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Abstract
Determining a globally optimal solution of belief space planning (BSP) in high-dimensional state spaces directly is compu-
tationally expensive, as it involves belief propagation and objective function evaluation for each candidate action. However,
many problems of interest, such as active SLAM, exhibit structure that can be harnessed to expedite planning. Also, in order to
choose an optimal action, an exact value of the objective function is not required as long as the actions can be sorted in the same
way. In this paper we leverage these two key aspects and present the topological belief space planning (t-bsp) concept that
uses topological signatures to perform this ranking for information-theoretic cost functions, considering only topologies of factor
graphs that correspond to future posterior beliefs. In particular, we propose a highly efficient topological signature based on the
von Neumann graph entropy that is a function of graph node degrees and supports an incremental update. We analyze it in the
context of active pose SLAM and derive error bounds between the proposed topological signature and the original information-
theoretic cost function. These bounds are then used to provide performance guarantees for t-bspwith respect to a given solver
of the original information-theoretic BSP problem. Realistic and synthetic simulations demonstrate drastic speed-up of the
proposed method with respect to the state-of-the-art methods while retaining the ability to select a near-optimal solution. A proof
of concept of t-bsp is given in a small-scale real-world active SLAM experiment.
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1. Introduction

Decision-making under uncertainty in partially observable
domains is inescapable for autonomous systems operating in
the real world. An autonomous agent (robot) needs to make
predictions about its own state and state of the world given
often partial and uncertain data and decide its own actions
accordingly. In principle, it has to perform inference about
unknown quantities and evaluate the task-related objective on
available actions. These operations can be quite expensive,
especially in high-dimensional state spaces and with
information-theoretic cost functions, such as differential en-
tropy. Online decision-making under uncertainty in such a
setting is essential in numerous problems in robotics, such as
single and multi-robot active SLAM, sensor deployment,
search and rescue, and autonomous environmental monitoring.

However, many problems of interest, for example, active
SLAM, exhibit structure. In such problems, only subsets of
variables interact directly with each other. It means there
exist conditional independencies between variables and it is
possible to simplify the model of their joint probability

distribution. One way to represent certain dependencies or
causality among variables of a stochastic system is via a
graphical model of their joint probability distribution
(Koller and Friedman 2009), for example, a factor graph and
a Markov Random Field.

A graphical model approach involves expressing the joint
probability density/mass function (belief) as a product of local
functions of its variables. A structure of this model, described
by a topology induced from the connectivity of the variables
and factors they belong to, reveals probabilistic and algo-
rithmic features of the model (e.g., independence, learning
complexity) often indicating how to efficiently perform
marginalization and conditioning operations on that model

Department of Aerospace Engineering, Technion - Israel Institute of
Technology, Haifa, Israel

Corresponding author:
Andrej Kitanov, Department of Aerospace Engineering, Technion - Israel
Institute of Technology, Technion City, Haifa 32000, Israel.
Email: akitanov@gmail.com

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231204898
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-4183-2896
mailto:akitanov@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231204898&domain=pdf&date_stamp=2023-12-20


using only local computations (Lauritzen and Spiegelhalter
1988).

Graphical models have been much investigated in a
design of efficient inference and learning algorithms (Sucar
2015), especially in the SLAM community (Folkesson and
Christensen 2004; Frese 2006; Kaess et al. 2008, 2012;
Thrun and Leonard 2008; Paskin 2003; Dellaert and Kaess
2017). However, a study of structural properties of prob-
ability distributions and their use in decision-making under
uncertainty is relatively new (Kitanov and Indelman 2018;
Chen et al. 2018, 2019; Khosoussi et al. 2019).

Moreover, sometimes it is possible to make decisions
without explicitly performing the computationally expensive
inference of future beliefs and cost function calculation by
looking at some other features of the system highly related to
the objective. Using this strategy, we can focus on important
features first and leave the details for later if necessary, or when
resources become available. The difficulty within this ap-
proach lies in identifying such features, that, on top of being
discriminative, are less expensive to compute than solving the
original optimization problem explicitly, and in understanding
how close the solution based on them is to optimal.

In this work, we identify and study such features relevant
to information-theoretic decision-making under uncertainty
induced from structural information of the corresponding
posterior probability distributions. Our approach is appli-
cable to high-dimensional Gaussian belief space planning
(BSP) problems that exhibit the specific structure of pair-
wise potentials, that is, each factor involves only two
variables. It therefore particularly supports variants of the
active SLAM problem (see, e.g., a recent survey (Placed
et al. 2023)), that exhibit such a structure.

To get the intuition behind this idea, see Figure 1.
Different actions generally lead to factor graphs with dif-
ferent topologies and more complex graphs tend to produce
more accurate estimates, with smaller entropy. The idea is
then to develop a computationally lightweight topological
signature, that is, a function of the graph topology, that is

highly correlated with the original information-theoretic
cost, and to utilize that signature for decision-making.
Such a concept is therefore expected to be especially
beneficial in decision-making problems with large graphs,
such as in active SLAM.

1.1. Related work

BSP can be seen as a joint control and estimation problem in
which an agent (robot) has to find an optimal control ac-
cording to a specific task-related objective, which itself has to
be estimated while accounting for different sources of un-
certainty, for example, due to stochastic sensing, motion or
environment. Some interesting instantiations of this problem
are active SLAM (e.g., Atanasov et al., 2015; Du et al., 2011;
Huang et al., 2005; Indelman et al., 2015; Kim and Eustice,
2014; Kopitkov and Indelman, 2017, 2019; Regev and
Indelman, 2017; Stachniss et al., 2004; Valencia et al.,
2012), active perception (Bajcsy 1988), sensor deployment
and measurement selection (Joshi and Boyd 2009; Bian et al.
2006; Hovland andMcCarragher 1997), graph reduction, and
pruning (Kretzschmar and Stachniss 2012; Carlevaris-Bianco
et al. 2014).

The general BSP problem with Markovian models can be
naturally represented by a Partially Observable Markov
Decision Process (POMDP). Determining globally optimal
solutions to the POMDP problem is computationally in-
tractable for most but the simplest real-world problems due to
both the curse of dimensionality and the curse of history (see,
e.g., Pineau et al. 2006). Computational complexity remains
an issue evenwith simplifying assumptions on the probability
distribution of the states, finite planning horizons, discrete
states, actions or observations (Papadimitriou and Tsitsiklis
1987). As a result, a large subset of prior work has focused on
approximately solving the POMDP problem to provide better
scalability. Some examples include using sampling-based
motion planners (e.g., Kavraki et al. 1996; Prentice and
Roy 2009; Agha-Mohammadi et al. 2014; Davidson and

Figure 1. Conceptual illustration of topological belief space planning. Given that the objective is uncertainty minimization of the
trajectory, an optimal action can be often deduced solely from posterior’s topology (middle column), that is, without predicting the
values of future measurements and performing belief propagation (right column), but only by predicting that the trajectory a1 will have
loop closures due to re-observing previously mapped area, while a2 won’t as it leads to an unknown (gray shaded) area (left column).

70 The International Journal of Robotics Research 43(1)



Hutchinson 2009), local optimizationmethods for continuous
state spaces (e.g., Indelman et al. 2015; Platt et al. 2010; Van
Den Berg et al. 2012), or point-based value iteration (e.g.,
Pineau et al. 2006; Porta et al. 2006; Kurniawati et al. 2008).

The paradigm proposed herein is related to computa-
tionally efficient information-theoretic BSP in the context of
active pose SLAM. We formulate the optimization problem
in a topological space where it is more easily solved, yet its
solution is close to a solution of the original BSP optimi-
zation problem. Unlike existing topological methods in
robot motion planning that consider a topology of the
configuration space of the robot to generate or topologically
classify paths (Kim et al. 2013; Bhattacharya et al. 2015) or
to create and use topological maps of the environment
(Ranganathan and Dellaert 2011; Choset and Nagatani
2001; Angeli et al. 2009; Paul and Newman 2010;
Blöchliger et al. 2018), topology in our work refers to the
structure of the belief, which encodes dependency rela-
tionships among states, and is used in planning.

An information-theoretic cost in an objective function of
BSP is some measure of system uncertainty (information),
typically (conditional) entropy or mutual information.
Evaluating it requires determining the expected posterior
belief of a candidate action. For Gaussian distributions the
corresponding computations usually involve calculating a
determinant of a posteriori covariance (information) matrix
whose complexity is O(n3) in the general case, where n is
the state dimension. Moreover, these calculations need to be
performed for each candidate action. In Indelman et al.
(2015) this challenge was addressed by resorting to the
information form and utilizing sparsity; however, calcula-
tions still involve expensive access to marginal probability
distributions. The rAMDL approach (Kopitkov and
Indelman 2017, 2019) performs a one-time calculation of
marginal covariance of variables involved in the candidate
actions, and then applies an augmented matrix determinant
lemma (AMDL) to efficiently evaluate the information-
theoretic cost for each candidate action. Nevertheless,
that approach still requires recovery of appropriate marginal
covariances, the complexity of which depends on state-
dimensionality and system sparsity.

