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Abstract

Planning under uncertainty in partially observable domains, often formulated as Par-
tially Observable Markov Decision Processes (POMDPs), is an exceedingly difficult
problem. Finding the globally optimal solution is intractable for all but the smallest
problems as it requires reasoning about realization of the many random variables of
the problem. Thus, tractable bounds with formal guarantees are attractive alternative
to finding a globally optimal solution. In this paper, motivated by this line of rea-
soning, we formulate and prove novel probability theory bounds. First, we bound the
expectation with respect to the partial expectation (seen to be directly proportional
to the conditional expectation) and show that this is a generalization of the Markov
inequality. Second, by merging our novel inequalities with Hoeffding’s inequality, we
compose an additional novel bound, which allows for bounding expectations with re-
spect to estimators of partial expectations. Finally, we apply these bounds to the
context of planning; we prove bounds on the general value function with respect to a
partial observation space or state space. We then bound the conditional entropy with
respect to the partial observation space and finally, with the use of our novel bounds,
leverage the structure of beliefs in POMDPs to allow for reuse in calculations when

eliminating certain realizations of the belief topology.






Notation and Abbreviations

MCTS Monte Carlo Tree Search

BSP Belief Space Planning

POMDP Partially Observable Markov Decision Process
DA Data Association

SLAM Simultaneous Localization and Mapping
r.v. random variable

pdf probability density function

X State space

Z Observation space

A Action space

T Transition model

@) Observation model

R(-) Reward

p(+) Expected reward

0% Discount factor

S, T Random variables

S, T Variables

S, T Variable spaces

X State

Xy State at time k

Tk Concatenated state variable at time k for smoothing
I ih landmark

Ly Set of landmarks at time k&

2t ith observation

Zy, Set of observations at time k

a Action at time k

Tk Policy at time k

B Data association vector at time k
Hy, History at time k

H Prior history at time k

by Belief at time k

b, Prior belief at time &



1{-}
LB, UB
e
V)
Q" (")

Bayesian normalizer at time k

Probability

Measure

Expectation

Empirical estimator

An arbitrary subspace

Partial expectation with respect to the subset B
Complementary subset

Simplified entropy

Entropy

Conditional entropy

Indicator function

Lower bound and upper bound respectively
p-norm with respect to S

Value function following policy m

Q-function following policy



Chapter 1

Introduction

The problem of planning for POMDPs has garnered significant attention in recent
years. The approaches employed in finding a solution to POMDPs vary depending on
if the state, observation or action space are discrete, continuous or a mixture. Finding
a globally optimal solution remains intractable for all but the smallest problems as,
among other things, it requires reasoning about the random variables as defined by the
POMDP. This poses great difficulties for low dimensional settings and is exponentially
more difficult for the high-dimensional setting. Relaxing assumptions on the belief help
but do not completely solve the problem.

To find a tractable solution to the problem, tractable bounds on the reward or value
function, with guarantees, are an attractive alternative to the explicit calculations
required of the optimal solution. Two common inequalities from probability theory
employed in the field of robotics and Al are Markov’s inequality, which allows for lower
bounding the expectation and Hoeffding’s inequality, which bounds the theoretical
expectation and a sampling-based estimator of the expectation with some probability.

In this work, we argue that efficient planning originates from efficient probability
theory bounds; we formulate and prove our own novel bounds in probability theory.
We begin by defining the concept of partial expectation, an operand that is directly
proportional to the conditional expectation. We then formulate a bound between expec-
tation and the partial expectation and discuss the computation complexity associated
with the partial expectation. Leveraging these bounds, we go on to formulate novel
probabilistic bounds that incorporate Hoeffding’s inequality. These bounds allow the
expectation to be bounded with respect to an estimator, not of the expectation, but
of the conditional expectation or the partial expectation. We provide conditions under
which these bounds improve upon Hoeffding’s inequality. To the best of our knowledge,
these bounds have not appeared previously in literature.

Application of our bounds within the framework of planning begins with bounds on
the expected reward, with respect to the observation space. We prove how a general
value function can be bounded in a recursive manner via the use of a partial expec-

tation with respect to the observation space. After the general scenario, we look into



information theoretical rewards, which are known to be a more challenging problem
than state dependent rewards. In this scenario we formulate bounds on the immediate
expected reward with respect to the observation space, that allows us to bound the
value function. Finally, we consider POMDP /Belief Space Planning (BSP) planning
for problems with structure in their belief. This is characteristic of high-dimensional
state space problems, such as active Simultaneous Localization and Mapping (SLAM).
This setting necessitates reasoning over Data Association (DA) realizations of future
observations, where each realization corresponds to a different belief topology. In this
case we devise novel bounds on the value function that allow for reasoning over only
part of the DA realizations with guarantees.

To summarize, the main contributions of this paper include:

o We formulate and prove novel bounds on expectation, starting with the concept

of partial expectation.

e We formulate and prove novel bounds between theoretical expectation and es-
timators of partial expectation, with conditions for which they improve upon

Hoeffding’s inequality.
o We formulate novel bounds on the value function via reward simplification.
e We formulate novel bounds on the conditional entropy.

e We formulate novel bounds on the Boer’s entropy with greater computational

efficiency.

o We exploit the belief structure present in many POMDP problems to allow for

calculation reuse between rewards of similar topologies.



Chapter 2

Related Work

In the context of POMDPs, planning a globally optimal solution is intractable for all
but the smallest problems [PT87]. As a result, recent efforts have focused on tree-
based search algorithms to find asymptotically optimal solutions. POMCP [SV10],
an extension of Monte Carlo Tree Search (MCTS) tailored for unobservable states, is
one of the first particle tree based approaches to solving POMDPs. Building upon
POMCP, subsequent works introduced POMCPOW and PFT-DPW [SK18]. The for-
mer algorithm applies a weighted particle-filter to approximate the belief, the latter
algorithm propagates beliefs, not states, through the tree. These algorithms enable
the handling of belief-dependent rewards, but they face scalability challenges in high-
dimensional belief spaces due to particle representations. DESPOT [YSHL17] and its
successor [GHL19] assume that the value function is a linear function of the belief,
as such its relevance is limited to such value functions that can be well approximated
with piece-wise linear functions (a-vectors), limiting their applicability, especially for
information-theoretical rewards. In [THB21], the authors propose p-POMCP(/3) which
samples the belief as a ‘bag’ of state particles and propagates them via a particle-
filter. Finally [FT20] proposes IPFT to also address information-theoretical rewards
for POMDPs. Both [THB21; FT20] are hindered by the curse of dimensionality in high-
dimensional states. At the core of these asymptotically optimal algorithms, the use of
Hoeffding’s inequality [Hoe63] is required for the asymptotic convergence. Since [Hoe63]
, many papers [Ben08; FS13; Coh15] have sought to improve upon Hoeffding’s inequal-
ity.

Another class of algorithms seeks to plan with bounds that provide anytime de-
terministic guarantees [BI23]. In [SI22b], the SITH-BSP algorithm utilizes formulated
bounds on belief-dependent rewards to optimize policies more efficiently; however, it is
primarily designed for scenarios with lower-dimensional belief spaces, and the bounds
are specific to entropy-based rewards. AI-FSSS [BI22] is another bound-based algo-
rithm for belief dependent reward. It clusters observations in the tree into groups,
performing the calculations on their mean to improve computational performance. Nev-

ertheless, its applicability is primarily limited to lower-dimensional problems and the



Boers estimator [BDBM10]. Finally [YI24] addresses the complexity associated with
high-dimensional problems for information gain as the reward and also provides bounds
for the expected reward.

The anytime planning algorithms discussed derive their bounds from probability
theory, often from Jensen’s inequality or Markov’s inequality. Works in probability
theory have sought to improve upon these bounds as well. In [RM23] Markov’s inequal-
ity is generalized for sets of random variables. Finally in [dCas23| the author improves
upon the Markov inequality by using the partial expectation as we have done, although

still assumes that the random variable is non-negative.



Chapter 3

Background and Notation

3.1 Probability Theory

In probability theory we denote a r.v. S having a sample space S, a realization S € S
and a subset of the sample space B C S. We now define the shorthand P (B) £
P (S € B) = E[1{S € B}] for probabilities and P (S = S) = P (S) for the probability
density function (pdf). In the case of conditioning we define P (B | T) £ P (S € B| T).
The expectation over a given pdf P (.5) is given by IE [-]. We will further define the par-

tial expectation of a r.v. over a subspace B as Eg [f(S)] £ [P (S) f(S)1{S € B}dS =
E[f(S)1{S e B} =E[f(S)|S € B|P(B). Finally we define the case of condition-
ing also for the partial expectation, g [f(S)] £ [sP (S| T) f(S)1{S € B}dS where
P (S| T) is the conditional distribution.

3.2 POMDP

A p-POMDP is given by the tuple (X, Z,A,7T,0,by,p), where X, Z, A are the
state space, observation space and action space respectively. 7T is the transition
model given by P(X'=X'| X = X,a) and O is the observation model given by
P(Z=7|X =X). by is an initial belief on the state and p is a belief dependent
reward. The belief at time k is defined as b, £ P (Xy | Hy), where Hy = {ag.x_1, Z1.x}
is the history at time k, we additionally define the prior belief as b, £p (Xk | H N )
where H,~ 2 Hy_ 1 U{ag}.

At planning time k, the agent will need to perform a Bayesian update of the
belief. This is done in two steps: a propagation step, and an update step. The
former is given by b, = [P (Xpy1 | X, ax) 0pdXy or b = P(Xpp1 | Xy, ar) be
for the recursive or smoothing scenarios respectively. The update step is given by
b1 = nk,_ilP (Zky1 | Xit1) by, where ny, £ P (Zk | Hk_) is the normalizer. In the

smoothing scenario the belief is over the joint states, U?:o X;.



Given some policy , belief b5 and horizon L, the value function is given by

k+L—-1

Vi) = X 7T E e bumibu)l (3.1)
=k :

where 7 (bg) = 7 and Zg 141 = Z .41 for brevity. Alternatively, the Bellman repre-

sentation yields

Q" (bk,ar) = E [p (b, ak, bp1)] +v E [V (bey1)] (3:2)
Zk+1 Zk+1
where Vw(bk) = Qﬂ(bk,ﬂ'k).

