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Abstract

Intelligent autonomous agents and robots are increasingly utilized across various fields,
influencing numerous aspects of our daily lives. Employed in various applications such
as autonomous navigation, robotic surgery and automated warehousing, these agents
are expected to operate reliably and efficiently under different sources of uncertainty,
often with limited knowledge about the environment. There are numerous possible
sources for such uncertainty, including dynamic environments in which unpredictable
events might occur; noisy or limited observations stemming from physical constraints;
and ambiguous measurements, wherein a particular observation could have multiple
plausible interpretations. To handle these real-world scenarios, autonomous agents
are required to reason over high-dimensional probabilistic states that account for the
associated uncertainty. Specifically, such agents should possess the capability to engage
in both inference, i.e. maintain a posterior probability distribution over the high-
dimensional state given available information, and decision making under uncertainty
where they should autonomously determine their next best actions. However, solving
both these problems is computationally expensive and practically infeasible in real-
world autonomous systems, where the agent is required to operate in real time, often
using inexpensive hardware with limited resources. In this work we address these two
problems and develop different approaches to reduce the computational complexity
towards real time operation by leveraging different structures found in the underlying
representations of these problems. In decision making under uncertainty, we propose
solving simplified problems that are computationally much easier to compute, while
providing performance guarantees. These guarantees involve either ensuring the same
optimal solution as in the original problem or providing information regarding the loss in
solution quality. Furthermore, we demonstrate how our simplified solutions are tailored
and adjusted to real-world scenarios, where the autonomous agent has limited resources
and must operate under strict computational budget constraints. To that end, we
utilize both topological structures, associated with underlying graph representations of
the problem, and specific structures modeled in posterior probability distributions when
considering ambiguous measurements. In inference, we extract slices from structures
that represent high-dimensional posterior probability distributions. These slices are
utilized to efficiently approximate posterior distributions of any shape, facilitating real
time operation in real-world scenarios where posteriors distributions are nonparametric.
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Notation and Abbreviations

A Incidence matrix
Hk History at time step k
Lw The reduced weighted Laplacian matrix
X⋆
k The MAP estimate of Xk

Xk The robot’s state vector at time step k
XF
k focused subset of states

XU
k unfocused subset of states

Z1:k All observations taken up to and including time step k
Λk The information matrix of the ML estimation at time step k
βk Data association realization vector at time step k
L̂w The reduced weighted normalized Laplacian matrix
H Entropy
LB Lower bound
UB Upper bound
Uk Set of candidate actions at time step k
cl Cost function at the lth look-ahead step
uk The action taken at time step k
u0:k−1 All actions taken up to time step k
xl A landmark pose
xk The robot’s state at time step k
M Measurement Jacobian matrix
Σ Noise covariance matrix
C Budget constraint
E A set of graph edges
G .= (V, E , w) Weighted topological graph. Edges E are weighted according

to w
V A set of graph nodes
τw (G) The Weighted Tree Connectivity (WTC) for a graph G
θk The robot’s orientation at time step k
b [Xk] The robot’s belief at time step k given all actions and obser-

vations. Shortly written as bk
bsk A simplified belief at time step k

3



pk The robot’s position at time step k
tw (G) Weighted number of spanning tree for a graph G
FG A factor graph representing a belief
BA Bundle Adjustment
BSP Belief Space Planning
BT Bayes Tree
DA Data Association
EKF Extended Kalman Filter
EM Expectation Maximization
FIM Fisher Information Matrix
KDE Kernel Density Estimation
MCTS Monte Carlo Tree Search
ML Maximum Likelihood
MMD Maximum Mean Discrepancy
pdf probability density function
POMDP Partially Observable Markov Decision Process
PRM Probabilistic Road Map
RMSE Root Mean Square Error
SfM Structure from Motion
SLAM Simultaneous Localization and Mapping
VND Von Neumann Difference
WTCD Weighted Tree Connectivity Difference
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Chapter 1

Introduction

1.1 Motivation

As autonomous agents and robots take on ever more crucial roles, there is a growing
demand to improve processes and integrate these agents further into our everyday rou-
tines. However, alongside this demand, there is a necessity for these agents to operate
both reliably and efficiently. Unlike in closed, simulated environments, real-world sce-
narios inherently entail non-determinism, demanding the capability to navigate diverse
sources of uncertainty and operate with limited knowledge about the environment. Such
sources of uncertainty include dynamic environments prone to unpredictable events;
limitations imposed by noisy or restricted observations due to physical constraints of
various sensors; and ambiguous measurements, wherein a particular observation could
have multiple plausible interpretations.

To handle these real-world scenarios, autonomous agents are required to reason
over high-dimensional probabilistic states, also known as beliefs, that account for the
associated uncertainty. Specifically, they should be able to perform two tasks, inference
and decision making under uncertainty. In the process of inference, the agent maintains
and propagates the uncertainty-aware, often high-dimensional state representation over
time. In decision making under uncertainty the agent is expected to autonomously
determine the future course of action based on the state estimate or uncertainty-aware
representation, aiming to accomplish a specific objective. For a decision to be reliable
and safely executable, the agent must anticipate the propagation of uncertainty into
the future, considering various candidate actions or policies alongside possible future
observations and environmental conditions. In high-dimensional state spaces, tackling
these challenges poses significant computational demands.

Another layer of complexity is added when considering the challenge of ambiguous
measurements. Such ambiguities arise when a particular observation has multiple pos-
sible interpretations. Some examples include the slip/grip behavior of odometry mea-
surements; the loop closure problem in visual Simultaneous Localization and Mapping
(SLAM); and unresolved Data Association (DA). The latter is defined as the process of
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associating uncertain measurements to known tracks, e.g. determine if an observation
corresponds to a specific landmark within a given map. Most existing inference and
decision making algorithms assume DA to be given and perfect, i.e. assume a single
hypothesis represented by a uni-modal state and map estimates. Yet, in perceptually
aliased environments, this assumption is not reasonable and could lead to catastrophic
results. Therefore, it is crucial to reason about DA, in both inference and decision mak-
ing, while also considering other sources of uncertainty. However, explicitly reasoning
about DA, the number of hypotheses grows exponentially with time, thereby further
increasing computational complexity.

As if these computational challenges were not already hard enough, in real-world
autonomous systems, the agent must also operate in real-time, often using inexpen-
sive hardware with limited resources. In such settings, the agent is required to adhere
to strict computational constraints. These may involve bounding the number of sup-
ported hypotheses and/or restricting computation time. State-of-the-art approaches
therefore use different heuristics, e.g. pruning and merging, to relax the computational
complexity. Yet, this loss of information incurs loss in solution quality and there are
usually no performance guarantees. Moreover, inference and decision making are com-
monly treated separately and it is unclear how budget constraints in one process affect
another.

1.2 Inference and Belief Space Planning

As previously discussed, inference and decision making are essential tasks that every
autonomous agent must be capable of performing in real-world scenarios. We will
briefly outline these tasks and explain their inter-dependencies.

In real-world scenarios, autonomous agents and robots gather information by ac-
quiring measurements from various sensors. These measurements typically come with
probabilistic constraints, forming a probability density function (pdf), the belief, over
high-dimensional state spaces. The primary goal of inference is to find the maximum-
a-posteriori (MAP) single point state estimate. For autonomous agents and robots,
this state usually refers to the agent’s trajectory and/or the environment. In sequential
probabilistic inference, new measurements are collected at each time step, and the be-
lief is propagated over time. This process is also known as Bayesian inference, as it uses
Bayes’ rule to update the belief. Sequential belief-based inference methods are com-
monly divided into filtering and smoothing. In filtering, the belief is maintained only
over the present state by marginalizing (integrating out) all past states. In smoothing,
the belief is maintained over the entire high-dimensional state, including past poses.

While filter-based approaches, such as the Extended Kalman Filter (EKF) (McEl-
hoe, 1966; Smith et al., 1962), the Extended Information Filter (Thrun et al., 2004), and
particle filters (Sim et al., 2005), typically have lower computational demands due to
maintaining lower-dimensional beliefs, smoothing approaches (e.g.,Dellaert and Kaess,
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2006) are considered more accurate and robust. This is because smoothing maintains
a belief over the entire trajectory, enabling loop closures and updates to past state
estimates, re-linearization of past constraints with updated estimates for improved ac-
curacy, and leveraging the topological structures of the constraint graph. However,
with more constraints and possibly more variables added to the system at each time
step, propagating the belief over high-dimensional state spaces becomes increasingly
challenging due to the curse of dimensionality (Bellman et al., 1957). State-of-the-art
smoothing approaches (e.g., Ila et al., 2017; Kaess et al., 2012; Mur-Artal and Tardós,
2017) address this issue by using efficient incremental belief updates, rather than re-
computing everything from scratch.

Decision making under uncertainty is often modeled as a Partially Observable
Markov Decision Process (POMDP) (Kaelbling et al., 1998) due to the consideration
of stochastic actions and observations. The goal is to find the optimal action or policy
from a set of candidates with respect to a specific task-related objective function. To
achieve this, the belief is propagated through multiple time steps into the future ac-
cording to different hypotheses for each candidate action. This process involves solving
multiple state inference sessions and predicting the future belief development for each
candidate, essentially performing a forward search in the belief space. This is why the
problem is referred to as Belief Space Planning (BSP) (Bonet and Geffner, 2000).

In online autonomy for partially observable settings, the common approach includes
a Plan-Act-Sense-Infer cycle at each time step, establishing a direct dependence between
inference and BSP. Planning into the future relies on solving multiple inference prob-
lems, demonstrating BSP’s reliance on inference. Conversely, each inference problem
within planning is based on a different hypothesis of the future. Additionally, each ac-
tion decided by the planner leads to a different state, influencing future state inference
in various ways. When an autonomous agent has limited resources and some informa-
tion must be discarded, these inter-dependencies can have different effects, which we
study here for the first time.

1.3 Contributions

This work primarily aims to enable computationally efficient inference and BSP for real-
time operations in real-world scenarios by leveraging various structures found in the
underlying representations of these problems. These structures can include graphical
models that represent dependencies and relationships between different variables, and
specific structures modeled in posterior probability distributions. By identifying and
exploiting these structures, we can simplify complex problems and make them more
tractable for real-time computation.

In BSP, we address computational budget constraints by solving simplified prob-
lems that are computationally much easier to handle. By focusing on these tractable
problems, we aim to balance the need for real-time performance with the practical
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limitations of computational resources. Furthermore, we mitigate the reduction in so-
lution quality by offering robust performance guarantees. These guarantees involve
either ensuring the same optimal solution as would be achieved in the original, more
complex problem or providing detailed information regarding any potential loss in so-
lution quality. To achieve this, we utilize both the topological structures associated
with the underlying graph representations of the problem and the specific structures
modeled in posterior probability distributions when dealing with ambiguous measure-
ments. For the first time, we also rigorously analyze the impact of hard computational
budget constraints in both planning and inference, shedding light on their implications
for real-world applications.

In the context of inference, we focus on efficiently managing high-dimensional poste-
rior probability distributions by extracting slices from these complex structures. These
slices are then utilized to approximate posterior distributions of any shape accurately.
This approach is particularly beneficial for facilitating real-time operation in real-world
scenarios where posterior distributions are often nonparametric and can exhibit sig-
nificant complexity. By approximating these distributions effectively, we ensure that
the inference process remains computationally feasible even under the constraints of
limited hardware resources.

Moreover, our approach emphasizes the practical applicability of these methods in
real-world autonomous systems. By focusing on leveraging inherent problem structures
and providing performance guarantees, we ensure that our methods are not only the-
oretically sound but also practically viable. This dual focus on theory and practice
allows us to develop solutions that are both efficient and reliable, capable of operating
within the strict constraints imposed by real-time applications and limited computa-
tional budgets. Ultimately, this work contributes to the advancement of autonomous
systems by providing robust tools for efficient inference and planning, enabling these
systems to perform effectively in complex, dynamic environments.

1.4 Thesis Structure

The structure of the thesis is as follows: Chapter 2 provides a thorough literature survey,
setting the foundation by reviewing the state-of-the-art methods and highlighting the
key challenges and gaps in current research.

In Chapter 3, we delve into the utilization of topological structures derived from
factor graphs associated with posterior beliefs. We demonstrate how these topologi-
cal signatures can be leveraged to approximate a focused objective function in BSP
problems. This chapter introduces and details the concepts of our Weighted Tree
Connectivity Difference (WTCD) and the Von Neumann Difference (VND) signatures,
including proofs of asymptotic convergence for WTCD and computational advantages.

Chapter 4 presents our distilled DA-aware BSP approach, which capitalizes on
specific structures modeled within posterior probability distributions. This chapter ad-
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dresses the critical challenge of operating under hard computational budget constraints,
where some information must be discarded. We showcase how our approach can main-
tain performance guarantees in such scenarios and provide an analysis of the impact of
these constraints on both inference and planning processes.

In Chapter 5, we tackle nonparametric inference, accommodating posterior distri-
butions of arbitrary shapes. We introduce our novel slices approach, which efficiently
manages high-dimensional posterior probability distributions by extracting informative
slices from these complex structures. This method offers a robust alternative to tradi-
tional iterative procedures, enhancing computational efficiency without compromising
accuracy.

Finally, Chapter 6 concludes the thesis by summarizing our contributions, main
findings, and the implications of our work. We further discuss interesting directions for
future research, paving the way for further exploration and innovation in the domain
of autonomous systems and BSP.
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Chapter 2

Literature Survey

In an attempt to ensure reliable and efficient operation of autonomous systems, nu-
merous studies have explored various structural properties for both inference and belief
space planning. In this chapter, we aim to provide a comprehensive review of these
works, focusing on the innovative approaches proposed to address the inherent compu-
tational complexities. By examining the evolution of these techniques, we highlight how
different strategies have been employed to reduce dimensionality and offer performance
guarantees, thereby facilitating more practical solutions for real-world applications.

2.1 Topological Structures and the Focused Case

Various topological aspects are utilized for inference and BSP. One aspect is the problem
of topological mapping, which seeks to determine the graph structure of an environment
from a sequence of measurements (Ranganathan and Dellaert, 2011). These topological
maps of environments have been used for localization (e.g., in Angeli et al., 2009; Choset
and Nagatani, 2001; Paul and Newman, 2010). Another aspect involves the topology of
the configuration space, used to generate and classify candidate paths in robot motion
planning (e.g., Bhattacharya et al., 2015; Kim et al., 2013). In our work, however,
topology refers to the structure of the belief, which encodes dependency relationships
among states and is derived from an associated probabilistic graphical model.

State-of-the-art approaches (e.g., Kaess et al., 2010; Kaess et al., 2012) utilize effi-
cient probabilistic graph representations for inference. However, only recently, several
works suggested utilizing topological structures associated with such graph represen-
tations to approximate the solution of the underlying estimation problems in order to
reduce the computational complexity. Olson and Kaess (2009) described performance
evaluation metrics for map optimization. They empirically observed that the impact of
overfitting in pose graph optimization problems can be predicted using only the aver-
age node degree, a topological characteristic. Carlone (2013) calculated a conservative
estimate of the basin of attraction for the Maximum Likelihood (ML) estimation in
pose graph optimization via Gauss-Newton. This estimate was found to be related
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to the smallest eigenvalue of the reduced Laplacian matrix, where the main diagonal
elements correspond to the node degrees of the corresponding graph. Khosoussi et al.
(2014) extended this line of work and empirically demonstrated that, specifically in
linear-Gaussian models with isotropic noise (e.g., SLAM with known orientation), the
Fisher information matrix is proportional to the reduced Laplacian matrix of the cor-
responding graph. This relationship enabled them to establish a connection between
the determinant of the reduced Laplacian matrix, a topological signature given by the
weighted number of spanning trees, and the determinant of the Fisher information
matrix, which is closely related to the volume of confidence ellipsoids in the estima-
tion problem. This connection was also extended to the case of non-isotropic noise
covariance matrices (Khosoussi et al., 2015).

Several recent works have leveraged topological signatures for active pose graph
SLAM and BSP. Chen et al. (2019) suggested using graph topologies, such as the
weighted number of spanning trees and the weighted node tree (T-optimality metric),
to reduce computational complexity in finding the best trajectory for loop-closures in
active 3D pose-graph SLAM. It was later found (Chen et al., 2021) that the T-optimality
metric is less computationally expensive than the D-optimality metric, though the D-
optimality metric performs better in terms of uncertainty evaluation. Additionally,
they proposed using a tight lower bound, representing the sum of the weighted number
of spanning trees of two graphs, to replace the original objective function. Kitanov and
Indelman (2018) introduced Topological Belief Space Planning (T-BSP) to address
the computational complexity of BSP in high-dimensional state spaces, such as multi-
robot active 2D SLAM. They demonstrated that topological properties, such as the
normalized number of spanning trees and the Von Neumann graph entropy signatures
(Mowshowitz and Dehmer, 2012; Passerini and Severini, 2009), of the underlying factor
graph (Kschischang et al., 2001) representations of future posterior beliefs, are highly
correlated with the information-theoretic cost. Additionally, they proposed using an
approximation of the Von Neumann entropy (Han et al., 2012) to guide the search for
an optimal BSP solution by sub-sampling the topological space as an anytime algorithm
that eventually converges to the optimal solution. Their empirical results show that
when a strong correlation exists between the objective and the topological metric, this
convergence is significantly faster than existing state-of-the-art approaches. Kitanov
and Indelman (2024) also derived error bounds for T-BSP that depend on topological
parameters, measurement noise, and prior state estimates, which can be calculated with
minimal additional computational cost. However, while all of these works leveraged
topological aspects, none addressed the specific case where the objective is a function
of only a predefined subset of variables.

Unlike the unfocused case, where the objective is a function of all variables, the
focused case for both inference and BSP has been much less studied. Levine and How
(2013) addressed a focused active inference problem of selecting a subset of observable
random variables that are maximally informative with respect to a specified subset of
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latent random variables. Specifically, they demonstrated that non-local Mutual Infor-
mation (MI) can be decomposed into local information measures, i.e., between unfo-
cused and focused variables, which can be computed efficiently using message-passing
algorithms. Mu et al. (2017) proposed a two-stage approach to a focused inference
problem. They calculated the posterior covariance matrix for each measurement to ob-
tain the marginal over a focused set of variables in resource-constrained systems, where
some data will eventually need to be discarded. The rAMDL approach (Kopitkov and
Indelman, 2017; Kopitkov and Indelman, 2019) efficiently evaluated the information-
theoretic cost in BSP for each candidate action in both focused and unfocused cases.
This approach avoided the computationally expensive Schur complement operation for
each candidate action by performing a one-time calculation of the marginal covariance
associated with the variables involved in the candidate actions. While these works lever-
age various graphical model representations to reduce computational complexity in the
focused case, none of them integrate topological aspects into inference nor planning.
Moreover, a key advantage of a topological BSP approach is its ability to avoid belief
propagation and marginal recovery during planning, potentially finding the optimal
solution under certain conditions and tight bounds.

To the best of our knowledge, our work is the first to incorporate topological aspects
specifically for the active focused case.

2.2 Robust Perception and Planning

Recent proposals aim to ensure reliable and efficient operation in ambiguous environ-
ments through various approaches. These strategies, commonly known as robust per-
ception, typically involve maintaining probabilistic DA and tracking hypotheses based
on available data.

An effective inference mechanism should be able to withstand false DA overlooked
by front-end algorithms such as laser scans and image matching. However, explic-
itly considering DA leads to a growing number of hypotheses over time, making it
challenging to maintain computational efficiency. To mitigate these issues, leveraging
hypotheses’ weights from previous steps to enhance current-time hypotheses pruning
was proposed (Shelly and Indelman, 2022) to reduce computational complexity. Con-
vex relaxation approaches over graphs have been proposed (e.g, Carlone et al., 2014a;
Lajoie et al., 2019) to handle perceptual aliasing, identifying the maximal subset of
internally coherent measurements (i.e., correct DA) and discarding false ones. The
max-mixture model (Olson and Agarwal, 2013 presented) was developed to allow fast
ML inference on factor graphs containing complex probability distributions, such as
the slip/grip multi-modal problem. An Expectation Maximization (EM) approach (In-
delman et al., 2014; Indelman et al., 2016) with factor graphs was used to efficiently
infer initial relative poses and solve multi-robot DA problems. Sunderhauf and Protzel
(2012) modified parts of the graph’s topological structure during optimization to dis-
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card false positive loop closures. The Bayes Tree (BT) algorithm (Kaess et al., 2012)
was extended (e.g., Hsiao and Kaess, 2019; Jiang et al., 2021) to explicitly incorporate
multi-modal measurements within the graph and generate multi-hypothesis outputs.

Considering ambiguous DA in planning for active disambiguation is even more chal-
lenging as the number of hypotheses can grow exponentially with the planning horizon.
Consequently, finding the optimal action quickly becomes intractable. Some notable
related works with reduced complexity (Atanasov et al., 2014; Lauri et al., 2015; Patten
et al., 2016; Wong et al., 2015) are in the context of object detection and classification.
Given hypotheses regarding object class and pose, these approaches aim to find a se-
quence of future viewpoints that will identify the correct hypothesis. However, these
approaches assume perfect localization of the agent, neglecting the agent’s pose in the
belief representation.