Our work is motivated by the results of Khosoussi et al.
(2019) in the context of measurement selection and pose-
graph pruning problems in SLAM that characterizes the
impact of the graph topology of SLAM (described by
weighted tree-connectivity) on estimate reliability. In Chen
et al. (2021), the authors extend these results to a 3D SLAM
with relative pose measurements and make a comparison
between the T-optimality and the D-optimality metrics.

1.2. Contributions

The main purpose of this work is to set theoretical foun-
dations of the topological BSP (t-bsp) concept introduced
in our preliminary conference publication (Kitanov and
Indelman 2018), extending the main results from
(Khosoussi et al. 2019) to BSP. In this paper we further

develop the potential of t-bsp as an approximate method
to efficiently solve BSP in high-dimensional state spaces in
problems that exhibit certain structure and develop per-
formance guarantees, as discussed below. Specifically, we
consider the structure of pairwise potentials, which is often
the case in active SLAM problems. The main contributions
of this paper are as follows.

First, we propose new topologicalt-bsp signatures: one is
based on the number of spanning trees of the topological
posterior factor graph representation, and the other on its von
Neumann graph entropy (Mowshowitz and Dehmer 2012;
Passerini and Severini 2009; Petz 2001). Both signatures have
a strong correlation with the information-theoretic cost, but are
computationally easier to calculate.

Second, we give a definition of an action consistent
objective to formalize the equivalence of two criteria
(functions) in terms of action ranking which extends pre-
viously defined action consistent state approximations
proposed in (Elimelech and Indelman 2017b, 2017a,
2017c), building upon (Indelman, 2015, 2016). Definition
1 defines an approximation error in decision-making be-
tween any two functions (possibly on different domains)
besides of the usual looking at the values of the same
function for two different arguments (states or beliefs). This
enables us to quantify an error between different cost
functions and establish optimality guarantees. Specifically,
we express the error of t-bsp via bounds on the
information-theoretic cost (Corollary 1), and derive the
bounds analytically for an active 2D pose SLAM, con-
sidering the joint differential entropy as the cost function.
These bounds are a function of topological terms, mea-
surement noise density and an a-priori state estimate. A
special emphasis is given to efficiency in calculation of error
bounds to make our method appropriate for online use.
Using these bounds, we are able to provide online per-
formance guarantees of t-bsp, with any of the topological
signatures. We emphasize these performance guarantees are
with respect to a given solver (i.e., estimator) of the original
information-theoretic BSP problem (6), and not with respect
to the corresponding theoretical BSP problem (1). In this
work we consider the solver to utilize maximum likelihood
observations (Platt et al. 2010), although the bounds are
applicable also to additional solvers.

Third, we propose a new method to calculate the number
of spanning trees of a graph efficiently via a convergent
power series. This is a result of reformulating Kirchoff’s
matrix tree theorem via eigenvalues of the normalized
Laplacian matrix and graph node degrees (Theorem 1). The
power series reveals the connection between our proposed
topological signatures and the information-theoretic cost in
the limit.

Forth, we develop an incremental variant of t-bsp based
on the von Neumann graph entropy that, under certain con-
ditions, which are often met in operating conditions (e.g.,
SLAM), achieves near constant-time complexity.

We extensively evaluate our batch and incremental t-bsp
algorithms in realistic Gazebo/ROS simulations of active 2D
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pose SLAM and in optimization of synthetic pose graphs.
Additionally, we provide a proof of concept of t-bsp in a
small-scale real-world active SLAM experiment.

2. Notations and problem formulation

Decision-making under uncertainty can be formulated as a
solution to BSP or stochastic control problem where the
optimal non-myopic control action U+ at planning time k is
found with respect to the objective function J related to the
design task as

U+¼ argminU JðUÞ, where for U ¼Uk :kþL�1,

Jðb½Xk �,UÞ¼ E
Zkþ1:kþL

(XL�1

l¼0

clðb½Xkþl�,UkþlÞþcLðb½XkþL�Þ
)
:

(1)

The BSP problem with Markovian models is an instance
of POMDP. The state of the system X is not directly ob-
servable by the controller, but through a set of stochastic
measurements Z from which the future posterior beliefs
b½Xkþl�must be inferred upon optimization. The expectation
in (1) is taken with respect to future (unknown) observations
Zkþ1 : kþL. The optimal solution of BSP provides a control
strategy U+ for L look-ahead steps, but L can generally vary
among control actions or planning sessions. We use JðUÞ ¼
Jðb½Xk �,UÞ and U+ ¼ U+

k : kþL�1 to denote the objective and
the optimal control, respectively, in a given planning session
(at time k). The objective function in its general form reflects
the design task through immediate cost functions cl, which
depend on the belief evolution b½Xkþl� (to be defined) and a
control action Ukþl applied at time k + l, and through a final
cost cL. For example, the cost functions can be chosen to
minimize trajectory uncertainty, time or energy required to
reach a goal, state uncertainty of variables of interest at
some specific time instant etc. In information-theoretic BSP,
one is interested in state uncertainty minimization which can
be expressed through some information-theoretic cost c(�)
(see, e.g., Carrillo et al. 2012). This type of cost function is
usually computationally the most expensive to optimize in
many BSP problems in robotics.

The given notation abstracts the details of the controller
design for the purpose of generality of the formulation. The
basic problem we aim to solve is evaluating the objective
function J, which is belief dependent (POMDP setting), for
a finite sequence of controls (L look-ahead steps). This can
be used in any POMDP solver no matter whether the control
is closed-loop or open-loop. In this paper we implement
both open-loop control (action sequences) and a Model
Predictive Control (MPC) type planner and assume that a
low-level controller can stabilize the system to follow the
nominal path between two planning sessions using feedback
based on the expected value of the state. This is similar to an
LQG approach and is justified for systems that are either

linear or locally well approximated by their linearization
(Van Den Berg et al. 2011).

Solving the optimization problem (1) explicitly would
require belief propagation for a given control and evaluating
an information-theoretic objective which we want to avoid
and use a topological approach instead. Let us first look at
how the belief evolves over time by separating controls and
observations to those obtained by planning time k and to
future controls and observations after L look-ahead steps.

2.1. Belief propagation

Let PðXk jHkÞ represent the posterior probability density
function (pdf) at planning time k over states of interest Xk of
the robot. In the pose SLAM framework states of interest are
the robot’s current and past poses, that is, Xk = {x0, x1, …,
xk}. History Hk^fZ1 : k ,U0 : k�1g contains all observations
Z1 : k and controls U0 : k�1 by time k. Consider conventional
state transition and observation models

xiþ1 ¼ f xi, uið Þ þ wi, zi, j ¼ g xi, xj
� �þ vi, j, (2)

with zero-mean Gaussian process and measurement noise

wi ∼Nð0,V�1
w Þ and vi, j ∼Nð0,V�1

vij Þ, and with known in-

formation matricesVw andVvij. The belief PðXk jHkÞ can be
written as

PðXk jHkÞ}Pðx0Þ∏
k

i¼1
Pðxijxi�1, ui�1ÞPðZ ijXiÞ: (3)

Let the future sampled states of the robot along one of
its candidate paths P generated at planning time k be
{xk+1, …, xk+L}. The future posterior belief b½XkþL� ¼
PðXkþLjZ1 : kþL,U0 : kþL�1Þ that would be obtained by
following the path P, can be written in terms of the belief
at planning time PðXk jHkÞ and the corresponding state
transition and observation models as

b½XkþL� ¼ PðXk jHkÞ ∏
kþLðPÞ

l¼kþ1
Pðxljxl�1, ul�1ÞPðZ ljXlÞ, (4)

where Uk : kþL�1 and Zkþ1 : kþL represent controls and
(unknown) observations, respectively, to be acquired by
following the path P.

2.2. Assumptions

The Topological BSP concept is general as an idea of intro-
ducing a new cost function, a function of the belief’s topo-
logical features, to approximate actions ranking with respect to
information-theoretic cost. However, identifying relevant to-
pological representations and signatures in general BSP is an
open problem. The approach we develop aims at BSP in
problems that exhibit certain structure, such as active SLAM. In
this work, our definition of topological space applies to all
beliefs which can be factorized to a product of pairwise factors
associated with a set of independent measurements. We de-
velop this concept for a special class of Gaussian BSP, targeting
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efficient decision-making in high-dimensional state spaces,
with a joint differential entropy cost function and propose two
topological signatures for the case of block isotropic mea-
surement noise (5). For clarity here we only consider the final
state cost term E½cLðb½XkþL�Þ�, that is, the joint entropy at the
end of the planning horizon. The immediate information-
theoretic cost functions can be treated in a similar way.

In summary, the assumptions used in this paper to de-
velop t-bsp are:

(A1) the belief is modeled by a multivariate Gaussian
distribution and can be factorized to a product of
pairwise factors,

(A2) the measurement noise covariance can be written in
the form

Σ ¼ diag
�
σ21Im, σ

2
2Im,…, σ2

κIm
�
, (5)

for some κ blocks and m measurements with variances
σ21,…, σ2κ,

(A3) taking maximum likelihood observations (Platt et al.
2010), and

(A4) the information-theoretic cost is the joint differential
entropy at the end of the planning horizon. Under
(A3), the objective function becomes

JðUÞ ¼ N=2 lnð2πeÞ � 1=2 lnjIðXkþLÞj, (6)

where I(Xk+L) denotes the estimated Fisher information
matrix of the robot’s belief b[Xk+L], and N represents the
dimension of the state Xk+L.