Often, when discussing uncertainty, information theoretical rewards are employed.
Of these rewards the most common is entropy (H (X) = — ;]fg [log P (X)]). Explicitly,

the expected reward ( E  [p (bg, 7, br11)]) takes the form of
Z g1 b,

— E E [logP (X1 | Zk+1,bk,7rk)]] ,

Zi1lbk,me | X kg1l Zpq1,br,mk

which corresponds to the conditional entropy, H (X k1 | Zit1, by, +1>'

3.3 Structure

As we have mentioned in Chapter 1, many difficult problems exhibit structure in the
belief. This structure is characteristic of the factor graphs [KF09], which represents the
variable dependencies in the POMDP problem. For the case of SLAM, the factors that
connect between poses (z) and landmarks (/) are derived from the observation model,
yielding P (z | #,1). When the landmarks are part of the state, these factors are pair-
wise, otherwise they become unary factors on the state. We denote L 2 |JI; [’ as the
set of all landmarks and Z = |J; 2* as the set of all observations at the specified time-
step. Often multiple observations will be gathered at each time-step, each associated
with a specific landmark. To account for the different possible realization of observed
landmarks we introduce 3, the variable which defines the DA. More precisely g € D £
{{0,1}™ | ||B]l1 = m}. Thus the vector provides the following association between ob-
servation and landmark, P (2% | z, 8,17) = P (2* | z,19) l{ﬁj =1, ZfL:l B = z} Under
this problem formulation the Q-function must be rewritten as

Q(bpar)= E | E [p(bk,ak,bm)@ﬂ@[ E [W(bkm], (3:3)

Brs1 Zk+1|ﬁk+1 Bt Z’C+1"Bk+1

as the dimensionality of Zj;; depends on B),,. For convenience we define f; £
P (2 | z,1%) and F(B) £ {fi | B* = 1} represents the set of factors defined by £3.

10



Chapter 4

Probability Theory Bounds

In this chapter we present our key insight as a general bound on the expectation of
a r.v. and investigate a few special cases which will have applications for bounding

rewards in POMDP scenarios.

4.1 General Bounds

m(B°)

Figure 4.1: The different elements of the bounds of Theorem 4.1 are seen in the figure.
The blue area is preserved as is, and is seen in the bounds as the partial expectation that
we explicitly calculate (€g[f(S)]). The green and red areas are the upper (My(B°))
and lower (m¢(B¢)) bounds respectively which need to be weighted by the probability
that the variable is found in the compliment subset (P (B°))

The partial expectation of a r.v. may at times be easier to calculate than the total
expectation (the partial expectation is related to but not equivalent to the conditional
expectation). We start by introducing the following novel bounds on the difference

between the expected value of a given function and its partial expectation.

Theorem 4.1. Let S be an arbitrary r.v. such that S € S. Consider an arbitrary
function f: S — R. Then for any subset B C S, LB < E[f(S)] — Es[f(S)] < UB,

11



where:

LB =m(BY)P(BY) | (4.1a)
UB = M (B)P (B°) (4.1b)

and my¢(B), M¢(B) are defined as the infimum and supremum of f over the set B

respectively.
Proof
E[f(S)] =E[f(S)I{S € B +E[f(S)1{S € B}
< E[f(S)I{S € B} + My(B)E[1{S € B}
=E[f(S)L{S € B} + My(B)P (5°)
=& [f(8)] + My(B°)P (B°) u

For clarity we also provide the following definitions:
P(B) £E[1{S € B}],
Es[f(S)=E[f(S) ]S € B|P(B).

We can generalize Theorem 4.1 such the the complementary subset is split into

multiple independent sets, allowing for tighter bounds.

Theorem 4.2. Let S be an arbitrary r.v. such that S € S, and f: S — R be some
function. Then for any subset BC S, LB <E[f(S)] —Es[f(S)] <UB, where:

N

LB =" mp(B)P (B) . (4.22)
=1

UB = 3" My(B5)P (55) (4.2b)
=1

N
and U By = B¢, B N BJQ = 0.
i
Proof The proof is similar to that of Theorem 4.1, but with an extra step,

E[f(5)] = E[f(S)1{S € BY +E[/(S)1{S € 5]

N
E[f(S) 1{SeB}+Z S)1{S € B¢}

2:1

N
< Ep[f(S)]+ D My(B)P (B5) u
i=1

12



All proofs are given only on the upper bound when the lower bound can be reached
in a similar manner. Without loss of generality P (B¢) and 1 — PP (B) will be used inter-
changeably depending on the need, where the use of 1 — P (B) will often be preferable
due to computational benefits.

Figure 4.1 illustrates how we change part of the function in order to bound the
expectation in an adaptive fashion. To the best of our knowledge, the bounds given in
Theorem 4.1 are novel and have not previously appeared in the literature.

From inequality (4.1a), if we assume f(S) > 0, then Ez[f(S)] > 0 and we arrive
at E[f(S)] > ms(B°)P (S € B°), which is the generalized Markov inequality [Durl9].
In [Oga21] the authors show an improvement on the Markov inequality by also using
partial expectations, although their approach assumes that the function f(S) is non-
negative strictly increasing; further generalization of the Markov inequality has also
been proposed by [BK22].

4.2 Special cases

We explore several special cases relevant to planning and computation efficiency. The
following examples are but a small subset of the possible applications.

We begin with B given as a superset of the subset B’ (i.e. B’ C B), possible
motivation for such an extrapolation would arise from the computation advantage in
calculating the extreme values of B’ over B¢. The trivial example of setting B’ = ()
leads directly to the global extrema, which can be calculated offline when discussing

online algorithms.

Proposition 4.2.1. Consider ar.v. S and a function f as defined in Theorem 4.1. Let
us define the subsets B and B’ such that B C B C S. Then LB <E[f(S)]|—Es[f(S)] <
UB, where:

LB =m(B)P (B | (4.3a)
UB = M (B)P (B) . (4.3b)

Proof From Theorem 4.1 we have
E[f(S)] = & [f(S)] + My (B)P (B°)
Given that B’ C B, then B C B, leading directly to M;(B°) < M(B'), thus
< & [f(8)] + My (B)P (B) =

In Theorem 4.1 the subset defines the minimum and maximum. Alternatively, one
could define the subset via the minimum and maximum. (For further motivation see
Section 4.4.)

13



Proposition 4.2.2. Consider a r.v. S and a function f as defined in Theorem 4.1.
Let B be a subset defined as B2 {S €S| f(S) <eV f(S)>¢'} then 3e,&’ such that
e<e and LB<E[f(S)] —Es[f(S)] <UB, where:

LB =P (BY) | (4.4)
UB=¢eP(B° . (4.4b)

Proof By definition of B, M (B¢) < &, thus
E[f(S)] < &s[f(9)] + &P (5 u

In the following propositions we will look into bounding the expectation of two r.v.s

under various assumptions. We start by simply bounding the joint expectation,

Proposition 4.2.3. Consider two arbitrary r. v.s S and T such that S € S andT € T .
Let f: (S, T) — R be some arbitrary function, let Bg be an arbitrary subset of S and
let Br(S) be an arbitrary subset of T as a function of S. Then LB < SET [f(S,T)] —

Es, [SBT(S) [f(s,T)]] < UB, where:

LB = &g [my(S, BT (S))P (BL(S))]

(4.5a)
+2(85) (Jnf, Eavcs /(ST + nf (PABE(S)my (S.55(5)) )
UB = Epg [My(S, BT(S))P (B7(S))]
(4.5b)
+P(BS) | sup Ep(s) [f(S,T)] + sup {P(B7(S5)) My (S, Br(9))} )
SeB, SeBs,
and ms(Bs, T) = inf f(S,T), M§(Bs,T) = sup f(S,T).
SeBgs SeBs
Proof We begin by applying Theorem 4.1 to the inner expectation
E [TEFS [£(S,T)]| < IE[E‘BT(S) [£(S,T)] + My (S, Br(S)°)P (BT(S)C)}
Now applying Theorem 4.1 to the outer expectation
< &8, [E8,(5) (S, T)]] + Es, [M4(S, BS(S))P (BE(S))
+P (Bs) sup Epr(s) [f(S, T)] -
SeBg
+P (Bg) sup {P(B7(5)) My (S, B7(5))}
SeBs,

Let us now consider the scenario where the two variables are independent

Proposition 4.2.4. Consider two arbitrary independent r. v.s S and T such that S € S
and T € T. Let f: (S,T) — R be some arbitrary function and let Bs and By be arbi-

14



B — B Br(S)—

B x B

B x Br
S S
(a) Visualization of the partitioning dictated (b) Visualization of the partitioning dictated
by Proposition 4.2.5. We can explicitly fac- by Proposition 4.2.3. The set B is a general
tor the joint domain B into the Cartesian subset of the joint sample space (S x T), as
product Bs x Br, thus in this scenario B¢ = such it cannot necessarily be represented as a
(Bs x BT) U (Bs x Br) U (Bg x B%) Cartesian product of two independent sets

Figure 4.2: Joint domain partitioning employed in the different scenarios

trary subsets of S and T respectively. Then LB < SIET [f(S,T)] —Epy €8, [f(S,T)]] <
UB, where: ’
£B = P (B5) £, [my(S. B7)] + B (55) inf_ s, [/(5.7)]
S

(4.6a)
+P (By) P (Bg) my (B, By)

UB =P (Bt) Ess [My (S, BT)] + P (Bs) sup Es, [f(5,T)]
S€By (4.6b)
+P (B7) P (Bs) My (B, By)

and Bs(T') = Bgs, Br(S) = Br.