Considering the agent’s pose within the belief (Jensfelt and Kristensen, 2001) a
greedy heuristic-based planning strategy that utilized multi-hypothesis Kalman filter-
based pose tracking combined with a probabilistic formulation of hypothesis correctness
to resolve multi-modal hypotheses in a kidnapped robot scenario. Gasparri et al. (2007)
used a set of parallel EKFs for planning safe trajectories, selecting points near obstacles
to disambiguate the hypotheses. Yet, these approaches did not explicitly consider
the evolution of beliefs resulting from actions during the planning stage. In contrast,
(Agarwal et al., 2016) addressed belief evolution resulting from actions. They modeled
DA hypotheses within the prior belief as a mixture of Gaussians, assuming that certain
actions could lead to complete disambiguation. However, their approach does not
account for ambiguous DA within future beliefs resulting from future observations.

The DA-BSP framework (Pathak et al., 2018) was the first to incorporate reason-
ing about future data association hypotheses within BSP. The authors demonstrated
that a posterior belief could become a mixture of pdfs and designed cost functions
to measure the expected level of ambiguity and posterior uncertainty given candidate
actions. Additionally, a unique aspect of this approach is that the number of mixture
components can both increase and decrease, better reflecting reality and providing a
general framework capable of active disambiguation. Subsequently, the ARAS frame-
work (Hsiao et al., 2020) also addressed ambiguous DA within future beliefs, leveraging
the MH-iSAM2 graphical model (Hsiao and Kaess, 2019), which is an extension of BT
(Kaess et al., 2010), for multi-hypothesis inference. Yet, in this framework, the planning
algorithm operated on each ambiguity-free hypothesis individually.

Perhaps the most significant distinction between all of these approaches and our
work lies in how they manage the exponential growth in the number of hypotheses.
They often resort to heuristics like pruning and merging to cope with this growth, which
can degrade solution quality over time and consequently cannot guarantee performance.
In contrast, our approach develops analytical bounds on the degradation in solution
quality relative to the original problem, allowing us to provide performance guarantees.
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2.3 Simplification and Performance Guarantees in BSP

Finding the optimal solution to a POMDP problem is computationally intractable in
most real-world scenarios due to the curse of dimensionality and the curse of history
(see, e.g., Pineau et al., 2006). Even with simplifying assumptions such as discrete
states, actions, or observations, and finite planning horizons (Papadimitriou and Tsit-
siklis, 1987), computational complexity remains a significant challenge. Consequently,
the research community has extensively investigated solutions to enhance scalability for
real-world problems, which are generally categorized into offline and online approaches
(Ross et al., 2008).

Offline approaches involve solving the POMDP problem in its entirety before ex-
ecution, usually without time constraints. This means the solution is computed in
advance and used for decision-making throughout the execution phase. These methods
typically perform global policy optimization using dynamic programming algorithms,
such as value and policy iteration (e.g., Pineau et al., 2006; Porta et al., 2006). How-
ever, they are extremely computationally demanding, especially when considering high-
dimensional state spaces. In contrast, online approaches solve the POMDP problem
in real-time as new information becomes available. The solution is continuously up-
dated based on current observations and decisions, aiming to infer a specific sequence
of actions to be executed immediately.

Achieving online performance is challenging, especially when autonomous systems
use inexpensive hardware with limited resources and must adhere to strict computa-
tional constraints. Moreover, in continuous observation and state spaces often found
in real-world scenarios, integration is impractical, necessitating approximate analytical
solutions. Many prior works have focused on approximating solutions to the POMDP
problem. Some methods use direct trajectory optimization (e.g., Indelman et al., 2015a;
Van Den Berg et al., 2012). Other methods build on established motion planners (e.g.,
Karaman et al., 2011; Kavraki et al., 1996) by sub-sampling a finite graph in the belief
space to search for a solution (e.g., Agha-Mohammadi et al., 2014; Prentice and Roy,
2009). While these methods focus on generating or sampling candidate trajectories, a
complementary approach, and the focus of our work, is to efficiently compare objective
function values by approximating the objective function or reducing the cost of belief
propagation.

Belief sparsification is one approach to reducing the cost of belief propagation. Var-
ious sparsification methods have been used in inference (e.g., Dellaert and Kaess, 2006;
Huang et al., 2012; Hsiung et al., 2018; Thrun et al., 2004) to lower this cost. However,
Indelman (2016) was the first to introduce belief sparsification in planning to enable
long-term operation. The author used a diagonal covariance approximation in a my-
opic setting with one-row unary Jacobians to significantly reduce the complexity of
objective calculation. Inspired by this work, Elimelech and Indelman (2022) proposed
identifying uninvolved variables and sparsifying the posterior information matrix for

15



each candidate action to reduce computation time in BSP problems. Alternatively,
Davidson and Hutchinson (2009) suggested approximating the objective function us-
ing a bound on the maximum eigenvalue of the estimation error covariance matrix as
the cost function for BSP. Nevertheless, whenever an approximation is presented, the
question of optimality guarantees inevitably arises.

To provide performance guarantees when using any approximation, it is crucial first
to analytically bound the loss in solution quality for each candidate action between the
original problem and the simplified problem. When such bounds exist, the optimal
action in the original problem can be recovered if a set of bounds, representing the
error intervals in the simplified problem, does not overlap with any other interval asso-
ciated with other actions. This concept, termed action consistency (see Elimelech and
Indelman, 2017a; Elimelech and Indelman, 2017b; Elimelech and Indelman, 2017c),
builds on observations from Indelman (2015) and Indelman (2016). Several works have
applied this concept to maintain action consistency or bound the error loss. Exam-
ples include Elimelech and Indelman (2022), who approximated belief representations
through sparsification; Sztyglic and Indelman (2022), who used bounds as a function
of simplified beliefs to reduce computational complexity in non-myopic BSP problems
with general belief distributions; and Zhitnikov et al. (2024), who incorporated this
concept within a Monte Carlo Tree Search (MCTS) planning framework. In our work,
we also leverage similar concepts to provide performance guarantees and incorporate
this concept for the first time in BSP problems while reasoning about DA.

2.4 Non-Parametric Inference

Research on inference algorithms, particularly for SLAM, has largely concentrated
on parametric solutions, typically involving the approximation of posterior distribu-
tions with parametric Gaussian models. A prominent example is iSAM2 (Kaess et al.,
2012), which introduced the BT graphical model. iSAM2 retrieves posterior distri-
butions through incremental upward and downward passes over the BT, akin to the
forward-backward algorithm. More recent parametric approaches aim to enhance ro-
bustness by addressing challenges such as unresolved DAs, multi-modal factors, and
outliers (e.g., Hsiao and Kaess, 2019; Huang et al., 2013; Indelman et al., 2014; Indel-
man et al., 2016; Olson and Agarwal, 2013; Sünderhauf and Protzel, 2012). However,
these methods still struggle with non-Gaussian posterior distributions.

Nonparametric inference methods, which use sampling techniques, are theoretically
capable of approximating any posterior distribution. Early methods in this area in-
clude Markov Chain Monte Carlo (MCMC) algorithms (Hastings, 1970) and particle
filters (Gordon et al., 1993). Briers et al. (2010) proposed an extension of the two-filter
smoothing formula (Bresler, 1986; Kitagawa, 1994), which traditionally combines the
outputs of two independent filters: the standard forward filter and the backward infor-
mation filter. They introduced a generalized version of this formula that incorporates
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Sequential Monte Carlo (SMC) (Doucet et al., 2001) techniques, enabling it to handle
state-space models where a closed-form solution is not available. NBP (Sudderth et al.,
2002) used concepts from regularized particle filters and belief propagation. This work
introduced an algorithm designed for general graphs. In each iteration, NBP employs an
efficient sampling procedure to update kernel-based approximations of the true contin-
uous likelihoods. As a result, NBP extends the capabilities of particle filtering methods
to handle the broader range of vision problems described by graphical models. Despite
their theoretical flexibility, these approaches often become computationally impractical
in high-dimensional scenarios like those found in SLAM.

FastSLAM (Montemerlo et al., 2002) was introduced to combine the advantages
of particle filters and parametric techniques for effectively handling high-dimensional
settings. However, it has its limitations. FastSLAM relies on EKF for landmark track-
ing and cannot handle general non-Gaussian distributions. Additionally, like many
particle filters, FastSLAM can suffer from particle depletion, which may lead to de-
generate estimates. GAPSLAM (Huang and Leonard, 2023) also integrates particle
filters with parametric techniques to balance accuracy and efficiency. It uses particle
filters to handle highly uncertain landmarks with sample-based density representations
while maintaining a Gaussian approximation for computational efficiency. The ap-
proach computes an empirical covariance matrix and its largest eigenvalue for each
landmark. When this eigenvalue drops below a certain threshold, indicating sufficient
certainty, the landmark’s representation is switched to a Gaussian model. This com-
bination allows the Gaussian model to streamline the particle filter’s computation and
aids in optimizing the robot’s path by providing accurate linearization points for nonlin-
ear solvers. However, GAPSLAM struggles when future observations cause previously
Gaussian-represented landmarks to revert to non-parametric distributions.

Several recent state-of-the-art methods leverage the conditional independence struc-
ture within factor graphs (Kschischang et al., 2001) to handle nonparametric inference
in SLAM. For instance, mm-iSAM (Fourie et al., 2016) approximates non-Gaussian
posterior distributions using samples and Kernel Density Estimation (KDE). Specif-
ically, mm-iSAM employs an iterative nested Gibbs sampling approach (Ihler et al.,
2003) to generate samples from partial posteriors associated with each clique in the BT.
These samples are then used to create new approximations of posterior distributions via
KDEs. On the other hand, NF-iSAM (Huang et al., 2023) leverages the capabilities of
neural networks by training normalizing flows (Rezende and Mohamed, 2015) to model
conditionals that decompose non-Gaussian posterior distributions during the upward
pass. After all cliques have trained their conditional samplers, NF-iSAM performs a
downward pass to draw samples from posterior distributions in a root-to-leaf manner.
However, this learning approach is computationally demanding and requires a large
number of samples to achieve convergence.

NSFG (Huang et al., 2022), which uses nested sampling (Skilling, 2006), prioritizes
higher accuracy over computational efficiency. It employs nested sampling techniques
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to sample the posterior distribution directly across iterations until convergence. In this
iterative process, the factor graph is initially divided into two components: an acyclic
graph, referred to as the prior factor set, and a likelihood factor set. NSFG subse-
quently employs ancestral sampling to produce samples from the prior factor set, while
likelihood evaluations are provided based on the likelihood factor set. Although NSFG
delivers more precise estimates of non-Gaussian posterior distributions when compared
to mm-iSAM and NF-iSAM, its iterative nature imposes significant computational de-
mands. Consequently, it struggles to address high-dimensional, large-scale problems
and cannot be employed in real-time applications.

Our work adopts a slices perspective for non-parametric inference. We use slices, de-
rived from structures representing high-dimensional posterior probability distributions,
to efficiently approximate posterior distributions of any shape. This method avoids the
need for iterative processes like Gibbs sampling (Fourie et al., 2016), training neural
networks (Huang et al., 2023), or NSFG (Huang et al., 2022), which inherently involve
multiple iterations.
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Chapter 3

Focused Topological BSP

BSP problems can be categorized based on the prioritization of variables in the planning
process. In the unfocused case, the objective function includes a belief that represents all
variables within the estimation problem. Conversely, in the focused case, the objective
function specifically prioritizes or exclusively considers a subset of variables, typically
those most relevant to the task at hand. Examples of focused BSP problems include: a
navigation task in an uncertain environment where a robot must reach a goal position
with maximum accuracy regardless of the chosen path; a reconstruction task where
mapping a specific scene in the environment with high accuracy is prioritized; and
collision avoidance, where localizing obstacles is of the greatest importance.

Figure 3.1: Chosen candidate paths in an active 2D pose SLAM scenario are shown with respect
to different objectives. The red path aims to reduce uncertainty over the entire trajectory,
representing the unfocused case, while the green path focuses on reducing uncertainty only over
the final pose, representing the focused case. The yellow path indicates the locations previously
visited by the robot, serving as the initial belief. The starting position is marked with a red
star, and the goal is denoted by a circle. Black ellipses illustrate the marginal covariance at
each step, and black dashed lines indicate loop closures. Notice how the marginal covariance
decreases significantly in the green path right before reaching the goal due to a large loop
closure.
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In general, the optimal solution in the focused case can be significantly different
from the one in the unfocused case (e.g., Levine and How, 2013). To solve these
focused problems for Gaussian distributions, state-of-the-art algorithms calculate the
marginal posterior covariance (or information) matrix for each candidate action. De-
spite the potentially small set of focused variables, these calculations involve a compu-
tationally expensive Schur complement operation. Moreover, many problems require
a high n-dimensional state space model to represent poses, obstacles, and landmarks.
In such cases, calculating the determinant of the marginal information matrix (the D-
criterion), which is common in information-theoretic problems, has a general complexity
of O(n3).

In this chapter, we examine the relationship between the graphical structure of
SLAM and an information-theoretic objective function in the active focused case. We
introduce a novel concept, Focused Topological Belief Space Planning (FT-BSP), which
utilizes topological signatures associated with posterior probabilities to guide the search
for an optimal action. Our contributions are as follows:

1. We introduce a novel approach, FT-BSP, that addresses the focused information-
theoretic BSP problem through topological aspects.

2. Within FT-BSP, we derive two topological signatures to approximate the focused
cost function: the WTCD signature and the VND signature.

3. We prove asymptotic convergence and develop bounds for the WTCD signature.

4. We demonstrate how the VND signature can be calculated incrementally to sup-
port sequential BSP problems through multiple time steps.

5. We provide empirical results showing that both topological signatures are highly
correlated with the focused information-theoretic objective function and are sig-
nificantly faster to calculate.

3.1 Problem Formulation and Notations

In this section we provide the theoretical background for focused BSP and briefly review
the factor graph model (Kschischang et al., 2001) from which we induce the topological
signatures associated with a posterior belief.

3.1.1 Focused Belief Space Planning

Consider a robot operating in a partially known environment, aiming to autonomously
decide its future actions based on information accumulated thus far and a user defined
objective function J . In this chapter, for simplicity, we assume a 2D pose SLAM
framework with relative pose measurements.
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Let p ∈ R2 and θ ∈ [−π, π) denote the robot position and orientation, respectively.
Let xk denote the robot’s state at time instant k where the state vector is defined
as xk =

[
pk
T θk

]T
. The joint state, up to and including time k, is defined as Xk=

{x0, x1, ..., xk}. A focused subset of states is denoted by XF
k ⊆ Xk while the remaining

unfocused states are denoted by XU
k = Xk/X

F
k .

Let z0:k and u0:k−1 denote, respectively, all observations and controls up to time k.
The motion and observation models are given by

xk+1 = f(xk, uk) + wk , zjk = h(xj , xk) + vjk, (3.1)

where the terms wk ∼ N (0,Σw) and vjk ∼ N
(
0,Σvjk

)
represent the process and

measurement noise, respectively, and are sampled from known Gaussian distributions,
with zero means and specified covariance matrices Σw,Σvjk

.

The posterior pdf over the joint state, denoted as the belief, is given by

b [Xk]
.= P (Xk|Z1:k, u0:k−1) = P (Xk|Hk) , (3.2)

where Hk
.= {Z1:k, u0:k−1} represent history at time k. Given a candidate action se-

quence uk:k+L−1 and future observations Zk+1:k+L, the future joint belief is given by

b [Xk+L] .= P (Xk+L|Z1:k+L, u0:k+L−1) . (3.3)

The future joint belief can be expressed in terms of b [Xk] and the corresponding motion
and observation models

b [Xk+L] ∝P (Xk|Hk)
k+L∏
l=k+1

P (xl|xl−1, ul−1)P (Zl|Xl) , (3.4)

where the measurement likelihood term P (Zl|Xl) =
∏nl
m=1 P (zl,im |xl, xim) represents

all nl observations acquired at time l between involved variables xl and xim , {im} ⊆
{0, 1, . . . , l − 1}.

Given a user defined objective function J , a belief b [Xk] and a set of candidate
actions Uk, the goal of BSP is to find the optimal action given by

U∗ = argmin
U

J (U) . (3.5)

For the unfocused case, a general objective function in BSP can be written as

J (U) = E
Zk+1:k+L

[
L−1∑
l=0

cl (b [Xk+l] , uk+l) + cL (b [Xk+L])
]
, (3.6)

where cl represents a cost function for each look-ahead step, cL represents the cost
function of the terminal belief (at the end of the planning horizon), and the expectation
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is taken with respect to future observations. While each cost function can include
a number of different terms such as distance to goal, energy spent and information
measures of future beliefs, in this work, we only consider the information theoretic
term of a terminal belief (to be defined) at time step k + L. We note that different
cost terms cl can be treated in a similar manner. Specifically, given an appropriate
posterior belief, we aim to minimize the differential entropy H.

Evaluating the objective function (4.4) involves inference over the appropriate pos-
terior beliefs. Within a pose SLAM framework with relative pose measurements, the
Maximum Likelihood (ML) estimation is obtained by the optimal state X⋆

k that maxi-
mizes the belief (4.2). By fixing an arbitrary pose as an anchor, e.g. x0, and considering
the rest as unknown, X⋆

k is obtained by minimizing the sum of weighted squared errors
between the predicted and measured relative poses

X⋆
k = argmin

Xk

||∆k − h (Xk)||2Σ−1 , (3.7)

where the measurement model

∆k = h (Xk) + ϵ , ϵ ∼ N (0,Σ) , (3.8)

represents a vector of m stacked relative pose measurements zrij ∈ SE(2), r = 1, 2, ...,m
generated according to the motion and observation models (4.1). In this work, we
assume the noise covariance matrices, for both the rotational and translational mea-
surements, have a block-isotropic structure, i.e. Σ = diag (Σp,Σθ) where
Σp = diag

(
σ2
p1I2, ..., σ

2
pm

I2
)
and Σθ = diag

(
σ2
θ1
, ..., σ2

θm

)
.

The information matrix Λ (Xk), referred from here on simply as Λk, of the ML
estimation is given by Λk = MTΣ−1M , where M = ∂h/∂Xk is a measurement Jaco-
bian (Sorenson, 1980). Evaluating Λk at the true value of Xk is known as the Fisher
Information Matrix (FIM) while evaluating Λk at X⋆

k is used to approximate the FIM.
Given a multivariate Gaussian posterior belief and taking the ML observations

assumption (Platt et al., 2010), the differential entropy, considering only the terminal
joint belief, for the unfocused case is given by (log denotes the natural logarithm in this
work)

JH (U) = H (b [Xk+L]) = n

2
log (2πe)− 1

2
log |Λk+L| , (3.9)

where n is the dimension of the joint state Xk+L and Λk+L is the estimated FIM
associated with the joint posterior belief b [Xk+L]. As we are only interested in a
focused set of variables XF

k+L, the differential entropy, considering only the terminal
marginal belief, over the focused set, is given by

JFH (U) = H
(
b
[
XF
k+L

])
= nF

2
log (2πe)− 1

2
log
∣∣∣ΛM,F
k+L

∣∣∣ , (3.10)
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where nF is the dimension of XF
k+L and ΛM,F

k+L is the marginal FIM of the marginal
posterior belief b

[
XF
k+L

]
.
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Figure 3.2: Graph representations of a posterior belief. (a) Factor graph with
unfocused variables in blue, focused variables in purple and anchor variable in yellow; (b) The
corresponding topological graph G; (c) The unfocused topological augmented graph GU,A. The
blob encapsulating the unfocused nodes represents the reduced Laplacians in (3.26) and the
edges in orange are new edges weighted according to (3.27). Specifically w1a = w10 + w15.

3.1.2 Belief Topology

The joint belief at time k can be represented by a factor graph (Kschischang et al.,
2001). A factor graph (FG) is a probabilistic graphical model that represents a fac-
torization of a pdf in terms of process and measurement models. It is a bipartite
graph whose nodes consist of factors F and variables X . The variables X represent the
random variables in the estimation problem while the factors represent probabilistic
information on those variables. The FG edges encode connectivity according to the
variables involved in each factor. In this chapter we only consider pairwise factors
without self-loops.

A topological representation of a joint belief is defined as a topological graph G .=
(V, E , w) associated with a posterior FG where each node vi ∈ V corresponds to a
variable node xi ∈ X (see Fig. 3.2). Specifically, if x0 is fixed as an anchor pose then
v0 is the corresponding anchor node. We also note that VF and VU correspond to XF

and XU , respectively. The edge set E ⊆ V × V is defined as

eij
.= (vi, vj) ∈ E ⇐⇒ fij

.= (xi, xj) ∈ F , (3.11)

and the weight function w : E → R>0 assigns each edge with a weight wij derived from
the appropriate term in the associated noise model of the corresponding factor.

Let W be a diagonal matrix of size |V| × |V| defined as

Wii =
∑
j

wij , (3.12)

i.e. each element on the main diagonal Wii is equal to the sum of weights of all
edges connected to node vi. Chung (1997) defined the weighted Laplacian matrix Lw
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associated with a topological graph G as

Lw(i, j) =


Wii if i = j,

−wij if vi and vj are adjacent,

0 otherwise

(3.13)

Chung and Richardson, 2006 defined the weighted normalized Laplacian matrix L̂w
associated with a topological graph G as

L̂w(i, j) =


1 if i = j,

−wij√
Wii·Wjj

if vi and vj are adjacent,

0 otherwise

(3.14)

The reduced weighted Laplacian matrix Lw and the reduced weighted normalized Lapla-
cian matrix L̂w are retrieved by removing the row and column that correspond to the
anchor node from Lw and L̂w, respectively.