Note that t-bsp signatures designed to be action
consistent under assumption (A4), will also be consistent
with respect to an information-gain reward since all actions
have the same prior entropy. Specifically, in this paper we
demonstrate our approach in an active 2D pose SLAM
problem in which all relative positions and orientations are
normally distributed with variances σ2p and σ

2
θ, respectively.

Measurement noise covariance Σ then can be written as a
diagonal matrix Σ ¼ diagðσ2pI2m, σ2θImÞ, with m being the

number of relative pose measurements.
Another application of t-bsp are linear systems with

relative measurements zi,j = xi � xj + vi,j such as: active pose
SLAM in which the robot’s orientation is known (e.g., from a
compass), sensor network localization, clock synchronization
and motion consensus (Barooah and Hespanha 2007) in the
context of measurement selection problem etc. For those types
of problems under the assumptions (A1)-(A4), t-bsp is
always action consistent according to the Definition 1 since the
determinant of the posterior information matrix is given by
jI XkþLð Þj ¼ ∏κ

p¼1 σ
�2N
p tκ, where t is the number of spanning

trees of a topological graph associated to a posterior factor
graph, so negative JðUÞ equals the topological signature based
on the number of spanning trees.

An extension to a feature-based SLAM and map entropy
is possible under the proposed framework as long as the

measurements can be expressed in the form of pairwise
relations between states. This is quite common since the
robot’s landmark measurements are often given relative to
the robot’s pose, for example, as range or bearing mea-
surements. The Fisher information matrix of the joint state
of feature-based SLAM under the ML framework with
isotropic measurement noise is derived in Chen et al. (2018)
in terms of its graph topology and our results apply to it.

3. General approach in topological belief
space planning

The main idea of topological BSP is ranking candidate
actions based on structural information (topology) of their
associated beliefs. Under the t-bsp concept, the original
problem (1) is reformulated in a topological space, where it
can be solved more easily, and then its solution is related to
the solution of the original problem. The importance of the
topology and a quality of the solution based on it will clearly
be dependent on the optimization objective, the influence of
non-topological information (noise distribution, geometric
realization) and diversity of candidate actions. As will be
shown in this work for the information-theoretic BSP, the
belief topology is of great importance and can be used to
improve efficiency of decision-making.

3.1. Topological representation of beliefs

The structure of the probability density function (pdf) is
determined from conditional independences present in it. In
this paper, we use a factor graph probabilistic graphical
model (Frey et al. 1997) to represent them explicitly. A
factor graph defines two types of nodes: the nodes over state
variables X, and the factor nodes F ¼ ffig such that
PðX Þ ¼ ∏

i
fi. Variable nodes and factor nodes are inde-

pendent sets in a bipartite graph. Edges go between factors
and variables that those factors depend on. One of the
reasons factor graphs are important is the existence of ef-
ficient inference algorithms that operate on them, for ex-
ample, the sum-product message passing algorithm
(Kschischang et al. 2001), which allow recursive compu-
tation of marginal distributions conditioned on observed
data for both Maximum Likelihood (ML) andMaximum-A-
Posteriori (MAP) estimation frameworks.

As will be shown later on, factor graphs are also a
suitable graphical representation in information-theoretic
BSP because of their connection to the objective function
under the ML estimation framework for Gaussian systems.

Under assumption (A1), F contains only pairwise fac-
tors. The topological representation of the posterior belief is
defined as a topological graph G associated to a posterior
factor graph FG of a candidate action (e.g., see Figure 2),
which is a graph isomorphic to the posterior Markov
Random Field (MRF), that is,GxMRF(b[Xk+L]). Different
candidate paths P typically yield different factor graphs.
A graph G herein is understood to be simple (without
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self-loops or parallel edges), connected, and undirected.
Each graph G corresponds to a topological space called the
geometric realization (Archdeacon 1996). In the standard
sense of topology, such a graph is a simplicial 1-complex
(Gross and Tucker 1987). Therefore, a node in the graph, a
point in its geometric realization and the corresponding
point when embedding the graph in a topological space are
often used interchangeably.

A topological signature s :G→R is some graph in-
variant, that is, a function that assigns to G a number
calculated from its structure according to a well-defined
procedure, whose value is independent of how the graph is
drawn or how its nodes are numbered.

3.2. Decision-making via t-bsp

Generally, we aim to find a topological representation G
of the posterior belief corresponding to a control action U
and a function s :G→R, which we call topological
signature, such that decision-making using the function s
does not (or minimally) change the optimal action ac-
cording to a BSP objective JðUÞ. In other words, suppose
we can express the problem of minimizing the objective
JðUÞ and its solution U+ ¼ argmin U JðUÞ on the given
set/interval of actions U as maximizing the topological
signature s on the same actions set where each action
induces some topology, that is,

bU ¼ argmax
U

s Uð Þ: (7)

We say that decision-making is action consistent if and
only if U+ ¼ bU. Moreover, if this is true for any subset of
actions, a topological signature s preserves action order too.
This is a much stronger condition than action consistency,

and as we will see, it will not always be required when we
are looking only for the best action, which greatly simplifies
design of a topological signature so that we can focus more
on computational complexity.

Figure 3 shows all possible situations regarding the
relation between the topological signature and objective
function in t-bsp. In Figure 3(a), a signature is action
consistent on the whole domain of control actions, and
therefore the solution of t-bsp is the same as BSP.
However, although ordering of actions is not kept in the
whole domain in the case shown in Figure 3(b), the solution
is still optimal. Figure 3(c) shows a case where an action
ordering given by a signature influences the optimal action.

Clearly, topological signatures should be designed to
exhibit strong correlation with the objective, but in the
general case, the obtained best action bU may be somewhat
different than the optimal action U+ from (1), leading to
some error in the quality of solution.

We adopt the definition of action consistent state ap-
proximations proposed in Elimelech and Indelman (2017b)
and modify it to support t-bsp and action consistent
objective approximations in the following way.

Definition 1. Denote by bU ¼ argmaxUsðUÞ the optimal
solution of t-bsp and by U+ ¼ argminU JðUÞ the
optimal solution of BSP problem (1). LetF be a family of
monotone decreasing real functions and f :R→R2F
such that f ½sðbUÞ� ¼ JðbUÞ and f ¼ argming2F γg, where
the functional γg ¼ maxUjJðUÞ � g½sðUÞ�j. Then, the
error of t-bsp is

ϵðJ , sÞ^
���JðU+Þ � f

h
s
�bU�i���, (8)

and γf the action ordering error of the signature s.

Figure 2. Each candidate action corresponds to posterior belief b[Xk+L], that is, trajectory uncertainty (a) which can be represented with a
factor graph (b) and assigned a topology. In the case of active pose SLAM, topology can be defined with a simple undirected
graphG ¼ ðV , EÞ such that graph nodes V represent robot’s poses and edges E pose constraints between them (c). Topological BSP aims
to determine a graph invariant topological signature s :G→R which is highly correlated with the information-theoretic cost and
maintains action consistent decision-making.
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In particular, ϵ(J, s) = 0 corresponds to t-bsp being
action consistent, that is, bU ¼ U+, and when also f exists for
which γf = 0, simplified representation preserves action
order too and we call it action ordering (ranking) consistent.
Essentially, f is a mapping from the signature image to the
objective function image and is required for defining action
consistency of objective functions.

Yet, as in Elimelech and Indelman (2017b), calculating
ϵ(J, s) is essentially equivalent to solving the original
problem. Therefore, a key aspect will be to provide online
performance guarantees by developing bounds on ϵ(J, s)
that can be evaluated online. One can then resort to to-
pological BSP to drastically reduce computational cost
while carefully monitoring a conservative estimate on the
sacrifice in performance, that would be provided by the
bound on ϵ(J, s). Another perspective of using this bound
is to guarantee global optimality of the anytime t-bsp
algorithm we proposed in Kitanov and Indelman (2018).
In that approach, actions were ranked by a topological
signature and the objective function was evaluated se-
quentially from best to worst. Having bounds on t-bsp
error would provide a stopping condition for action
consistent t-bsp, similar to the action elimination
scheme proposed in Elimelech and Indelman (2017b) and
its application to belief sparsification. The optimal so-
lution is then obtained by evaluating only a subset of
candidate actions (for sufficiently tight bounds, empty
set), while discarding the rest. Doing so will generally
reduce the number of variables for which the marginal
covariance needs to be recovered.

4. Information-theoretic topological BSP

We propose two topological signatures for solving
information-theoretic BSP with uncertainty of all states
considered. Both signatures are based on the spectrum of a
graph (normalized) Laplacian associated to the posterior
factor graph: a normalized number of spanning trees of a
graph, sST(G), motivated by the SLAM topological metric
(Khosoussi et al. 2015) and adjusted for BSP, and a von
Neumann graph entropy, sVN(G).