Proof Given that the r.v.s and subsets are independent, Proposition 4.2.3 simplifies
trivially to the bounds |

We note that the relation between Bg, Br and the joint subset (B') is given by
B' = Bs x Br, this does not imply that B’ = Bg x BS. Furthermore it can be
easily shown that the number of terms is exponential with the number of independent
variables, thus a simpler bound is desirable. Under the same assumptions, but with

further relaxation of the bounds, we can arrive at simplified bounds given by

Proposition 4.2.5. Consider two arbitrary independent r.v.s S and T and a function
f as in Proposition 4.2.8. Let Bg and By be arbitrary subsets of S and T respectively.
Then LB < SIET (f(S,T)] — &gy (€8, [f(S,T)]] <UB, where:

LB=(1-P(Bs)P(Br))ms(B°) (4.7a)
UB = (1 - P (Bs) P (Br)) M;(5°) (4.7b)

and B' & Bg x Br.

15



Proof

E (£(8.T)) - €, (€5, [1(S. D)) < My(BP (B)

— My(B") (1 - P (Bs x Br))
— M;(B") (1 - P (Bs) P (Br)) m

Finally, we examine how we can leverage possible knowledge of the structure of f to
allow for intuitive bounds on seemingly unbounded functions. We begin by bounding

the log function, a common function in information theoretical rewards.

Proposition 4.2.6. Let S and f be defined as in Theorem 4.1 and consider the specific
structure of f(S) £ g(S)logh(S), where h is a non-negative function and let B be an
arbitrary subset. Then LB < E[f(S)] —Es[f(S)] <UB, where:

LB =P (B°) min {my(B) log mp(B), My(B°) logmy(B°)} , (4.8a)
UB =P (B°) max {my(B) log Mj,(B), My(B) log M, (B)} . (4.8b)

Proof Assuming g(S) > 0

M, (B)log M, (B°) ,

g (B log M (B°)

The assumption of g(S) > 0 can also be easily dropped for a more general bound. W

We continue to formulate the case of joint expectation on the log function.

Proposition 4.2.7. Let S € RY and T € R™ be two r.v.. Let f be of the specific

structure f(S) = THFZS [logg(S,T)]: RN — R, where g is non-negative. Thus by The-

orem 4.1 the difference IE [TES [log g(S,T)]] —&B [TH%S log g(S,T)]} is bounded above

and below by
— C :
LB =P (B°)log (Seuéf’Tg(S, T)) , (4.9)

UuB =P (Bc)log< sup g(S,T)) . (4.10)
seBe, T
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Proof

<¢&s

Tﬂ‘lis [log £ (S, Tﬂ} —&B

e [log 8(T)]]

+(1—-P(B))log mj@xs(T) + IIE; [loge(T)]

4.3 Bound Properties

The bounds from Theorem 4.1 have several desirable properties for bound based de-
cision making algorithms, the principle of which is incrementality, allowing for the

tightening of the bounds while reusing parts of the original bounds.

Corollary 4.3.1 (Incrementality). Given a subset B’ such that B C B’ the bounds
as defined in Theorem 4.1 can be calculated incrementally for B'. In other words,
calculations only within the new subset Bpew = B'\ B are needed. This can be expressed

explicitly as follows:

& [f(9)]
P (B)

€5 [£(S)] + Es [F(S)] . (4.11)
B (B) + P (Byow) - (4.12)

The infimum and supremum are partially incremental, depending on the scenario as

described below

B if B°) < Brew
s (B) = my(B°) if my(B) < mg( )’ (4.13a)
by definition else
M+ (B¢ if M¢(B®) > M¢(Brew
My (B) = £(B°) if My(B%) > My(Buew) (4.13b)
by definition else

Proof

& [f(S) =E[f(S)1{S € B'}]
=E[f(S) (1{S € B} + 1{S € Byew})]
= EB[f(S)] + EBpen [F(9)]

The proof for P (B’) follows the same logic.
BE = Bpew UB'S, thus M (B°) = max{M(Bnew), M;(B'°)}, it M(B°) > M¢(Bnew),

17



then implicitly My(B°) # Ms(Bnew) leaving us with M (B°) = Mp(B'°). If Mp(B°) =
M (Bpew) then we gain no information on My (B'), leaving us with M (B) > M (B5'°).l

Corollary 4.3.2 (Convergence). The bounds as defined in Theorem 4.1 converge to
zero with respect to the set B, meaning the partial expectation converges to the true

expectation when B =S.

Proof By definition P (S) =1 and Es [f(S)] = IE [f(S)], thus we immediately arrive at
LB(S)=UB(S)=0 [ ]

Corollary 4.3.3 (Monotonicity). The bounds as defined in Theorem 4.1 are monotonic

with respect to the subspace. Specifically:

LB(B) < LB(B), (4.14a)

UB(B) > UB(B) , (4.14b)

for B C B'. Moreover these bounds are strictly monotonic when Byew 15 measurable

(i.e. P(Buew) #0).

Proof Let us define B 2 B, thus M;(B'®) < M;(B°), by Corollary 4.3.1 we find that
P(B) <P (B') thus

My(B") (1 =P (B)) < My(B) (1 -P(B)) u

4.4 Complexity

Let us denote the complexity of a single evaluation of the function f by O(|f|), and
the complexity of finding bounds on the infimum and supremum of f by O(|m|) and
O(|M]) respectively. Then the complexity of calculating the bounds in Theorem 4.1 is
given by the complexity of the partial expectation over the set B and the complexity
of finding the infimum and supremum over the set B¢, O (|f| - |B| + (|m| + |M|) - |B€]).
When O(|m|+|M|) < O(]f|) then computational savings of approximately O(|f|-|B€|)
are attained.

The above assumes that the complexity of division into subsets is trivial. But
alternatively, one could select subsets defined by their infimum and supremum as in
Proposition 4.2.2, thus O(|m|) = O(|M]) = O(1), but the complexity is simply trans-
ferred into finding which elements belong in each subset, this is the case with the

Markov inequality. The choice between these two scenarios is per use case.
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4.5 Estimators and Novel Probabilistic Bounds

A N )
An estimator P(X) of the distribution P (X) is given by: > w'd (X — X*), where
i=1

(w?, X*) is a weighted particle sampled from P (X). Thus by defining < IE(X) [] &
E [], we find E[g(X)] = [ XL, w'd (X - X7) g(X)dX = XL, wig(X"), which

X~P(X)

is in practice the expectation with respect to a discrete variable with P (X 7’) = w'.
Thus Theorem 4.1, with no additional changes, is also valid for estimators, where the
sample space is defined by the set of samples. This also holds true for functions of the
pdf, both of the form K [f(]a(X))} and K [f(P (X))] with appropriate attention given

to constructing the bound itself.

When the pdf itself is also estimated as in the case of P(X), then bounds on the

estimated weights may be useful for Theorem 4.1, thus we provide Corollary 4.5.1.

Corollary 4.5.1. Let {(w’, )}, be a set of normalized particles sampled from the
distribution P (S). Then the weights (w') are bounded below and above by

max P (5)

LB=1—-— , 4.15a
%E(IS) + max P (5) ( )
min P (5)
UB=1- ) . . (4.15b)
N1 +minP (S5)
Proof
ey
mimmw = min =N o o
: i P (s
Let us denote, without loss of generality, min P (S°) as P (S'), thus
_ P (s)
P (S1) + 315, P (57)
- P (S1)
~ P(SY)+ (N —1)maxP (5%)
min P (5) n

= minP (S) + (N — 1) max P (S)

The use of estimators in the field of robotics is often present when we use Monte-
Carlo methods for reasoning about future actions. As we are working with estimators,
we are interested in how close the estimator is to the theoretical expectation. Via Ho-
effding’s inequality we arrive at two main claims of our paper; the first is a probabilistic

bound between the true expectation and the estimated partial expectation.
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Theorem 4.3. Consider the set of samples {S'}Y., drawn from S, then
P (LB <E[f(S)] - &s, [f(S)] <UB) > 16 V6 € (0,1)

where By, = {S*}" | forn < N,

LB \/Af’l 2 B,°)P (B,.° 4.1
= — ﬁogg‘i‘mf(n)(n)a (68‘)

A} ) .
S log =+ My (BB (B, (4.16b)

UB = 5

and Ay(B) £ My(B) —my(B)
Proof From Hoeffding’s inequality on the r.v. f(.S) the following holds

P(IE[f(S)]-EIf(S) <t) >1-3,

AQ
where t = 4/ ﬁ log %. From the absolute value we have two inequalities, we fill focus
on the upper bound. With the addition of inequality 4.1b for some subset B,, of the

samples
E[f(S)] —E[f(S)]+E[f(S)] - €s[f(S)] <t + Ms(B)P (5,
E[f(S)] = Es[f(S)] <t + Mp(B)P (5°).
Repeating the procedure for the lower bounds results in the complete bounds. |

It can be shown that when comparing Theorem 4.3 to the case of simply taking a
Hoeffding bound with n samples from the original distribution, our bounds are tighter

when the following inequality is satisfied:

c. (\/Z - ﬁ) > A(B,E (B, (117

where C £ A 71/ 2log %. The bound is relevant when N samples are drawn, but evalu-
ation of the function f for all N samples is undesirable, allowing for a controlled way
to remove some samples.

The second of the claims is a probabilistic bound between the true expectation and

the estimated conditional expectation.

Theorem 4.4. Let S be some r.v. and let B C S be some sample space. Consider the
set of samples {S*}¥., drawn from S1{S € B}, then

P(LB<E[f(S)] -PB)Ef(S) Bl <uB)>1-6  V5e(0.1),
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where

LB =—P(B) AJ; 56”)2 log§ +m(BY)P (B , (4.18a)
UB =P (B) Af;(]fy 1og§ + My (B)P (B°) . (4.18b)

Proof From Hoeffding’s inequality on the r.v. f(.S) the following holds
P ([E[f(S)| Bl - E[f(S) | Bl <t) >1-4,
2
where t = 1/ 2AT(7 log % From the absolute value we have two inequalities, we fill focus

on the upper bound. Multiplying though by P (B) and the addition of inequality 4.1b

we find

Es /()] —B(B)E[f(S) | Bl <P(B)t,

E[f(S)] —Es[f(S)] +Es[f(S)] ~P(BELS(S) | B]

<P(B )t+Mf(l5’°) (B)

E[f(S)] P (B)E[f(S) | B] <P (B)t + My (B)P (5°) . =

Similarly to Theorem 4.3, Theorem 4.4 offers tighter bounds in comparison to the

vanilla Hoeffding bound under the following inequality constraint:

C-(Ap =P (B)As(B)) = P(B°) Ap(B°) , (4.19)

where C' £ ,/%log%.

