficiency, leading to
a degradation of the planner’s exploration. Conversely, main-
taining a single hypothesis resulted in an overconfident solver
that potentially relied on the wrong association sequence. Our
proposed algorithm performed comparably well, as it was able to
distinguish between hypotheses with a significant impact on the
value function and those with low impact, which can be pruned.
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Fig. 4. Figures demonstrate the estimated state of the entire trajectory, also known as the smoothing state, of the agent at time t given the observed history. (a) The
prior of the agent given as two Gaussian hypotheses. Each Gaussian represented as an ellipse illustrating its Covariance, centered around its mean. The landmarks
are part of the agent state a-priori but has an uncertain location, with ellipses illustrating their Covariances. (b) The belief of the agent adjacent to the first waypoint
before obtaining any observation. (c) The belief of the agent after pruning. Non negligible hypotheses differ substantially.

VII. CONCLUSION

This letter proposes a pruning-based approach for efficient
autonomous decision-making in environments with ambiguous
data associations. The approach models the data association
problem as a partially observable Markov decision process
(POMDP) and represents multiple data association hypotheses
as a belief mixture. The challenge of handling the exponential
growth in the number of hypotheses was addressed by pruning
the hypotheses while planning, with the number of hypotheses
being adapted based on bounds derived on the value function.

The results of our evaluations in simulated environments
demonstrate the effectiveness of our approach in handling multi-
modal belief hypotheses with ambiguous data associations. Our
method provides a practical solution for autonomous agents to
make decisions in environments with partial observability and
guaranteed performance.

Future research goals include extending the bounds to hybrid
belief use-cases, improving solver scalability for ambiguous data
associations, efficient recovery of lost hypotheses, and explor-
ing computational burden reduction techniques like merging
hypotheses with guarantees.
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