A Laplacian matrix of a graph G = (V, E) is by definition
L(G) = D(G) � A(G), where A(G) is its |V|×|V| adjacency
matrix with elements

Aði, jÞ ¼
�
1, if ði, jÞ 2E
0, otherwise

and D(G) its node degree matrix defined as a diagonal
matrix with graph node degrees on its main diagonal, that is,
D(i, i) = d(i) =

P
j2V A(i, j). Therefore,

Lði, jÞb
8<: dðiÞ, if i ¼ j
�1, if i ≠ j and ði, jÞ 2E
0, otherwise

A normalized Laplacian matrix is defined as bLðGÞ ¼
D�1=2LD�1=2 which can be also written in the form

bLði, jÞ ¼
8><>:

1, if i ¼ j, dðiÞ ≠ 0
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðiÞdðjÞp , ði, jÞ 2E

0, otherwise

Both L and bL are symmetric and positive semi-definite so
all their eigenvalues are real and non-negative. Hence, they
can be ordered. For a given connected graph G with n = |V|
nodes, let λ1 ≤ λ2 ≤ / ≤ λn be the eigenvalues of L, andbλ1 ≤bλ2 ≤/≤bλn, the eigenvalues of bL. The smallest eigen-

values λ1 ¼ bλ1 ¼ 0. Also,bλn ≤ 2 and, sinceG has no isolated

nodes,
Pn
i¼1

bλi ¼ n (for proof see Chung 1997).

4.1. Normalized number of spanning trees

The number of spanning trees of a graph t(G) can be deter-
mined using Kirchhoff’s Matrix tree theorem (Biggs 1993,
Theorem 6.3) which involves calculating any cofactor of a
graph Laplacian, or equivalently the product of its non-zero
eigenvalues, that is, tðGÞ ¼ j~Lj ¼ 1=n∏n

i¼2λi. Here, ~L de-
notes L with the r-th row and column removed for some r.
Typically, this number gets quite large for factor graphs in BSP
so we use its logarithm in a topological signature instead to
avoid arithmetic overflow in computer implementations,
τ(G) = ln t(G). As has been shown in Khosoussi et al. (2015),
there exists a strong positive correlation between D-optimality
criterion and τ(G) in general SLAMML optimization while in
some problems with linear measurement models, D-optimality
criterion is solely characterized by τ(G). In Kitanov and
Indelman (2018), we have proposed a normalization of

Figure 3. Different topological signatures and their influence on decision-making. The graphs show topological signature and negative
objective as functions of control action.
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τ(G) based on its relation to the optimization objective in BSP
which gives this BSP topological signature

sST ðGÞ ¼ κ
2
ln tðGÞ þ n� 1

2

	
ln
��Vvij

��� lnð2πeÞκ
, (9)

normalized in such a way to account for different path
lengths n and dimension of the robot’s pose κ (e.g., κ = 3 in
2D active pose SLAM) that maintains a high correlation
with the information-theoretic cost (6).

Determining sST is an operation with cubic complexity in
the number of nodes for general dense graphs. Because
SLAM graphs typically have a small number of edges due to
a limited sensor range and field of view, their graph Lap-
lacian is sparse and state-of-the-art algorithms use this fact
to efficiently calculate τ(G) by performing a sparse matrix
factorization. For example, let R be the lower triangular
Cholesky factor of a reduced Laplacian ~L2R

n�1×n�1 of
graph G, that is, ~L ¼ RRT , then

τðGÞ ¼ ln det
�
~L
�
¼ 2

Xn�1

i¼1

lnRði, iÞ: (10)

This approach, to be efficient, requires finding a good
fill-reducing permutation P~L of ~L such that the Cholseky
factor of P~L

T~LP~L is sparser than the Cholseky factor of ~L.
The problem of finding the best ordering is an NP-complete
problem (Yannakakis 1981) and is thus intractable, so
heuristic methods are used instead. Overall, the computa-
tional time for sST depends on the state dimension and
system sparsity.

4.2. Von Neumann graph entropy

The second topological signature we propose for
information-theoretic BSP is the von Neumann entropy of
G, sVN(G), and its simplification bsVNðGÞ by node degrees d
of G.

The von Neumann entropy sVN(G) of graph G is the
Shannon entropy associated with its normalized Laplacian’s

eigenvalues fbλigni¼1 and was introduced in Passerini and
Severini (2009). In this work we use the following definition

sVNðGÞ ¼ �
Xn
i¼1

bλi�2 lnðbλi=2Þ: (11)

Using Han’s quadratic approximation (Han et al. 2012)

and given that
Pn
i¼1

bλ ki ¼ Tr½bLk �, it can be simplified to

sVN ðGÞ ≈ n ln 22
� 1

2

Xn
i¼1

bλiðbλi � 1Þ

¼ n ln 2

2
� 1

2

�
Tr
hbL2
i
� n
�
:

(12)

It can be easily seen that Tr½bL2� ¼ nþ P
ði, jÞ2E

1
dðiÞdðjÞ from

which the final expression for our approximated von

Neumann graph entropy follows which we use as a topo-
logical signature in BSP

sVNðGÞ ≈bsVNðGÞ ¼ n
�
2 ln 2� 1

2

X
ði, jÞ2E

1

dðiÞdðjÞ: (13)

Notice that its computation depends only on graph node
degrees and, in the general case, has quadratic complexity in
the number of nodes, O(n2) but in the case of BSP, where bL
is sparse, it depends only on the small number of non-zero
elements of A(G), that is, the number of edges |E| in the
graph G. Also, the expression (13) can be computed in-
crementally, as new edges (measurements) are added to the
factor graph as the robot explores the environment or re-
plans its path. This effectively improves computational
complexity of the t-bsp algorithm to nearlyO(1) since the
number of measurements between two planning sessions is
limited.

4.2.1. Incremental mode. Let Gk = (Vk, Ek) be a topological
graph of a prior belief b[Xk], a prior graph at planning time k
for short, and Gk+L = (Vk+L, Ek+L) the posterior topological
graph corresponding to b[Xk+L] after obtaining future pre-
dicted observations associated to a control action U, a
posterior graph for short. Their corresponding graph sig-
natures, bsVN ðGkÞ and bsVN ðGkþLÞ, are

bsVNðGkÞ ¼ ðkþ1Þ=2ln 2�1=2
X

ði, jÞ2Ek
1=½dkðiÞdkðjÞ�

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{qk

(14)

bsVNðGkþLÞ ¼ðk þ Lþ1Þ=2ln2

� 1=2
X

ði, jÞ2EkþL

1=½dkþLðiÞdkþLðjÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{qkþL

(15)

By subtracting equation (14) from (15) we obtain the
recursive update rule for the posterior graph signature

bsVN GkþLð Þ ¼ bsVN Gkð Þ þ L

2
ln 2� 1

2
Δq, where (16)

Δq ¼ qkþL � qk : (17)

Now, the key observation is that in order to calculateΔqwe
do not need to iterate over all edges of the corresponding
graphs, but only over thosewhose node degrees changed or are
associated to the new states added to the prior graph, that is,

Δq ¼
X

ði, jÞ2Eδ


1

dkþLðiÞdkþLðjÞ �
1

dkðiÞdkðjÞ
�

þ
X

ði, jÞ2ΔE

1

dkþLðiÞdkþLðjÞ:
(18)

In equation (18), ΔE = Ek+L � Ek represents newly added
edges to the prior graph Gk due to the control action U
yielding posterior graph Gk+L, VI nodes incident to ΔE
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without new nodes and Eδ edges from Ek+L incident with VI

that belong also to Ek. An example illustrating the incre-
mental t-bsp concept is given in Figure 4.

The complexity of updating bsVN graph signature per
candidate action is O(|ΔE| + |MB(VI)|), where MB(VI) de-
notes the Markov blanket in Gk of the variables involved
and is usually bounded owing to limits on sensor range.
Since the number of actions per planning session is also
bounded, for sparse graphs this means that incremental t-
bsp algorithm has effective complexity O(1).

4.3. Maximum likelihood estimation

In this work, we investigate error bounds of t-bsp on the
active 2D pose SLAM problem. We first examine results on
passive SLAM reliability regarding its graph structure
described by a topological metric τ(G)^ln(t(G)) proposed
in Khosoussi et al. (2015) and then, in the next section, we
show how these results can be extended to a BSP problem to
provide online performance guarantees of t-bsp. In that
section, it will also be clear how we chose the topological
signature sST.