Utilizing this bound is relevant when one would like to focus the sampling procedure
on a specific area of the distribution, or if only a proposal distribution is available on
part of the support, while still being able to make a claim on the expectation. It may
be desirable to apply another Hoeffding inequality in order to estimate and bound with
the use of P (B).
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Chapter 5
Planning

The bounds discussed in Chapter 4 have applications in various contexts, both for
POMDPs and other domains. In this chapter, we examine how these bounds can be
effectively employed in BSP. We start with general formulations of bounds for POMDPs.
Subsequently, we focus on information-theoretic rewards, particularly entropy. Finally,

we address the challenges of planning in high-dimensional state spaces.

5.1 Reward and Value Functions

In the context of planning, the general reward function is denoted as p (b, 7, b'). Our
goal in planning is to bound the cumulative expected reward, as represented in (3.1),
where the expectation is explicitly given on observations and implicitly for states in the
reward structure. By reducing the domain over which this expectation is calculated
—whether with respect to states, observations, or both— we can achieve improved com-
putational efficiency (see Section 4.4) while providing formal performance guarantees.
In this paper we focus on bounding the expectation with respect to the observations,
although similar bounds can be formulated for the state space.

We begin by bounding the expected reward with respect to the observation space:

Elp (b,7)] — Es, [p (b, w(b))) < P (BY) sup p(b,7(b) , (5.1)
ZeBg,

where By C Z.

In many planning scenarios, the belief dependent reward is assumed to have a
structure of p (b, (b)) = XF:b [R(b(X), X ,n(b))]. For such cases, we can derive bounds
on the reward with respect to the state space:

B RO(X), X, m(b))] = Epy [R(O(X), X, 7m(b))] < P (BY) sup R(b(X), X, 7(b)),
~ XeBs

(5.2)
where By C X.
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Not all rewards depend on the belief. State-dependent rewards, given by XE , [R(X,7m(b))],
follow a similar pattern but often benefit from known Ry and Ruyax values, simplifying
the bounds to:

L RXm(0))] = €y [R(X,7(D)] < P (B) sup R(X,w(b))
~ XeBS (53>

< P (B%) Rumax -

If we further look at action sequences and not policies, then the case of state dependent
rewards further simplifies matters by being independent of the observations.

These bounds can be jointly used to reduce the computational complexity by re-
ducing the state and observation spaces concurrently.

With these reward bounds, we can proceed to bound the value function. When

bounding with respect to the state space:

Corollary 5.1.1. LB (b,) < V7 (by,) — V7 (b) <UB™(by,), where:

k+L
LB™(by) =P (BS) inf Ry + =k E O |P(BF) inf Ryl , 5.4
(bx) = P (BY) Jnf Ry 1217 SE., |F(BD) ot Ry (5.4a)
k+L
UB™(by) =P (Bf) sup Rp+ Y. fyl*’sz [IP(B,C) sup Rll : (5.4b)
XkEB;:C I=k+1 k+1:1 XZGBZC
k+L
Vi) =Ep, [Ril+ Y. 27" E €5 [R))] - (5.4c)
l:k‘-‘rl k+1:1

and Ry 2 R(bp(Xy), Xg, 7(br)).

Proof Applying Theorem 4.1 to ;I;Z [R;] and summing for the cumulative reward results
l

in the desired bounds. |

We use the shorthand Ry, = R(by(X%), Xi, 7(bi)).
Expressing the bounds in a recursive manner, as is done for the value function with

the Bellman equation (3.2), we find the following:

Corollary 5.1.2. LB™(b;) < V™(b;) — V™ (b)) <UB™ (b)) Vt € [k, k + L], where:

LB (b)) =P (By) Xitréflsg R + 72151 [LB(bit1)] (5.5a)
UB™ (b)) =P (B;) sup R+~ E [UB(bi+1)] (5.5b)
Xe€BS Zyy1
V(be) = &, [Ri] +7 B [V (bisr)] - (5.5¢)
Zii1

and LB (bgyr,) = UB" (bgyr) = V™ (bgyr) = V™ (bgr) =0, By C X.
Proof Proof by induction:
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base case:

UB™ (by1-1) =P (Bipp—1) sup Ry + ’YZE [UB(br+1.)]

Xk+L_1EBi+L—1 k+L

=P (Biyr1) sup Ry,

Xk‘*‘L_leB;qLLfl

VT (byir-1) = Epey s[RI+ B[V (byr)]

ZtL
= gBk+L—1 [Ri+r-1]
Vilbkrr-1) = B [Rirpa]+v E [V (bt L))

k+L—-1 k+L

= E [Rpsr—1] -

Xpyrr—1

Put together we find that the inequality holds as it is a direct consequence of Theo-

rem 4.1 for = E [Rpip_1]-
Xpyrr—1 ~

induction step: Let us assume that V™ (by1) — V7 (bey1) < UB(byy1) then

VT (br) = V7 (br)

=z [R(be(X¢), X, m(be))] — Ep, [R(be(X ), X, m(by))]

+7 ( E {V”(btﬂ) - V”(th)D

Zit1

<E [R(bs(X¢), X, m(be))] — Ep, [R(be(X ), X, m(by))]

+7( I [UB(th)})

Ziy1
< P (Bt+1) ngllp R(bt(Xt), Xt, TI'(bt)) + Y (ZE ) [Z/{B(bt+1)]) [ |
t1 =+

As was done for the reward, we can also bound with respect to the observation

space:

Corollary 5.1.3. LB (b) < V7 (b)) — V7 (b) < UB™(by,), where:

k+L—1
LB (br) = ; VTP (B | beo ) Zk+1:z+ir€l£3;+1:l+1p(bl’m’blﬂ) ; (5.6a)
k+L—1
UB™(b) = Y 4P (Biyrag | bk ) sup p (b, 7, big1) (5.6b)
=k 1141 €851 44
k+L—-1
Vﬂ-(bk) = Z 7l7k58k+lzl+1|bk,7l' [P (bl’ﬂ-l’bl-‘rl)] ’ (56C)
=k

and Byy1a41 € Z5F which is the joint observation space over time.

Proof Beginning with (3.1) we look for bounds on 2 E b [p (b, 7, b141)]. Applying
k+1:141[0k,T
Theorem 4.1 leads us directly to the bounds for a single time step. Subsequently we

sum over all time-steps. |
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If we wish to propagate the choice of subset not just to the immediate expected
reward, but through to the entire value function, thus completely eliminating specific

realizations of observations from the objective function, we find:

Corollary 5.1.4. LB™(b;) < V™(by) — V™ (b)) <UB™(b;) Vt € [k, k + L], where:

LB (by) = P (B, | by, ) ( inf p (b, e, biit) + inf V”(btﬂ))

t+1 t+1

(5.7a)
+ (P (Bey [ bum) inf £B(bisa) + En, o [£BBes)])
t+1
UB™ (b)) =P (Bgyy | by, ) (SUP p(bs, e, bey1) + 7y sup Vﬂ(bt-i-l))
1 Bi 4
(5.7b)
(P (B | be7) sup LB(bes) + Es o [£B(besn)])
t+1
V7 (be) = Ep, oy on,m [P (b T, 1)) + YEB, 1 four [V (be41)] (5.7¢)

and LBﬂ(bk_i_L) == Z/{Bﬂ-(bk_i_L) == Vﬂ—(bk_;'_[l) == Vw(bk+L) =0 and Bt g Z.

Proof Proof by induction:

base case:

UB™ (by1-1) =P (Bipp | bktr—1,7) (Scllp p (ke L1, 71, kg 1) + 7 Sup V”(bkzu))

k+L Bk+L

(B (BEas [ besm) sup LBOker) + Eyyfpeisr m LB (br1)])

k+L

=P (B, | bkyr—1,7) (gcup P(bk+L—1v7Tt,bk+L)) ,

k+L
VT (bks1-1) = EByy bprs 1w 1P Okt L1y Mot 15 Ok )] + VEB 1 lbis 1o [Vﬂ(bk+L)}

= gBk+L‘bk+L,1,ﬂ' [p (bk+L*17 Tk+L—15 bk+L)] )

VT (bggr—1) = E [0 bkt =15 Tht -1, 0h)] +7 B [V (by)]
Zyyplbryr—1,m ZikyL
= E [p (Dkr—1> Thr—1,0611)] -

Zyiplbryr—1,m

Put together we find that the inequality holds as it is a direct consequence of Theo-

rem 4.1 for E [p (bk+L7177Tk+L717bk+L)]-
Zyyrbktr—-1,7
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induction step: , let us assume that V7™ (by1) — V™ (bit1) < UB(bey1) then

V(b)) — VT (by)
= ZE [p (bt7 Tty bt+1)] - gBt+1 [P (bta Tty bt+1)]

t+1

7 (B 1G] = o [V (b))

VAR

<P (B§+1) Z?p p (be, T, big1)

t+1
+ €81y [p (b, 7, beg1)] — EBiis [0 (bs, e, bey1)]
+P (B§+1) Slclp V7 (bt1) + (5Bt+1 VT (byy1)] — 5Bt+1 {‘_/W(bt—i-l)})
t+1
<P (Bfﬂ) sup p (b, 7, by11)
§+1
+ (P (Bi11) sup V7 (bet1) + €8,y [UB(th)])
t+1

=P (B;;1) sup p (br, e, bita)

t+1
A (BEya) sup (V7 (brsr) = V7 (bra) + V7 (b))
t+1
+ f)/gBt+l [UB(bt-‘rl)]
<P (Bii1) sup p (bg, e, bey1)
t+1

+ P (BS 1) sup (UB(bi1) + V7 (brs1) ) +1Ex,,. [UB(Gi11)]

t+1
<P (Bj) sup p (be, me, bey1)

t+1

+9P (Bi11) (S‘clp UB(by+1) + sup V”(bt+1)> + YEBy1 [UB(be11)]

Bt+1 Bt+1

In Corollary 5.1.4 the choice of subsets B, is used for bounding the expected reward
as well as the cumulative expected rewards. If one were to construct a belief tree, then

the choice of subset would be analogous to pruning the branches indicated by B€.