We also denote the reduced incidence matrix of G by A. It is obtained by removing
the row that corresponds to the anchor node from the incidence matrix of G.

3.1.3 Weighted Tree Connectivity

Khosoussi et al. (2019) introduce a weighted version to Kirchoff’s matrix tree theorem
(Biggs, 1993). Given a weighted topological graph G = (V, E , w), the value of each
spanning tree TG is given by

Vw (TG) =
∏

e∈E(TG)
w (e) , (3.15)

and the weighted number of spanning trees is defined as

tw (G) =
∑
t∈TG

Vw (t) . (3.16)

The Weighted Tree Connectivity (WTC) of G is defined as

τw (G) = log tw (G) . (3.17)

Considering the 2D pose SLAM framework addressed in this chapter, the FIM of a
posterior belief is given by (see eq. (18) in Khosoussi et al., 2019)

Λ =

Lwp ⊗ I2 (Awp ⊗ I2)Γ∆wp

∗T Lwθ
+ ∆T

wp
∆wp

 , (3.18)

where * denotes the top-right block; I2 is the identity matrix of size 2 × 2 and ⊗
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denotes the Kronecker product; Lwp , Lwθ
are the reduced weighted Laplacian matrices

of G when edges are weighted according to wp : ei → σ−2
pi
, wθ : ej → σ−2

θj
respectively;

Awp = A · diag (σp1 , ..., σpm) is the reduced weighted incidence matrix when edges are
weighted by wp; Γ is defined as

Γ = I|E| ⊗
[

0 1
−1 0

]
, (3.19)

and ∆T
wp

∆wp = Dwp is a diagonal matrix where

Dwp (i, i) =
∑

j∈Nout(i)

wp (i, j) ||pi − pj ||2 , (3.20)

i.e. Dwp (i, i) is equal to the weighted sum of squared distances between the i’th robot
pose and every node observed by it.

Lower and upper bounds on the actual D-criterion (see Theorem 3 in Khosoussi
et al., 2019) are given by

τw(G) ≤ log |Λ| ≤ τw(G) + n · log(1 + δ/λ1), (3.21)

where τw(G) = 2τwp(G) + τwθ
(G); δ = ||∆T

wp
∆wp ||∞ and λ1 = λmin(Lwθ

). Moreover,
they show that under some conditions, these bounds become asymptotically tight and
the D-criterion is characterized solely by the weighted tree connectivity of G

log |Λ|
δ/λ1→0+

= 2τwp(G) + τwθ
(G). (3.22)

From hereon, we denote τw (G) .= τw.

3.2 Planning using Topological Signatures in the Focused
Case

Our goal is to rank candidate actions by redefining the original focused problem (3.10)
in a topological space, where it can be solved more efficiently. Given a belief b [Xk] and
a set of candidate actions Uk, we look for a topological representation G(uk) for each
uk ∈ Uk and a signature S : G(uk) → R, that would ideally yield a solution which is
consistent with the optimal solution of the original focused problem (3.10) such that
Û = U∗ where Û = min

U
S(G(U)).

Our derived topological signatures were inspired by the works of Khosoussi et al.,
2019 and Kitanov and Indelman, 2018 on measurement selection and active SLAM in
the unfocused case, respectively.
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3.2.1 Manipulating the Focused Objective Function JFH

In practice, at each time step, we maintain a factor graph that represents the joint
posterior belief from which we can induce the topological graph. Specifically, at time
step k+L we have access to FGk+L. As we are interested in a topological representation
which corresponds to the marginal posterior belief over the focused variables XF

k+L,
we would first need to marginalize out the unfocused variables XU

k+L. Although such
algorithms exist, e.g. the sum-product algorithm (Kschischang et al., 2001), as the set of
focused variables is often small with respect to the entire estimation problem, e.g. when
we are interested in reducing the entropy only over the robot’s last pose, calculating
the marginal posterior information matrix involves an expensive Schur complement
operation.

As the joint posterior information matrix Λk+L is positive-definite and symmetric,
we can partition it such that

Λk+L =

 ΛFk+L ΛF,Uk+L

(ΛF,Uk+L)T ΛUk+L

 , (3.23)

where ΛFk+L ∈ RnF ×nF and ΛUk+L ∈ RnU ×nU are constructed from Λk+L by retrieving
only the rows and columns related to XF

k+L and XU
k+L respectively. Notice that ΛUk+L

is the conditional posterior information matrix of XU
k+L, conditioned on the rest of the

variables XF
k+L. The remaining blocks, ΛF,Uk+L, contain the mixed information between

focused and unfocused variables.

While the marginal posterior information matrix ΛM,F
k+L can be calculated using the

Schur complement, to calculate the focused objective function (3.10) we only need to
evaluate

∣∣∣ΛM,F
k+L

∣∣∣. Using theorem 2.1 from Ouellette, 1981 where

∣∣∣Λk+L
∣∣∣ =

∣∣∣ΛM,F
k+L

∣∣∣ · ∣∣∣ΛUk+L

∣∣∣⇒ ∣∣∣ΛM,F
k+L

∣∣∣ =
∣∣∣Λk+L

∣∣∣/∣∣∣ΛUk+L

∣∣∣, (3.24)

and substituting (3.24) into (3.10) we rewrite JFH as

JFH (U) = nF

2
log (2πe)− 1

2
log
∣∣∣Λk+L

∣∣∣+ 1
2
log
∣∣∣ΛUk+L

∣∣∣. (3.25)

Using (3.21), we can approximate log |Λk+L|. To derive an approximation for (3.25) that
is characterized solely by structural properties, we now aim to approximate log

∣∣∣ΛUk+L

∣∣∣
using topological aspects.

From here on, we drop the time indices and refer to a general posterior belief b [X]
with the associated FIM Λ.
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3.2.2 The Unfocused Augmented Graph GA,U

Recall that our goal is to find a topological graph, and a corresponding signature that
would approximate log

∣∣∣ΛU ∣∣∣.
According to (3.23), as ΛU is a principal submatrix of Λ, it is not hard to see that

by taking only the rows and columns that correspond to XU , the unfocused block ΛU

is given by

ΛU =

LUwp
⊗ I2 (AUwp

⊗ I2)Γ∆U
wp

∗T LUwθ
+ (∆U

wp
)T∆U

wp

 . (3.26)

We observe that both LUwp
and LUwθ

represent reduced weighted Laplacian matrices,
that contain all unfocused variables and weighted edges connected to those variables
(see e.g. Fig 3.2c). As such, to construct a topological graph, we can add a virtual node
va, to create the augmented weighted topological graph GU,A. Note that the anchor
node and all nodes that represent focused variables do not belong to GU,A.

This augmented weighted topological graph is formally defined as
GU,A

(
VU

⋃
va, EU,A, wU,A

)
where each node vi ∈ VU corresponds to a variable xi ∈ XU ;

the edge set EU,A is defined as a union of three groups {eU,Aij |vi, vj ∈ VU ∧ eij ∈ E} ∪
{eU,Aia |vi ∈ VU , vj ∈ VF ∧ eij ∈ E} ∪ {e

U,A
ia |vi ∈ VU ∧ ei0 ∈ E} where ei0 denotes an edge

connected to the anchor node; each edge eU,Aia ∈ EU,A connected to the virtual node va
is weighted by

wU,Aia =
∑
j

wij such that vi ∈ VU and vj ∈ VF , (3.27)

while the remaining edges are weighted according to wU,Aij = wij . Note that in (3.27),
edges to the virtual node are weighted such that we construct a Laplacian matrix, i.e.
where the sum of each row and each column is exactly zero. We can now use the
weighted version of Kirchhoff’s theorem (3.17) as a topological signature for this graph.
Specifically, we define

τU,Aw = 2τwp(GU,A) + τwθ
(GU,A). (3.28)

3.2.3 Weighted Tree Connectivity Difference Signature

We approximate the focused objective function (3.25) using the WTCD between G and
the augmented graph induced from it GU,A. This topological signature is defined as

SW T CD = nF

2
log (2πe)− 1

2

[
τw − τU,Aw

]
. (3.29)

Using this signature we can get an approximated solution Û whose properties we analyze
from here on.
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Theorem 1. The WTC of GU,A asymptotically bounds log
∣∣∣ΛU ∣∣∣.

To allow fluid reading, proofs for all theorems, corollaries, and lemmas are provided
in the Appendices. To maintain structural clarity, each Appendix corresponds to a
specific Chapter.

Theorem 2. Let ϵ(JFH) .= JFH − SW T CD be the approximation error, then it is bounded
by

−n
2
log
(

1 + δ

λ1

)
≤ ϵ(JFH) ≤ nU

2
log
(

1 + δU

λU1

)
.

Lemma 1.

δ/λ1 → 0+ ⇒ δU/λU1 → 0+.

Lemma 1 implies that when δ/λ1 → 0+, the approximation error in (3.30) ap-
proaches zero. We also note that choosing the position of the virtual node within the
Euclidean space, can be formulated as an optimization problem to lower the upper
bound.

While SW T CD asymptotically converges to the focused objective function (3.25),
evaluating this signature still requires calculating the determinant of the associated
Laplacian matrices. Moreover, if we would like to use these bounds to eliminate candi-
date actions, we need to perform eigenvalue decomposition to retrieve λ1, which cannot
be done online.

Theorem 3. The approximation error ϵ(JFH) can also be bounded using topological
aspects only, where

1
2

(
τwθ
−

n∑
i=1

log [Wθ(i, i) + δ]
)
≤ ϵ

(
JFH

)
≤ 1

2

(
n∑
i=1

log
[
WU,A
θ (i, i) + δU,A

]
− τU,Awθ

)
.

(3.30)

While these bounds are somewhat more conservative, they are functions of topological
aspects only. We avoid the eigenvalue decomposition and can use them online.

3.2.4 Von Neumann Difference Signature

We also propose a second topological signature (inspired by Kitanov and Indelman,
2018) to be evaluated online. The Von Neumann entropy ĤV N (Passerini and Severini,
2009) of a topological graph G represents the Shannon entropy associated with the
eigenvalues of its normalized Laplacian

HV N
(
L̂w
)

= −
n∑
i=1

λ̂i
2
log λ̂i

2
. (3.31)
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Using the quadratic approximation (Han et al., 2012), we rewrite (3.31) for the weighted
case as

HV N ≈ H̃V N = n log 2
2
− 1

2

(
Tr
[
L̂2
w

]
− n

)
. (3.32)

Following a similar derivations (see eq. 8 in (Han et al., 2012), the trace of the square
of the weighted normalized Laplacian is given by

Tr
[
L̂2
w

]
= n+ 2

∑
eij∈E

wij
Wii ·Wjj

. (3.33)

Substituting (3.33) into (3.32) we get an expression for the approximated Von Neumann
graph entropy for the weighted case

H̃V N
(
L̂w
)

= n log 2
2
−
∑
eij∈E

wij
Wii ·Wjj

. (3.34)

We denote

hw = 2H̃V N
(
L̂wp

)
+ H̃V N

(
L̂wθ

)
(3.35)

hU,Aw = 2H̃V N
(
L̂U,Awp

)
+ H̃V N

(
L̂U,Awθ

)
, (3.36)

and formally define the VND topological signature as

SV ND = nF

2
log (2πe)− 1

2

[
hw − hU,Aw

]
. (3.37)

Calculating (3.34) is dependent on the diagonal matrix W and generally has a
quadratic complexity in the number of nodes O(n2). However, in the context of BSP,
as the dimensionality of n grows with time, the information matrix and the topological
representation become sparse. Evaluating (3.34), in this case, only depends on a small
number of non-zero elements, i.e. the number of edges |E|.

Incremental Aspects

Calculating (3.37) requires evaluating H̃V N for the weighted Laplacian matrices of
both G and GU,A. However, we can re-use calculations rather than evaluating each
from scratch. The approximated Von Neumann entropies (3.32) for a posterior belief,
at time k + L, are given by

H̃V N
(
L̂w
)

= (k + L+ 1) log 2
2

−
∑
eij∈E

wij
Wii ·Wjj

(3.38)
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H̃V N
(
L̂U,Aw

)
=

(
k + L+ 2−

∣∣∣nF ∣∣∣) log 2
2

−
∑

eij∈EU,A

wU,Aij

WU,A
ii ·WU,A

jj

(3.39)

Subtracting (3.39) from (3.38) and rearranging the result we get

H̃V N
(
L̂U,Aw

)
= H̃V N

(
L̂w
)

+

(
1−

∣∣∣nF ∣∣∣) log 2
2

+ ∆, (3.40)

where

∆ =
∑
eij∈E

wij
Wii ·Wjj

−
∑

eij∈EU,A

wU,Aij

WU,A
ii ·WU,A

jj

. (3.41)

According to (3.27), all edges that are not connected to the virtual node in the aug-
mented graph, share the same weights in both graphs. We denote an edge that does
not connect to an unfocused node by e¬U and by eV an edge which is connected to the
virtual node. Reducing all shared terms between the two sums in (3.41), we rewrite ∆
as

∆ =
∑

e¬U
ij ∈E

wij
Wii ·Wjj

−
∑

eV
ij∈EU,A

wU,Aij

WU,A
ii ·WU,A

jj

. (3.42)

Notice that evaluating ∆ is dependent on the number of focused variables and their
connectivity. The smaller they are, with respect to the entire problem, the more we
gain in terms of computational costs.

Following similar steps, we can also derive a recursive update rule for calculating
the VND signature for the posterior graph SV ND (Gk+L) from the VND signature of
the prior SV ND (Gk) for each candidate action. As such, calculating this signature is
computationally very efficient.

Algorithm 1 Focused Topological BSP
input: Set of factor graphs, one for each candidate action U and a graph signature S
output: approximate solution to FT-BSP: Û

1: for each candidate action in U do
2: Infer topological graph G (Section 3.1.2)
3: Construct unfocused augmented topological graph GU,A (Section 3.2.2)
4: Evaluate S using G and GU,A (Eq. 3.29 or Eq. 3.37)
5: end for
6: return Û = min

U
S(U)
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3.3 Experimental Results

We evaluate our approach considering a measurement selection problem and an active
2D pose SLAM simulation, to empirically study the two topological signatures.

signature measurement selection active SLAM
SW T CD 18.88 1.21
SV ND 12.02 0.14
JFH 146.24 6.34

Table 3.1: Average time in milliseconds for calculating both signatures and the focused objective
function for each candidate action. We note that while the WTCD signature is calculated
using a highly optimized Matlab code with a C back-end and that JF

H is calculated in C++,
we calculate the V ND signature purely in Matlab without code optimization.

In our first experiment, we use the 2D pose SLAM Intel dataset (Carlone et al.,
2014b), which contains n = 1228 robot poses and 278 loop-closure observations. We
modified the original covariance matrix to have a block-isotropic structure. In this
measurement selection problem, the goal is to find the most informative subset of
observations, with respect to a random focused set of variables of size nF < n/2. All
sub-graphs share the same vertex set and contain all odometry edges. In total, we
generate nL = 278 such sub-graphs where, for each sub-graph we randomly choose a
subset of loop closure edges. Given the focused set of variables, we evaluate the original
focused objective function and the two topological signatures. This experiment was
performed several times for different focused sets in different sizes. In Fig. 3.3 we see
that both signatures are highly correlated with the focused objective function (3.25)
given a specific focused set. In Table 3.1 we report the average run time statistics for
all runs showing the improvement in computational cost.

-880 -870 -860 -850 -840 -830 -820 -810 -800 -790
700

710

720

730

740

750

760

770

780

212

213

214

215

216

217

218

219

Spearman's correlation: 0.9988

Spearman's correlation: 0.99666
Spearman's correlation: 0.9988

Spearman's correlation: 0.99666

Figure 3.3: Topological signatures vs marginal entropy for different loop-closure measurements
given a random focused set of poses in the Intel dataset.

In our second experiment, we evaluate our approach in an active 2D pose SLAM
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simulation. In this scenario, the robot’s objective is to reach a predefined goal with
maximum accuracy, while navigating in an unknown environment. Using a Probabilistic
Road Map (PRM) (Kavraki et al., 1996) we first discretize the environment. We assume
that the robot previously visited some areas within the map and that all planning
sessions start right after. We then randomly generate a set of candidate paths, over the
road map, all ending at the predefined goal (see e.g. Fig 3.4). As such, the focused set
of variables is defined as the last robot pose in each candidate path. i.e. the objective
is to reduce the uncertainty over that position. Given all candidate paths, we evaluate
the original focused objective function and the two topological signatures. As seen
in Fig. 3.5 both signatures are highly correlated with the focused objective function
(3.25). The figure also shows that in this setting, the bounds developed in Theorem
2 are sufficiently tight to allow action elimination. However, the Hadamard bounds
developed in Theorem 3, are not informative in this case as they are not tight enough
to allow action elimination. In general, Hadamard bounds are more informative in
diagonally dominant matrices. In the specific case presented δ was relatively small.

Figure 3.4: different candidate paths generated on top of a PRM in a single planning session.
Stating position is denoted with a red star and the goal is denoted with a circle. The yellow
path represents the locations that the robot had previously visited and acts as the initial belief.
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Figure 3.5: Topological signatures in dashed lines vs JF
H in a focused BSP problem. The solid

lines represent the bounds developed in Theorem 2.
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Chapter 4

DA-BSP with Performance
Guarantees Under Budget
Constraints

In the previous chapter we assumed DA to be given and perfect, i.e. assumed a single
hypothesis represented by a uni-modal state and map estimates. However, in real-world
scenarios, an autonomous agent should also be resilient to the problem of ambiguous
measurements. These ambiguities occur when a certain observation has more than
one possible interpretation. Some examples include the slip/grip behavior of odometry
measurements; the loop closure problem in visual Simultaneous Localization and Map-
ping (SLAM); and unresolved DA. The latter is defined as the process of associating
uncertain measurements to known tracks, e.g. determine if an observation corresponds
to a specific landmark within a given map. While most existing inference and BSP
algorithms assume DA to be given and perfect, in perceptually aliased environments,
this assumption is not reasonable and could lead to catastrophic results. Therefore, it
is crucial to reason about DA, in both inference and planning, while also considering
other sources of uncertainty.

Explicitly reasoning about DA, the number of hypotheses grows exponentially with
time. As such, when considering real time operation using inexpensive hardware, hard
computational constraints are often required, e.g. bounding the number of supported
hypotheses. State-of-the-art inference and planning approaches therefore use different
heuristics, e.g. pruning and merging, to relax the computational complexity. However,
this loss of information incurs loss in solution quality and there are usually no perfor-
mance guarantees. Moreover, inference and planning are commonly treated separately
and it is unclear how budget constraints in one process affect another.

Given a set of candidate actions, the main goal of BSP is to retrieve the optimal
action with respect to a user defined objective function. Specifically, in the case of
a multi-modal belief (corresponding to different hypotheses), a traditional solution
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requires evaluating the objective function with respect to each hypothesis. Instead, we
suggest to solve a simplified problem using only a distilled subset ofhypotheses where
the loss in solution quality can be bounded to provide performance guarantees.

Our contributions in this chapter are as follows:

1. We introduce a novel approach that utilizes a distilled subset of hypotheses in
planning to solve a simplified problem and reduce computational complexity.

2. We develop the connection between our approach and the true analytical solution,
owing to every possible DA.

3. We derive bounds over the true analytical solution, which can be incrementally
adapted, and prove their convergence. Moreover, in a budget free scenario, these
bounds are used to speed-up calculations while maintaining action consistency,
i.e., preserving the same action selection as when considering all hypotheses.

4. Crucially, we address also the challenging setting of DA aware BSP with hard
budget constraints, and show how these bounds provide performance guarantees.

5. We analyze the construction of a belief tree within planning given a mixture
belief.

6. We show how to utilize the skeleton of such belief tree to reduce the computational
complexity in BSP.

7. We study the impacts of hard budget constraints in both planning and inference.

4.1 Background and Notations

In this section, we review fundamental concepts from estimation theory and BSP, and
formulate these problems with explicit consideration of DA.

4.1.1 Inference with Data Association

Some of the following notations are rewritten once again for convenience.
Consider an autonomous agent operating in a partially known or pre-mapped en-

vironment containing similar landmarks or scenes. The agent acquires observations
and tries to infer random variables of interest that are application dependent while
reasoning about DA.

We denote the agent’s state at time instant k by xk. Let Zk ≜ {zk,1, ..., zk,nk
}

denote the set of all nk measurements and let uk denote the agent’s action. Z1:k and
u0:k−1 denote all observations and actions up to time k, respectively. The motion and
observation models are given by

xk+1 = f (xk, uk, wk) , zk = h
(
xk, x

l, vk
)
, (4.1)
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where xl is a landmark pose and wk and vk are noise terms, sampled from known motion
and measurement distributions, respectively.

Given nk observations, the DA realization vector is denoted by βk ∈ Nnk . Elements
in βk are associated according to the given observation model and each element, e.g.
landmark, is given a unique label. A specific DA hypothesis is thus given by a specific
set j of associations up to and including time k and is denoted as βj1:k.

