
4410 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

Monte Carlo Planning in Hybrid Belief POMDPs
Moran Barenboim , Moshe Shienman , Graduate Student Member, IEEE, and Vadim Indelman

Abstract—Real-world problems often require reasoning about
hybrid beliefs, over both discrete and continuous random variables.
Yet, such a setting has hardly been investigated in the context of
planning. Moreover, existing online partially observable Markov
decision processes (POMDPs) solvers do not support hybrid beliefs
directly. In particular, these solvers do not address the added
computational burden due to an increasing number of hypotheses
with the planning horizon, which can grow exponentially. As part of
this work, we present a novel algorithm, Hybrid Belief Monte Carlo
Planning (HB-MCP) that utilizes the Monte Carlo Tree Search
(MCTS) algorithm to solve a POMDP while maintaining a hybrid
belief. We illustrate how the upper confidence bound (UCB) explo-
ration bonus can be leveraged to guide the growth of hypotheses
trees alongside the belief trees. We then evaluate our approach
in highly aliased simulated environments where unresolved data
association leads to multi-modal belief hypotheses.

Index Terms—Planning under uncertainty, autonomous agents.

I. INTRODUCTION

INTELLIGENT autonomous agents operating in real-world
environments often need to reason about a hybrid belief

containing discrete and continuous random variables. While
the states of the agent and of the environment are commonly
represented by continuous random variables, discrete random
variables generally represent object classes, data association
hypotheses or even transition models (e.g. due to slippage)
and observation models. In ambiguous environments, where
different objects or scenes can possibly be perceptually similar
or identical, such discrete variables are particularly important, as
wrong assignments can lead to a complete failure of the agent’s
task.

In general, all random variables in a hybrid belief are cou-
pled, and the number of hypotheses, i.e. realizations of discrete
variables may be combinatorially large with the number of
ambiguous objects and classes or even develop exponentially
with time given ambiguous data associations. Therefore, without
any pruning or merging heuristic, the size of the considered be-
lief quickly becomes prohibitively large and the computational
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complexity of the corresponding problem becomes impossible
to handle.

The research community has been extensively investigating
passive inference approaches where the considered belief is
hybrid. In [1] the authors proposed a message passing algo-
rithm to correctly identify loop closures by optimizing a hybrid
factor graph [2]. A convex relaxation approach over a discrete-
continuous graphical model was presented in [3] to capture
perceptual aliasing and find the maximal subset of internally
coherent measurements, i.e. correct data association.

In spite of the significant progress made within the SLAM
community, such a hybrid setting has received scant attention
from the planning community. As such, most off-the-shelf, state-
of-the-art POMDP online solvers do not directly support hybrid
beliefs. Specifically, [4] introduced POMCP, an adaptation to
Monte-Carlo Tree Search (MCTS) for POMDPs using the UCT
algorithm [5] to guide the action selection process. POMCPOW
and DESPOT [6], [7] employ transition and observation models
to efficiently propagate particles from the prior belief, as an effi-
cient approximation for belief update. However, in the context of
hybrid beliefs, the belief update may not be as efficient, since it
would require knowledge of the hypotheses’ probabilities, which
are not presumed to be given.

POMDPs can also be converted into belief Markov decision
processes (BMDPs) to utilize MDP solvers. PFT-DPW [6] and
AI-BSP [8] are two such solvers, where belief-states replace
states in the original MDP algorithms. However, performing
inference with hybrid belief is hardly efficient due to a large
number of hypotheses. For instance, in ambiguous data associ-
ation scenarios, the number of hypotheses grows exponentially
with time, making full inference intractable.

Only recently have hybrid beliefs been explicitly considered
in planning. In [9], the authors introduced DA-BSP, which allows
reasoning about future data association hypotheses within a
belief space planning framework for the first time. [10] sug-
gested reducing the computational complexity of DA-BSP by
selecting only a small subset of hypotheses and providing bounds
over the loss in solution quality. [10] was later extended to a
non-myopic setting, in [11]. The ARAS framework proposed
in [12] leveraged the graphical model presented in [13] to
reason about ambiguous data association in future beliefs us-
ing multi-modal factors to model discrete ambiguities. Due to
its high computational burden, these approaches did not aim
at closed-loop POMDP planning, neglecting its mathematical
soundness.

In this paper we propose an approach to alleviate the com-
putational complexity of planning with hybrid beliefs under the
POMDP formulation. We show that previous algorithms result in
biased estimators of the reward and value function, and suggest a
different way for controlling the number of hypotheses to a man-
ageable size. Utilizing sequential importance resampling (SIR)
for hypothesis selection, we suggest an algorithm that results in
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Fig. 1. Nodes in the tree correspond to hybrid beliefs. Inner shapes illustrate
different continuous distributions, each correspond to a different discrete vari-
able. (a) A belief tree which computes a full hybrid belief (shown in blue) at each
iteration, regardless of the hypotheses significance. (b) An adaptive approach
(ours) that simultaneously generates both hypotheses and nodes in the belief tree
sampled according to their probabilities.

an unbiased estimator and efficient belief tree construction, see
Fig. 1 for an illustration. We show that the algorithm supports
both state-dependent and belief-dependent rewards. We proceed
with a contribution to inference in the setting of ambiguous data
association, by introducing a natural way to incorporate negative
information within Bayesian inference, and demonstrate how the
hypotheses weights should be updated. Last, we demonstrate
our approach on simulative environments to corroborate our
findings.