An alternative approach which proves to be more manageable to formulate is to
take the partial expectation only with respect to the immediate expected reward. This
approach still allows for closed-loop planning, but does not prune the tree, instead it

simplifies calculations for the immediate expected reward.
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Corollary 5.1.5. LB(b)) < V™ (b)) — V™ (b)) <UB(b;) Yt € [k, k + L], where:

L:B(bt) =P (Bngl) Blpf 1% (bt, Tty bt+1) + 7y ZE [CB(btJrl)] s (58&)
t+1 t+1

Z/{B(bt) =P (Bngl) ;up 1% (bt, Tty bt+1) + Y ZE [UB(th)] y (58b)
S 11 t4+1

V() = €,y p (b brsa)] +9 B[V (be)] - (5.8¢)

t+1

and LB (byr) = UB™ (byrr) = V™ (besr) = V™ (bpyr) = 0 and B, C Z.

Proof Proof by induction:

base case:

UB™ (bkr 1) = P (Biy1) sup p (bkyr—1, Tt L1, bkt L) + v B UB(bk+1)]

B+ L k+L

=P (Biyr) sup p (Oktr—1, Thtn—1, bkt 1)
k+L

V7 (bysr—1) = By [P (Dbt L—15 Thr 11, bt )] + VZ;]? [‘_/W(bk—&-L)}
+L

=&y 1 [P bk =1, ot -1, b )]

VT (bkyr—1) = E [0 Or+ -1 Thir—1, L) + 7 E [V (b )]

Zpiplbgyr—1,m k+L

= E [p (k-1 ThyL—1,bk4L)] -
Zyip|beyr—1,m

Put together we find that the inequality holds as it is a direct consequence of Theo-

rem 4.1 for E [P (bktr—1, Tk —1,bk+1)]-
Zyyrlbryr—1,7

induction step: Let us assume that V7™ (by11) — V™ (byg1) < UB(bey1) then

V(b)) =V (by)

= E [p(be, 7, b41)] — EByy [ (bt; T, bey1)]

Ziyq
+fy(215 V] - B V(b))
<P (B5,,) lsggp p (b, ¢, big1)

t41
+53t+1 [p (bta T, bt+1)] - gBt+1 [p (bt, T, bt+1)]
+y E [Vw(bt+1) — Vﬂ—(bprl)]

VAR

SP(B§+1)Egpp(bt,7rt7bt+1)+7 E [UB(bt11)] u

A
1 t+1

For a specific planning scenario, assuming that the desired bounds are now available,
we refer to previous works [SI22b; BI22] to explore the applications of planning with

bounds.
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5.2 Conditional Entropy Bounds

We will be looking exclusively at two subsequent planning steps, thus we will drop the
use of time indices, using 0 = Oy and ' = Ogyq. In the case where our reward is

entropy, we can expand the conditional entropy as follows via Bayes rule
IZE[H(X|Z)]EH(X|Z)=’H(X)+’H(Z|X)—’H(Z). (5.9)

To demonstrate the functionality of these approaches we look to realize the bounds
with information theoretical rewards. We look to Corollary 5.1.5 as our value function
bounds, which requires bounds on the expected reward. For the choice of entropy
(H (X)) as the reward, our expected reward becomes conditional entropy (H (X | Z)).
We prove novel bounds on the conditional entropy with respect to the observation space
that utilize Theorem 4.1.

Theorem 5.1. The conditional entropy of the r.v. X given the r.v. Z can be bounded
by the difference of the partial expectation with respect to Z. Thus LB < H (X | Z) —
Hz (X | Z) <UB, where:

LB = —P (B (1og sup My - logmHZH(Bc)) - UBB(IZE llog cpq]) : (5.10a)
UB =-P(B° (log zlngs myz — log MHZH(BC)) , (5.10b)
Hz (X | Z) £ H(X) + log||P (X))
g5| B (loxP(Z | X)]+log]P (2 | X)[ " 1)
Bl xp(x|2) 08 08 P '
The definition of UBp (IZE [log Cpq]) can be seen in the proof.
2 inf |P(Z | X))V M 2 sup|P (7 | X)|| V)
myz(B) = mE|IP(Z] X)), 1z (B) ZléIéH Z 10,
mzéi?(fP(Z\X), Mz =supP (Z | X) .
X
Proof We begin by applying Bayes theorem to H (X | Z)

IE[H(X]Z)]E’H(X]Z):H(X)—FH(Z\X)—H(Z). (5.11)

The term H (X)) is independent of Z and so remains unchanged. The next two terms
we bound via Proposition A.1.1 and Proposition A.1.2 from Appendix A which are

subsequently shown and proven. Collecting the bounds on all the terms results directly
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in the bounds mentioned in the theorem.

logp loggq
L[BB <I§ [logC’pq]> =T T, Ep [logmyz] —logmx

+&x [log (mXMg(_1 + mZMg_l)}

p—1
+P (B°) log (mXMg(l + Zlglfa’ my < sup MZ> )
© ZeBe

—P (B°) log inf
(B%)log inf mz
where Mx £ sup P (X) and my = inf P (X). |

We use ||-]] ](DS ) to represent the p™-norm with respect to the integration variable 5. We

mention that mz(B) > %n% myz and M)z (B) < sup Mz and can be used to loosen
€ ZeB

the bounds if needed.

To the best of our knowledge the conditional entropy bounds introduced above
are novel. Similar works that provide simplification with guarantees for information
theoretical rewards are [SI22b; BI22; YI24]. We leave comparative studies to these
works for future research.

Subsequent to Bayesian factorization of the conditional entropy (H(X | Z) =
H(X)+H(Z|X)—H(Z)) in Theorem 5.1, H (X ) assumes that the actions are
independent of the observations. In the non-myopic case this implies an open-loop
setting, as would be necessitated in the context of Corollary 5.1.3. As Corollary 5.1.5
is myopic in the partial expectation, its application in Theorem 5.1 still allows for

closed-loop planning.

5.3 Entropy Estimator

A common estimator of the entropy is the Boers estimator [BDBM10]. We will look into
bounding this estimator with respect to reducing the state space. The Boers estimator

is given by:

N N N
H(X') = log (Z w'P (7' X”)) ~ Y wllog [P (2] X)) Y wiP (X" | X7)
i=1 i=1 j=1
(5.12)
Where { X% w'}Y | are samples from belief b and are self normalized.
In order to bound the estimator we begin by expressing it in terms of expectations,

allowing for the straight forwards application of our bounds.
7(X) =1og £ [P (2| X')] - B loxP (2| X))~ B s 3P (X' | X)) (5.18)
We can now apply the bounds from Theorem 4.1.
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Lemma 5.3.1. LB < H (X') — H (X') <UB, where:

H(X
LB = log (Zw | X") <I—Zw> nlr-sl-le] (Z'|X’j)>
- (1 - Zw”) log sup P (Z'|X")
i— [

jE[n+1,N]
—Zw”log (Zw]P (X" | X7) + (I—Zuﬂ) sup P(X’i|Xj))
j€E€[n+1,N]
—(1—Zw'i> log( sup ZwJP X" X7) + (1—211)]) sup P(X'i|Xj)>
i1 1€[n+1, N 1,j€[n+1,N]
(5.14a)
UB = log (Z w'P (Z'| X") + <1 - Zw) sup P (Z'] X’j)>
i=1 i=1 je[’ﬂ+1,N]
1- 1 f P(Z'| X"
( Zw > og 1n . (2] X7)
n n
_ _ 12 : Vi 7 j _ Vi : 17 7
(1 ;w >log ie[éﬁ,N];w Pt 1x0) ! Zw z’,je[lrgfLN]P (X" 1X7)
(5.14b)
n
H(X') & =) w'logP (2| X") (5.14c)

i=1
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H(X') =1ogE[P (2| X')] —;123, logP (2" | X')]
R ) (5.15)
- B [log 2 [P (x'| X)]]
<log (&5 [P (2/| X')] + B (59 suwpP (2| X))
—&p [logP (7' | X')] — P (B°) inflog P (2" | X') (5.16)
- ;r; [log (ég [P (X' | X)] +P(B) inf P (X | X))]
<log (&8 [P (2/| X')] + B (B9 supP (2| X))

&g [logP (2" | X')] — P (B) inflog P (2" | X')
X A R (5.17)
. [log (83 [P (X | X)] + B (5 ipf P (X | X)ﬂ

~P(B) inf log (éB [P (X' | X)] +P (B inf P (X" | X))
<log (&5 [P (2/| X')] + B (59suwpP (2| X))

—Ep [logP (Z' | X')] — P (B) log inf P (2" | X')
) ) A (5.18)
. {mg (53 [P (X | X)) + B (B inf P (X' X)ﬂ =

—P (B) log (ié}(fé[g [P (X']| X)] + P (B nf P (X' X))

The computational complexity of the bounds, assuming that the supremum and
infimum are O(1), is now O(n?) as seen in the definition of H (X’) from the double
summation, in contrast to the previous complexity of O(N?), assuming that |Bj1| =
|Br] = n. In [SI22b] bounds on the Boer’s estimator are also derived, but with a
complexity of O(nN). Let us further simplify Lemma 5.3.1 by utilizing the global

extrema, thus
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Proposition 5.3.2. LB < H (X') — H (X') <UB, where:
(e o))
- Zw” log ( wP (X | X7) + (1 - iw) MX) (5.19a)
<1 _ g”;w
— log (Z w'P (Z’ | X”’) T (1 - zn:lw> MZ/>
_ zn: w'log (zn: wP (X X7) + (1 - zn: wi> mX) (5.19b)

1 i=1
(1
7

n

)& - Zw” logP (Z

NE

[y

log MX + log MZ’)

v?