At each time step the agent maintains a posterior belief over both continuous and
discrete variables given by

b [xk, β1:k] ≜ P (xk, β1:k|z0:k, u0:k−1) = P (xk, β1:k|Hk) , (4.2)

where Hk ≜ {Z1:k, u0:k−1} represents history. Using the chain rule, the belief becomes
a mixture and can be written as a linear combination of |Mk| hypotheses

bk =
∑
j∈Mk

P
(
xk|βj1:k,Hk

)
︸ ︷︷ ︸

bj
k

P
(
βj1:k|Hk

)
︸ ︷︷ ︸

wj
k

, (4.3)

where bjk is a conditional belief, with some general distribution, and wjk is the associated
weight. Therefore, Mk is a set of maintained weighted conditional beliefs, representing
different DA hypotheses. In this chapter, we interchangeably refer to each bjk as both
a hypothesis and a component.

Each conditional belief hypothesis bjk in (4.3) can be efficiently calculated by maxi-
mum a posteriori inference (e.g., as in Kaess et al., 2012) for the Gaussian case. Nev-
ertheless, our formulation and approach also applies to a non-parametric setting. Each
component weight wjk is calculating by marginalizing over the state space and applying
the Bayes rule (Pathak et al., 2018).

4.1.2 Data Association BSP

Given a posterior belief (4.3) and a set of candidate action sequences U the goal of
BSP is to find the optimal action sequence that would minimize/maximize a certain
objective function. We note that while in this work we consider, for simplicity, action
sequences, our approach is applicable also to policies.

Reasoning about DA in planning, a user defined objective function J can be written
as

J (bk, uk:k+N−1) = E
β(k+1)+

[
E

Z(k+1)+|β(k+1)+

[
N∑
n=1

c (bk+n, uk+n−1)
]]
, (4.4)

where β(k+1)+ ≜ βk+1:k+N , Z(k+1)+ ≜ Zk+1:k+N and c (·) denotes a cost function. The
expectation is taken with respect to both future DA realizations and observations. The
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optimal action sequence u∗
k:k+N−1 is defined as

u∗
k:k+N−1 = argmin

U
J (bk, uk:k+N−1) . (4.5)

To solve (4.5) we need to consider all possible future realizations of Zk+n for every
n ∈ [k + 1, k +N ] while marginalizing over all possible locations and DA realizations
(see Section 5.2 in Pathak et al., 2018). However, solving these integrals analytically
is typically not feasible. In practice, the solution should be approximated by sampling
future observations from the relevant distributions. Using these samples, the agent
constructs and traverses a belief tree (as shown in Fig. 4.1a) which branches according
to future actions and observations.

bk

b
k+1

u1 u2

u1 u2 u1 u2

z1 z2 z1 z2

z2z1z1z1z1 z2z2z2

(a) belief tree (b) exponential growth of hypotheses

Figure 4.1: (a) A belief tree constructed during planning. Each node represents a posterior
belief (4.3); The number of belief components grows exponentially along the highlighted path
as presented in (b).

Nevertheless, the number of hypotheses grows exponentially with the planning hori-
zon (see Fig. 4.1b). Specifically, given |Mk| hypotheses and |D| DA realizations, i.e.
different βk+i at each look-ahead step, the number of belief components at the nth
look-ahead step is |Mk+n| = |Mk| |D|n. As such, considering every possible future
hypothesis is not practical.

4.2 One Look-Ahead Step: The Myopic Case

As a first step towards applying our method for the general BSP problem (4.5), in this
section we consider a myopic setting, i.e., one look-ahead step, which by itself can be
computationally challenging in highly ambiguous scenarios.

We begin by formulating the belief update after performing control uk+1 and tak-
ing an observation Zk+1. This process also requires reasoning about DA. Given Mk

hypotheses from time k, marginalizing over all landmarks at time k + 1 and using the
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chain rule we explicitly write it as

bk+1 =
|L|∑
i=1

Mk∑
j=1

P
(
xk+1|Hk+1, β

i
k+1, β

j
1:k

)
︸ ︷︷ ︸

bi,j
k+1

P
(
βik+1, β

j
1:k|Hk+1

)
︸ ︷︷ ︸

wi,j
k+1

, (4.6)

where |D| represents the number of different DA realizations considered at time k+ 1.
The first term bi,jk+1 represents a conditional belief at time k + 1 which originated from
the jth hypothesis at time k and a specific DA realization βik+1. The second term wi,jk+1
is the associated belief component weight.

Corollary 1. Each posterior belief component weight wi,jk+1 can be written as

wi,jk+1 = η−1
k+1ζ̃

i,j
k+1w

j
k, (4.7)

where wjk is the weight of the jth component from time k; ηk+1 is a normalization term;
and ζ̃i,jk+1 is the probability for the ith DA at time k + 1 given the jth hypothesis from
time k,

ζ̃i,jk+1 ≜ Exk+1 [P
(
Zk+1|βik+1, xk+1

)
P
(
βik+1|xk+1

)
], (4.8)

where the expectation is with respect to P
(
xk+1|H−

k+1, β
j
1:k

)
.

The term P
(
Zk+1|βik+1, xk+1

)
in (4.8) is the joint measurement likelihood for all ob-

servations obtained at time k+ 1 given the ith DA and state xk+1. It can be explicitly
written as

P
(
Zk+1|βik+1, xk+1

)
=
nk+1∏
r=1

P
(
zk+1,r|xlβi

k+1(r), xk+1

)
, (4.9)

where xl
βi

k+1(r) denotes the landmark pose, corresponding to the rth measurement in
the given DA realization vector βik+1.

Writing the expectation operator in (4.5) explicitly, the objective function for the
myopic setting is defined as

J (bk, uk) =
∫

Zk+1

ηk+1c (bk+1) dZk+1, (4.10)

where ηk+1 ≜ P(Zk+1|H−
k+1) is the joint measurement likelihood, denoted from hereon

simply as η. In this chapter we interchangeably refer to η as the normalization term
and the measurement likelihood.

For this myopic setting, we consider using only a distilled subset of belief compo-
nents M s

k ⊆ Mk from time k. We avoid calculating the posterior belief at time k + 1
for components we do not consider in M s

k . As such, the number of belief components
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at time k + 1 reduces from |Mk| |D| to |M s
k | |D| which also lowers the computational

complexity of the considered cost function. When committing to a certain computa-
tional budget C over the number of posterior belief components, the distilled subset
M s
k is subject to |M s

k | |D| ≤ C. In this section, we only manipulate the size of M s
k .

Crucially, we analytically bound the loss in solution quality for every considered action
with respect to (4.10).

We formally define a simplified belief at time k as

bsk ≜
Ms

k∑
j=1

ws,jk bjk , ws,jk ≜ wjk
wm,sk

, (4.11)

where weights are re-normalized with wm,sk ≜∑
m∈Ms

k
wmk .

To provide performance guarantees, we wish to bound (4.10), for each candidate
action uk, using bsk

J (bk, bsk, uk) ≤ J (bk, uk) ≤ J̄ (bk, bsk, uk) . (4.12)

To efficiently evaluate these bounds, we simplify and analytically bound both η and
the cost function terms in (4.10). Thus, we rewrite (4.12) as∫

Zk+1

LB [η]LB [c (bk+1)] dZk+1≤J (bk, uk)≤
∫

Zk+1

UB [η]UB [c (bk+1)] dZk+1, (4.13)

where LB, UB denote lower and upper bounds, respectively. By definition, if LB [η] and
UB [η] converge to η and LB [c (bk+1)] ,UB [c (bk+1)] converge to c (bk+1), the bounds in
(4.13) converge to J (bk, uk).

4.2.1 Bounding the cost function

While the cost function in (4.10) can generally include a number of different terms,
e.g. distance to goal, energy spent and information measures of future beliefs, in this
section we only consider an information theoretic term over DA hypotheses weights
that can be used for autonomous active disambiguation of hypotheses. We believe that
conceptually similar derivations can also support other terms, e.g. distance to goal,
and leave that for future research.

Specifically, to disambiguate between hypotheses, we utilize the Shannon entropy,
defined as H ≜ −

n∑
i=1

wilog
(
wi
)
, where each wi corresponds to a belief component

weight and
n∑
i=1

wi = 1. Using Corollary 1, we rewrite H as

c (bk+1) ≜ H = −
|L|∑
i

Mk∑
j

ζ̃i,jk+1w
j
k

η
log

(
ζ̃i,jk+1w

j
k

η

)
. (4.14)
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To bound this cost function given a belief bk+1 using the same cost function given
a simplified belief bsk+1, we first rigorously derive the analytic connection between the
two.

Theorem 4. Given a simplified belief bsk at time k, for every action uk and considered
future observation Zk+1, the cost due to ambiguity (4.14) can be expressed by

H =
wm,sk

η

ηs [Hs − log(ηs)]−
|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
s,j
k log

(
wm,sk

η

)
−

|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k

η
log

(
ζ̃i,jk+1w

j
k

η

)
, (4.15)

where ¬M s
k ≜Mk \M s

k ; Hs ≜ c
(
bsk+1

)
; and ηs ≜ P (Zk+1|bsk, uk).

We now use Theorem 4 to derive bounds for H which are computationally more
efficient to calculate as we only consider a subset of hypotheses. As can be seen in
(B.5) (and also in Pathak et al., 2018 Section 4.1), evaluating η requires evaluating
all posterior components weights wi,jk+1. As our considered cost is a function of these
weights, simplifying and bounding H has no computational merits without simplifying
and bounding η (denoted below by ηs, LB [η] and UB [η]).

Theorem 5. Given a simplified belief bsk at time k, the cost due to ambiguity term in
(4.10) is bounded by

LB [c (bk+1)] ≜ LB [H] =
ηswm,sk

UB [η]
[Hs − log(ηs)]−

wm,sk

UB [η]

|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
s,j
k log

(
wm,sk

LB [η]

)
,

(4.16)

UB [c (bk+1)] ≜ UB [H] =
ηswm,sk

LB [η]
[Hs − log(ηs)]

−
wm,sk

LB [η]

|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
s,j
k log

(
wm,sk

UB [η]

)
− γlog

(
γ

|L| |¬M s
k |

)
, (4.17)

where γ ≜ 1− ηswm,s
k

UB[η] and |D| |¬M s
k | > 2.

Furthermore, considering different levels of simplifications, i.e. adding belief com-
ponents to M s

k , these bounds become tighter.

Corollary 2. Given a simplified belief bsk, the bounds developed in Theorem 5 converge
to H when M s

k = Mk

lim
Ms

k
→Mk

LB [H] = H = UB [H] . (4.18)
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Using basic log properties, it is not hard to show that these bounds can be incremen-
tally adapted if one chooses to add additional components to M s

k . See full derivation
in Appendix B.2.1.

4.2.2 Bounding η

In this section we derive the bounds LB [η] and UB [η] over η. We start by expressing
η using ηs.

Theorem 6. Given a simplified belief bsk at time k, for every action uk and considered
future observation zk+1, the normalization term η in (4.10) can be expressed by

η = wm,sk ηs +
|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k. (4.19)

We can now use Theorem 6 to derive bounds for η.

Theorem 7. Given a simplified belief bsk at time k, the measurement likelihood term η

in (4.10) is bounded by

LB [η] = ηswm,sk , (4.20)

UB [η] = ηswm,sk +
(
1− wm,sk

)
σ

|L|∑
i

αi, (4.21)

where σ ≜ max
(
P
(
Zk+1|βik+1, xk+1

))
and αi ≜ UB

[
P
(
βik+1|xk+1

)]
is an indicator

function.

As in Theorem 5, since we only consider a subset of hypotheses these bounds are
also computationally more efficient to calculate and become tighter when adding belief
components to M s

k .

Corollary 3. Given a simplified belief bsk, the bounds developed in Theorem 7 converge
to η when M s

k = Mk

lim
Ms

k
→Mk

LB [η] = η = UB [η] . (4.22)

Furthermore, these bounds can also be incrementally adapted if one chooses to add
additional components to M s

k . See full derivation in Appendix B.2.2.

4.2.3 Simulating future observations Zk+1

Evaluating the objective function (4.10) is usually performed in two steps: we first
simulate future observations Zk+1 by sampling from the measurement likelihood η

using the generative model (4.1), and then calculate the measurement likelihood η for
each such observation.
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While previous works, that either use a ML assumption, (e.g., Elimelech and In-
delman, 2022; Kitanov and Indelman, 2024), or do not use the ML assumption (e.g.,
Sztyglic and Indelman, 2022; Zhitnikov et al., 2024) all consider the likelihood terms η
and ηs to be equal, to the best of our knowledge, we are the first to consider the impact
of simplification on the normalization term in the myopic case.

Recall that in our proposed approach we only evaluate the bounds over η for each
future observation. However, for the bounds in (4.13) to hold, we have to make sure
we integrate over the same set of observations as in (4.10). To handle this issue in the
myopic case, we propose propagating and sampling from the original belief rather than
from the simplified belief. We note that the concept of simulating future observations is
computationally not the same as calculating the measurement likelihood which requires
marginalizing over all possible DAs realizations and states. As such, using the original
belief to simulate future observations does not affect the computational complexity of
our proposed approach.

4.2.4 Experimental Results

We evaluate the performance of our approach in a highly ambiguous environment com-
prising perceptually identical landmarks in different locations. Our prototype imple-
mentation uses the GTSAM library (Dellaert, 2012) with a python wrapper; all ex-
periments were run on an Intel i7-7850 CPU running at 2200 GHz with 32GB RAM.

(a) (b) 

Figure 4.2: Given a multi-modal initial belief, the agent’s goal is to fully disambiguate between
all hypotheses. (a) Run-time [sec] as a function of number of prior hypotheses M0; (b) A
scenario with 8 prior hypotheses, each initialized in front of a blue square and denoted by a
black ellipse. Headings are denoted with cyan triangles. The component that corresponds to
the correct DA hypothesis, unknown to the agent, is highlighted in yellow.

In our experiment we specifically consider five different landmark types represented
by Squares, Circles, Diamonds, Pentagons and Triangles, randomly placed within the
environment. The agent is initially placed in front of a blue square. With no other prior
information, the initial belief is multi-modal containingM0 hypotheses, each associated
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with a blue square. This scenario can be considered as a version of the kidnapped robot
problem.

1

2

(a) BSP with 2 prior hypotheses

(b) Planning using component #1 (c) Planning using component #2

Figure 4.3: (a) A scenario under hard budget constraints of C = 6. The agent can only move
LEFT or RIGHT. Black ellipses and cyan triangles denote prior hypotheses and headings,
respectively. Each prior weight equals 1

2 . Green and Orange ellipses denote the propagated
belief after moving left or right, respectively. Moving LEFT is the best action as it is the only
action that might lead to full disambiguation; (b) Objective function evaluations considering
only component 1 (denoted by superscript Q). DA-BSP in green represents the solution with
no budget constraints considering all hypotheses; (c) Objective function evaluations considering
only component 2. Notations remain the same.

The agent’s goal is to fully disambiguate between hypotheses by solving the cor-
responding BSP problem (minimizing (4.10)) at each planning session, considering
entropy over posterior belief components weights as a cost function. The considered
actions set at each planning session contains predefined motion primitives in all four
cardinal directions.

As we consider DA in inference as well, the number of belief components grows
exponentially in time. For a fair comparison, we utilize the same pruning heuristics,
based on a user defined weight threshold, for all approaches.

In Fig. 4.2 we see the computational merits of our approach, D2A-BSP, when there
are no budget constraints. The higher the level of ambiguity within the environment,
i.e. more hypotheses to reason about, the more prominent D2A-BSP becomes. In
this scenario, the distilled subset M s

k in each planning sessions is adapted greedily and
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incrementally, based on prior components weights, until D2A-BSP can guarantee the
same action selection as DA-BSP (Pathak et al., 2018).

Fig. 4.3 presents a scenario in which under hard budget constraints of C = 6,
DA-BSP is unable identify the best action while D2A-BSP can. Recall that we only
control the size of the prior belief, i.e. as |D| = 6 only one component can be used each
time. As can be seen, using component 1 DA-BSPQ (under budget) selects the action
RIGHT which is clearly not the best action. The bounds of D2A-BSPQ in this case
are uninformative. However, using component 2, D2A-BSPQ guarantees that LEFT is
the best action (as bounds do not overlap). While DA-BSPQ yields LEFT as well in
this case, it can only rely on heuristics to decide whether it should use component 1 or
component 2.

4.3 Longer Planning Horizons: The Nonmyopic Case

We are now ready to generalize our approach and handle longer planning horizons, i.e.,
the nonmyopic case. We note that this case is harder since reasoning about DA, without
any computational constraints, the number of considered hypotheses grows exponen-
tially with time. In general, the belief becomes a function of bk = ψk (bk−1, uk−1, Zk).
However, under hard computational constraints, the number of hypotheses is bounded
by C ∈ N. Therefore, the belief in each time step is a function of

bψk = ψC
k (bk−1, uk−1, Zk, C) , (4.23)

where ψC
k contains some heuristic function hinf such that |Mψ

k | ≤ C. This has a direct
impact on how the belief tree is constructed. This issue was never addressed while
reasoning about DA.

In this section we first describe how to construct a belief tree skeleton during plan-
ning. We then present a general framework to reduce the computational complexity
when solving a sampling based approximation of (4.4). Finally, we analyze the impli-
cations of using our proposed framework under different conditions.

4.3.1 Constructing the belief tree skeleton

Previous works addressed the exponential growth of the belief tree with the planning
horizon without reasoning about DA. In this work we analyze and describe, for the
first time, the structure of a belief tree given a mixture belief such as (4.3). In this
setting there is an additional exponential growth in the number of belief components
for every considered future observation realization (see Fig. 4.1). These realizations
are functions of future beliefs (4.3), DA realizations and actions

P(Zk+1:k+n|bk, uk:k+n−1, βk+1:k+n). (4.24)
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To construct the belief tree in practice, we sample states from beliefs, sample data
association given states and finally sample observations from (4.24).

Our key observation is that in order to construct a belief tree skeleton , i.e. without
explicitly calculating or holding posterior beliefs at each node, we can sample future
observations in two different ways. We describe these two options for a planning horizon
of n = 2. Specifically, we can either rewrite (4.24) as

P(Zk+2|bk+1|βk+1 , uk+1, βk+2)P(Zk+1|bk, uk, βk+1), (4.25)

where bk+1|βk+1 is a posterior belief and each term is evaluated by integrating over
xk+1:k+2, or, by first integrating and then applying the chain rule as∫
xk+2

P(Zk+2|xk+2, βk+2)
∫

xk+1

P(xk+2|xk+1, uk+1)P(Zk+1|xk+1, βk+1)P(xk+1|bk, uk). (4.26)

While these two expressions are analytically identical, they represent two different
processes of sampling. In the former observations are sampled from posterior beliefs,
while in the latter observations are sampled using the motion and observation models,
similar to the MCTS particle trajectories techniques (e.g., in Silver and Veness, 2010;
Ye et al., 2017).

Algorithm 2 Construct belief tree skeleton
input: prior belief bk, action sequence uk:k+n−1
output: sampled future observations Zk+1:k+n

1: Z = ∅
2: xk ∼ bk
3: for i ∈ [1, n] do
4: xk+i ∼ P(xk+i|xk+i−1, uk+i−1)
5: determine βk+i based on xk+i
6: Zk+i ∼ P(Zk+i|xk+i, βk+i)
7: Z = Z ∪ Zk+i
8: end for
9: return Z

To avoid the explicit representation of the exponential number of belief components,
in this work we sample future observations using (4.26) and bypass the inference stage.
We formulate this sampling method in Algorithm 2.

Yet, this is of little help if the posterior belief is required for calculating the cost
function itself. We next describe our approach to avoid these calculations.

4.3.2 Methodology

Recall that our goal is to reduce the computational complexity of nonmyopic BSP
problems where ambiguous DA is explicitly considered, i.e. solving (4.5) efficiently. We
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start by writing (4.4) in a recursive form

J (bk, uk:k+N−1) = c (bk, uk) + E
βk+1

[
E

Zk+1|βk+1
[J (bk+1, uk+1:k+N−1)]

]
. (4.27)

As in practice we approximate the solution via samples, we rewrite (4.27) as

Ĵ (bk, uk:k+N−1) = c (bk, uk) + Ê
βk+1

[
Ê

Zk+1|βk+1

[
Ĵ (bk+1, uk+1:k+N−1)

]]
. (4.28)

Using Bellman’s principle of optimality, the optimal solution for (4.28) is

Ĵ
(
bk, û

∗
k:k+N−1

)
= min

uk
{c (bk, uk) + Ê

βk+1

[
Ê

Zk+1|βk+1

[
Ĵ
(
bk+1, u

∗
k+1:k+N−1

)]]
}, (4.29)

where û∗
k:k+N−1 = argmin

U
Ĵ (bk, uk:k+N−1). To reduce the computational complexity in

(4.29), we propose utilizing the belief tree skeleton , without having access to posterior
beliefs, to solve an easier to compute version of the considered cost function. In general,

(a) No overlap between bounds

UB[loss]

(b) Bounds overlap

Figure 4.4: BSP using bounds over the objective function. In (a) choosing action #1 is guaran-
teed to be optimal as the corresponding upper bound is lower than all other lower bounds; In
(b) choosing action #2 is not guaranteed to be optimal. The loss in solution quality, however,
is upper bounded.

the cost function over the original beliefs can be bounded using a simplified belief bsk
as

c (bsk, uk) ≤ c (bk, uk) ≤ c̄ (bsk, uk) . (4.30)

We note that this formulation also supports replacing the cost function itself with a
computationally simpler function (e.g., as in Kitanov and Indelman, 2018).