Our contributions in this paper are as follows: (a) We introduce
a novel algorithm that performs Monte-Carlo planning to solve a
POMDP when the considered belief is hybrid. (b) We show that
our algorithm, HB-MCP, leads to an unbiased utility estimate,
in contrast to existing hybrid belief algorithms. (c) We introduce
negative information to hybrid belief inference. (d) We demon-
strate the effectiveness of our algorithm in extremely aliased
simulated environments where unresolved data association leads
to multi-modal belief hypotheses. This paper is accompanied by
supplementary material [14] that provides proofs and further
implementation and experimental details.

II. PRELIMINARIES

In this section we formally define a POMDP and a general
hybrid belief, which will be used in the following sections.

A. Partially Observable Markov Decision Process

A discrete-time POMDP can be formally defined as a tuple
(X ,A,Z, T,O,R), where X ,A and Z denote the state, action
and observation spaces respectively; T (x, a, x′) � P (x′|x, a) is
the transition density function which expresses the probability
to move from state x ∈ X to state x′ ∈ X by taking action a ∈
A; O(x, z) � P (z|x) is the observation density function which
expresses the probability to receive an observation z ∈ Z from
state x ∈ X ; andR is a user defined reward function.

As observations provide only partial information about the
state, the true state of the agent is unknown. Therefore,
the agent maintains a probability distribution function over
the state space, also known as a belief. At each time step
t the belief update is performed according to Bayes rule,
using the transition and observation models, given the per-
formed action at−1 and the received observation zt as bt(x′) =
η
∫

P (zt|x′)P (x′|x, at−1)bt−1(x)dx, whereη is a normalization
constant.

Given a posterior belief bt, a policy function at = π(bt)
determines an action to be taken at time step t. For a finite
horizon T the value function for a policy π is defined as the
expected cumulative reward received by executing π,

V π(bt) = R(bt, π(bt)) + E
zt+1:T

[ T∑
τ=t+1

R(bτ , π(bτ ))
]
. (1)

Similarly, an action-value function,

Qπ(bt, at) = R(bt, at) + E
zt+1

[V π(bt+1)] , (2)

is defined by executing action at and then following the policy
π for a finite horizon T . At each planning session, the agent
solves a POMDP by searching for the optimal policy π∗ that
maximizes (1).

B. Hybrid Belief

A hybrid belief is defined over both continuous and discrete
random variables. The continuous random variables can repre-
sent the state of the agent and (possibly also) of the environment,
as common in SLAM framework. The discrete random variables
can represent, e.g., object classes and/or data association hy-
potheses. Nevertheless, the following definition is general and
not restricted to these examples.

We formally define the hybrid belief at each time t as

bt � P (Xt, β0:t | Ht) = P (Xt | β0:t, Ht)︸ ︷︷ ︸
b[Xt]β0:t

P (β0:t | Ht)︸ ︷︷ ︸
b[β0:t]≡ωt

, (3)

where Xt � {x0, .., xt}, β0:t denote the discrete random vari-
ables and Ht � {z1:t, a0:t−1} represents all past actions and
observations. b[Xt]β0:t

is the conditional belief over continu-
ous variables. ωt is the marginal belief over discrete variables
which can be considered as the hypothesis weight. We define
H−t+1 � Ht ∪ {at} and b−t+1 � P (Xt+1, β0:t+1|H−t+1) for no-
tational convenience.

The marginal belief ωt is updated for each realization of
discrete random variables according to

ωi,j
t =

ζ
i|j
t︷ ︸︸ ︷

P (zt | βi,j
0:t, H

−
t )P (βi

t | βj
0:t−1, H

−
t )

ωj
t−1︷ ︸︸ ︷

P (βj
0:t−1 | H−t )

η
,

(4)

which is obtained by Bayes rule followed by chain rule on
ωt. The un-normalized weight can be expressed recursively as
ω̃i,j
t = ζ

i|j
t ωj

t−1. We denote βi
t and βj

0:t−1 as the realization of
βt and β0:t−1 respectively and βi,j

0:t denotes the realization of the

joint variables β0:t. ζ
i|j
t denotes the conditional dependence of

ζt on βi
t given βj

0:t−1. This notation proceeds similarly for any
random variable. The conditional belief b[Xt]β0:t

is updated for
each realization of discrete random variables as

b[Xt]
i,j
β0:t

= ψ(b[Xt]
j
β0:t−1

, at−1, zt), (5)

where ψ(.) represents the Bayesian inference method.
Generally, when planning with hybrid beliefs the agent con-

structs both a belief tree and multiple hypotheses trees. Each
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hypotheses tree represent the posterior hypotheses given a his-
tory. Since every node of the planning tree (i.e. belief tree) cor-
responds to a hypotheses tree, the computational complexity of
the corresponding POMDP becomes a significant burden. In the
following section we present a novel algorithm that circumvent
this difficulty via Monte-Carlo sampling.