In the context of Maximum Likelihood Estimation
(MLE) in pose SLAM, the optimal set of poses Xk for which
the belief (3) is maximized can be obtained by fixing one of
the poses, for example, x0, and treating the rest as unknown
(or with an uninformative prior) while minimizing the sum
of weighted squared errors between predicted and measured
relative poses,1 that is,bX k ¼ argmax

Xk

PðΔk jXkÞ ≡ argmin
Xk

kΔk � hðXkÞk2Σ�1 : (19)

In this formulation, a measurement Δk represents a vector of
m stacked relative pose measurements zri, j 2 SEð2Þ,
r ¼ 1; 2,…,m from motion and observation model (2) at
time k with m = |E|, the number of edges in the topological
graph of the belief (3). Relative pose measurements in pose
SLAM resulting from state transitions can be obtained by
the motion composition zi+1,i(xi, xi+1) =.xiÅ xi+1 =.xiÅ

f(xi, ui, wi). In this work, we assume independent relative
pose measurements with additive noises

Δk ¼ hðXkÞ þ νk , νk ∼N
�
0,Σ�1

�
: (20)

For simplicity, we also assume a 2D pose SLAM setting in
which all relative positions and orientations between poses xi
and xj have equal variance, σ2p and σ2θ, respectively, that is,
Vvij ¼ diagðσ�2

p , σ�2
p , σ�2

θ Þ. Measurement noise covariance Σ

in that case can be written as a diagonal matrix
Σ ¼ diagðσ2pI2m, σ2θImÞ by reordering elements of Δk.

The information matrix I(Xk) of the MLE is I(Xk) =
HTΣ�1H (Sorenson 1980), where H = ∂h/∂Xk. is a mea-
surement Jacobian. I(Xk) evaluated at the true value of Xk

is known as Fisher Information Matrix (FIM) and its
inverse the Cramér-Rao lower bound (CRLB). Com-

monly, FIM is approximated with IðbX kÞ. In Khosoussi
et al. (2015) bounds of the determinant of I(Xk) are ex-
pressed in terms of pose SLAM graph topology, geometry
and noise as

3τ Gð Þ þ ln detIo Xkð Þ ≤ ln det I Xkð Þ
≤ 2τ Gð Þ þ ln det ~Lþ ΨIÞ þ ln detIo Xkð Þ,� (21)

where ~L is a reduced Laplacian of a graph G obtained by
removing an arbitrary r-th row and r-th column of the
graph Laplacian L, Io(Xk) estimated information matrix
based on the odometry measurements Δk = {zi+1,i, i < k},
and Ψ^ξ2dist2max where ξ = σθ / σp, and dist2max ¼ maxi2VP

ði, jÞ2E
��xi � xj

��2. Notice that generally Ψ depends on the

noise variances, geometry, and topology of the SLAM
graph. In Khosoussi et al. (2015) these bounds are not
used except to prove the limiting case, Ψ→ 0. Therefore,
for small values of Ψ a good approximation of ln detI(Xk)
is its bound that depends on τ(G), that is, lower and upper
bounds become tight. Even when it is not negligible, if
there is only one path realization to consider as in passive
SLAM, information gain of adding relative pose mea-
surements with a constant noise distribution to a SLAM
odometry graph is solely characterized by graph G topology,
that is, Ψ = Ψ(G). Similar logic applies to graph pruning and
the measurement selection problem (Khosoussi et al. 2019)
where all graphs are only subgraphs of the original graph with
the same embedding in metric space. To demonstrate why we
cannot use the same metric τ(G) in BSP problems nor guar-
antee optimality using the bounds on I(Xk), consider the ex-
ample given in Figure 5.

So, in BSP we need to consider different path realizations
Xk+L and therefore Ψ ¼ ΨðUÞ ¼ ΨðXkþLðUÞ,GðUÞÞ, in
contrast to graph pruning and measurement selection.
Notice that we do not need to propagate belief in planning
for determining Ψ under the ML observations assump-
tion, that is, E½XkþL� ¼ ½bX k xkþ1…xkþL� where future
sampled poses from the path corresponding to action U
are added to the prior state estimate bX k which is the same
for all actions.

Figure 4. Incremental t-bsp: Consider the planning session
starting at time k=4 when the robot’s current pose is x4, and a
control action that generates a candidate path from which states
fx5, x6g (marked with red circles) are sampled and added to the
prior graph together with new edges
ΔE ¼ fðx4, x5Þ, ðx5, x6Þ, ðx5, x3Þg marked with blue dashed lines
as a result of predicted relative pose measurements. In that case,
involved states are VI ¼ fx3, x4g (marked with blue circles), and
affected edges in the prior graph Eδ ¼ fðx2, x3Þ, ðx3, x4Þ, ðx2, x4Þg.
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4.4. Entropy bounds for active SLAM

In BSP, we have to consider multiple path realizations from
different controls, with greater variety in both topology of
factor graphs and other non-topological factors that influ-
ence estimation accuracy, for example, non-fixed geometry
and different path lengths. In Kitanov and Indelman (2018),
we developed a topological signature sST (9) for t-bsp.
Here, we show its derivation and provide global optimality
guarantees of t-bsp for any signature via estimated en-
tropy bounds that are functions of sST for active SLAM and
related problems as described in the Section 2.2.

For a control action U corresponding to robot’s poses Xk+L =
{x1, …, xk+L} each of dimension κ, the entropy of the future
posterior belief b[Xk+L] can be written using equation (6) as

JðUÞ ¼ ðk þ LÞκ=2 lnð2πeÞ � 1=2 lnjIðXkþLÞj (22)

Notice that the number of graph nodes |V| = n = k + L + 1.
Using Lemma 2 and Lemma 3 from Khosoussi et al. (2015),
for posterior belief PðXkþLjU0 : kþL�1Þ corresponding to an
odometry factor graph whose topological graph Go is a tree,
it follows

lndetIoðXkþLÞ ¼τðGoÞ|fflffl{zfflffl}
0

þln
�
σ�4
p σ�2

θ

�kþL

¼ðkþLÞlndet�Vνi,j

�
(23)

Inequalities (21) and equations (22) and (23) give the
entropy bounds LB½JðUÞ�#JðUÞ#UB½JðUÞ�, where

UB½JðUÞ� ¼ ðn�1Þκ
2

lnð2πeÞ�1

2

	
3τðGÞþðn�1Þln��Vνi, j

��

¼�3

2
τðGÞ�n�1

2

	
ln
��Vνi, j

��� lnð2πeÞκ
¼�sST ðUÞ
(24)

Similarly, for the lower bound we get

LB½JðUÞ� ¼�sST ðUÞ�1
.
2ln
���~LþΨðUÞIn�1

���þ1
.
2 τðGÞ

(25)

¼ �sST ðUÞ � 1
.
2
h
ln
���~Lþ ΨðUÞIn�1

���� ln
���~L���i (26)

¼ �sST ðUÞ � 1
.
2 ln
���In�1 þ ~L

�1
ΨðUÞ

���: (27)

In equation (26) we used the Matrix tree theorem that states

tðGÞ ¼ j~Lj (recall τ(G) = ln t(G)), and in equation (27) Shur’s
determinant lemma. From equation (27) we see that when
Ψ→ 0, the entropy goes to the BSP topological signature and
solely depends on the belief’s topology and path length.
Otherwise, we have to account for the graph embedding in the
metric space as well, as it appears in the scalar function Ψ of
the second term in the above equations. Now, given all
candidate control actions, the following corollary provides the
bounds on the t-bsp error as defined by Definition 1.

Corollary 1. For the error ϵ(J, s) of t-bsp, we can
write

ϵðJ , sÞ#ΔJmax,

where ΔJmax ¼ UB½J�bU�� �min
U

LB J Uð Þ½ �, andbU ¼ argmaxUs Uð Þ.
Proof. See Appendix B.

4.4.1. Efficient calculation of entropy bounds. The upper
bound of the entropy is already determined by the topological
signature sST as can be seen from equation (24). Moreover,

UB½JðbUÞ� ¼ �sST ðbUÞ is the minimum upper bound of all
actions since we select action in t-bsp according to equation
(7). However, calculating the lower bound requires an addi-
tional cost due to the second term in equations (25)-(27).
Calculating (25)-(26) requires evaluating the determinant of a
sparse matrix M ¼ ~Lþ ΨIn�1 2R

n�1×n�1, whereas calcu-
lating (27) is even more complex because it requires inverting
~L and finding a determinant of a dense matrix.

Another idea is to find some fast method for limiting the
determinant of M from above to replace the second term in
equation (25) that will not introduce a big difference in
tightness of the lower bound.

4.4.2. Exact lower bound. A direct approach performs
from scratch some sparse matrix factorization of M, for
example, Cholesky factorization M = RRT where R is the
lower triangular matrix, from which then it is easy to
calculate its determinant. However, this approach, to be
efficient, still requires finding a good fill-reducing per-
mutation PM of M, but we notice that some calculations
from the topological signature can be re-used. In partic-
ular, sinceM differs from ~L only in diagonal elements, they
both have the same sparsity pattern. Therefore, if P~L is the

Figure 5. BSP vs. the measurement selection problem: In
measurement selection problems, the robot considers a single
path and its factor graph (e.g., marked with blue color) at planning
time k and which subset of measurements (marked with blue
dashed lines) to take. Pose samples Xk+L are fixed and
minimizing entropy (6) by a measurements subset (action) is the
same as maximizing ln |I(Xk+L)|� ln |Io(Xk+L)|. Its bounds as can be
seen from (21) depend only on the topology and ξ, that is, all
actions share the same pose variables Xk+L which can be
considered constant in optimization. However, in BSP where a
robot needs to compare different paths U corresponding to
different factor graphs (e.g., red and green), this is not true
anymore. To determine the best action according to (6), one has to
account additionally for different path geometries and path
lengths and larger variety of topologies.
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best fill-reducing permutation of ~L (already found for

determining j~Lj), it can be re-used for calculation of the
lower bound, that is, PM ¼ P~L.