Using the belief tree skeleton and some method to calculate the simplified beliefs,
to be defined, we now traverse the belief tree from the leafs upwards. At each belief
tree node the bounds over the objective function (4.4) are calculated recursively using

47



the Bellman equation (4.29) and (4.30) for every n ∈ [0, N − 1] such that

J
(
bk+n, u(k+n)+

)
= c

(
bsk+n, uk+n

)
+ Ê
βk+1

[
Ê

Zk+n+1|βk+1

[
J
(
bk+n+1, u(k+n)+

)]]
,

J̄
(
bk+n, u(k+n)+

)
= c̄

(
bsk+n, uk+n

)
+ Ê
βk+1

[
Ê

Zk+n+1|βk+1

[
J̄
(
bk+n+1, u(k+n)+

)]]
,

(4.31)

where u(k+n)+ ≜ uk+n:k+N−1. If these bounds do not overlap (see Fig. 4.4a), one can
guarantee to select the optimal action sequence as in (4.29).

Algorithm 3 Generic Nonmyopic Distilled Data Association BSP
input: belief tree skeleton T , simplification heuristic h, decision rule R
output: action sequence u∗, loss

1: Function ND2A-BSP(T, h,R)
2: LB∗, UB∗, loss = PLAN (T.root, h,R)
3: u∗ ← corresponding to LB∗, UB∗

4: return u∗, loss
5:
6: Function PLAN(Node, h,R)
7: Node.bsk+n ← h (Node)
8: if Node is a leaf
9: return c

(
Node.bsk+n

)
, c̄
(
Node.bsk+n

)
, 0 // loss = 0 at leaf

10: Node.bounds = ∅
11: foreach child C of Node do
12: lb, ub, loss← ND2A-BSP(C, h,R)
13: LB ← c

(
Node.bsk+n

)
+ lb // objective lower bound (4.31)

14: UB ← c̄
(
Node.bsk+n

)
+ ub // objective upper bound (4.31)

15: Node.bounds = Node.bounds ∪ (LB,UB)
16: while R (Node.bounds) is not satisfied do
17: ND2A-BSP(Node, h,R) // further simplification is needed
18: LB∗, UB∗, loss← Node.bounds
19: return LB∗, UB∗, loss

Our general Nonmyopic Distilled Data Association BSP (ND2A-BSP) approach is
presented in Algorithm 3. The algorithm receives a belief tree skeleton ; a heuristic
function h used to select the subsets of hypotheses in each belief tree node, i.e. defines
bsk+n; and a decision rule R which decides whether the considered subsets are enough,
e.g. when no overlap between bounds is required or when calculations exceed a user
defined time threshold, providing anytime performance guarantees. The algorithm
returns the best action sequence, given the computational constraints, and an upper
bound on the loss in solution quality.

It is worth mentioning that our approach can be adapted to a setting where the
belief tree construction is coupled with Q function estimates, e.g. using MCTS and
Upper Confidence Bound (UCB) techniques (Silver and Veness, 2010), following a sim-
ilar approach to the one presented in Sztyglic et al., 2021. However, we emphasize that
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as the belief tree skeleton approximates (4.27) via samples, our method provides per-
formance guarantees with respect to that specific skeleton , i.e. with respect to (4.29).
Not to be confused with the asymptotic guarantees of MCTS approaches, with respect
to the theoretical problem (4.27), which is an entirely different aspect not related to
the approach presented in this work.

We now analyze different settings, within inference and planning, where the agent
either has or does not have hard budget constraints. To the best of our knowledge,
this is the first time that these aspects are addressed in works that attempt to reduce
the computational complexity of the planning problem. The differences between the
considered settings are summarized in Table 4.1.

budget constraints in inference budget constraints in planning
Case 1 % %

Case 2 % !

Case 3 ! %

Case 4 ! !

Table 4.1: A summary of the considered scenarios, with respect to budget constraints on the
number of supported hypotheses in each algorithm, for each considered case. Cases 1&2 are
presented in Section 4.3.3 while cases 3&4 are presented in section 4.3.4

.

4.3.3 Inference without Budget Constraints

In this section we assume that there are no constraints in inference, i.e. each belief tree
node can theoretically hold every possible hypothesis within the planning horizon. The
objective of inference however is different than the main goal of BSP. In inference the
agent tries to represent the considered state as accurately as possible while in planning
the goal is to retrieve the optimal action sequence or policy. As such, in this setting,
the problems are decoupled (see Fig. 4.5a).

We now further separate between two cases, when the planning algorithm either has
budget constraints or not. In both cases, each belief tree node still has an exponential
number of components, which we avoid calculating explicitly.

Case 1

With no budget constraints in planning we propose bounding the cost function as

c
(
bk, uk+, Z(k+1)+, b

s
k+n

)
≤ c (bk+n, uk+n) ≤ c̄

(
bk, uk+, Z(k+1)+, b

s
k+n

)
. (4.32)

where uk+ ≜ uk:k+n−1 and Z(k+1)+ ≜ Zk+1:k+n. A key difference from the approach
presented in Sztyglic and Indelman, 2022 is that these bounds are not functions of bk+n.

To manage the exponential growth in the number of belief components, we refrain
from calculating c (bk+n). Instead, we calculate a simplified belief bsk+n, using Bayesian
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updates via uk:k+n−1 and Zk+1:k+n, only for specific components from the prior belief
bk. Each simplified belief is formally defined, using M s

k+n ⊆Mk+n components, as

bsk+n ≜
∑

r∈Ms
k+n

ws,rk+nb
r
k+n , ws,rk+n ≜

wrk+n
wm,sk+n

, (4.33)

where wm,sk+n ≜∑
m∈Ms

k+n
wmk+n is used to re-normalize each corresponding weight. Most

importantly, a simplified belief bsk+n is calculated using only a subset of hypotheses, i.e.
without calculating the posterior belief bk+n.

Using Algorithm 3 given a decision rule R, with no overlap between bounds (4.31),
and a heuristic h, e.g. which chooses hypotheses greedily based on prior weights, we
guarantee the selection of the optimal actions sequence, with respect to the specific
belief tree, while reducing the computational complexity.

u
k

z
k+1

u

z
k+2

k+1

(a)

u

k

z
k+1

u

z
k+2

k+1

(b)

Figure 4.5: No budget constraints in inference. Each belief tree node holds different hypotheses
denoted by colored particles. Different colors belong to hypotheses generated from previous
time steps. (a) Planning without budget constraints, the algorithm can choose any subset
of components, highlighted in yellow, in each node to evaluate the bounds; (b) With budget
constraints in planning, each subset selection is bounded in size by C = 2.

Case 2

Under budget constraints in planning, the algorithm can use up to C components, in
each simplified belief bsk+n, to calculate the bounds in (4.32). Yet, each subset of compo-
nents is chosen independently w.r.t. bk+n which develops exponentially, i.e. hypotheses
chosen in time steps k + n and k + n+ i are not necessarily related (see Fig. 4.5b).

In this setting, the number of possible distilled subsets for each bsk+n is
(|Mk+n|

C
)
which

can be very high. Moreover, there are no guarantees that the bounds between candidate
actions would not overlap. However, using the bounds in (4.32), our proposed approach
can yield the worst-case loss in solution quality, i.e. provide performance guarantees
(see Fig. 4.4b).
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4.3.4 Hard budget constraints in inference

In the previous section we only considered that the belief at the root of the tree is
provided from inference. As the posterior beliefs within the constructed belief tree
were with an exponentially increasing number of components, i.e. without budget con-
straints, the key idea was to avoid making explicit inferences. Instead, we calculated
bounds that utilized, under budget constraints in planning, a fixed number of com-
ponents. In practice, however, real world autonomous systems do not work that way.
Instead, they are often required to operate in real time using inexpensive hardware
with hard computational budget constraints in both inference and planning.

Under hard budget constraints on the number of considered hypotheses in inference,
the posterior belief in each belief tree node is determined by (4.23), i.e. |Mψ

k+n| ≤ C
under some heuristic hinf . Moreover, once a hypothesis is discarded in time step k it is
no longer considered in future time steps. Yet, the decision regarding which components
to choose, while calculating the bounds in planning, depends on either if the heuristic
in (4.23) is given or determined within planning. To the best of our knowledge, the
latter is a novel concept never considered.
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Figure 4.6: Hard budget constraints in inference. Each belief tree node holds different hypothe-
ses denoted by colored particles. Different colors belong to hypotheses generated from previous
time steps. (a) Planning given the heuristic in inference, the algorithm can only evaluate the
bounds using components that represent how the belief would evolve in inference; (b) The
planning algorithm is free to choose components under any valid heuristics in inference given
the budget C. Each selected component in time step k + n + 1 must originate from a selected
component in time step k + n.

Case 3

In this setting we consider the heuristic in (4.23) to be given within planning, i.e.
posterior belief tree nodes exactly represent how the belief would evolve in inference
under (4.23). In contrast to Section 4.3.3, as the number of components does not
grow exponentially, we sample future observations according to (4.25) and construct
the belief tree explicitly, i.e. perform inference in each node. Therefore, the planning
algorithm can no longer choose any subset of components for each bsk+n, i.e. hypotheses
discarded in time step k+n cannot be considered in time step k+n+ 1 (see Fig. 4.6).

51



The bounds over the considered cost are now a function of the belief in the previous
time step under (4.23). Specifically, we rewrite them as

c
(
bψk+n−1, uk+n−1, Zk+1, b

s
k+n

)
≤c
(
bψk+n, uk+n

)
≤ c̄

(
bψk+n−1, uk+n−1, Zk+1, b

s
k+n

)
. (4.34)

These bounds represent a recursive setting in contrast to the bounds in (4.32).

Using our approach iteratively in each time step, reduces the computational com-
plexity of the considered cost function in planning while providing performance guar-
antees. As each posterior belief is determined by inference (Fig 4.6a), performance
guarantees are with respect to the given heuristic in inference (4.23).

Case 4

We now relax the assumption that the planning algorithm is confined to the specific
heuristic in (4.23). Unlike in Case 2, where each subset of components can be used
in each node to calculate the bounds, this setting has an additional constraint. We
formulate this by representing the bounds from (4.32) in two consecutive time steps

c
(
bk, uk+, Z(k+1)+, b

s
k+n

)
≤ c (bk+n) ≤ c̄

(
bk, uk+, Z(k+1)+, b

s
k+n

)
,

c
(
bk, uk+, Z(k+1)+, b

s
k+n+1

)
≤ c (bk+n+1) ≤ c̄

(
bk, uk+, Z(k+1)+, b

s
k+n+1

)
,

s.t.
∣∣M s

k+n
∣∣ , ∣∣M s

k+n+1
∣∣ ≤ C and ∀bs,ijk+n+1 ∈ b

s
k+n+1 ⇒ bs,jk+n ∈ b

s
k+n,

(4.35)

where bs,jk+n denotes the jth hypothesis in the simplified subset bsk+n and bs,ijk+n+1 denotes
the ith hypothesis in the simplified subset bsk+n+1, originated from bs,jk+n, i.e. as in Fig.
4.1b.

The components chosen in the sequence of bounds (4.35) which minimizes the loss,
w.r.t. the original problem, define a heuristic hp⋆ (see Fig. 4.9c), which is valid in
inference. The heuristic hp⋆ can be used with any BSP approach to solve (4.29) and
to reduce computational complexity, using our approach, as described in Case 3. To
the best of our knowledge, leveraging hp⋆ is a novel concept. We note that while
hp⋆ minimizes the loss in planning, it is generally different than hinf . As such, the
implications of utilizing such heuristic in inference are not straightforward. The study
of such mechanism is left for future research.

4.3.5 Information Theoretic Cost Function

While the formulation thus far was for a general cost function, in this section we focus
on active disambiguation of hypotheses. Specifically, we utilize the Shannon entropy,
defined over posterior belief components weights. The cost for a belief bk+n with Mk+n

52



components is thus given by

Hk+n ≜ c (bk+n) = −
∑

r∈Mk+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
, (4.36)

where ηk+n ≜∑
r∈Mk+n

wrk+n. Similarly, for a simplified belief bsk+n withM s
k+n ⊆Mk+n

the cost is given by

Hsk+n ≜ c
(
bsk+n

)
= −

∑
r∈Ms

k+n

ws,rk+nlog
(
ws,rk+n

)
. (4.37)

Theorem 8. For each belief tree node representing a belief bk+n withMk+n components
and a subset M s

k+n ⊆Mk+n the cost can be expressed by

Hk+n =
wm,sk+n
ηk+n

[
Hsk+n + log

(
ηk+n
wm,sk+n

)]
−

∑
r∈¬Ms

k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
, (4.38)

where ¬M s
k+n ≜Mk+n \M s

k+n.

Using Theorem 8, we derive bounds for Hk+n which are computationally more efficient
to calculate as we only consider a subset of hypotheses. However, as evaluating ηk+n

requires by definition evaluating all posterior components weights, which we do not
have access to, we need to bound this term as well (denoted below as LB [ηk+n] and
UB [ηk+n]).

Theorem 9. Given a subset of components M s
k+n ⊆Mk+n, the cost term in each belief

tree node is bounded by

LB [Hk+n] =
wm,sk+n
UB [ηk+n]

[
Hsk+n + log

(
LB [ηk+n]
wm,sk+n

)]
, (4.39)

UB [Hk+n] =
wm,sk+n
LB [ηk+n]

[
Hsk+n + log

(
UB [ηk+n]
wm,sk+n

)]
− γ̄log

(
γ̄

|¬Mk+n|

)
, (4.40)

where γ̄ = 1−
∑
r∈Ms

k+n

wr
k+n

UB[ηk+n] and
∣∣∣¬M s

k+n

∣∣∣ > 2.

Furthermore, considering different levels of simplifications, i.e. adding belief compo-
nents to M s

k+n, these bounds converge.

Corollary 4. The bounds in Theorem 9 converge to Hk+n when M s
k+n →Mk+n

lim
Ms

k+n
→Mk+n

LB [Hk+n] = Hk+n = UB [Hk+n] . (4.41)

A recursive update rule is given in Appendix B.3.1.
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Theorem 10. Given a subset of components M s
k+n ⊆ Mk+n, the term ηk+n, in each

belief tree node, is bounded by

LB [ηk+n] = wm,sk+n ≤ ηk+n ≤ wm,sk+n +

 |Mk+n|
|Mk|

−
∑

r∈Ms
k+n

wrk

 n∏
i=1

σi = UB [ηk+n] ,

(4.42)

where σi ≜ max (P (Zk+i|xk+i)) and wrk is the prior weight at time k for every component
in M s

k+n at time k + n.

As in Theorem 9, since we only consider a subset of hypotheses, these bounds are also
computationally more efficient to calculate and converge. We also note that specifically
for Case 3, the bounds in Theorem 9 and Theorem 10 are calculated iteratively in each
time step k + n given the belief bψk+n−1 as presented in (4.34).

Corollary 5. The bounds in Theorem 10 converge to ηk+n when M s
k+n →Mk+n

lim
Ms

k+n
→Mk+n

LB [ηk+n] = ηk+n = UB [ηk+n] . (4.43)

A recursive update rule is given in Appendix B.3.2.

4.3.6 Experimental Results

We evaluate the performance of our approach for the different cases presented. Our
prototype implementation uses the GTSAM library (Dellaert, 2012). Our considered

(a) (b) (c)

Figure 4.7: (a) The floors environment where F identical floors represent different prior
hypotheses. Each floor contains a unique landmark. The true location of the agent is highlighted
in yellow; (b) The 2d_random environment with many identical landmarks. The agent is initially
placed in front of a blue square with no other prior information; (c) A planning session where
ambiguous DA results in two hypotheses denoted by the yellow and blue ellipses.

scenarios represent highly ambiguous environments containing perceptually identical
landmarks in different locations. In our first scenario, floors, the agent is initially
located in one of F floors such that each floor contains a unique landmark, specific to
that floor (Fig. 4.7a). In our second scenario, 2d_random, the agent is initially placed
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in a random environment in front of a blue square (Fig. 4.7b). Both scenarios can be
considered as versions of the kidnapped robot problem. With no other prior informa-
tion, the initial belief, in both cases, is multi-modal containing |M0| hypotheses. The
agent captures the environment using range measurements containing a class identi-
fier, e.g. red triangle or green square. When the agent receives a measurement to some
landmark which is ambiguous, i.e. it can theoretically be generated from more than
one landmark, the number of hypotheses grows (see Fig. 4.7c). The number of iden-
tical landmarks can be adjusted to represent higher ambiguity, increasing the number
of considered hypotheses. The agent’s goal is to disambiguate between hypotheses by
solving the corresponding BSP problem (4.5) at each planning session using entropy
over posterior belief components weights as a cost function.
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Figure 4.8: Case 1 study for floors and 2d_random environments. All scenarios presented carry
zero loss. (a),(d) Planning time as a function of the planning horizon. In both environments, all
settings the considered 4 prior hypotheses; (b),(e) Planning time as a function of the number
of prior hypotheses. In both environments, all settings considered a planning horizon of 3;
(c),(f) % components used to calculate bounds in each level of the belief tree. Circles scales are
normalized as the number of nodes grows exponentially going down the tree. Less components
are used to calculate the bounds as tree depth increases. This is expected, as with longer
horizons less components are needed for disambiguation.

In our first experiment we consider Case 1. We compare our approach with eval-
uating the cost function over the original belief, i.e. considering every possible future
hypothesis. The heuristic in planning chooses the subset of components for each belief
tree node greedily based on prior weights at time k. The decision rule R was set as no
overlap, i.e. no loss with guaranteed optimal solution. The computational merits of our
approach are presented in Fig. 4.8. Moreover, in Fig. 4.8c,4.8f we can see that with
a longer planning horizon the subset of hypotheses used for disambiguation becomes
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smaller. As more observations are utilized along the horizon, it is easier to discard
wrong hypotheses in our considered cases.
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Figure 4.9: (a) Normalized loss as a function of the size of the budget in Case 2. In all settings
the number of floors, i.e. prior hypotheses was set to 12; (b) Normalized loss along the depth of
a belief tree in Case 2 with C = 3 components and a planning horizon of n = 2; (c) Normalized
loss as a function of the size of the budget in Case 4, i.e. considering every valid heuristic in
inference hp_candidate. When C ≤ 6, the heuristic hp⋆ induces a smaller loss than hinf . When
C > 6, both hp⋆ and hinf induce zero loss, i.e. are optimal in this setting.

In our second experiment we consider Case 2. In Fig. 4.9a we present the loss as
a function of the budget size. As expected, with higher budget constraints the loss
in solution quality becomes smaller. Moreover, as can be seen in Fig. 4.9b the loss is
higher closer to the root of the belief tree, as bounds are accumulated in the non-myopic
setting, increasing the overlap.

Considering Case 3, our experiments did not show any computational improvements
between calculating the original cost function and using our approach. We indicate that
this is because there is no exponential growth in the number of hypotheses within the
horizon and our considered cost function is linear w.r.t. the number of components.
However, using a different cost, which is beyond the scope of this work, our approach
can reduce the computational complexity while providing guarantees in Case 3 as well
(as seen in Sztyglic and Indelman, 2022).

Finally, we consider Case 4. We first report that under this setting the computa-
tional complexity is high as every possible heuristic under the given budget is consid-
ered. In Fig. 4.9c preliminary results indicate that this process can improve the bounds
over the loss in solution quality vs a given heuristic hinf .
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Chapter 5

A Slices Perspective for
Incremental Nonparametric
Inference

In the previous chapter, we assumed that beliefs could be represented as a weighted
linear combination of parametric models. Our aim now is to extend this research to
address nonparametric posterior beliefs, which can have arbitrary shapes. To achieve
this, we begin by examining the nonparametric inference problem.

Substantial research efforts have been made in recent decades to develop probabilis-
tic inference algorithms that are robust, accurate and capable of real time performance.
These efforts often rely on various assumptions to achieve their objectives. Perhaps the
most frequently employed assumption is that the actual posterior distribution can be
approximated using a parametric Gaussian model. However, in real-world problems, the
posterior distribution is often non-Gaussian, having multiple modes or a nonparametric
structure. Due to the complex, non-Gaussian nature of such posterior distributions,
obtaining closed-form analytical solutions is challenging and frequently impractical.

To approximate and model such non-Gaussian posterior distributions, modern non-
parametric methods use different variants of the forward-backward algorithm, exploiting
graphical models such as factor graphs (Kschischang et al., 2001) and BT (Kaess et al.,
2012). In these methods, samples are generated at each step to reconstruct intermediate
distributions through techniques such as KDE and various learning procedures.

Our key observation is that these distributions can be directly reconstructed without
the need for any additional learning techniques or KDE. This is accomplished by access-
ing slices from high-dimensional surfaces that represent partial joint distributions (Fig.
5.1). By circumventing these processes, our approach proves to be computationally
more efficient, requires significantly less samples and produces more accurate results,
as supported by our experimental findings.

Our main contributions in this chapter are as follows:
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X

Y

(a) (b)

Figure 5.1: (a) The factor graph of a small probabilistic inference problem containing two
variable nodes X,Y and two factor nodes f(X), f(X,Y ) indicated as small solid black circles;
(b) A high-dimensional surface representing the joint distribution P(X,Y ). Each red slice, at
a specific realization Y = y, represents a conditional distribution P(X|Y = y). The marginal
distribution P(X), shown in blue, is calculated by integrating over all conditional slices.