C. Ambiguous Data Association

One use case for hybrid beliefs is ambiguous data associations
(DA), which introduces a significant computational burden in
both inference and even more so in planning. In inference, the
number of possible hypotheses grows exponentially with the
number of steps the agent took, i.e. the length of the history
array. In planning, the difficulty further increases due to the
exponential number of histories considered by the agent.

To address ambiguous DA, (4) can be adapted to,

ωi,j
t = ζ̃

j|i
t ωi

t−1, (6)

where,

ζ̃
j|i
t =

ζ
j|i
t∑

i ζ
j|i
t ωi

t−1
,

ζ
j|i
t =

∫
Xt

P
(
zt | Xt, β

i
t

)
P
(
βi
t | Xt

)
P
(
Xt | βj

0:t−1, H
−
t

)
.

(7)

The latter is obtained by marginalizing ζ
i|j
t over the states,

and adhering to the Markov assumption of the observation and
association (P (βt | Xt)) models, as suggested in [9]. Our hybrid
belief planner is tested in section VII using ambiguous DA as a
challenging use case.

III. POMDP PLANNING WITH HYBRID BELIEFS

In section III-A we start with a brief overview of how MCTS
can be utilized to solve POMDPs with hybrid beliefs and its
drawbacks. Then, in section III-B we present a novel approach
to utilize the UCT exploration bonus to build an asymmetric
hypotheses tree, which leads to better use of the computational
resources by focusing on the most promising hypotheses accord-
ing to the UCT bonus.

A. Vanilla Hybrid-Belief MCTS

For completeness, we first present a vanilla-HB-MCTS algo-
rithm. Although the exact algorithm does not seem to exist in the
literature, this is the ad-hoc way to interleave hybrid beliefs with
state-of-the-art POMDP solvers. vanilla-HB-MCTS, can be seen
as an adaptation of the state-dependent MCTS [4] algorithm to a
(hybrid-)belief (3), by augmenting the belief to a belief-state. A
similar approach was also taken by PFT-DPW [6], which utilized
particle filters to approximate a posterior belief, over continuous
variables. However, computing a full hybrid belief is a difficult
and sometimes intractable task, even for particle-based solvers,
and is thus prone to approximations.

Pruning: The number of hypotheses at each posterior node
in the belief tree may be prohibitively large. To handle the in-
feasible number of the posterior hypotheses, vanilla-HB-MCTS
utilizes a pruning mechanism similar to those suggested in [9],
[13]. As a result, unlikely hypotheses are removed from the
hypotheses tree.

In vanilla-HB-MCTS, each posterior node holds a fixed num-
ber of hypotheses once expanded, depending on a predefined
hyperparameter. Such a method may sometimes be too harsh,
pruning away hypotheses with high probability due to a lim-
ited hypotheses budget, or too loose, keeping highly unlikely
hypotheses, thus wasting valuable computational time. Other
approaches may also be applicable, such as fixing a proba-
bility threshold value, under which all hypotheses are pruned.
However, the latter has its own deficiencies, such as hypothesis
depletion. For completeness, we describe vanilla-HB-MCTS
implementation details in the supplementary [14].

B. Hybrid Belief Monte-Carlo Planning

In contrast to vanilla-HB-MCTS, in HB-MCP, we do not
use any pruning heuristic for two reasons: (1) this requires
knowledge, or an insight, as to how many hypotheses would
be sufficient for the specific POMDP; (2) Each posterior node
in the belief tree maintains hypotheses based on a hyper-
parameter, regardless of how relevant this node may be for
decision-making.

Conversely, we suggest an adaptive algorithm that focuses
computational resources in proportion to their relevance in
the belief tree, which circumvent the difficulty in full belief
update. HB-MCP is recursively invoked with a single sam-
pled hypothesis. Every such single hypothesis may evolve
into multiple hypotheses. HB-MCP algorithm computes only
the posterior weights (i.e. probability values) that are con-
ditioned on that single hypothesis, followed by a random
weight sample based on their categorical distribution. Then,
only the hypothesis associated with the sampled weight is up-
dated. This is in contrast to the full posterior update done in
vanilla-HB-MCTS.

Additionally, to support belief-dependent rewards, the re-
ward value is estimated based on state samples received across
multiple visits to the belief node, i.e., state samples from
multiple hypotheses. We describe the algorithm details in
Section IV.

HB-MCP holds some desirable properties compared to the full
belief update and pruning approaches. First, at each iteration of
HB-MCP, a maximum of T posterior hypotheses are computed,
and a small subset of the weights. This is in contrast to the full
posterior update, that would require the entire (or pruned-)set of
the current posteriors, and compute all the posterior hypotheses
of the next time-step, which is highly resource expensive for
every iteration. Second, HB-MCP explores both the planning
tree and the hypotheses trees by focusing its computational effort
on the interesting parts, utilizing UCB to guide the search; this
property is inspired by MCTS which builds the planning tree
by focusing on the optimistic parts of the tree. In Section V,
we show that this approach results in an unbiased estimator for
the true value function.