4.4.3. Hadamard bound. Since ~L is a reduced graph
Laplacian, it is symmetric positive definite (SPD), and
because alsoΨ > 0, the matrixM is SPD. For large values of
Ψ, the matrix M becomes diagonally dominant, in fact
strongly so, and Hadamard inequality gives a good ap-
proximation of its determinant, that is,

���~Lþ ΨIn�1

���#∏
n

i¼2
½dðiÞ þ Ψ�: (28)

Calculation of the right side of inequality (28) re-
quires only multiplication of node degrees with added
value of Ψ. Applying (28) to equation (25), we can get a
somewhat more conservative but faster to compute lower
bound

LBH ½JðUÞ� ¼�sSTðUÞþ1

2

 
τðUÞ�

Xn
i¼2

ln½dUðiÞþΨðUÞ�
!
:

(29)

Algorithm 1. t-bsp with performance guarantees

4.5. t-bsp algorithm

Algorithm 1 summarizes our proposed method and
highlights its possible uses in BSP regarding desired
performance specifications. Performance guarantees can
be either in the form of selected solution’s entropy upper
bound, that is, guarantees on the accuracy, or in bounding
the error of t-bsp with respect to the optimal solution.

The first form can be used when the maximum admis-
sible path uncertainty is known at planning time, for ex-
ample, for obstacle avoidance. In that case, one can get an
answer if a t-bsp solution satisfies the specification by
ranking actions using the very efficient topological signa-
ture bsVN and calculating only its entropy’s upper bound
(Alg. 1, line 7). If global optimality guarantees are required,
the lower entropy bound needs to be calculated for all
actions. Although in equation (29) it is given as a function of
sST, in the next section we will see how it can be expressed
via bsVN . In the first usage, if uncertainty specification is not
met by t-bsp one can still use its ranked actions set A in
anytime algorithm as we proposed in Kitanov and Indelman
(2018). Also, if an optimal solution needs to be found, we
can use t-bsp to eliminate suboptimal actions.

5. Von Neumann entropy based t-bsp with
performance guarantees

In this section we develop a mechanism to provide global
optimality guarantees as functions of the von Neumann
entropy topological signature bsVN (13). The key idea is to
make a connection of bsVN to the normalized number of
spanning trees topological signature sST based on which we
have already established t-bsp error bounds (see
Figure 6). At the same time, we want to preserve compu-
tational efficiency. Theorem 1 is central for this, and has also
much wider applicability than in the context of BSP as a
reformulation of the Matrix tree theorem.

5.1. Taylor series for τ(G)

First, we provide a method for calculating the number of
spanning trees of a graph via a convergent Taylor series ex-
pansion as a function of only the graph’s node degrees, which
avoids matrix factorization, the current state-of-the-art.

Recall that τðGÞ ¼Pn
i¼2ln λi � ln n and representing it

with a Taylor power series is possible only for all λi 2I
inside the interval of convergence of the logarithm function,
I ¼ ð0, 2� around point λi0 = 1. However, the spectrum of
the graph Laplacian can be outside this interval. We know
that the largest Laplacian eigenvalue is bounded by the
number of non-isolated vertices, that is, λn#n (Mohar 1991,
Theorem 2.2). On the other hand, the normalized graph
Laplacian’s spectrum without zero lies inside I for every
graph G (Wilson and Zhu 2008) and therefore the von
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Neumann graph entropy is well-defined via its Taylor series.
This motivates us to look for an alternative representation of
τ(G) that involves eigenvalues of bL. The following theorem
gives the required relation.

Theorem 1. Let G = (V, E) be a connected, undirected
graph with n nodes, and let t(G) be the number of
spanning trees of G. Then,

tðGÞ ¼ ∏n
i¼1diPn
i¼1di

∏
n

i¼2

bλi (30)

where bλ2,bλ3,…,bλn are non-zero eigenvalues of the nor-

malized Laplacian matrix bL of G, and d1, d2…, dn node
degrees of G.
Proof. See Appendix C.

Wewill often use the logarithm of t(G) in the following study

τðGÞ^ln tðGÞ ¼ ln
∏n

i¼1diPn
i¼1di

þ
Xn
i¼2

lnbλi: (31)

Let us denote by Tx0ðxÞ the Taylor series expansion of the
function f(x) = ln x centered around the point x0. Then, on the
interval of convergenceI, f ðxÞ ¼ Tx0ðxÞ ¼ lim

r→∞
Tr
x0
ðxÞwhere

the r-th partial sum of the Taylor series Tr
x0
ðxÞ is given by

Tr
x0
ðxÞ ¼ ln x0 þ

Xr
i¼1

ð�1Þi�1

ixi0
ðx� x0Þi:

Considering function f defined over the non-zero nor-
malized graph Laplacian’s eigenvalues bλi and the lineari-
zation point x0 = 1, we obtain the following r-th order Taylor

series approximation of lnbλi
lnbλi ≈Tr

1ðbλiÞ ¼Xr
k¼1

ð�1Þk�1

k
ðbλi � 1Þk ,"bλi 2 spectrum

�bLðGÞ�∖f0g: (32)

Calculating the topological signature sST directly using
the Matrix tree theorem, using Theorem 1 or via a Taylor
series approximation using equation (32) would require
determining the graph spectrum of the associated graph
matrix, which is not desirable, from a computational
perspective, in high-dimensional state spaces. Similarly,
applying equation (10) requires matrix factorization,
whose time complexity is only by a constant scaling
factor smaller than the time complexity of calculating the
information-theoretic cost.

In this paper, we show how this can be avoided by
developing the power series of τ(G) and expressing it
with sums of traces of powers of normalized graph
Laplacian which can be more easily calculated because
they involve multiplication of sparse matrices. Impor-
tantly, for low order Taylor series approximations, they
can be given in closed-form as simple functions of graph
node degrees.

Denote the k-th term in the sum given by equation (32)
by

sk bλi� �
^

�1ð Þk�1

k
bλi � 1
� �k

:

After expanding a power using Binomial theorem we can
write

skðbλiÞ ¼Xk
l¼0

ð�1Þkþl�1

k


k
l

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

akl

bλk�l

i , so (33)

Tr
1ðbλiÞ ¼Xr

k¼1

Xk
l¼0

aklbλk�l

i : (34)

Observe that in equation (34), akl is defined by the
horizontal underbrace in equation (33).

By convention bλ01 ¼ 0 and given that
Pn

i¼2
bλk�l

i ¼Pn
i¼1
bλk�l

i ¼ Tr½bLk�l�0

Xn
i¼2

Tr
1
bλi� �

¼
Xn
i¼1

Xr
k¼1

Xk
l¼0

aklbλk�l

i ¼
Xr
k¼1

Xk
l¼0

akl
Xn
i¼1

bλk�l

i

¼
Xr
k¼1

Xk
l¼0

aklTr bLk�l
h i

: (35)

For the Taylor polynomial Tr
1ðbλiÞ, ∃ζ ¼ ζ ðbλiÞ such that a

remainder term Rr
1ðbλiÞ ¼ f ðbλiÞ � Tr

1ðbλiÞ is
Rr
1ðbλiÞ ¼ f ðrþ1Þðζ Þ

ðr þ 1Þ! ð
bλi � 1Þrþ1 ¼ ð�1Þr

r þ 1

bλi � 1

ζ

�rþ1

, (36)

Figure 6. Schematic overview: Topological belief space planning
based on approx. von Neumann entropy with performance
guarantees.
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where for bλi < 1, ζ 2 ½bλi, 1� and for bλiP1, ζ 2 ½1,bλi�.
Finally, using Theorem 1 and equation (35) we obtain

bτðG, rÞ ¼ ln
∏diP

di
þ
Xr
k¼1

Xk
l¼0

aklTr
hbLk�l

i
: (37)

bτðG, rÞ is the approximation of τ(G) by the r-th order
Taylor polynomial and can be used to calculate a topo-
logical signature of t-bsp with reduced complexity
compared to calculating it by matrix factorization as in
(10), by an operation which involves sparse matrix
multiplications instead.

5.2. Performance guarantees based on bτ
The next proposition reveals a property of the remainder
term which can be used to provide performance guarantees
of t-bsp efficiently, from the approximated number of
spanning trees of the topological graph by its Taylor
polynomial, without the need to know the remainder of all,
but only the selected control action.