1. We introduce a nonparametric inference approach which leverages slices from
high-dimensional surfaces to approximate joint and marginal posterior distribu-
tions without any further intermediate reconstructions.

2. Unlike previous methods, ours does not require any iterative procedures nor
breaking the underlying graphical model to generate samples in each step, even
in cases where unary factors are not available.

3. We show how to utilize our slices perspective for nonparametric incremental in-
ference and propose a novel early stopping heuristic criteria to further speed up
calculations.

4. Our approach requires less samples and consistently outperforms state of the
art nonparametric inference algorithms in terms of accuracy and computational
complexity. This superiority is evident across evaluations conducted on both
synthetic and real-world datasets, with improvements in time complexity reaching
up to an order of magnitude.

Our proposed inference approach is general and can be effectively employed in various
estimation problems such as tracking, sensor fusion, Bundle Adjustment (BA), Struc-
ture from Motion (SfM) and SLAM. In this particular work, we focus on demonstrating
our approach within the framework of SLAM.

5.1 Background and Notations

Some of the following notations are rewritten once again for convenience.

58



Consider a SLAM framework in which an autonomous agent is operating in a par-
tially known environment. At each time step k the agent takes an action uk and
acquires an observation Zk ≜ {z1

k, .., z
n
k } based on n measurements. The motion and

observation models are given by

xk+1 = f (xk, uk, wk) , zk = h
(
xk, x

l, vk
)
, (5.1)

where xl denotes a landmark pose and wk, vk are noise terms, sampled from known
motion and measurement distributions, respectively. In this work specifically, while
the motion and measurement distributions are known, they can have any arbitrary
shape, i.e. not necessarily Gaussian.

We denote the set of all state variables, including all agent poses and observed
landmarks, by Θ. Given all actions and measurements, the joint pdf, the belief, is
given by

bk[Θ] ≜ P(Θ|u0:k−1, Z0:k) = P(Θ|D), (5.2)

where D ≜ {b0, u0:k−1, Z0:k} represents all available data at time instant k. To reduce
clutter, we omit time notations from hereon, and refer to the above joint density as
P(Θ|D). Our goal is to compute the joint posterior distribution (5.2) and marginal
posterior distributions P(θ|D) , ∀θ ∈ Θ.

x1 x2 x3

l1 l2

(a) Factor graph

x1 x2 x3

l1 l2

(b) Bayes net

Figure 5.2: (a) A factor graph formulation of a SLAM problem with five variable nodes and
seven factor nodes. Factor nodes represent probabilistic information over random variables. In
this example, factor nodes include: a prior f(x1), odometry measurements f(x1, x2), f(x2, x3)
and landmark measurements f(x1, l1), f(x2, l1), f(x2, l2), f(x3, l2). The factor graph represents
a factorization of the joint distribution as a product of all factors; (b) The corresponding
Bayes net after performing variable elimination on the factor graph using the elimination order
O = {θ1 = x1, θ2 = l1, θ3 = x2, θ4 = l2, θ5 = x3}. The joint distribution is expressed as the
product of conditionals produced in each step as P(x1, x2, x3, l1, l2) = P(x1|x2, l1) · P(l1|x2) ·
P(x2|x3, l2) · P(l2|x3) · P(x3).

We use a factor graph model to represent the joint posterior distribution (Fig. 5.2a).
A factor graph G = (F ,Θ, E) is a bipartite graph with two types of nodes: factor nodes
f ∈ F and variable nodes θ ∈ Θ. The variable nodes represent the random variables in
the estimation problem, whereas the factor nodes represent probabilistic information
on those variables. The edges in E encode connectivity based on the variables associ-
ated with each factor, with each edge e(f, θ) ∈ E linking a factor node to a variable
node. This probabilistic graphical model represents a factorization of the posterior
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distribution in terms of process and measurement models

P(Θ|D) ∝
∏
i

fi (Θi) , (5.3)

where Θi = {θ | ∃e(fi, θ) ∈ E} is the set of all variables adjacent to factor fi. In this
work we assume for simplicity that only unary and pairwise factors exist in G, i.e. each
f ∈ F can be connected with up to two variable nodes.

A common approach for computing the posterior distribution (5.2) and the posterior
marginals P(θ|D) , ∀θ ∈ Θ is the forward-backward algorithm which operates in two
passes given a specific variable ordering O ≜ ord(Θ).

During the forward pass, the factor graph is gradually transformed into a Bayes net
(Pearl, 1988) through a bipartite elimination game (Heggernes and Matstoms, 1996). In
each step, a single variable is eliminated from the factor graph following the elimination
order O, starting with a variable linked to a prior factor. Specifically, each step begins
with a factor graphGj−1 = (Fj−1,Θj−1, Ej−1), whereG0 = G by convention. A variable
node θj , representing the jth variable in O, and all factors Fj−1(θj) ≜ {f | ∃e(f, θj) ∈
Ej−1} are first removed from Gj−1 along with the corresponding edges, i.e. Ej−1(θj) ≜
{e(f, θ) | f ∈ Fj−1(θj), θ ∈ Θj−1}. All variables involved in Ej−1(θj), except for θj ,
define a separator Sj representing the Markov blanket of variable node θj in Gj−1.
Next, a joint density is defined by the product of all removed factors as

Pjoint (θj , Sj |Dj)= η−1
j

∏
fi∈Fj−1(θj)

fi(Θi), (5.4)

where η−1
j is a normalizing term and Dj represents all available data given by all factors

removed up to and including the elimination of θj , i.e. all data in F \ Fj . Using the
chain rule, the joint density (5.4) is then factorized as

Pjoint (θj , Sj |Dj) = P(θj |Sj , Dj)fnew (Sj |Dj) . (5.5)

The conditional P(θj |Sj , Dj) is added as a new node to the Bayes net and the factor
fnew (Sj |Dj) is added into the factor graph Gj . Formally, each Gj = (Fj ,Θj , Ej) is
recursively defined by

Fj = Fj−1 \ Fj−1(θj) ∪ {fnew (Sj |Dj)},

Θj = Θj−1 \ {θj},

Ej = Ej−1 \ Ej−1(θj) ∪ {e(fnew (Sj |Dj) , θ) | θ ∈ Sj}.

Note that in each intermediate step we have both an incomplete Bayes net and a
reduced factor graph which defines a density on the remaining variables.

Once all variables were eliminated the forward pass is completed. The joint distri-
bution (5.3) can then be expressed as the product of conditionals produced in each step
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as

P(Θ|D) =
|Θ|∏
j=1

P(θj |Sj , Dj), (5.6)

which defines the Bayes net (Fig. 5.2b). The marginal distribution P(θj |D), for each
variable θj , is calculated using backsubstitution in a second, backward pass. Starting
from the last eliminated variable and following the elimination order O in reverse, each
marginal P(θj |D) is calculated by integrating over Sj

P(θj |D) =
∫
Sj

P(θj , Sj |D) dSj =
∫
Sj

P(θj |Sj , D) · P(Sj |D) dSj . (5.7)

Note that by definition, the separator for the last eliminated variable is an empty set,
thereby yielding the direct marginal of the last eliminated variable. A key observation
is that due to conditional independence P(θj |Sj , D) = P(θj |Sj , Dj). As such, each
marginal can be rewritten as

P(θj |D) =
∫
Sj

P(θj |Sj , Dj) · P(Sj |D) dSj . (5.8)

In this work, we put forth a solution that extends to cases where no closed form
solutions for calculating the marginal posterior distributions exist and the noise terms
are non-Gaussian. In such cases, posterior distributions must be approximated.

5.2 Methodology

Our key observation is that a joint probability function, for several random variables,
can be seen as a high-dimensional surface from which conditional and marginal distri-
butions can be calculated. For example, consider the joint distribution P(X,Y ) over
two random variables X and Y . Using the chain rule, we rewrite the joint distribution
as

P(X,Y ) = P(X|Y ) · P(Y ), (5.9)

where the conditional P(X|Y ) is given by a specific slice from the high-dimensional
surface for each realization of Y . See illustration in Fig 5.1.

The marginal distribution P(X) is calculated using the Chapman-Kolmogorov tran-
sit integral

P(X) =
∫
Y
P(X|Y ) · P(Y ) dY. (5.10)

As there is no closed form solution for (5.10) in the general case, it can be approximated
using N samples of Y from P(Y ). The corresponding estimated marginal is given by
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P̂ (X) = Ê
y∼P(Y )

[P(X|Y = y)]= 1
N

N∑
i=1

P(X|Y = yi). (5.11)

Put differently, evaluating (5.11) can be seen as accessing the high-dimensional surface
at specific sample points of Y in order to extract a mixture of conditional slices over
X. Moreover, when N →∞ this approximation is guaranteed to converge to the true
analytical solution.

5.2.1 Inference Using Slices

For nonparametric inference, our proposed approach leverages the forward-backward
algorithm presented in Sec. 5.1. For each eliminated variable θj in the forward pass,
the joint density defined in (5.4) is factorized into a conditional and a marginal via
(5.5) which is rewritten once again for convenience

P (θj , Sj |Dj) = P(θj |Sj , Dj)fnew (Sj |Dj) . (5.12)

This factorization serves as the pivotal step through which information propagates
across the algorithm. In strike contrast to existing approaches that depend on inter-
mediate density reconstructions, our primary contribution is the direct use of slices
to approximate both fnew (Sj |Dj) and the conditional P(θj |Sj , Dj). We rigorously de-
scribe how our slices perspective is systematically employed throughout the algorithm.

Forward Pass

We start by explicitly writing the term fnew (Sj |Dj) =
∫
θj
Pjoint (θj , Sj |Dj) dθj in (5.12)

as

fnew (Sj |Dj) = η−1
j

∫
θj

∏
fi∈Fj−1(θj)

fi(Θi) dθj , (5.13)

where η−1
j is a normalizing term. As there is no closed form solution for (5.13), it must

be approximated. While other approaches use additional intermediate approximations,
such as KDE (e.g, in Fourie et al., 2016) or learning techniques (e.g., in Huang et al.,
2023), we employ slices as a more direct and effective means of approximation. We
note that we assume the ability to access such high-dimensional slices, an assumption
shared with mm-iSAM, NF-iSAM, and NSFG. By generating N samples of θj from
some factor f ′ ∈ Fj−1(θj), a standard Monte Carlo estimator of (5.13) is given by

f̂new (Sj |Dj) =
η−1
j

N

N∑
n=1

∏
fi∈Fj−1(θj)\{f ′}

fi
(
θnj ,Θi\{θj}

)
, (5.14)
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where Θi \ {θj} ⊆ Sj and each fi ∈ Fj−1(θj) \ {f ′} is evaluated using the samples of
θj . In a slices perspective, for each sample θnj , a high-dimensional conditional slice over
Θi \ {θj} is retrieved from every non-unary factor fi ∈ Fj−1(θj). We acknowledge a
slight misuse of notation, as Dj is no longer purely theoretical due to the fact that the
conditioned data is approximated at each step by f̂new (see Example below).

x1 x2

l1

(a)

l1

x1 x2

(b)

Figure 5.3: Generating samples during variable elimination; (a) A subset of three variables
x1, x2, l1 from a larger factor graph. The given elimination order is O = {θ1 = x1, θ2 = l1, ...}.
When eliminating x1, samples of x1 are directly obtained from f(x1) to approximate the new
factor f̂new(l1, x2|D1) with slices via (5.14); (b) When eliminating l1, samples of l1 are obtained
according to Lemma 2 from f̂new(l1, x2|D1). Even without a unary factor on l1, our slices
approach provides a method to directly generate samples of l1.

Obtaining samples of θj is essential for approximating (5.13). However, generating
these samples becomes non-trivial when no unary factor f ∈ Fj−1(θj) is available for
direct sampling. To handle this issue, mm-iSAM employs multiscale Gibbs sampling,
which is computationally expensive. In contrast, both NF-iSAM and NSFG break the
factor graph to chain like structures and generate samples using ancestral sampling,
which does not leverage loop closure factors. Through direct approximation of (5.13)
with slices in each step, our approach eliminates the need for iterative procedures
or factor graph decomposition into chain-like structures for generating samples of θn.
Unlike previous methods, this holds true even in the absence of unary factors.

Lemma 2. Given a factor graph G = (F ,Θ, E) and an elimination order O, if each
eliminated variable θj ∈ Θ either has a unary factor connected to it, i.e. ∃f(θj) ∈
Fj−1(θj) or, ∃θi ∈ Θ such that θi was previously eliminated and f(θi, θj) ∈ F , then
samples of θj can be drawn from one of the factors Fj−1(θj).

Example: We demonstrate how Lemma 2 is utilized to draw samples when there
are no unary factors using the example in Fig. 5.3. After eliminating the first variable
θ1 = x1, a new factor f̂new(l1, x2|D1) is added to the factor graph. Consequently,
the second variable to be eliminated, θ2 = l1, lacks any unary factors at this stage.
According to (5.4), the joint density Pjoint(l1, x2|D2) is given by

Pjoint (l1, x2|D2) = f̂new (l1, x2|D1) · f(l1, x2), (5.15)
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and is factorized, according to (5.5), as

Pjoint (l1, x2|D2) = P(l1|x2, D2) · fnew (x2|D2) , (5.16)

given the separator S2 = {x2}. As previously stated, it is important to note that D2

does not encompass all raw data up to this point. Instead of D2 = {b0, u1, z1, z2}, where
b0 ≡ f(x1) is given by the prior, we have D2 = {f̂new (l1, x2|D1) , z2} due to the approx-
imation from the previous elimination step. We write fnew (x2|D2) explicitly, following
(5.13) and considering the estimator f̂new(l1, x2|D1) obtained via (5.14). Denoting it
intermediately by f̃new(x2|D2) and changing the order of the integral and summation,
yields

f̃new (x2|D2) = η−1

N

N∑
n=1

f (xn1 , x2)
∫
l1
f (xn1 , l1) · f (l1, x2) dl1. (5.17)

We can now exploit the unary structure of f (xn1 , l1), for each xn1 , to generate samples
of l1 and approximate (5.17) as

f̂new (x2|D2) = η−1

N2

N∑
n1=1

f (xn1
1 , x2)

N∑
n2=1

f (ln1,n2
1 , x2) .

Unlike other methods, as previously discussed, our slices approach exclusively utilizes
structure for sample generation when there are no unary factors.

We next turn our attention to the conditional term P(θj |Sj , Dj) in (5.12). By
utilizing f̂new, given by (5.14), and replacing (5.4), an estimator of the conditional is
obtained

P̂(θj |Sj , Dj) =
∏
fi∈Fj−1(θj) fi (Θi)

1
N

∑N
n=1

∏
fi∈Fj−1(θj)\{f ′} fi

(
θnj ,Θi \ {θj}

) . (5.18)

We note that the normalization term η−1
j cancels out. Moreover, there is no need

to explicitly calculate η−1
j in (5.14) as intermediate new factors created during the

forward pass are only used to generate samples of Sj . During the backward pass, slices
from the high-dimensional surface representing the numerator, are used to approximate
the conditional (5.18) as described next.

Backward Pass

Once the forward pass concludes, we utilize a similar slices perspective, leveraging
the constructed Bayes net, to retrieve the joint and marginal posterior distributions.
Following the elimination order O in reverse, we obtain an estimator of the marginal
(5.7) for each variable θj . This is achieved by utilizing the estimator of the conditional
P(θj |Sj , Dj), which was already evaluated during the forward pass (5.18), and samples
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of Sj directly obtained from the marginal P̂(Sj |D) which is given by a mixture of slices.
Specifically, given N samples of Sj ∼ P̂(Sj |D), the estimator is given by

P̂(θj |D) = 1
N

N∑
n=1

P̂(θj |Snj , Dj), (5.19)

which is by itself also a mixture of high-dimensional slices. For each sample Snj , a
high-dimensional conditional slice over θj is retrieved from every non-unary factor fi ∈
Fj−1(θj). The weight of each slice is given by evaluating the denominator of (5.18) at
sample point Snj . We note that (5.19) represents the marginal as a distribution. As
such, we can both sample from the marginal and evaluate the likelihood for a given
sample.

Similarly, the joint posterior distribution (5.2) can also be approximated. By re-
placing each conditional in (5.6) with (5.18), we can explicitly represent the joint dis-
tribution from which we can also both sample and evaluate the likelihood for a given
sample. Sampling from the joint distribution is done by following the elimination order
O in reverse. We first generate a sample of the last eliminated variable directly from
the corresponding marginal. Next, we recursively sample each variable from the corre-
sponding conditional (5.18), given a sample of the separator, to obtain a single sample
from the joint distribution.

Up to this point, our approach has focused on a batch processing method applied
to a given factor graph. However, in real-world applications, a real-time online solution
is needed. This requires continuous updates and providing estimates whenever new
measurements are added.

5.2.2 Incremental Inference with Early Stopping Heuristic

Incremental inference was initially developed for the Gaussian case (Dellaert and Kaess,
2006; Kaess et al., 2008; Kaess et al., 2012). The underlining observation in these ap-
proaches is that the addition of new measurements affects only specific parts the original
factor graphs. As a result, there’s no need to redo the entire forward-backward inference
process. Instead, an incremental forward pass is conducted, focusing computations
solely on the affected variables. This process, termed re-elimination, significantly re-
duces computational costs by reusing previously computed information and selectively
updating relevant sections of the factor graph (See Algorithm 1 in Indelman et al.,
2015b for a simplified version). Furthermore, performing full backsubstitution in every
iteration can be computationally expensive, particularly in large-scale problems with
complex factor graphs. Consequently, iSAM2 (Kaess et al., 2012) incorporated an early
stopping heuristic in the downward pass to significantly reduce computational cost in
the non-linear Gaussian case.

By utilizing the BT (Kaess et al., 2012), both mm-iSAM (Fourie et al., 2016) and
NF-iSAM (Huang et al., 2023) achieve nonparametric incremental inference capabilities.
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Nevertheless, these algorithms restrict the application of incremental aspects solely to
the upward pass, while the entire downward pass is executed anew. Moreover, training
new conditional samplers for affected variables in NF-iSAM, during re-elimination, must
be performed from scratch, resulting in computational inefficiency.

To integrate incremental aspects into both the forward and backward passes, we
suggest the adoption of re-elimination and an early stopping heuristic. This combina-
tion, which serves to notably diminish computational complexity, is a novel concept
introduced for the first time in a nonparametric setting to the best of our knowledge.

We employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) metric
as a heuristic for early stopping of the backward pass. The MMD is a metric used to
assess the dissimilarity between two probability distributions, relying on samples. Dur-
ing the backward pass of each incremental step, we calculate and cache the most recent
marginal distributions. Given a new marginal and a previously found marginal for a
given variable, we use the MMD metric to evaluate the distance between the two distri-
butions. If this distance is below a user defined threshold, we stop the backward pass.
Notably, we have two hyper-parameters available for fine-tuning, providing a balance
between accuracy and efficiency: the number of samples used for evaluating the MMD
distance and the threshold criteria.

5.3 Experimental Results

We evaluate our proposed slices approach using both synthetic and real-world datasets.
To assess its performance, we compare our results with those obtained using mm-iSAM
(Fourie et al., 2016), NF-iSAM (Huang et al., 2023), and NSFG (Huang et al., 2022),
employing the open-source code provided by the respective authors. We use the Root
Mean Square Error (RMSE) metric to measure the discrepancies between ground truth
and samples from posterior distributions (As in Following Huang et al., 2022; Huang
et al., 2023). For robustness, all reported results for each method were averaged over
ten independent runs.

5.3.1 Synthetic Dataset - Multi Modal Four Doors

The synthetic four doors localization example (Fourie et al., 2016) is a one-dimensional
SLAM problem. The robot is aware of a map with four identical doors but initially
observes only one of them, without knowing which specific door it is. Consequently,
the prior distribution in this scenario is multi-modal, with four modes of equal weight.
As the robot progresses through several steps, it gathers loop closure measurements
related to a landmark within its environment. Additionally, it acquires two more mea-
surements, each corresponding to different doors. These latter measurements play a
critical role in resolving the ambiguity, leading to the collapse of the posterior distri-
bution into a single mode.
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Figure 5.4: Four doors synthetic SLAM dataset (Fourie et al., 2016) marginal posterior distri-
butions for the first and last robot poses. A black solid line indicates the analytic solution when
considering only the mode which corresponds to the ground truth. Our slices approach directly
approximates these marginal via (5.18). In mm-ISAM, KDEs are used to approximate these
marginal distributions, whereas in NF-iSAM and NSFG, they are derived solely from samples
and approximated using KDEs based on these samples (as demonstrated in Huang et al., 2022).
In each method, 200 samples were utilized to approximate the distributions.

(a) (b)

Figure 5.5: Four doors synthetic SLAM dataset (Fourie et al., 2016) results. We report RMSE
(m) and run time (sec) as functions of the number of samples used by all methods.

This one dimensional problem is interesting as the marginal posterior distributions
for all robot poses and the landmark can be analytically calculated (as discussed in
Fourie et al., 2016). Our slices approach directly approximates these marginal distri-
butions via (5.19). In mm-ISAM these marginal distributions are approximated with
KDEs while in NS-iSAM and NSFG they are only available through samples (Fig. 5.4).
Note how NF-ISAM fails to recover the correct mode, even in this small scenario, due
to its difficulty in converging when the number of samples is relatively small.