IV. IMPLEMENTATION DETAILS

In this section we describe the implementation details of our
approach, HB-MCP, as discussed in section III-B.

HB-MCP can be described as follows; first, it starts by re-
ceiving a single hypothesis and selecting an immediate action
according to UCB exploration bonus. Then, samples are gen-
erated and appended to B(h), which are later used for reward
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Algorithm 1: HB-MCP.

Procedure: SIMULATE(bjt , h, d)
1: if d = 0 then
2: return 0
3: a←− argmax

ā
Q(hā) + c

√
log(N(h))
N(hā)

4: B(h)← GETSAMPLES(bjt , B(h), N(h))
5: r ←− REWARD(B(h), a)
6: r ←− r +N(h)(r − rprev)
7: if |C(ha)| ≤ koN(ha)αo then
8: z ← SAMPLEOBSERVATION(bjt , a)
9: else

10: z ← Sample uniformly from C(ha)

11: {ωi,j
t+1}Li=1 ←− COMPUTEWEIGHTS (bjt , a, z)

12: i←− SAMPLECATEGORICAL({ωi,j
t+1}Li=1)

13: bi,jt+1 ←− Ψ(bjt , a, z, i) // (5)
14: if z /∈ C(ha) then
15: C(ha) ∪ {z}
16: R←− r+ROLLOUT(bi,jt+1, d− 1)
17: else
18: R←− r+SIMULATE(bi,jt+1, haz, d− 1)
19: N(h)←− N(h) + 1
20: N(ha)←− N(ha) + 1

21: Q(ha)←− Q(ha) + R−Q(ha)
N(ha)

22: return R

estimation (lines 4-6). Lines 7-10 perform observation progres-
sive widening. Then, the approach for sampling hypotheses
is shown in lines 11-13. Note that the algorithm directly com-
putes all the weights conditioned on the hypothesis given as
input (line 11). Then, we resample a single conditional belief,
bi,jt+1, sampled according to the weights (line 12). We note
that this is not a necessity, and different number of samples
can be taken in those two steps to trade-off efficiency and
accuracy. Depending on whether a new posterior node is sam-
pled or not, lines 14-18 either call for rollout or continues
recursively. Last, the action-value function and the counters are
updated.

To estimate a belief-dependent reward, state samples should
correspond to their likelihood in the full hybrid belief. In
HB-MCP, hypotheses are generated iteratively, accumulating
hypotheses (or, equivalently, state samples from those hypothe-
ses), so that at each iteration the reward estimator is improved.
Generally, a belief dependent reward is not a simple aver-
age over samples. However, as in MCTS, HB-MCP estimates
the action value function,Q(ha), as an average of all the cumu-
lative returns passed through that node. To support belief depen-
dent rewards, HB-MCP computes a new reward estimate based
on all past samples, and replaces the previous reward estimate
with the new one. To that end, a simple recursive subtraction
and addition update is done for every node encountered along
the path of the current iteration, described in line 6.

V. THEORETICAL ANALYSIS

In this section, we first claim that existing approximations,
done in contemporary state-of-the-art multi-hypotheses plan-
ners, such as DA-BSP [9], ARAS [12] as well as vanilla-
HB-MCTS (Section III-A), lead to a biased estimation of the

reward value, and therefore a biased value function. Further, we
show that even if the reward value could be precisely recov-
ered, the resultant value function is generally biased. Instead,
HB-MCP performs sequential sampling which converges to the
correct value. Then, we discuss how HB-MCP may also support
belief-dependent reward functions and its applicability for value
function estimation.

A. State-Dependent Rewards

State-dependent reward functions are defined as the expected
reward value over the belief, i.e.,RX � EX∼b[r(X, a)]. Gener-
ally, state-dependent rewards cannot be computed analytically,
thus, they are approximated using state samples. Since in a
hybrid belief the number of hypotheses may be prohibitively
expensive to compute, most existing algorithms approximate
the belief, b̂, by performing some heuristic pruning. As a
consequence, the approximate distribution is shifted, and the
reward value is biased even with an infinite number of state
samples,

Lemma 1: The estimator EX∼b̂[r(X, a)] is biased.
Proof: Assuming the weights of the pruned hypotheses are

non-zero, the proof is immediate,

EX∼b[r(X, a)] =

∫
X

∑
β

b(X,β)r(X, a)dX

=

∫
X

∑
β∈A

b(X,β)r(X, a)dX+
∑
β∈¬A

b(X,β)r(X, a)dX


= ηA

∫
X

∑
β∈A

b(X,β)r(X, a)dX = EX∼b̂[r(X, a)]. (8)

whereA denotes the set of un-pruned hypotheses, and ηA is their
corresponding normalizer after pruning. �

In contrast, HB-MCP samples hypotheses iteratively starting
from the root node; it utilizes sequential importance resampling,
which results in an unbiased estimator for the reward value.
At every iteration, the new sampled states from the current
hypothesis are added to the estimator from previous iterations,
by averaging. The process for generating hypotheses can be
described as follows; for any time t, a hypothesis is sampled
i.i.d from a proposal-prior distribution, βi