Proposition 1. If the logarithm of the number of
spanning trees of the graph G is approximated by the r-th
order Taylor polynomial bτðG, rÞ ¼ ln ð∏di=

P
diÞþ

Pr
k¼1

Pk
l¼0

aklTr½bLk�l�, its approximation error εðG, rÞ ¼
τðGÞ �bτðG, rÞ has the following properties:

i. εðG, rÞ ¼Pn
i¼2R

r
1ðbλiÞ, where Rr

1ðbλiÞ is given by
equation (36),
ii. limr→∞ ε(G, r) = 0,
iii. ε(G, r) ≤ 0 for odd polynomial orders r.
Proof. See Appendix D.
Figure 7 illustrates the properties of the remainder stated

by the Proposition 1.
The question that naturally arises is whether we can use the

approximated logarithm of the number of spanning trees to
provide performance guarantees if we choose such an order r
that makesbτðG, rÞ ≥ τðGÞ. From equation (29) it is easy to see
that the lower bound of the entropy calculated from bτðG, rÞ
will remain the lower bound, but the upper bound might be
compromised depending on the approximation error ε(G, r).
So, ΔJmax needs to account for that change as well. Let’s
denote by ΔbJmax the t-bsp error bound calculated by usingbτðG, rÞ instead of the true τ(G). Then,

ΔJmax ¼ ΔbJmax � κ
.
2 ε
�bU, r�, (38)

where εðbU, rÞ ¼ τðbUÞ �bτðbU, rÞ.

Figure 7. Taylor series approximation error τ �bτ of the logarithm of the number of spanning trees for three different graphs: isosahedral,
antenna, and Foster026. For odd polynomial orders, this error is either zero or negative.
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5.3. Relation between topological signatures

By establishing a relation between sST and bsVN it would be
possible to use benefits from both worlds, speed of sVN with
optimality guarantees for sST.

A relation between two proposed information-theoretic
BSP topological signatures sST andbsVN ðGÞ can be derived in
the limit r → ∞ using Theorem 1 and Taylor series ex-
pansion of the logarithms of the normalized graph Lap-
lacian’s eigenvalues, which appear in both of them (see
Appendix E):

sST ðGÞ ¼ lim
r→∞

sST ðbτðG, rÞÞ, where (39)

sST ðbτðG, rÞÞ ¼ κ rðr � 1Þ
4

bsVN ðGÞþ
κ
2

 Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
þ ln

∏diP
di

!
þ

�
κ
2


r � rðr � 1Þðln 2þ 1Þ

4
� HðrÞ

�
þ 1

2
ln

��Vvij

��
ð2πeÞκ

�
nþ

κ
2
HðrÞ � 1

2
ln

��Vvij

��
ð2πeÞκ, and

(40)

HðrÞ ¼Pr
k¼11=k is a harmonic number of r. In practice, we

can often get very good approximation for finite small
orders r.

For r = 3, using equation (61) we find a simple closed-
form expression given by equation (41), that does not
involve traces of matrix powers, and in combination
with Proposition 1 gives a way to formulate t-bsp in
terms of the approximated von Neumann entropy and
lower bound the information-theoretic cost for all
actions U.

For the logarithm of the number of spanning trees of a
graph G corresponding to a control action U approximated
by the third order polynomial we can write

bτðG, 3Þ ¼ ln
Πdi
Σdi

þ 7

3

bsVNðGÞ � n ln 2

2

�
þ

1

3

X
ði, kÞ2E

blik
 X

j

blijbljk
!

þ 11

6

: (41)

In equation (41) bL ¼ ðblijÞ which means that the right-hand
side is purely a function of nodes’ degrees and a number of
graph nodes, both of which are easy to maintain for graph
operations of adding or deleting an edge encountered in
BSP or graph pruning problems.

Substituting (41) into (9), we obtain the third order re-
lation between the topological signatures

bsSTðG, 3Þ ¼ 7κ
6
bsVNðGÞþ

κ
2

"
ln
Πdi
Σdi

þ 1

3

X
ði, kÞ2E

blik
 X

j

blijbljk
!

þ 11

6

#
þ

n� 1

2

�
ln
��Vij

��� 7κ ln 2
6

� lnð2πeÞκ
�
:

(42)

Here, we used the shorter notationbsST ðG, rÞ^sST ðbτðG, rÞÞ.
Since r is odd, after determining the lower bounds of the
entropy LBðUÞ from bτðG, 3Þ for all actions, in order to
provide performance guarantees for t-bsp, we have to
find an upper entropy bound for only the selected actionbU ¼ argmaxUbsVN ðUÞ, for example, by finding or

bounding the Taylor remainder term εðbU, 3Þ according to
equation (38). As we can see, the relation (42) enables
finding bsST ðG, 3Þ without doing expensive matrix fac-
torizations which means that performance guarantees for
t-bsp can be established in a very efficient way.

Equation (42) reveals also how to improve normalization
of bsVN ðGÞ for different candidate path lengths n which
corresponds to its scaled third term, that is,

bs 0
VN Gð Þ ¼ bsVN Gð Þ þ

n�1
2 ln

jVvijj
2πeð Þκ � 7κ ln 2

6

� �
7κ
6

� � : (43)

In that way, an action ranking of bs 0
VN follows the action

ranking of bsSTðG, 3Þ given that the node degree distribution
corresponding to the second term in equation (42) does not
change much and is already captured by bsVN ðGÞ.
5.3.1. Keeping action consistency. In general, given two
different candidate actions U1 and U2, when can we say that
ordering them by one topological signature is the same as
ordering by another, that is, sST ðU1Þ< sST ðU2Þ
5bsVN ðU1Þ<bsVN ðU2Þ? For any r and G ¼ GðUÞbsSTðG, rÞ ¼ αrbsVNðGÞ þ βrðDðGÞÞ þ γrðnÞ,
where αr, βr, and γr are some functions that depend on the
polynomial order r used for approximating τ(G) that follow
from equation (40). For a given r, αr is a constant, βr is a
function of graph’s node degrees, and γr an affine function of
the number of its nodes.

The difference of topological signatures bsST of order r
between graphsG1 andG2 with n1 = |V1| and n2 = |V2| can be
written

ΔbsSTðG1,G2, rÞ ¼ bsSTðG1, rÞ �bsSTðG2, rÞ
¼ αrΔbsVNðG1,G2Þ þ ΔβrðDðG1Þ,DðG2ÞÞ þ Δγrðn1, n2Þ:

(44)

Then, for any two graphsG1 andG2 from the control actions
set, ΔbsSTðG1,G2, rÞ< 0 if and only if
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ΔbsVNðG1,G2Þ<� ΔβrðDðG1Þ,DðG2ÞÞ þ Δγrðn1, n2Þ
αr

:

(45)

This is another way of formulating the relation between
topological signatures in terms of action consistency be-
tween them. If the normalization is applied to bsVN using
(43), then Δγr(n1, n2) = 0.

6. Results

We evaluated our approach in Gazebo simulations of a single-
robot active pose SLAM and in optimization of synthetic pose
graphs. t-bsp was compared to the standard BSP with the
ML inference problem solved using GTSAM library (Dellaert
2012). We studied empirically different topological signatures
and their correspondences to information-theoretic cost (6)
together with a time required for decision-making.

In active pose SLAMsimulations, the robot performsLIDAR-
based 2D SLAM assuming perfect data association. A proba-
bilistic roadmap (PRM) (Kavraki et al. 1996) is used to discretize
the environment and generate the roadmap while k-diverse
shortest path algorithm (Voss et al. 2015) is used to generate
topologically diverse candidate paths over it. The action gener-
ation process uses a ground truth map to validate actions and
avoid possible re-planning stages, since they do not contribute to
the goal of BSP analysis, which are a result of incremental map
building. Local path corrections due to localization errors or
environment changes are handled by the low-level controller and
obstacle avoidance algorithm. Of course, in the deployment of
active SLAM, an inferred map will be used in generation of
candidate paths using the same principles.

Topological properties of candidate actions are deter-
mined by the configuration of obstacles in the environment
and by the parameters of the PRM algorithm (e.g., number
of samples) and k-diverse shortest path algorithm (e.g., k,
path length, paths’ distance) which control the number and

diversity of candidate actions with respect to their geo-
metrical properties and homology class. Topological graphs
corresponding to these candidate actions depend on the
robot’s trajectory and sensor’s characteristics and pre-
processing (SLAM front-end). In particular, we assume
that a link between certain trajectory samples will exist
whenever the Euclidean distance between them is below a
threshold δ and relative orientation below q, which model
the range and the field of view with high reliability of ICP
method used for matching LIDAR scans. In all simulations
when predicting future measurements, we assume that the
robot can follow the candidate path perfectly and that
trajectory pose samples with LIDAR scans are taken after
each robot’s relative displacement of 1 m and at the desired
predefined goal poses.

6.1. Small-scale realistic simulation

First we validated our theoretical results in a small-scale
scenario with the main goal to demonstrate properties of
t-bsp in elementary planning modes (exploration and
exploitation) under different probabilistic models of rel-
ative pose measurements.

The robot was performing two planning sessions (S1 and
S2) with both exploration (in S1) and exploitation trajec-
tories (in S2) considered to show influence of different
candidate path topology and geometry in t-bsp. Figure 8
shows the considered scenario in Gazebo and the generated
candidate paths for the robot in two planning sessions S1
(Figure 8a) and S2 (Figure 8b). To demonstrate the effect of
noise level on t-bsp, we simulated three cases. All relative
pose measurements had standard deviation of orientation
error σθ either 0.01, 0.035, or 0.085 rad while we kept the
same standard deviation of the position error σp = 0.1 m.
This corresponds to three different values of ξ 2 {0.1, 0.35,
0.85} for each planning session. The parameter δ was set to
2 m and q to 2π radians, that is, without the constraint on
relative orientation in topology prediction model.