In this experiment, we assess run time and RMSE as functions of the number of
samples generated by the algorithms in each step, employing a batch computation
approach across the entire factor graph. Our slices approach demonstrates superior
accuracy compared to both mm-iSAM and NF-iSAM, achieving results on par with
NSFG (Fig. 5.5), despite the latter being recognized as an offline algorithm. Further-
more, our approach shows significantly improved computational efficiency when using
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the same number of samples.

5.3.2 Real World Dataset - Plaza

The Plaza2 dataset (Djugash et al., 2009) comprises a sequence of odometry and range
measurements to four unknown landmarks gathered by a vehicle navigating a planar
environment. This range measurement SLAM problem is challenging because it involves
both nonlinear measurements and non-Gaussian likelihood models.

In this experiment, we perform incremental inference and evaluate both the run time
and RMSE at each step. We adopt the same noise models across all methods (following
Huang et al., 2023), for a fair compression. We also set our hyperparameters, for the
early stopping heuristic, to NM = 100 and δ = 1e−4, representing the number of
samples used for evaluating the MMD distance and the threshold criteria, respectively.
The chosen re-elimination order for affected variables, in each incremental step, is such
that landmark variables are eliminated last.

We configured our slices approach to generate 150 samples in each step. For NF-
iSAM, we followed the recommended setting of 2000 samples and used the same hy-
perparameters as published by the authors in Huang et al., 2023. As for mm-iSAM,
we employed the default value of 100 samples, as advised in the open source imple-
mentation of Fourie et al., 2016. Notably, when we attempted to use 200 samples,
the mm-iSAM run time became prohibitively long for this specific problem. The scale
and dimensionality of this problem were too demanding for NSFG (Huang et al., 2022)
where the authors only presented results for a limited number of time steps. Notably,
our slices approach achieves superior accuracy compared to NF-iSAM and mm-iSAM
(Fig. 5.7). Furthermore, our method significantly enhances computational efficiency,
reducing complexity by an order of magnitude compared to NF-iSAM and mm-iSAM.
An illustration depicting the marginal distribution across different time steps for the
second landmark is shown in Fig. 5.6.
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Figure 5.6: Plaza2 dataset (Djugash et al., 2009) marginal posterior distributions for landmark
number 2 across different time steps, presented separately for the x and y axes. The robot
captures the first, fifth and ninth range measurement to L2 at time steps 0, 8 and 22 respectively.
The ground truth position of L2 is denoted by a black + sign. The hyperparameters used for
each method are described in Section V.B .

(a) (b)

Figure 5.7: Plaza2 dataset (Djugash et al., 2009) with range measurements. We report RMSE
(m) and run time (sec) for each incremental step.

69



70



Chapter 6

Conclusion

To enable efficient solutions for inference and BSP in high-dimensional state spaces, this
thesis has introduced methods that utilize various structures to alleviate computational
complexity in real-world problems characterized by ambiguous environments and strict
computational budget constraints. In conclusion, we will summarize our contributions
and explore potential directions for extending this work.

In Chapter 3, we introduced a novel concept focusing on topological aspects for
decision-making under uncertainty concerning a focused set of variables. We devel-
oped two topological signatures, WTCD and VND, tailored for information-theoretic
problems, and demonstrated a strong empirical correlation between these signatures
and the focused information-theoretic objective function in two distinct scenarios. We
established bounds for the approximation error of the WTCD signature, showing that
under specific conditions, it converges to the optimal solution, enabling effective dis-
crimination between candidate actions. Furthermore, we introduced the Hadamard
bounds for WTCD, which can be calculated online and rely solely on topological as-
pects. Although these bounds are generally less informative and primarily useful for
action elimination in cases with diagonally dominant matrices, they offer valuable in-
sights. For the VND signature, we demonstrated its computational efficiency and its
capability for incremental updates, supporting real-time sequential decision-making
problems. Our results indicated that both signatures provide a substantial speed ad-
vantage over computing the objective function, with notable improvements observed in
active SLAM experiments. Yet, in this chapter we assumed DA to be given and perfect,
i.e. assumed a single hypothesis represented by a uni-modal state and map estimates.

Chapter 4 introduced an innovative approach that leverages a distilled subset of
hypotheses to mitigate computational complexity in DA-aware BSP problems. We
developed analytical bounds to quantify the loss in quality of our proposed solution,
starting with the myopic case. We demonstrated how our approach can achieve optimal
solutions even under strict budget constraints, unlike other methods that depend solely
on heuristics and cannot guarantee such results. We then addressed the more complex
non-myopic case, where the exponential growth in the number of hypotheses with the
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planning horizon poses additional challenges. We examined the distinct impacts of hard
budget constraints on both inference and planning in this context, redeveloped analyt-
ical bounds for each case, and introduced a general algorithm capable of handling such
constraints with performance guarantees on the loss in solution quality. Our approach
was validated in extremely aliased simulated scenarios, where it achieved a substantial
reduction in computational complexity compared to existing methods. In this chapter,
we assumed that beliefs could be expressed as a weighted linear combination of para-
metric models. Our goal was to expand this research to handle nonparametric posterior
beliefs, which can take on any arbitrary shape.

In Chapter 5, we introduced a novel approach using slices from high-dimensional
surfaces to efficiently approximate nonparametric posterior distributions. Unlike ex-
isting methods that rely on generated samples and intermediate approximations, our
slices perspective avoids such procedures and iterative methods. We also introduced
an early stopping heuristic during the backward pass, reducing computational com-
plexity and enabling real-time operation. Our slices perspective demonstrated superior
accuracy compared to other online nonparametric inference methods and matched the
performance of state-of-the-art offline methods while achieving significant computa-
tional complexity reductions in both synthetic and real-world datasets.

6.1 Future Research Directions

Future research could explore integrating the various methods proposed in this the-
sis to enhance their effectiveness. For instance, combining topological signatures with
DA reasoning in planning may further reduce computational complexity. This inte-
gration could leverage the strengths of both approaches, offering a more streamlined
and efficient solution. Additionally, applying our slices perspective from Chapter 4 to
DA-aware BSP could remove the dependency on parametric models, allowing for more
flexible and real-time nonparametric DA BSP.

Another promising direction is to simplify the number of landmarks considered in
planning to manage hypothesis growth more effectively. This approach could mitigate
the exponential increase in hypotheses and improve computational efficiency. Addition-
ally, exploring how information from planning can be utilized in inference, especially
when faced with strict computational budget constraints, presents a valuable research
opportunity. By leveraging bounds derived from different simplified beliefs, it may be
possible to optimize both planning and inference processes, leading to more robust and
adaptable autonomous systems.
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Appendix A

Proofs for Chapter 3

A.1 Theorem 1

Proof .
Following a similar proof to theorem 3 in Khosoussi et al., 2019 we get

τU,Aw ≤ log|ΛU | ≤ τU,Aw + nU · log(1 + δU/λU1 ), (A.1)

where δU = ||
(
∆U
wp

)T
∆U
wp
||∞ and λU1 = λmin(LUwθ

). It is easy to see that

log
∣∣∣ΛU ∣∣∣

δU/λU
1 →0+

= τU,Aw . (A.2)

■

A.2 Theorem 2

Proof .
Using inequalities (3.21), (A.1) and eq. (3.25) we get

UB[JFH] = nF

2
log (2πe)− 1

2
τw + 1

2

[
τU,Aw + nU · log

(
1 + δU

λU1

)]
(A.3)

= SW T CD + nU

2
log
(

1 + δU

λU1

)
. (A.4)

Similarly, the lower bound is given by

LB[JFH] = nF

2
log (2πe)− 1

2

[
τw + n · log

(
1 + δ

λ1

)]
+ 1

2
τU,Aw

= SW T CD −
n

2
log
(

1 + δ

λ1

)
.

(A.5)
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A.3 Lemma 1

Proof .
Since the FIM is Hermitian and since ΛU is a principal submatrix of Λ, according to
Cauchy’s interlacing theorem (Horn and Johnson, 2012), the eigenvalues must satisfy

λ1 ≤ λU1 ≤ λ2 ≤ .... ≤ λn ≤ λUn ≤ λn+1. (A.6)

In addition, as nU is a finite number, i.e. represents the size of a finite graph, and as
wU,A is defined over finite non negative weights, ∃α <∞ such that δU < αδ. Combined
with (A.6), we get

δ/λ1 → 0+ ⇒ αδ/λ1 → 0+ ⇒ δU/λU1 → 0+. (A.7)

■

A.4 Theorem 3

Proof .
We follow Kitanov and Indelman (2024) and derive the Hadamard bounds for the
focused case. Using the proof to Theorem 3 in Khosoussi et al. (2019), we know that

log|Λ| ≤ 2τwp + log|Lwθ
+ δI|. (A.8)

We denote by Wθ the diagonal matrix defined in (3.12) based on weights wθ defined in
(3.18). Since Lwθ

+ δI is a positive-definite matrix, applying Hadamard inequality we
get

log|Lwθ
+ δI| ≤

n∑
i=1

log [Wθ(i, i) + δ] . (A.9)

Replacing (A.9) into (A.8) we get

log|Λ| ≤ 2τwp +
n∑
i=1

log [Wθ(i, i) + δ] . (A.10)

Similarly, for log|ΛU | we get

log|ΛU | ≤ 2τU,Awp
+

n∑
i=1

log
[
WU,A
θ (i, i) + δU,A

]
. (A.11)
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Replacing (A.10) and (A.11) into the definition of SW T CD we get new bounds for ϵ
(
JFH

)
.

■
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Appendix B

Appendix for Chapter 4

B.1 Proofs

B.1.1 Corollary 1

Proof .
We follow a similar derivation to the one presented in Pathak et al., 2018 and factorize
wi,jk+1 by first marginalizing over xk+1 and then by applying the Bayes rule

wi,jk+1 =
∫

xk+1

P(Zk+1|βik+1, β
j
1:k, xk+1,H

−
k+1)P(βik+1, β

j
1:k, xk+1|H−

k+1)
P(Zk+1|H−

k+1)
.

Using the chain rule multiple times over the second term in the numerator completes
the proof. ■

B.1.2 Theorem 4

Proof .
We split (4.14) based on belief components from M s

k and use (4.11) to rewrite H as

H = −
|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
s,j
k wm,sk

η
log

(
ζ̃i,jk+1w

s,j
k wm,sk

η

)
−

|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k

η
log

(
ζ̃i,jk+1w

j
k

η

)
.

(B.1)

Using the key observation that ζ̃s,ijk+1 = ζ̃i,jk+1, basic log properties and that by definition
all posterior weights sum to 1, we write the cost for a simplified belief as

Hs = − 1
ηs

|L|∑
i

Ms
k∑
j

[
ζ̃i,jk+1w

s,j
k log

(
ζ̃i,jk+1w

s,j
k

)]
+ log (ηs) . (B.2)

Replacing (B.2) back into (B.1) and using basic log properties completes the proof. ■
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B.1.3 Theorem 5

Proof .
The last term in (4.15) is non negative as all posterior weights are at most 1 by defi-
nition. Thus, removing this term and using Theorem 7 we immediately get the lower
bound. For the upper bound, we revisit the last term in (4.15). We first define γ using
(4.11) and (B.6)

γ ≜
|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k

η
= 1−

|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
j
k

η
= 1−

ηswm,sk

η
.

Using the log sum inequality (Cover and Thomas, 1991)

n∑
i

ai · log
(
ai
bi

)
≥ a · log

(
a

b

)
where

n∑
i

ai = a,
n∑
i

bi = b,

with ai = ζ̃i,j
k+1w

j
k

η ,
|L|∑
i

¬Ms
k∑

j

ζ̃i,j
k+1w

j
k

η = γ and bi = 1, we bound the last term in (4.15)

|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k

η
log

(
ζ̃i,jk+1w

j
k

η

)
≥ γlog

(
γ

|L| |¬M s
k |

)
. (B.3)

Substituting (B.3) into (4.15) and using Theorem 7 completes the proof. ■

B.1.4 Corollary 2

Proof .
Given M s

k = Mk it holds by definition that wm,sk = 1 and H = Hs as bk+1 = bsk+1.
Substituting these back into (B.10) and using (4.11) and Corollary 3, the lower bound
becomes

LB [H] = H− log(η)−
|L|∑
i

Mk∑
j

ζ̃i,jk+1w
s,j
k

η
log

(1
η

)
= H. (B.4)

Given M s
k = Mk it is also straightforward by Corollary 3 that γ = 0. As such, using

exactly the same derivations as for the lower bound, it immediately holds that H =
UB [H]. This completes the proof. ■

B.1.5 Theorem 6

Proof .
We write η explicitly and first marginalize over all DA realizations and states at time
k + 1. We then marginalize over all hypotheses from time k and apply the chain rule
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multiple times

η ≜ P
(
Zk+1|H−

k+1

)
=

|L|∑
i

Mk∑
j

∫
xk+1

P (Zk+1|xk+1)P
(
βik+1|xk+1

)
· P
(
xk+1|βj1:k,H

−
k+1

)
P
(
βj1:k|H

−
k+1

)

=
|L|∑
i

Mk∑
j

ζ̃i,jk+1w
j
k.

(B.5)

Using similar derivations and the key observation that ζ̃s,ijk+1 = ζ̃i,jk+1, we also write ηs as

ηs =
|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
s,j
k . (B.6)

Splitting (B.5) based on belief components from M s
k and using (4.11) and (B.6) com-

pletes the proof. ■

B.1.6 Theorem 7

Proof .
As all weights are positive by definition, removing the last term in (4.19) we immediately
get the lower bound. For the upper bound, we rewrite the second term in (4.19) using
ζ̃i,jk+1

|L|∑
i

¬Ms
k∑

j

ζ̃i,jk+1w
j
k =

¬Ms
k∑

j

wjk

|L|∑
i

∫
xk+1

P
(
Zk+1|βik+1, xk+1

)
· P
(
βik+1|xk+1

)
P
(
xk+1|H−

k+1, β
j
1:k

)
.

(B.7)

The joint measurement likelihood term, given in (4.9), is a product of probability
distribution functions, all given by (4.1) and can thus be bounded using an a priori
known maximum value σ. The term P

(
βik+1|xk+1

)
represents the probability for the ith

DA realization given xk+1, i.e. the probability of observing a specific set of landmarks.
As we assume the map to be given, it can be bounded using some constant αi, e.g. in
the case of a camera, it can be an indicator function for landmarks that are within the
field of view. Finally, for every hypothesis j it holds that

∫
xk+1

P
(
xk+1|H−

k+1, β
j
1:k

)
= 1.

Substituting these and wm,sk back into (4.19) completes the proof. ■
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B.1.7 Corollary 3

Proof .
Given M s

k = Mk it holds by definition that wm,sk = 1 and η = ηs as bk+1 = bsk+1.
Replacing these back into (4.42), (4.21) immediately completes the proof. ■

B.1.8 Theorem 8

Proof .
Given Mk+n belief components, we split the cost function (4.36) based on components
in and outside M s

k+n

Hk+n = −
∑

r∈Ms
k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
−

∑
r∈¬Ms

k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
. (B.8)

Using basic log properties and ws,rk+n ≜ wr
k+n

wm,s
k+n

where wm,sk+n ≜ ∑
m∈Ms

k+n
wmk+n completes

the proof

Hk+n

= −
∑

r∈Ms
k+n

wm,sk+nw
s,r
k+n

ηk+n
log

(
wm,sk+nw

s,r
k+n

)
+

∑
r∈Ms

k+n

wm,sk+nw
s,r
k+n

ηk+n
log (ηk+n)−

∑
r∈¬Ms

k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)

=
wm,sk+n
ηk+n

− ∑
r∈Ms

k+n

ws,rk+nlog
(
wm,sk+nw

s,r
k+n

)
+

∑
r∈Ms

k+n

ws,rk+nlog (ηk+n)

−
∑

r∈¬Ms
k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)

=
wm,sk+n
ηk+n

− ∑
r∈Ms

k+n

ws,rk+nlog
(
ws,rk+n

)
− log

(
wm,sk+n

)
+ log (ηk+n)

−
∑

r∈¬Ms
k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)

=
wm,sk+n
ηk+n

[
Hsk+n + log

(
ηk+n
wm,sk+n

)]
−

∑
r∈¬Ms

k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
.

(B.9)

■

B.1.9 Theorem 9

Proof .
The last term in (B.9) is non negative as all posterior weights are at most 1 by definition.
Thus, removing this term and using the bounds over ηk+n in Theorem 3 we immediately
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get the lower bound

LB [Hk+n] =
wm,sk+n
UB [ηk+n]

[
Hsk+n + log

(
LB [ηk+n]
wm,sk+n

)]
. (B.10)

For the upper bound, we first define

γ ≜
∑

r∈¬Ms
k+n

wrk+n
ηk+n

= 1−
∑

r∈Ms
k+n

wrk+n
ηk+n

. (B.11)

Using the log sum inequality (Cover and Thomas, 1991)

n∑
i

ai · log
(
ai
bi

)
≥ a · log

(
a

b

)
where

n∑
i

ai = a,
n∑
i

bi = b (B.12)

with ai = wr
k+n

ηk+n
and bi = 1, we bound the last term in (B.9)

∑
r∈¬Ms

k+n

wrk+n
ηk+n

log

(
wrk+n
ηk+n

)
≥ γlog

 γ∣∣∣¬M s
k+n

∣∣∣
 . (B.13)

Substituting (B.13) into (B.9); using the bounds over ηk+n from Theorem 3; and since
by definition 0 ≤ γ ≤ 1, we get the upper bound

UB [Hk+n] =
wm,sk+n
LB [ηk+n]

[
Hsk+n + log

(
UB [ηk+n]
wm,sk+n

)]
− γ̄log

 γ̄∣∣∣¬M s
k+n

∣∣∣
 , (B.14)

where γ̄ = 1−
∑
r∈Ms

k+n

wr
k+n

UB[ηk+n] and
∣∣∣¬M s

k+n

∣∣∣ > 2. ■

B.1.10 Corollary 4

Proof .
Given that M s

k+n = Mk+n it holds by definition that ηk+n = wm,sk+n and Hk+n = Hsk+n.
Substituting back into (B.10) and using Corollary 2 we get

lim
Ms

k+n
→Mk+n

LB [Hk+n] =
wm,sk+n
ηk+n

[
Hk+n + log

(
ηk+n
wm,sk+n

)]
= Hk+n. (B.15)

It is also straightforward that M s
k+n = Mk+n ⇒ γ̄ = 0. As such, similarly to the lower

bound, it immediately holds that Hk+n = lim
Ms

k+n
→Mk+n

UB [Hk+n]. ■
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B.1.11 Theorem 10

Proof .
By definition ηk+n =

∑
r∈Mk+n

wrk+n. Splitting this sum, we rewrite ηk+n as

ηk+n =
∑

r∈Ms
k+n

wrk+n +
∑

r∈¬Ms
k+n

wrk+n. (B.16)

The second term in (B.16) is positive by definition. As such, removing it we immediately
get the lower bound

LB [ηk+n] =
∑

r∈Ms
k+n

wrk+n. (B.17)

For the upper bound, we first rewrite the second term in (B.16) as

∑
r∈¬Ms

k+n

wrk+n =
∑

r∈¬Ms
k+n

n∏
i=0

wrk+i =
∑

r∈¬Ms
k+n

wrk

n∏
i=1

wrk+i. (B.18)

Each wrk+i is defined as∫
xk+i

P(Zk+i|βrk+i, xk+i)P(βrk+i|xk+i)P(xk+i|H−
k+i, β

r
1:k+i), (B.19)

which can also be bounded as presented in Theorem 7. The joint measurement likeli-
hood term is a product of pdfs, all given a priori, and can be bounded using a known
maximum value σi. The term P(βrk+i|xk+i) represents the probability for the rth DA
realization given xk+i and can bounded by 1 representing, for example, an indicator
function for landmarks that are within the field of view. Finally, for every hypothesis
r it holds that

∫
xk+i

P(xk+i|H−
k+i, β

r
1:k+i) = 1. By definition, ∑r∈Mk

wrk = 1 and each
component at time k generates |Mk+n|

|Mk| at time k + n, thus

∑
r∈Mk+n

wrk =
∑

r∈Ms
k+n

wrk +
∑

r∈¬Ms
k+n

wrk = |Mk+n|
|Mk|

. (B.20)

As such, we can bound (B.18) as

∑
r∈¬Ms

k+n

wrk+n ≤
∑

r∈¬Ms
k+n

wrk

n∏
i=1

σi =

 |Mk+n|
|Mk|

−
∑

r∈Ms
k+n

wrk

 n∏
i=1

σi. (B.21)

Substituting back into (B.16) we get the upper bound

UB [ηk+n] =
∑

r∈Ms
k+n

wrk+n +

 |Mk+n|
|Mk|

−
∑

r∈Ms
k+n

wrk

 n∏
i=1

σi. (B.22)
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■

B.1.12 Corollary 5

Proof .
Given that M s

k+n = Mk+n it holds by definition that ηk+n = wm,sk+n. Substituting back
into (B.17) we get

lim
Ms

k+n
→Mk+n

LB [ηk+n] =
∑

r∈Ms
k+n

wrk+n = wm,sk+n = ηk+n. (B.23)

It is also straightforward that M s
k+n = Mk+n ⇒ |Mk+n|

|Mk| −
∑
r∈Ms

k+n
wrk = 0 As such,

similarly to the lower bound, it immediately holds that ηk+n = lim
Ms

k+n
→Mk+n

UB [ηk+n].