0 ∼ Q(β0 | H0). Then,
hypotheses are recursively sampled from a proposal distribution,
βi
τ ∼ Q(βτ | β0:τ−1) up to time τ= t. We define Q(β0 | H0)�

P (β0 | H0), and Q(βτ | β0:τ−1) � UNIFORM[1, |βτ |]. Then, for
every time-step t, the corresponding importance weight is,

λ
i,j
t =

P
(
βi,j
0:t | Ht

)
Q

(
βi,j
0:t | H0

)=
ηtζ

i|j
t P

(
βj
0:t−1 | Ht−1

)
Q(βi

t | βj
0:t−1)Q(βj

0:t−1 | H0)

=
ηtζ

i|j
t

1/|βi|j
t |

P
(
βj
0:t−1 | Ht−1

)
Q

(
βj
0:t−1 | H0

) =ηtζ
i|j
t |β

i|j
t |λj

t−1, (9)
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where λ
j
0 = 1. As a consequence,

Lemma 2: HB-MCP state-dependent reward estimator,
R̂X � 1

N

∑N
i,j=1 λ

i,j
t

1
nX

∑nX

k=1 r(X
i,j,k
t , at), is unbiased.

Proof: If states are sampled i.i.d. for each hypothesis, then
the expected value of the reward estimator, R̂X , is,

E

[
R̂X

]
� E

⎡
⎣ 1

N

N∑
i,j=1

λ
i,j
t

1

nX

nX∑
k=1

r
(
Xi,j,k

t , at

)⎤⎦

= EQ

⎡
⎣ 1

N

N∑
i,j=1

λ
i,j
t Eb[Xt]

i,j
β0:t

[
1

nX

nX∑
k=1

r
(
Xi,j,k

t , at

)]⎤⎦

=
1

N

N∑
i,j=1

EQ

[
P

Q

1

nX

nX∑
k=1

Eb[Xt]β0:t

[
r
(
Xi,j,k

t , at

)]]

= EP

[
Eb[Xt]β0:t

r(Xt, at)
]
� RX (10)

where P =P (β0:t | Ht), Q=Q(β0:t | Ht), and N and nX
denote the number of samples from Q and b[Xt]

i,j
β0:t

respectively. �
As the planning horizon grows, sampling hypotheses uni-

formly quickly induce sample degeneracy. That is, the weights
of most hypothesis samples become negligible, while only a
few remain significant, which negatively affects the accuracy
of the estimate. To avoid this issue, we perform resampling
at every step, also known as sequential importance resampling
(SIR). Before resampling, each hypothesis weight simply be-
comes, λ

i|j
t = ηtζ

i|j
t |β

i|j
t |, which is then updated to 1/N after

resampling. Note that resampling does not introduce bias to the
estimator [15]. To avoid repeated derivations, for the rest of
this sequel we treat mathematical proofs as if hypotheses are
directly sampled from distribution P , even though they are in
fact sampled from the proposal distribution, Q. However, all
derivations can be started by sampling from Q, then follow
similar steps of lemma 2 followed by resampling to arrive at
the same result.

In some cases of interest, such as ambiguous DA, the nor-
malizer ηt cannot be easily computed, and so the importance
weight, λt, cannot be computed. A common practice is to use the

self-normalized version of the estimator, i.e. λ̃
i|j
t = λ̃

i|j
t−1

ζ
i|j
t∑
ζ
i|j
t

,

which is no longer unbiased [15]. However, the self-normalizing
variation is consistent, meaning it becomes less biased with
more samples and converges in probability (denoted →p) to
the theoretical value. This is a direct consequence of applying
the weak law of large numbers on both the nominator and
denominator of the self-normalized estimator,

R̂SN
X �

∑N
i,j=1 ζ

i|j
t ωj

t−1
1

nX

∑nX

k=1 r(X
i,j,k
t , at)∑N

i,j=1 ζ
i|j
t ωj

t−1

=
1
N

∑N
i,j=1 ηtζ

i|j
t ωj

t−1
1

nX

∑nX

k=1 r(X
i,j,k
t , at)

1
N

∑N
i,j=1 ηtζ

i|j
t ωj

t−1
→pRX

1
,

(11)

where the denominator converges to the sum of weights,∑
i,j ω

i,j
t = 1 and the nominator to the reward value.

B. Belief-Dependent Rewards

Contrary to state-dependent rewards, belief dependent re-
wards are not necessarily linear in the belief, so averaging
over state samples from different hypotheses does not guarantee
convergence to the theoretical reward value. Moreover, different
reward definitions may be functions of not only the states,
but also the weights, the conditional beliefs, or the probabil-
ity density values of the complete theoretical belief (such as
Shannon’s entropy [10] or differential entropy [8]). To support
the various cases, we split our discussion into the parametric
case, where the reward can be precisely calculated given a set
of parametric conditional beliefs and the corresponding weights,
and the nonparametric case, where the reward is estimated based
on state and hypothesis samples.