S

M:

1

J:
w ) logmy + logmy)

& X”) (5.19¢)

and we define mx = inf P(X'| X), Mx = sup P(X' | X), mz = infP (Z | X), and
X, X’ X, X! X
My 2 supP (Z | X).
X
Proof

<log (&8 [P (2/| X')] + B (59 supP (2| X))

& [logP (2" | X')] — P (B) log inf P (2" | X')

. . ) (5.20)
& [mg (53 [P (X' X)) +B (59 inf P (X' | X)ﬂ
B (5) log (int &a [P (X' | X)) + (5% juf P ('] X))
<log (&s [P (2| X')] + P (B°) My)
—&p [logP (7| X )] P (B') logmz (5.21)
~Ep [log (&5 [P (X' | X)] + B (B°) mx )|

—P (B/c) log mx

= log (€s [P (2'| X")] + B (B°) M)
~&p [logP (2| X)) (5.22)
s [log (&5 [P (X' | X)] + B (5) my )| n

—P (B') (logmx + logmz)
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5.4 High-Dimensional Aspect

Figure 5.1: Each da node (triangle) is associated with a specific factor graph topology.
At this point the observations associated with the da realizations are still r. v.s. In the
example, by eliminating zz 41, the topology resulting from B p1 becomes identical to
that of 3,4

High-dimensional problems, such as SLAM, often exhibit structure that allows for
the belief to be represented via a factor graph. Planning algorithms that aim to address
the problem of high-dimensional planning can thus leverage the topology of the problem
as a cheap source of information. The comparison of topology between similar beliefs
is captured by the DA variable () as seen in Figure 5.1. We assume that realizations
of DA can be generated from the distribution P (5 | X) (e.g. a Bernoulli distribution

on the failure rate of a locator beacon).

5.4.1 Complete Factor Elimination

As illustrated in Figure 5.1, the beliefs of neighboring DA nodes share much of the
same topological aspects. More precisely, when || — 3|1 < |L| and the history! H~
is shared between the nodes (i.e., they share the same belief-action parent node), then
the belief topology is identical up to F(|3 — 3|), where we recall that f; € F(f) is an
observation factor as indicated by B%. Although in this work we limit our discussion
to a myopic comparison of DA, the concept can be extended to a non-myopic form.
In the SLAM scenario, 8 encodes the connectivity of pose to landmarks, with the
observations yet unspecified (as is symbolized by the square nodes in the factor graphs
of Figure 5.1). This similarity in the topology motivates the removal of selected DA
nodes, with guarantees in the form of bounds formulated as a function of the remaining

DA nodes. We examine Theorem 4.1 in its application to (3.3) to understand the

"When taking into account DA, Hj £ {ao0:k=1, 1.k, Z1:6 }
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potential method for eliminating specific realizations of DA.

E [ E [V”(b)]} —EBlE [V”(b)]] = > P(B)

B |z|s Z|8 P i [VT()] . (5.23)

E
Z\|p
where B C D.

Equation 5.23 is an equality as we have not yet bounded the expected value function.

The next step is to bound the conditional expectation.

5.4.2 Application to Conditional Entropy

For an application of eliminating realizations of DA, we look to conditional entropy as
our expected reward. Theorem 5.1 forms the basis of our bounds, but it does not take
into consideration different DAs. This brings us to our novel bound on the conditional
entropy that takes advantage of the problem topology in order to make high-dimensional

planning more tractable.

Corollary 5.4.1. LB(Byq) < H (X | Z,3) ~H (X | Z,8,8) <UB(B,B) VBB €
D, where:

LBE.B) =~ Y (logsupMy, —logmyy,) ~UB(ElogCpul) . (5:240)
fi€F (Byig)
UB(Byg) =~ ) (loginfmy —log Myy,) , (5.24b)
fie]:(ﬁdig)
_ =\ A X
H(X|2.6.5)2HX)+ E o) T] | (5.24c)
O

Blig = max(ﬁi — B,0), ' 2 B — Byg and UBg (Ig, [log Cpm]) is defined in the proof.

Proof From Proposition A.2.1, if we take the global extremes and completely eliminate
the observations we trivially arrive at the desired statement.

For this case:

1 1
ng <IZE llog Cpm]) _ _mlogp logq _ Z loginfmy, — ZEB’ [log mx]
p q fie}—(/Bdiff) |
—i—ZH'*:B/ log ( > (sup My,)P" Vinfmy, + Mg(_lmx)] ,
fi€F (Byig)
where
My £supP (z; | X) , mfiéiQfP(zi\X) ,
b's
My £sup [[ fiP(X), mx éi?(f I rP&x). [
X feFe) FEF(B)
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It should be noted that for the bounds to be meaningful, inf my, > 0. For example,
this is not the case when f; is the Gaussian distribution. Furthermore, this limits the
discussion of f; to finite support.

As an example let us assume 3 = {1 1 O}T and 8 = [O 1 I}T. For such a case

we find that S5 = {1 0 O]T and 3/ = [O 1 O}T. We note that " indicates as to
what associations are shared between 8 and 3. We provide the equivalent definitions
B = Bi A B¢ and Blig = Bi A =Bt When B = 3, B’ = 8 and when 3 < 8, By = 0
resulting in no computational benefit, as the computational benefit is proportional to
|Baiggll1- This highlights the trade-off between computational efficiency and tightness
of the bounds when selecting a 5 € B for the computation of Corollary 5.4.1.

To incorporate Corollary 5.4.1 into planning, the bounds must be applied in the
context of the value function. As shown, the bounds are myopic and bound the im-
mediate expected reward. Corollary 5.1.5 allows for bounding the value function with
respect to bounds on the immediate expected reward. In a similar fashion we can
bound the expected value function as shown in (5.23), where now different realizations
of DA are taken into consideration.

We are unaware of prior works that provide bounds on the value function while
considering different DA realizations, when the reward is the entropy of the state.
In [SI22a] the authors consider the Shannon entropy of the hypothesis probabilities.
In [Y124] the authors consider simplification of the observation space for the expected

differential entropy for a given DA.
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Chapter 6

Experiments

6.1 Low Dimensional Reward Bounds

6.1.1 Simulation Setup

Figure 6.1: The trajectory of the particle-filter over time. The action taken each time-
step is [1, 1].

We begin our empirical study in a low dimensional particle-filter scenario. The agent
is given to be in R, and we begin with a prior belief by ~ N (0, Io3). The agent is moved
along a predetermined trajectory for which it is given a transition model upon which
to perform predictions of the form 2’ = = + a +w, where w, ~ N, (0,1c2). The agent
also gathers noisy measurements along its path z = = + w,, where w, ~ N,._(0,Io?)
and the observation noise is time dependent. N, (0,Y) is a multivariate zero-mean
Gaussian distribution with covariance ¥ and truncated at radius r, allowing for an
infimum greater than zero, which is reasonable given noise filtering and outlier pruning
practices. The belief is maintained as a set of weighted particles {X*, w? ?il and we
use a particle-filter to update the belief each time-step. The reward is an estimator
of the entropy given by [BDBM10]. At the end of each update step particles with
zero weight were discarded (possible because of the truncated Gaussian), after reward
calculation resampling was performed. The trajectory of the particle-filter can be seen

in Figure 6.1. We evaluate our bounds Proposition 5.3.2 and compare them to those
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provided by [SI22b].

6.1.2 Results

504 Partial Expectation
—e— SITH

40 1

301

Speed-up

.\o\

01 02 03 04 05 06 07 08 09
Simplification factor

Figure 6.2: The relative speed-up of each bounding algorithm on the Boer’s estimator,
speed-up is relative to the Boer’s estimator time. Results are averaged over 10 runs
using a nominal set of 1000 belief particles.

In our comparison there are two primary aspects which we would like to investigate.
This first is the relative computational efficiency of each algorithm, and the second is
the bound tightness. Beginning with the computational efficiency, the Boer’s estimator
requires O(N?) computations. We define a = n/N to be the simplification factor, as
such the computational complexity of the SITH bounds are a,N? and the complexity of
our bounds are aIQJN 2 for 0 < o < 1. Thus for the same level of simplification, we expect
a quadratic speed-up, whereas the SITH bounds are limited to a linear speed-up. If we
look at Figure 6.2 we observe this exact behavior. Furthermore, as the SITH algorithm
also makes use of computations on the complementary set of particles is complexity has
some added linear complexity with respect to NV, this is often observed at large values of
« where there is not much simplification. For example, for az; = 0.8 and 0.9 the relative
speed-up is less than 1, meaning that calculating the bounds is more computationally
expensive. From Figure 6.3 ! it is apparent that as « shrinks both bounds become
looser, as is expected, but that the bounds of SITH loosen more than our bounds. In
all cases our lower bound outperforms that of SITH. With respect to the upper bound,
as we use less particles in the bound calculations, we note that our bounds begin to
outperform those of SITH. In these simulations we defined as = ag and use the same
n particles between bounds. The idea was to keep the speed-up constant between the
algorithms and compare for bound tightness. What we see though is that even though
the same particles are used, our bounds still outperform those of SITH with respect to

speed-up, almost by a factor of two at times, while supplying comparable bounds, if not

!The periodicity in the plots is a results of the periodic definition of the observation covariance in

the simulations.

38



—— Boers Estimator
Partial Expectation Lower Bound
—— Partial Expectation Upper Bound

Reward value

L b ok n w s
Reward value
Reward value

N——"_— SITH Lower Bound N N — N — \/\/\/

—— SITH Upper Bound 05
o

0.0

ol N N — N —
-05

10 15 5 10 20 0 10 2
Time Step Time Step Time Step

(a) ap = 0.3, relative speed-up of (b) ay, = 0.5, relative speed-up of (c) oy, = 0.7, relative speed-up of
11.0 + 2.7 for partial expectation 3.6 + 0.5 for partial expectation 1.9 + 0.2 for partial expectation
and 5.8 + 1.5 for SITH and 2.0 + 0.3 for SITH and 1.2 + 0.2 for SITH

Figure 6.3: Bounds on the Boer’s estimator for oy = o2, averaged over 10 runs using a

p,
nominal 1200 belief particles.

better. Finally we would like to note that for larger values of o, (we found this to be
about o, > r, +7,), the SITH upper bound would becomes superfluous, returning oo.
This is due to the upper bound of (b) in Theorem 3. of [SI22b] which is a summation of
the transition likelihood between a subset of prior particles and all propagated particles.
As we use a particle-filter, nothing ensures that a propagated particle will have a prior
particle with non-zero transition likelihood because of the truncated Gaussian. This
problem is avoided in our bounds as the summation is between a subset of prior particles

and the propagated subset itself.