■

B.2 Incremental Bounds Updates: The Myopic Case

In this section, we rigorously derive the method for incrementally updating the bounds
presented in Section 4.2 for the myopic case.

B.2.1 The Normalization Term Bounds LB [η] ,UB [η]

We denote the bounds presented in Theorem 4.42 as LB [η|bsk] ,UB [η|bsk], i.e. with re-
spect to a simplified belief bsk with M s

k components. Given a belief component rk /∈M s
k

with associated weight wrk, we denote M s+1
k ≜ M s

k ∪ rk. Using (4.11) the simplified
belief at time k for M s+1

k components is given by

bs+1
k ≜

Ms+1
k∑
j=1

ws+1,j
k bjk , ws+1,j

k ≜ wjk
wm,s+1
k

, (B.24)

where wjk corresponds to the original belief component weight (4.3) and wm,s+1
k =

wm,sk +wrk. As such, LB
[
η|bs+1

k

]
,UB

[
η|bs+1

k

]
represent the bounds for the measurement

likelihood η given a simplified belief bs+1
k with M s+1

k components. Using (B.6) and
(B.24) we define

ηs+1 ≜
|L|∑
i

Ms+1
k∑
j

ζ̃i,jk+1w
s+1,j
k . (B.25)

We now present how to incrementally adapt the lower and upper bounds. We begin by
writing the lower bound with respect to the simplified belief bs+1

k using (B.25) and get
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the recursive update rule

LB
[
η|bs+1

k

]
= ηs+1wm,s+1

k

=
|L|∑
i

Ms+1
k∑
j

ζ̃i,jk+1w
j
k

=
|L|∑
i

Ms
k∑
j

ζ̃i,jk+1w
j
k +

|L|∑
i

ζ̃i,rk+1w
r
k

= ηswm,sk +
|L|∑
i

ζ̃i,rk+1w
r
k

= LB [η|bsk] +
|L|∑
i

ζ̃i,rk+1w
r
k.

(B.26)

Using similar derivations the recursive update rule for the upper bound is given by

UB
[
η|bs+1

k

]
= ηs+1wm,s+1

k + (1− wm,s+1
k )σ

|L|∑
i

αi

= ηswm,sk +
|L|∑
i

ζ̃i,rk+1w
r
k + (1− wm,sk − wrk)σ

|L|∑
i

αi

= ηswm,sk + (1− wm,sk )σ
|L|∑
i

αi +
|L|∑
i

ζ̃i,rk+1w
r
k − wrkσ

|L|∑
i

αi

= UB [η|bsk] + wrk

|L|∑
i

[
ζ̃i,rk+1 − σα

i
]
.

(B.27)

B.2.2 The Cost Function Bounds LB [H] ,UB [H]

We follow similar derivations as in Section B.2.1 and denote the bounds presented in
Theorem 5 as LB [H|bsk] ,UB [H|bsk], i.e. with respect to a simplified belief bsk with M s

k

components. Given a belief component rk /∈M s
k with associated weight wrk, we denote

M s+1
k ≜ M s

k ∪ rk. Using (B.24) we also denote the bounds over the cost term, given a
simplified belief bs+1

k withM s+1
k components, as LB

[
H|bs+1

k

]
,UB

[
H|bs+1

k

]
. Deriving a

direct recursive update rule for these bounds is not trivial. Instead, we show how each
term in LB

[
H|bs+1

k

]
,UB

[
H|bs+1

k

]
can be incrementally updated individually. Using

(B.25) we begin with a recursive update rule for ηs+1 given by

ηs+1 =
|L|∑
i

Ms+1
k∑
j

ζ̃i,jk+1w
s+1,j
k = 1

wm,s+1
k

ηswm,sk +
|L|∑
i

ζ̃i,rk+1w
r
k

 . (B.28)
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Using (B.2) and (B.6) we write the recursive update rule for Hs+1, i.e. the cost given
a simplified belief bs+1

k

Hs+1

= − 1
ηs+1

|L|∑
i

Ms+1
k∑
j

[
ζ̃i,jk+1w

s+1,j
k log

(
ζ̃i,jk+1w

s+1,j
k

)]
+ log

(
ηs+1

)

= − 1
ηs+1

 |L|∑
i

Ms
k∑
j

[
ζ̃i,jk+1w

j
k

wm,s+1
k

log

(
ζ̃i,jk+1w

j
k

wm,s+1
k

)]
+

|L|∑
i

[
ζ̃i,rk+1w

r
k

wm,s+1
k

log

(
ζ̃i,rk+1w

r
k

wm,s+1
k

)]+

log
(
ηs+1

)
= − 1

ηs+1

[
wm,sk

wm,s+1
k

|L|∑
i

Ms
k∑
j

[
ζ̃i,jk+1w

s,j
k log

(
ζ̃i,jk+1w

s,j
k wm,sk

wm,s+1
k

)]
+

|L|∑
i

[
ζ̃i,rk+1w

r
k

wm,s+1
k

log

(
ζ̃i,rk+1w

r
k

wm,s+1
k

)]]
+log

(
ηs+1

)

= − 1
ηs+1

[
wm,sk

wm,s+1
k

[ |L|∑
i

Ms
k∑
j

[
ζ̃i,jk+1w

s,j
k log

(
ζ̃i,jk+1w

s,j
k

)]
+

|L|∑
i

Ms
k∑
j

[
ζ̃i,jk+1w

s,j
k log

(
wm,sk

wm,s+1
k

)]]
+

|L|∑
i

[
ζ̃i,rk+1w

r
k

wm,s+1
k

log

(
ζ̃i,rk+1w

r
k

wm,s+1
k

)]]
+log

(
ηs+1

)

= − 1
ηs+1

[
wm,sk

wm,s+1
k

[
−ηs [Hs − log (ηs)] + ηslog

(
wm,sk

wm,s+1
k

)]
+

|L|∑
i

[
ζ̃i,rk+1w

r
k

wm,s+1
k

log

(
ζ̃i,rk+1w

r
k

wm,s+1
k

)]]
+log

(
ηs+1

)

= ηs

ηs+1
wm,sk

wm,s+1
k

[
Hs − log (ηs)− log

(
wm,sk

wm,s+1
k

)]
− 1
ηs+1

|L|∑
i

[
ζ̃i,rk+1w

r
k

wm,s+1
k

log

(
ζ̃i,rk+1w

r
k

wm,s+1
k

)]
+

log
(
ηs+1

)
.

(B.29)
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Using Theorem 5 we explicitly write the lower bound with respect to the simplified
belief bs+1

k

LB
[
H|bs+1

k

]
=
ηs+1wm,s+1

k

UB
[
η|bs+1

k

] [Hs+1 − log(ηs+1)
]
−

wm,s+1
k

UB
[
η|bs+1

k

] |L|∑
i

Ms+1
k∑
j

ζ̃i,jk+1w
s+1,j
k log

 wm,s+1
k

LB
[
η|bs+1

k

]


=
ηs+1wm,s+1

k

UB
[
η|bs+1

k

] [Hs+1 − log(ηs+1)
]
−
wm,s+1
k ηs+1

UB
[
η|bs+1

k

] log
 wm,s+1

k

LB
[
η|bs+1

k

]
 ,

(B.30)

and observe that each term can be incrementally updated individually using (B.28),
(B.29) and Section B.2.1. Similarly, using Theorem 5, we explicitly write the upper
bound with respect to the simplified belief bs+1

k

UB
[
H|bs+1

k

]
=
ηs+1wm,s+1

k

LB
[
η|bs+1

k

] [Hs+1 − log(ηs+1)
]
−

wm,s+1
k

LB
[
η|bs+1

k

] |L|∑
i

Ms+1
k∑
j

ζ̃i,jk+1w
s+1,j
k log

 wm,s+1
k

UB
[
η|bs+1

k

]
− γlog

 γ

|L|
∣∣∣¬M s+1

k

∣∣∣


=
ηs+1wm,s+1

k

LB
[
η|bs+1

k

] [Hs+1 − log(ηs+1)
]
−

wm,s+1
k ηs+1

LB
[
η|bs+1

k

] log
 wm,s+1

k

UB
[
η|bs+1

k

]
− γlog

 γ

|L|
∣∣∣¬M s+1

k

∣∣∣
 ,

(B.31)

where γ ≜ 1 − ηs+1wm,s
k

UB[η|bs+1
k ] . Since 0 ≤ γ ≤ 1 by definition, the upper bound (B.31)

holds when |L|
∣∣∣¬M s+1

k

∣∣∣ > 2. We observe that each term can be incrementally updated
individually using (B.28), (B.29) and Section B.2.1.

B.3 Incremental Bounds Updates: The Nonmyopic Case

In this section, we rigorously derive the method for incrementally updating the bounds
presented in Section 4.3.5 for the nonmyopic case.

Given a simplified belief bsk+n with M s
k+n components and a belief component

pk+n /∈ M s
k+n with associated weight wpk+n, we denote M s+1

k+n ≜ M s
k+n ∪ pk+n. We

also further denote the bounds in Theorem 9 as LB
[
Hk+n|M s

k+n

]
,UB

[
Hk+n|M s

k+n

]
,

and the bounds in Theorem 10 as LB
[
ηk+n|M s

k+n

]
,UB

[
ηk+n|M s

k+n

]
, i.e. with respect
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to M s
k+n components of the simplified belief bsk+n.

B.3.1 The Normalization Term Bounds LB [ηk+n] ,LB [ηk+n]

Given a belief component pk+n /∈M s
k+n with associated weight wpk+n, we first derive a

recursive update rule for the lower bound

LB
[
ηk+n|M s+1

k+n

]
=

∑
r∈Ms+1

k+n

wrk+n = wpk+n +
∑

r∈Ms
k+n

wrk+n = wpk+n + LB
[
ηk+n|M s

k+n
]
.

(B.32)

The recursive update rule for the upper bound is given by

UB
[
ηk+n|M s+1

k+n

]
=

∑
r∈Ms+1

k+n

wrk+n +

 |Mk+n|
|Mk|

−
∑

r∈Ms+1
k+n

wrk

 n∏
i=1

σi

= wpk+n +
∑

r∈Ms
k+n

wrk+n +

 |Mk+n|
|Mk|

− wpk −
∑

r∈Ms
k+n

wrk

 n∏
i=1

σi

= wpk+n − w
p
k

n∏
i=1

σi + UB
[
ηk+n|M s

k+n
]
,

(B.33)

where σi ≜ max (P (Zk+i|xk+i)) and wpk is the prior weight at time k of the belief
component pk+n. ■

B.3.2 The Cost Function Bounds LB [Hk+n] ,LB [Hk+n]

Deriving a direct recursive update rule for these bounds is not trivial. Instead, we show
how each term in LB

[
Hk+n|M s+1

k+n

]
, UB

[
Hk+n|M s+1

k+n

]
can be incrementally updated

individually.

Given a belief component pk+n /∈M s
k+n with associated weight wpk+n, we first derive

a recursive update rule for the cost over the simplified belief bs+1
k+n, i.e. containing
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M s+1
k+n ≜M s

k+n ∪ pk+n components

Hs+1
k+n ≜ c

(
bs+1
k+n

)
= −

∑
r∈Ms+1

k+n

wrk+n∑
r∈Ms+1

k+n
wrk+n

log

 wrk+n∑
r∈Ms+1

k+n
wrk+n


= −

wpk+n∑
r∈Ms+1

k+n
wrk+n

log

 wpk+n∑
r∈Ms+1

k+n
wrk+n

−
∑

r∈Ms
k+n

wrk+n∑
r∈Ms+1

k+n
wrk+n

log

 wrk+n∑
r∈Ms+1

k+n
wrk+n


= −

wpk+n
wpk+n +

∑
r∈Ms

k+n

log

 wpk+n
wpk+n +

∑
r∈Ms

k+n

−
∑

r∈Ms
k+n

wrk+n
wpk+n +

∑
r∈Ms

k+n
wrk+n

log

 wrk+n
wpk+n +

∑
r∈Ms

k+n
wrk+n


= −

wpk+n
wpk+n + wm,sk+n

log

(
wpk+n

wpk+n + wm,sk+n

)
−

∑
r∈Ms

k+n

wrk+n
wpk+n + wm,sk+n

log

(
wrk+n

wpk+n + wm,sk+n

)

= −
wpk+n

wpk+n + wm,sk+n
log

(
wpk+n

wpk+n + wm,sk+n

)
−

wm,sk+n
wpk+n + wm,sk+n

∑
r∈Ms

k+n

wrk+n
wm,sk+n

[
log

(
wrk+n
wm,sk+n

)
+ log

(
wm,sk+n

wpk+n + wm,sk+n

)]

= −
wpk+n

wpk+n + wm,sk+n
log

(
wpk+n

wpk+n + wm,sk+n

)
−
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(B.34)

Using (B.34) and the recursive update rules derived in Section B.3.1, we get a recursive
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update rule for the lower bound

LB
[
Hk+n|M s+1

k+n

]
=

∑
r∈Ms+1

k+n
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UB
[
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k+n + log
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]
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 .
(B.35)

Similarly, we also get a recursive update rule for the upper bound

UB
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(B.36)

where γ̄ = 1−
∑
r∈Ms+1

k+n

wr
k+n

UB[ηk+n|Ms+1
k+n] = 1− wp

k+n
+wm,s

k+n

UB[ηk+n|Ms+1
k+n] and

∣∣∣¬M s+1
k+n

∣∣∣ > 2. ■
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Appendix C

Proofs for Chapter 5

C.1 Lemma 2

Proof .
We prove this lemma by induction.
base case: Let θ1 be the first eliminated variable. Due to the properties of the elimina-
tion order given in Sec. 5.1, ∃f(θ1) ∈ F from which samples of θ1 can be generated.
induction step: Eliminating θj , if ∃f(θj) ∈ F then according to the elimination algo-
rithm it holds that f(θj) ∈ Fj−1 from which samples of θj can be generated. Else,
according to the given elimination order ∃θi ∈ Θ such that θi was previously elimi-
nated and f(θi, θj) ∈ F . Since f(θi, θj) ∈ F , according to the elimination algorithm it
holds that f(θi, θj) ∈ Fi−1 and thus θj ∈ Si. As such, according to (5.13), when θi was
eliminated, a new factor

fnew (Si|Di) = η−1
∫
θi

∏
fk∈Fi−1(θi)

fk (Θk) dθi, (C.1)

was added. Using the induction assumption, samples of θi were generated from one
of the factors in Fi−1(θi) to approximate this integral. Without loss of generality,
we denote the factor from which samples of θi were generated as fk̄ and write the
approximation to (C.1) as

f̂new (Si|Di) = η−1

N

N∑
n=1

f(θni , θj)
∏

fk∈Fi−1(θi)\{f(θn
i ,θj),fk̄}

fk
(
θni ,Θ¬i

k

)
. (C.2)

According to the elimination algorithm, for any variable θm ∈ Si eliminated after θi
and before θj , it must hold that the new factor fnew (Sm|Dm) must contain f(θni , θj).
Thus, Fj−1 also contains f(θni , θj) from which samples of θj can be generated. ■
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שלנו המפושטים הפתרונות כיצד מדגימים אנו הפתרון. באיכות הירידה לגבי מידע לתת נוכל החסמים, בין

של מגבלות תחת לפעול נדרש והסוכן משאבים בעיית קיימת בהם האמיתי, בעולם לתרחישים מותאמים

ייתרה אמת. בזמן עיבוד בדרישות לעמוד בכדי מידע מן חלק להשליך אותו מחייבות אשר חישובי תקציב

השיטה יחד, גם תקציב ומגבלות משמעותיות דו מדידות ישנם בהם מסוימים במקרים כי נראה אף אנו מכך,

לצורך אלמלאפישוטהבעיההמקורית. יכולותלהתקבל יכולהלתתהבטחותביצועיםשלאהיו מציעים שאנו

מבנים וכן הבעיה, של בסיסיים גרפים לייצוגים הקשורים טופולוגיים, מבנים מנצלים אנו אלו, פתרונות

חדשנית גישה מציעים אנו ההיסק, בבעיית הסתברותיות. ההתפלגויות מתוך לחלץ ניתן אשר ספציפיים

הרב מהמרחב "פרוסות" בעזרת אלו התפלגויות המייצגת ממדים מרובות הסתברותיות בהתפלגויות לטיפול

מכל ממדים מרובות התפלגויות ביעילות להעריך יכולים אנו הללו, הפרוסות של במבנה שימוש ידי על ממדי.

אמת. בזמן פעולה עבר אל החישובית הסיבוכיות את להוריד מנת על שהיא צורה

ii



תקציר

של רבים היבטים על משפיעים במהרה ואלו וגובר הולך חכמים אוטונומיים ורובוטים בסוכנים השימוש

ומחסנים רובוטיים ניתוחים אוטונומי, ניווט כגון האמיתי, בעולם שונים בשימושים שלנו. היומיום חיי

לעיתים ודאות, אי של שונים מקורות תחת ויעילה אמינה בצורה לפעול אלו מסוכנים מצופה אוטומטיים,

עלולים דינמיותשבהן כולליםסביבות הם ומגוונים. רבים ודאותאלה אי מקורות הסביבה. על מוגבל ידע עם

משמעות דו בעלות ומדידות פיזיקליות מגבלות עקב רועשים חיישנים צפויים, בלתי אירועים להתרחש

עם אפקטיבית בצורה להתמודד כדי ביניהם. מסוים דמיון בגלל אחר כעצם להתפרש יכול אחד עצם בהן

מרובות הסתברותיות התפלגויות לתחזק צריכים האוטונומיים הסוכנים האמיתי, בעולם שכאלו תרחישים

מסוגלים להיות צריכים הללו הסוכנים מפורש, באופן הנלווית. הוודאות אי את בחשבון הלוקחות ממדים

הסביבה, ומצב מצבם על מסיקים הסוכנים כאשר ודאות. אי תחת החלטות וקבלת היסק בעיות, שתי לפתור

את שייצגו כך הזמין המידע על בהתבסס הממדים מרובות ההסתברותית ההתפלגויות את לעדכן עליהם

הסוכן על ודאות, אי תחת ההחלטות קבלת בתהליך זאת, לעומת ביותר. הטובה בצורה האמיתי המצב

כלשהי. מטרה לפונקציית בהתאם לביצוע ביותר הטובות הבאות הפעולות מהן אוטונומי באופן לקבוע

מעשי בלתי ולרוב חישובית יקר הוא - ודאות אי תחת החלטות וקבלת היסק - הללו הבעיות שתי פתרון

ומשאבים זולה בחומרה שימוש תוך אמת בזמן לפעול צריכות אשר האמיתי בעולם אוטונומיות במערכות

בעלות מדידות בחשבון לקחת צריך הסוכן כאשר יותר עוד למורכבות הופכות אף הללו הבעיות מוגבלים.

מספר לתחזק הסוכן על כלשהו, למקור וודאי באופן מסוימת מדידה לשייך ניתן לא כאשר משמעות. דו

וזאת נוספות משמעותיות דו מדידות יתקבלו כאשר מכך, ייתרה האפשרויות. למספר בהתאם השערות

בצורה יגדל לתחזק הסוכן יידרש אותן ההשערות מספר קודמות, משמעותיות דו מדידות שיפתרו מבלי

זו בעבודה יותר. עוד החישובי העומס את יגביר הבעיות, שתי בעבור שכזה, גידול הזמן. עם מעריכית

החישובית המורכבות להפחתת שונות גישות ומפתחים הללו הקריטיות הבעיות שתי עם מתמודדים אנו

שונים במבנים שימוש על מציעיםמתבססים הפתרונותשאנו מגבלותתקציב. אמתתחת בזמן לפעול במטרה

אי תחת החלטות קבלת תהליך בעבור החישוב. את ליעל בכדי אלו בעיות של הבסיסיים בייצוגים הנמצאים

פחותה. חישובית סיבוכיות בעלות מפושטות בעיות לפתור מנת על אלו במבנים מציעיםלהשתמש אנו ודאות,

במאפיינים שמחזיקה יותר פשוטה לבעיה מרובתהממדים, המורכבת, הבעיה את להפוך הוא המרכזי הרעיון

בזמן ליישומים מעשי פתרון ולהציע החישובי העומס את להפחית ובכך, החלטות לקבלת הדרושים החיוניים

בצורה לאפיין תוכל שכזו פשוטה בעיה כי נדרוש אנו פחותה, סיבוכיות חישוביות בעלת להיותה בנוסף אמת.

הפעולות, מן אחת כל בעבור זו, בעיה של הפתרון את לבצע. הסוכן שוקל אותן הפעולות מן אחת כל כמותית

מלחשב. נמנעים אנו אותו המקורית, הבעיה של הפתרון מול אל חסמים, באמצעות אנליטית בצורה נקשור

המקורית. הבעיה מול אל המפושטת הבעיה פתרון של ביצועים הבטחות לתת ניתן כיצד נראה זו, בצורה

של מהחסמים אחד אף עם כלל חופפים אינם המפושטת בבעיה האופטימלי הפתרון של החסמים בו במקרה

חפיפה וישנה במקרה המקורית. שבבעיה לזה זהה האופטימלי הפתרון כי להבטיח נוכל האחרות, הפעולות
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אוטונומיות למערכות התוכנית במסגרת אינדלמן, ואדים חבר פרופסור של בהנחייתו בוצע המחקר

ורובוטיקה.

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר/ה זה חיבור מחבר/ת

האתיות המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

אותן לפי ומלאה, ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של

מידה. אמות

במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת
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