HB-MCP supports belief-dependent rewards by accumulating
conditional beliefs across multiple visitations of the same history
(i.e. same node in the belief tree). The estimated weight of each
conditional belief is the sample frequency of the corresponding

hypothesis. That is, P̂ (βi,j
0:t | Ht)� ω̂i,j

t =

∑
i,j 1β=β

i,j
0:t

N , whereN
is the number of hypothesis samples, i, j ∈ [1, |β0:t|], |β0:t| is
the theoretical number of hypotheses at time t and 1� denotes
the indicator function.

Parametric: Assuming a parametric representation for the
conditional beliefs, b[Xt]

i,j
β0:t

, the belief-dependent reward,
Rb(bt, at), is evaluated using the estimated hybrid be-
lief,Rb(b̂t, at), where b̂t = b[Xt]β0:t

b̂[β0:t] ≡ b[Xt]β0:t
P̂ (β0:t |

Ht), and bt defined in (3). Applying the hypothesis resampling
approach as described in Section V-A, the sample frequency of
each hypothesis in b̂t is unbiased, in other words, in expectation
it equals the theoretical weights. Moreover,

Lemma 3: Rb(b̂t, at) converges in probability to Rb(bt, at)
for any continuous, real-valued functionRb.

Proof: By the law of large numbers, ω̂i,j
t is consistent asN →

∞ for all i, j ∈ [1, |β0:t|],

ω̂i,j
t =

N∑
k=1

1βk=βi,j
0:t

N
→p P (βi,j

0:t | Ht)= ωi,j
t , (12)

then, due to the continuous mapping theorem,

Rb(b[Xt]β0:t
b̂[β0:t], at)→p Rb(b[Xt]β0:t

b[β0:t], at),

that is,Rb(b̂t, at) is a consistent estimator forRb(bt, at). �
Nonparametric: In the nonparametric case, the reward

value is estimated based on state particles, which may cor-
respond to conditional belief estimation via particle filters,
or POMDPs with reward functions that have no close-form
solution, and are thus approximated via Monte Carlo meth-
ods. Then, instead of Rb(bt, at), an estimator over the reward
is used, R̂b(b̂[Xt]β0:t

b̂[β0:t], at), where both the belief and
the reward functions are estimators. We denote b̂[Xt]

k
β0:t

=∑nx

i=1 α
i,k
t δ(X −Xi,k

t ), where αi,k
t is the weight of state parti-

cle i generated from conditional belief k and nx is the num-
ber of particles used to approximate the conditional belief.
To arrive at consistency results for an arbitrary nonparametric
reward estimator, we assume that the reward estimator based
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on samples from the full theoretical belief is consistent, i.e.,
R̂b(b̂[Xt]β0:t

b[β0:t], at)→p Rb(bt, at).
Lemma 4: If R̂b(b̂[Xt]β0:t

b[β0:t], at)→p Rb(bt, at), then
R̂b(b[Xt]β0:t

b̂[β0:t], at)→p Rb(bt, at).
Proof: The proof follows similar steps to lemma 3. �

C. Value Function

When using the existing hypotheses pruning approximations,
the estimated value function converges to the wrong value even
when some external source provides the exact reward value. This
is due to the way observations are generated. The value function
is defined as

V π(bt) =

∫
z

P (zt+1:τ | H−t )
T∑

τ=t

R(bτ , πτ )dz, (13)

and since there is usually no direct access to observations
given history, first state-samples are generated, then obser-
vations are sampled using the observation model, that is,
P (zt | H−t ) =

∑
β

∫
X P (zt | Xt, β0:t)b

−(Xt, β0:t). Replacing

b−with its pruned counterpart, b̂−, results in a shifted distribution
for both the belief and the measurements, which impacts the
value function estimation. Proof of this claim is similar to that
of lemma 1 and skipped here for conciseness.

Instead, HB-MCP generates observations by first receiving a
hypothesis from the belief at the current node, βj

0:t. Conditioned
on βj

0:t and the history, HB-MCP samples a new plausible
hypothesis, βi

t+1. Then, an observation is sampled based on the
posterior hypothesis. More formally,

Ezt+1:τ

[ T∑
τ=t+1

Rτ

]
=Ezt+1

[
Rt+1 + Ezt+2:τ

[
V π
t+2

]]
= Eβ0:t

Eβt+1|β0:t
Ezt+1|β0:t+1

[Rt+1]︸ ︷︷ ︸
�αt+1

+E
[
V π
t+2

]
. (14)

We then define the estimator for the expected reward, α̂t+1,

ÊQ

⎡
⎣P

(
βi
t+1 | β

j
0:t, H

−
t+1

)
Q

(
βi
t+1 | β

j
0:t, H0

) λ
j
t Êzt+1|β0:t+1,H

−
t+1

[R̂t+1]

⎤
⎦ (15)

Lemma 5: Given an unbiased reward estimator, R̂, the value-
function estimator used in HB-MCP is unbiased.