6.2 High-Dimensional Planning

6.2.1 Simulation Setup

Figure 6.4: The agent path as dictated by the optimal actions, overlayed with the
actions selected by the maximum lower bound on the Q-function for x = 0.5. In this
case the maximum lower bound was in agreement with the optimal action, this is not
always the case. The beacon intensity denotes its probability of success. And the line
intensities are directly proportional to the covariance of the observation factor used as
an initial belief.
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As discussed in Subsection 5.4.1, Corollary 5.4.1 can be utilized alongside (5.23)
when formulated for expected reward. The following simulations demonstrate the im-
provement in runtime and the resulting bounds obtained upon utilizing the aforemen-
tioned inequalities.

We consider planning in the landmark-SLLAM scenario, a high-dimensional smooth-
ing problem where the state space expands over time to include current and past poses,
as well as landmarks in R?. The action space consists of unit circle motion primitives.
The transition model is given by 2’ = = + a + w, where w, ~ N, (0,102), and the
observation model is given by z = [ — x + w,, where w, ~ N,_(0,102). Observations
are relative position between poses and landmarks. Each landmark I° has probability
p; to succeed in sending an observation to the agent once the agent is within a radius
r of the landmark (i.e. P (8°|z,l*) = 1{||x —I’|| < r}p;). The reward is given to be
negative entropy as the task is information gain.

An initial belief over the agent pose and landmarks is instantiated via a prior on
the initial pose and observation factors to each landmark. Subsequently belief tree
is constructed using sparse sampling, where, in addition to action and observation
nodes, we introduce DA nodes (see Figure 5.1). High-dimensional inference is handled
incrementally using the slices approach from [SLKI24]. After constructing the tree in
a downward pass, rewards, expected reward bounds, and Q-functions are calculated
in an upward pass while maintaining Bellman optimality. In the case of bounds on
the Q-function, the maximum over the lower and upper bounds are passed up. We
define x as %, representing the proportion of DA nodes eliminated for the expected
reward bounds. When x = 1 no nodes are eliminated and the expected reward remains
unchanged; for k = 0 all § realizations are discarded, resulting in loose bounds on the
expected reward. Specifically, x splits D into two sets: 8 € B and 8 € BS as required
for Corollary 5.4.1. The reference DA, 3, is used to calculate bounds on H (X | Z, B),
the selection process of a reference DA is not addressed in this work, and we simply
select a reference DA such that g5 # 0. Joint state sampling via [SLKI24] allows
access to the estimated joint likelihood which was used to evaluate the reward. The
weighted samples represent our belief over the state for reward calculations, using the

same samples for both rewards and bounds.

6.2.2 Results

From Figure 6.5 we first note that for k = 0 the bounds are most loose, but offer a
significant speedup as shown if Table 6.1. In essence, these are the free bounds. For
k = 1 we find that the bounds converge to the optimal Q-function and no penalty is
suffered to the speedup. Finally for x = 0.5 and 0.7 we observe a speedup of x2.6 and
1.3 respectively. Although the bounds on the Q-function overlap in both cases, not
permitting optimal action selection, they do allow for action elimination. For k = 0.7

actions 2 and 3 can be eliminated, for k = 0.5 actions 2 and 4 can be eliminated. The Q-
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Figure 6.5: Comparison of the Q-functions alongside the bounds calculated on the Q-
functions for various values of k.

Table 6.1: A value of ¢ = 2 was selected for Corollary 5.4.1. 150 samples were used for
inference, 150 observations per action for sparse sampling, and 100 samples for reward
calculations.

k% | No. Eliminated Factors | Reward Runtime [s] | Bounds Runtime [s] | Speedup
1 0 876.5 £ 164.5 874.0 £164.5 1.0

0.7 88 + 45 991.1 £ 446.6 743.7 £283.4 1.3+0.1

0.5 189 £ 92 720.8 £43.0 295.0 £94.5 2.6+04
0 330 + 164 651.7 £123.5 16.3 £ 0.6 39.8+7.1

function bounds for a given « differ in looseness as the bounds are proportional to P (B°)
and so depend on the DA eliminated. As higher weighted DA nodes are discarded, the
bounds are proportionally weighted, the benefit being that often times DA nodes with
higher likelihood must be traversed more times for evaluating the reward. Finally, as
the number of DA nodes per action is limited in our simulation, often times we must
take 8. = 0, as for all other 3

ref —

Bgig = 0. Finally, due to the discrete nature of the

division of D, as |D| grows, the value of % approaches the pre-defined x.

ref

Zresults are averaged over three runs.
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Chapter 7

Discussion

In this paper, we address the challenges associated with planning under uncertainty
by introducing novel, tractable bounds on reward and value functions. We formulated
and proved novel bounds utilizing the concept of partial expectation and developed
probabilistic bounds that incorporate Hoeffding’s inequality. Providing conditions for
which they improve upon Hoeffding’s inequality. These novel bounds offer a compu-
tationally efficient alternative to optimal solution calculations, providing simplification
with guarantees.

We applied these bounds to various planning contexts, starting with bounding the
expected reward relative to the observation space, pertinent to both state and belief-
dependent rewards. Our approach extends to recursively bounding value functions
and addresses the complexities of information-theoretic rewards. In high-dimensional
state spaces, such as those found in active SLAM, we proposed methods for efficiently
reasoning about future observation realizations by leveraging the structure of belief
topologies. Finally we simulate planning in landmark-SLAM with bounds on the Q-
function. To the best of our knowledge planning with non-parametric beliefs with
landmark uncertainty has not been previously addressed, and more-so for the case of
belief dependent rewards.

Future research should focus on optimizing the selection of the subset B to achieve
the tightest bounds and address guided MCTS [SV10] with our bounds. Furthermore,
leveraging the properties mentioned in Section 4.3 for an adaptive algorithm shows
promise. We look forwards to possible uses of the probability theory bounds in other
fields.
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Appendix A

Appendix

A.1 Appendix of Section 5.2

Proposition A.1.1. The conditional entropy of the r.v. Z given the r.v. X and
assuming access to the likelihood distribution, can be bounded by the difference of the
partial expectation with respect to Z. Thus LB < H(Z | X) —Hz(Z | X) < UB,

where:

LB =—P (B log sup My, (A.la)
zZeBe
_ c :
uB=-P(B )Inglggc mz , (A.1b)
(2| X) 2 & [XE;:Z logP (Z | X)]| . (A1c)

Proof We begin by expressing the conditional entropy as follows
H(Z|X)= //P P(Z| X)logP (Z | X)dZdX
—//P (Z)P(X | Z)logP (Z | X)dXdZ

=—E| E [logP(Z|X
7 l x|z [logP(Z | )]] )
As a direct consequence of Theorem 4.1

H(Z|X)+&s| E [logP(Z|X)]| < —B(B) jnf E [logP (2] X))

ZeB X |Z

we can then loosen the bounds via
inf E [logP(Z|X)]>1 inf P(Z|X
Zlggcxw[og (Z] X)) z1log inf P(Z]X)

=log inf m [ |
gZEBC z
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Proposition A.1.2. The entropy of the r.v. Z, which is distributed like the normalizer
of the belief, can be bounded with a difference of a partial expectation, such that LB <
H(Z) - Hz (Z) <UB, where

LB =-P (BC) log M||Z|| (BC) s (A.2a)
UB = —P (B log my ) (B°) + UB (g llog opq]> , (A.2b)
Hz(Z) 2 &g [log|P (2 | X)) — logl|P (X)), (A.2c)

and

up <IZE [log cpq})

1 1
— 08P 08¢ Ep [logmyz] —logmx
p q
+Es [log (mxME " +mzME )] (A.3)

+P (B) log (mXMg(_l + Zingsc myz (nglf;c Mz)p_l)

—P(B) log Zingac my .

Proof Bounding the normalizer entropy (H (Z)) is more difficult, and requires two
bounding steps. In the first step we will use Holder’s inequality and its variants [Wan77]
to separate the observations from the belief. We can then subsequently apply bounds

of the form seen in Theorem 4.1.

For both upper and lower bounds we begin by bounding the normalizer:
P(Z) :/P(Z | X)P(X)dX

bounding above by
P (Z | X)ISV )P (05 (A4)

and bounding below by [Wan77]

Cod IP(Z | )| IP (X)IIFY (A5)
where I% + é =1, H-Hés) is the p'" norm with respect to S and
My 4 ML
Cpq £ le 1 -t
P /Pq /q
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with p,q > 1, limited by (A.5), and

My =supP (Z | X) , mzéi%fp(zm) ,
X

Mx 2 supP(X), myx=infP(X),
X X

under the assumption that the infimum of the functions are greater than zero.