Proof: Applying similar steps from the proof of lemma 2 on
α̂t+1, leads to an unbiased value, αt+1. Continuing recursively
on the value function yields the desired result. See [14] for
further details. �

VI. NEGATIVE INFORMATION IN AMBIGUOUS DATA

ASSOCIATION

Just like observations affect the hypotheses’ weights, not
receiving an expected observation also affects the weights,
commonly known as negative information. We build on pre-
vious work [9] which addresses hybrid Bayesian inference for
ambiguous DA and shows how the mathematical formulation
naturally extends to include negative information. We limit our
discussion of negative information to the context of landmark-
based observations. We conjecture that this formulation can also

be adapted to arbitrary observations, but is out of the scope of
this paper.

Negative information is based on not receiving an observation
from a mapped landmark. We denote |Lt| ∈ N as the number
of mapped landmarks at time instant t. This usually refers to
the number of landmarks that already exist in the agent state
(but can be defined otherwise). We also define observation as,
zt = [z1t , . . .z

|Lt|
t ]. Note that there are |Lt| observation elements

in the observation, even though usually not all landmarks can
be observed at a single time step, as some might be out of
the sensing range due to limited field of view, occlusions, and
so on. If at time t only nzt < |Lt| landmarks are observed,
we fill the rest of the observation array with zkt =∞, i.e.,
out of sensing range. Then, the observation array becomes
zt=[z1t , . . ., z

nzt
t ,∞, . . .,∞]1×|Lt|. The reason for such un-

common inflation of the observation array will become clear
shortly.

We define βt = [βt,1, . . .., βt,|Lt|] as an array that subscribes
each landmark with some observation. For example, βt,k = 1
associates landmark lk with observation-element z1t from zt.
Note that by the definition of the observation array, zβt,k

t =
∞ for all βt,k > nzt , which does not correspond to any real
observation.

Equipped with the definitions of βt and zt, we now discuss the
adaptation of the observation and association models. We drop
the �i,j notation to avoid notation overloading, the derivations
below are true for each hypothesis separately. In the landmark-
based context, it is common to further simplify the expression
in (7) by assuming conditional independency of an observation
given the state variables, to a product of observation models,
P (zt | Xt, βt) =

∏|Lt|
k=1 P (z

βt,k

t | xrt , lk), where xrt and lk are
the current pose of the agent and landmark k. For simplicity, we
assume in this paper an ideal detection sensor, in the sense that
if a landmark is within range, the sensor will detect it. Under
this assumption, likelihood of obtaining an out-of-range obser-
vation (zβt,k

t =∞), given that the landmark is within the sens-
ing range (denotedS.R.), is P (z

βt,k

t =∞ | xrt , lk ∈ S.R.) = 0.
However, obtaining an out-of-range observation given that the
landmark is indeed out of the sensing range, is P (z

βt,k

t =∞ |
xrt , l

k /∈ S.R.) = 1.
The association model, P (βt,k | xkt , lk), assigns a probability

to associate a landmark, lk, with a specific observation in-
dex, βt,k. We define the likelihood of associating an out-of-
sensing-range landmark to an actual observation element (i.e.
βt,k ≤ nzt ), as P (βt,k ≤ nzt | xkt , lk /∈ S.R.) = 0. Conversely,
associating a landmark that is within the sensing range, equals
a nonzero value, for simplicity defined here as a uniform distri-
bution across all feasible associations, 1

nzt
. We explicitly state

all possible combinations of state, association, and observation
in table I.

VII. EXPERIMENTS

In this section we evaluate our approach, HB-MCP, consid-
ering multiple hypotheses due to ambiguous DA. We compare
our approach with the state of the art algorithms, DA-BSP [9]
and PFT-DPW [6]. PFT-DPW is utilized here as a single
hypothesis solver, as it does not explicitly support multiple
hypotheses beliefs. Its hypothesis is chosen based on the hy-
potheses weights through sampling. While it is possible to
modify PFT-DPW to accommodate multiple hypotheses, we
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TABLE I
POSSIBLE COMBINATIONS WHEN CONSIDERING NEGATIVE INFORMATION

TABLE II
ALGORITHMS EXAMINED IN OUR EXPERIMENTS

TABLE III
COMPARISON OF ALGORITHM PERFORMANCES ON DIFFERENT SCENARIOS

leave this for future research. To make DA-BSP comparable to
other algorithms, we adapted the algorithm to support anytime
planning by utilizing Monte-Carlo trajectory samples instead of
a full tree traversal. We also evaluated vanilla-HB-MCTS as the
ad-hoc baseline for MCTS implementation with hybrid beliefs,
see table II. A summary of the performance of each algorithm
is given in table III.

In all cases, the experiments were done using GTSAM li-
brary [16] with a python wrapper as an inference engine for
each of the hypotheses. Most current state-of-the-art online
tree search planners rely on particle filters as an inference
mechanism. However, particle filters are limited in their ability to
support high-dimensional and correlated state spaces efficiently.
Instead, through GTSAM we modeled each conditional belief as
nonlinear state space model corrupted with multivariate Gaus-
sian noise. We give more information of the hyperparameter
choice in the supplementary file [14]. In the experiments, we as-
sumed a SLAM setting, in which the map is not perfectly known,
and the agent is only given a noisy prior on the map and its own
pose. Due to ambiguous data associations, each measurement
may be obtained from any of the surrounding landmarks within
the sensing range of the agent. As a result of the ambiguous data
associations, the full posterior belief becomes multi-modal, with
discrete variables representing different possible associations.