In the following we will prove the upper bound, the lower bound is derived in a

similar manner but for Cp, = 1. Applying inequalities (A.11) and (4.8b) we find that

H(2) < Ellog Cy] ~ E [log (IP (2 | X571 (0)I5Y)]
= E[log Cy] — E [log||P (2 | X)[[§] — log|[P (20)]|§¥
< Ellog Cpq] — &5 [log|P (Z | X)|ISY] — log][P ()5

P (5°) juf log|[P(Z | X))

IN

I [log Cyy] — €5 |log|[P (2 | X)II] — logl|P (X))
—P (BC) (log m”Z“ (BC))

where

myz)(B) £ nf||P (2] X5,

M) z(B) £ sup||P (Z | X)|I59.
zZeB

Via the definition of C},q we can further refine the bounds

mx MLt
log <M§1+X X )]

logp loggq
E [1 = — — —1 E
Z[ongq] p . ong+Z

mz

] 1 . mxM%!
< - o8P _ 1084 —logmx + &p |log (Mg Ly XX)]
p q mz
mxME!
4P (B°) sup log <M§1 + XX)
ZeBe mz
1 1
< — %ep 08q logmx — Ep [logmz]
p q
q—1 p—1 o C .
+&x5 {10g (mXMX +mzM, )} P(B )logzlglgcmz [

+P (B°) log (mXM;]{l + Zing’;’c my (nggc Mz)pﬂ)
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A.2 Appendix to Section 5.4

Proposition A.2.1. The conditional entropy of the r.v. X given the r.v. Z = z'"
can be bounded by the difference of the partial expectation with respect to z'™ for
m <n. Thus LBy <H(X | Z) —Hpm (X | Z) <UB,,, where:

LB, =— Z]P’(Bf) <10g sup M, — logm|zi|(85)> — z?’ff <IZE [log Cpm]) , (A.6a)
i=1

zteBs

UBy =—> P(B) <log Jnf m.i —log M|zi|(B;)) : (A.6b)
i=1 i

. ()

I P Ix)P(X)

j=m-+1

Hn (X | Z)2H(X)+ E |log

zm+tlin

q (A.6¢)
+Z€Bi [logHP (=" X)H;X)} — Ep, [XEzi [logP (2 | X)]] ,

i=1

and

Zlim

uB (IZE [log Cpm])

~ mlogp loggq
p q

i=1 =

. Ep; [log m;]
P (B;)

=1

moo B (A7)
+ zm]:gl:n [581 |: te EBm [log (Z Mfl 1mz7, + M—;I{ 1mx>‘| .. .‘|‘|

=1

+ (1 - ﬁ P (BJ) <— Em:log inf m,;
i=1

i=1

m -1
+ E [— logmx + log <Z (sup MZZ-)p infm,: + Mg(lmXﬂ)
i=1

zm+1:n

1Z] ,
Proof H(Z | X) = > H(z'| X) assuming conditional independence of the observa-
i=1

tions, as such we can bound H (Z | X) with a sum of bounds from Proposition A.1.1
given the conditional independence of observations. Bounds on the normalizer entropy
‘H (Z) are given by Proposition A.2.2. [

Note that m . (B) > i_nfB mi and M) ,i(B) < sup M. and can be used to loosen
2te ZZGB
the bounds if needed.
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Proposition A.2.2. LB,, < H(Z) — Hm (Z) <UB,, for Z = 2", where:
ZIP’ ) log my (BY) + UB @ [longm]> , (A.8b)
z m

o (2) 2 ", [t (=11 )7
=1

. ) (A.8¢)
- B g T P (/| X)P(X) ,
j=m+1 q
and
UB (2 llos Cym
" Ep. [l j
__mlogp loggq 10ng n B, [log m]
p : = Py

-l—zmIJ[*;lm[EBll -EB,, llog(Z L+ MY lmx>] H (A.9)

+ (1 - ﬁ P (BZ)> (— Zlog inf m

i=1

+ E {— logmx + log(fj (sup Mzz-)pil infm,: + Mg(_lmxﬂ>

m+1n
Z i=1

Proof For both bounds we begin by bounding the normalizer,
P(Z)= /P (2" | x) P (X)dx
:/HP(zHX)P(X)dX
i=1

above by .
p(z) <P (= ’\X)H H P (2| X)P(X) (A.10)
=1 j=m+1 q
and below by (see [Wan77])
m (X)
P(Z)chngl;[lHP( ’|X>H H+1P(zJ|X) (X) (A.11)
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where p = q"_L—ql and

s 2iz1 Ki(p) + Kmi1(q)

Cpm pm/pql/q ’
Mpifl Mq—l
K’L(p) £ Ziv Km-H(Q) £ X )
mx H my 1—[77’LZZ
k#i k
MziésupP(zi\X)7 mziéian(zi]X),
b'e X
n ) n .
Mx2sup [ P(2|X)P(X), mx2inf [[ P(<7]X)P(X),
X j=ma1 j=m+1

under the assumption that the infimum of the functions is greater than zero.

In the following we will prove the upper bound, the lower bound is derived in a
similar manner but for Cy,, = 1. Applying inequalities (A.11), and proposition (4.2.6)
we find that entropy of the normalizer is bounded above

(o +1-017)

H(Z) < E [logCpm] — E.

zhn i=1
) x) (A.12)
— E |log H P (27 | X)P(X)
= j=m+1
q
“ (X)
:EM%n;PMW”WDH
(X) (A.13)
) H P (27 | X)P(X)
zm+ n i .

S@%@w_i&m%wwmeN

PR | e
_;P(Bi)ﬁggibg(“”z 1,7) (A.14)
. (xX)
- E_ |log II P 1x)P(X)
j=m+1 q
< E NlogCpm] = > &5, [log (||P (' | X)|[}")]
i=1
. . () (A.15)
—ZP(BE)Iogm”ZﬁH(BE)—zm@lm logl| [[ P (/1 X)P(X)
i=1 j=m+1
q
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Via the definition of C),,, we can further refine the bound

—1 q—1
1 1 M my + MY mx
E [logC’pm]:—m ep 084, g log — S :n ad
2lin p q zln mx Hz:l mzi
< ~mlogp loggqg
D q

z

m p—1 q—1
i M, my + My mX]
zm+1ln

E &z .. I
* l BB [og my [[i2y mi

m moMP L+ MY m
=1 21 Ad X X
+(1-]|P(B) sup log —
< ’L:H:l ! Zl:mE(le"'XBm)c mx H?Ll mzi
< _mlogp B log q
p q

-T2 ) ( E,_[logmy] +
i=1 S

. Ep; [log my]
P (B;)

=1

+ I?r [581 [ e gBm [log (Z Mf;lmzz‘ + MgglmX>‘| .. ]]
zm n

i=1

+ <1 - ﬁ P (Bl)> ( i loginfm,:
i=1

i=1

+ E {— logmx + 10g( Y (sup Mzi)p_l infm,: + M;]{lmx)D

m—+1:n
# i=1
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NoMN Sy M0 MNDIN DPNM NON NNONA DVTNN MINN IR DNY»H PN, TYNN2
TPOO5N TIVN IONPNS DY MDA NNY 1N TYD OO DX LTPANNN ANIND DN DINN
AN NTY INRD NPONNN 2ANIND DM PN NYMNI YIN'Y MYNHNI DPDONPI NNIN2
ANY DA NNV L (TPNNNIAPRD NNNND 21N NOMIN) NIMN PAIVINI D TPNRNN NN 990N
YTHNN DMINN NOMN DY OVTN M) ONDIN NN T DNIN NND AN MON 210N IYNRD NIOND
DXONPNN NN Q0N .NONDN TIYN NPIPND DY MDI1A) YIAID IWINNY NN N8N 2NINY DN
NIMVN NPWN MDY DY OIDN POY DXNDIN ,iPOIVIND NAY TIYWN NINY ,Ma DY TIywnd

TP MTays ona

nYYa NN .MAN NOY3 NINNX DY Nya Nay BSP/POMDP i5na opoiy X )00 INND
TN ¥ NON ©asna SLAM D 007010 M2) 280 2NN NPYaAD DPIPOIND NNON NN 1N
TN NPNNNVY DINND VI DI TUND ,MNY NPTNY YN NPSNNON WIDMNI IWNNND
,7252 DVINNN PONA TPRNNT DIVANNDN TIYN NPXPNS DY DWTN MYI2) DN DR NV

JHN9 MY N TN

DD N NTIAY OV NPOIN MMINN ,DIDOD

JPPONN NOMINN AVIND VY TN, NoMNN Sy DWTN M2a) NN MDD e

NN DY ,PPON NOMIN YV DOTVIND NPONMNNN NOMNN P2 DVTH MDA DN MDY e
APTNN YPNVY-N DY MW

.DDMIN VIYVH MYNHIND TIVN IPIPNS DY DVWTN M2 MDY e
JPIMNN POIVIND DY DVTH M2 MO e
DA9WVN NP2 MY OY ;733 DV POIVIND DY DWTH M2 MDD e

P2 D2IVND N VIV AWaNnNY 12T ,mMa7 POMDP nvyaa nmmN Sv n13ann 91%0) e
DT NPYNNIMV DY OOIMNIN
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TPMORINN NYIAN NNP 292 >Mynwn DN 380 Markov Decision Process (POMDP)
TPIVAN TUN 02103 MDDPVAIN NN NNONN NN T PNIDND MDD 7PYAN .NPPYIIN NOTIM
NPVLITIODN MNINN IYNRD TAVPHI MDNNND MONN DN NPY INVI MVP NPYIN MY PI

Dm»pnn N (belief space) NamxN anm Sy

NM2XN Ma5MN Sva Na9 25 nmwn> POMDPs may ynonn n»ya now ,nnInxn nopna
MYIN .NNTPNN NPV DPMINVIN D227 PO PTPHRD DY 1OV 022N DIV NV
IN TPONNN ,AN0N 22NN DY DI»aNND ONNN2 NINYH POMDP nvyad y19ns nxosnd mnvin
NNONAY T2 PV 1DINN MNRD .DMIVN DY 21DV IR, D297, DT NPND DY ,NIYan
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NP 91T OONONINADPR JOINDY ,DOTHN DI AND PANINI DY DINY 22N MIPD Y 12T

D770 M2 A8 *aNINA

MIMD PN TN, MY?ON 1IN ANDRD 2NN DY MOPHN MNIN MYNNNI DN NPYI LYY NP
DPADNN D2ANPH MNIND MPSNN NPIIN MY TN NI0Y )00 .NON J9IND PYIN NN
MN2) N AWYH DTN 2MAY 2NN XANINI MY )OND MIVIND WX NPINND MY
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NTOIND TPVNNNN NONMNN P2 OPMIANDN M NN IPTNN JPNY-IR Ty [, NoMNN

0T DY ©oDIann NoMnn

nINa oy 0»2wn MmN YA POMDPs »anana 5y yon » 0)yiv X 1t NTaya
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