Aliased matrix: The first environment is a highly aliased map,
depicted in Fig. 2(b). The task of the agent is to reduce the
uncertainty of its pose and all landmarks of the map, measured
by the (negative-)A-optimality criteria. TheA-optimality is the

Fig. 2. Aliased matrix. The goal of the agent is to minimize the uncertainty
of its pose and the location of all landmarks. (a) Mean and standard deviation
of the cumulative reward, over 100 trials (higher is better). (b) Illustration of
the initial belief of the agent. x∗ denotes the ground truth pose of the agent. l∗

denotes a unique landmark. The agent receives as a prior three hypotheses at
different locations, drawn as blue ellipses.

Fig. 3. Kidnapped robot. The goal of the agent is to minimize the uncertainty
of its pose. (a) Mean and standard deviation of the cumulative reward, over
100 trials. (b) Illustration of the initial belief of the agent, blue circles illustrate
conditional beliefs, crosses denote landmarks.

trace for the belief covariance matrix, commonly used as uncer-
tainty measure. The state of the agent is its trajectory and prior
landmarks. The agent is initially given three possible hypotheses
for its pose, and 24 aliased landmarks evenly scattered across the
map and a unique landmark, given as noisy prior to the agent.
The unique landmark breaks the symmetry and may be used
by the agent to disambiguate hypotheses. The action space is
defined as a straight 4-directional open-loop actions, consisting
of 12 intermediate steps, each of 4[m]. Each planning session
was limited to 40 seconds.

Kidnapped robot: The goal of the agent is to minimize the
uncertainty about the agent’s pose. The environment has 16 ran-
domly scattered landmarks on a 160m× 160m grid, with added
Gaussian noise given as prior. The prior pose of the agent is three
hypotheses randomly scattered within the grid boundaries. The
action space is defined similarly to aliased matrix environment.
The reward function is defined by theA-optimality criteria on the
robot’s pose. Each planning session was limited to 20 seconds.

Goal reaching. The goal of the agent is to reach a predefined
target region. The agent prior belief is given as three hypotheses,
located at different directions with respect to the target. To
ensure that the right hypothesis gets to the target, the agent must
first disambiguate some of the hypotheses (using the unique
landmark shown in Fig. 4), and only then attempt to reach
the goal. The reward function is defined as the negative sum
of the Euclidean distance to goal and the A-optimality criteria.
Each planning session was limited to 20 seconds.

HB-MCP received the highest expected cumulative reward
in both the ambiguous matrix and goal reaching scenarios.
Note how in the ambiguous matrix scenario, HB-MCP achieves
significant improvement in cumulative reward from step num-
ber 2. The reason for that is the agent’s ability to spot the
unique landmark, which is two open-loop steps away when
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Fig. 4. Goal reaching. The goal of the agent is to reach the target location
while minimizing uncertainty. (a) Mean and standard deviation of the cumulative
reward, over 100 trials. (b) Illustration of the initial belief of the agent.x∗ denotes
the ground truth pose of the agent. l∗ denotes a unique landmark. The agent
receives as a prior three hypotheses at different locations.

t = 0, see Fig. 2(a). Due to restricted planning time, vanilla-
HB-MCTS and DA-BSP fail to identify and utilize the reduction
in uncertainty via disambiguation using the unique landmark.
In all cases a single-hypothesis PFT-DPW is unaware of the
multi-modality of the problem, and has no incentive to prior-
itize the unique landmark over any other (ambiguous) land-
mark. In case of PFT-DPW, this statement is true for all the
experiments.

In the kidnapped robot scenario the algorithms performed
almost equally well, with slight superiority to HB-MCP. Al-
though PFT-DPW is mathematically inaccurate due to the choice
of merely a single hypothesis, it enjoys higher inference and
planning efficiency which might translate is in some cases
to good performance. Although the kidnapped robot reward
punishes for high uncertainty, the random scatter of landmarks
and poses did not lead to any strong preference of a single
policy for disambiguation, which can be clearly seen from the
cumulative reward of all algorithms in Fig. 3(a). Clearly, depend-
ing on the scenario, even a heuristic, single-hypothesis solver
might lead to good performance. For more details, please refer
to [14].

VIII. CONCLUSION

In this work, we introduced HB-MCP, a novel algorithm
to handle the significant increase in computational effort of
planning with hybrid beliefs. We showed that current state-of-
the-art algorithms rely on an approximation, namely hypotheses
pruning, that leads to a biased and inconsistent reward and
value function estimate. We proposed and analyzed a different
approach, namely HB-MCP, which utilizes sequential impor-
tance resampling to converge to the correct value. Additionally,
instead of building symmetric hypotheses trees, HB-MCP fo-
cuses computations on the promising branches corresponding
to the UCB bonus. We demonstrated how HB-MCP could be

used for planning in ambiguous scenarios and derived a simple
extension to Bayesian inference to handle negative information
naturally. Last, we demonstrated our approach in a simulated
environment. In our experiments, HB-MCP outperformed the
current state-of-the-art hybrid belief space planning algorithms.
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