Figure 8. Gazebo scenario with robot’s start pose marked with and goal pose with in each planning session.
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During planning session S1, the robot is performing
mainly exploration as the environment was completely
unknown in the beginning and its first goal is set far in the
unknown area so its future posterior beliefs have to-
pologies that resemble tree graphs, with loop closing
edges between poses nearby in time. In planning session
S2, the robot was instructed to return to the previously
mapped area causing larger diversity among candidate
actions. Topologies of the most and least complex graph
of each planning session are shown in Figure 9 together
with their corresponding posterior belief. In both plan-
ning sessions t-bsp based on all proposed signatures
was action consistent, that is, correctly identified the best
action which can be seen from Figure 11g-11l. A max-
imum of a topological signature is indeed a minimum of
the joint entropy. Notice that it does not imply necessarily
that the pose uncertainty will be the lowest at the goal or
that the shortest trajectory will be selected as is evident
form S1’s solution (Figure 9(a)-9(b)) since currently the
entropy/uncertainty of the entire system is considered.
This opens one other relevant research direction where
uncertainty of a subset of state variables might be con-
sidered and its relation to topological information.
Among exploitation trajectories, t-bsp prefers the one
with larger loop closings leading to highest information
gain (see Figure 9(c)-9(d)).

Our results in a realistic simulation show the promise of
the proposed approach for efficiently solving BSP. All
topological signatures of the posterior factor graphs are
strongly correlated with the information-theoretic cost
(Figure 11(g)-11(l)); yet, t-bsp based on an exact von

Neumann entropy (sVN) and the number of spanning trees
(sST) of a graph outperforms standard BSP by an order of
magnitude in terms of time complexity as shown in
Figure 10. This is due to operation in a topological (less
dimensional) space instead of a metric state space. The
dimension of a graph Laplacian matrix in this problem is
κ = 3 times smaller than the dimension of an information
matrix because every 2D pose in the state vector corre-
sponds to one node in the graph. The relative speed of sVN
and sST is similar as both of them require determining a
graph spectrum of the associated Laplacian or its cofactor.
On the other hand, the advantage of usingbsVN over sVN and
sST is that it is much faster, O(|E|), with possible incre-
mental calculation that depends only on the node degrees
which we investigate in the large-scale simulation in
Subsection 6.4. It effectively enables real-time perfor-
mance of t-bsp given that typically at each measurement
update a limited number of factors is added to the graph.
Also visible from Figure 10 is that t-bsp error bounds
calculation adds a small, especially in the case with Ha-
damard bound, additional cost.

While t-bsp was action consistent in all sessions for
all proposed topological signatures (ϵ(J, s) = 0), action
ordering consistency (γf = 0) was kept only for sST in all
cases, while only in the first planning session for sVN andbsVN . γf ≠ 0 can happen when topologies among actions are
very similar and then other factors, for example, noise or
geometry, determine the solution. However, γf was still
small. As we already stated, the determined bounds of the
entropy can always be used to provide a globally optimal
solution but at the cost of evaluating the objective function

Figure 9. Trajectory uncertainty after optimization and topologies of the worst/best actions calculated by topological BSP.
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of actions inside them, that is, the ones whose lower bound
is below an upper bound of the selected action. From
Figures 11(a)–11(f) we can see that a negative topological
signature sST is a very good approximation of the esti-
mated posterior entropy even with large orientation noise,
that is, large ξ values. On the other hand, its determined
lower bound is very sensitive to it. For larger ξ values,
bounds are less tight and therefore our performance
guarantees are more conservative. In practice, however,
more important is that the upper bound is close to the real
entropy since we make decisions based on it. We can also
notice that for higher ξ, Hadamard approximation of the
lower bound is getting better, meaning that we practically
have very small computational cost in determining the
bounds accurately.

6.2. Real-world experiment

The experiment was performed on a real robot using a fixed
measurement noise model in inference and planning,
considering a similar scenario as in the simulation from
Section 6.1. The results are presented in Extension 1 as a
proof of concept of our method.

6.3. Synthetic simulation

Apart from the SLAM setting, next we consider general
pose graphs randomly created and optimized by the
Maximum Likelihood Estimator (MLE) and their relation to

the topological signatures developed in this paper. We show
that good action consistency is still kept even when com-
paring significantly varying pose graphs. We generated pose
graphs with varying number of nodes n and edges m of
which n� 1 correspond to odometry and the rest to LC =
m � n + 1 loop closing factors. We choose LC ¼ Δd n=2,
causing average node degree of a graph increasing in steps
of Δd 2f0:1; 0:5; 0:75; 1; 2g from a given odometry graph
of size n (whose average node degree is approx. 2). For each
pair (n, m) we create a group of 10 random topologies,
calculate their topological signatures sST and bsVN , and
measure the average time for their calculation, tST and tVN,
respectively. The results of this simulation are given in
Figure 12. We can see that correlation with the posterior
entropy of FIM of MLE is still high for sST on the whole
range of topologies while bsVN follows the overall trend and
is high for graphs with the same n, but breaks the action
consistency with jumps of n (Figure 12(b), green curve).
This suggests that a normalization of bsVN should be applied
according to its relation to the objective according to the
Definition 1. As explained in Section 5.3, after applying
correction term given by the equation (43), we can see that
actions consistency improves significantly (Figure 12(b),
black curve).

Although less accurate, the plot in Figure 12(a)
demonstrates why bsVN might still be interesting to use
for fast decision-making in some situations. Clearly, the
gain in speed is significant in high-dimensional BSP
problems.

Figure 10. Computation time per candidate action in each planning session (circle represents the mean, “x” the median and line interval
one σ confidence region) for standard BSP, t-bsp by signatures based on the number of spanning trees (ST), the von Neumann
entropy (VN exact and approx.) and for bounds determination, exact (equation (25)) and Hadamard (equation (29)). Notice that
computation time of the standard BSP approach has been scaled by 10.
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Figure 11. Estimated entropy of posterior belief and its bounds determined by t-bsp (top) and correlation of t-bsp and standard BSP
(bottom) for three different values of ξ in planning sessions S1 and S2. Notice different y-axis on the correlation plots since only action
ordering consistency is important in BSP.
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6.4. Large-scale realistic simulation

A large-scale scenario tests t-bsp performance in a
complex environment depicted in Figure 13 with larger
number of planning sessions. Its main goal is to investigate
the proposed approach in the settings closer to active SLAM
application domains. It serves also as a test bed for com-
paring the batch and incremental BSP algorithms.

For the second purpose, we design two experiments which
mainly differ in the planning horizon length L considered:

(a) a goal-to-goal planning, and

(b) Model Predictive Control (MPC) style planning.

Figure 12. Performance on simulated random graphs.

Figure 13. Gazebo simulation environment with Pioneer-3AT
ground robot marked with white bounding box. Grid cell size is
1 m x 1 m.
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The experiment a) was primarily designed to test the
execution time of the batch BSP algorithms whereas the
experiment b) for their incremental counterparts. Since
action consistency does not depend on the particular op-
eration mode, it is enough to show it only once. In the first
experiment, the robot is instructed to visit ten predefined
goals in a given order and to plan with a horizon sufficient to
connect consecutive goals. The second considers the same
set of goals with the difference that re-planning is done also
on several intermediate waypoints on the selected route
between goals choosing the next waypoint as a sub-goal. We
call this MPC mode, because the robot considers changing
its immediate control action on a way. In this simulation,
however, for ensuring similar conditions in both experi-
ments, the robot does not take any detours from the original
route. This mode would make sense in a dynamic envi-
ronment or if the inferred map is used by the action gen-
erator method due to partial map availability and possibility
that a better global path exists.

Consequentially, in goal-to-goal planning, the robot exe-
cutes 10 planning sessions and in each, many measurements
are added during the motion and prediction steps. Contrary to
that, MPC mode has more planning sessions with fewer new
measurements acquired between them. In both, the topology
prediction parameter δ was set to 2 m and q to 1 rad. Standard
deviations of relative orientation and position measurement
noise were kept constant at σp = 0.1 m and σθ = 0.01 rad.

6.4.1. Batch BSP algorithms. The standard batch BSP
inference was solved by Levenberg-Marquardt algo-
rithm from GTSAM library with the information-
theoretic cost (6) calculated exactly using Cholesky
factorization of the information matrix of the posterior
belief required for determining the determinant. The
same Cholesky method was used to factorize the re-
duced Laplacian matrix of the topological posterior
graph needed for t-bsp based on the number of
spanning trees topological signature sST. Also, in every
planning session, the approximated von Neumann graph

entropy bsVN was calculated from scratch using the ex-
pression (13) and then normalized using (43).

As expected, the run-time of the t-bsp based on sST is
by a constant multiplicative factor lower than the standard
BSP (Figure 14) since the sparsity pattern of both infor-
mation matrix and reduced Laplacian matrix is the same,
whereas the latter’s dimension is κ times reduced, κ being
the dimension of the robot’s pose. On the other hand, the
proposed t-bsp based on bsVN shows almost linear-time
complexity on average planning time per candidate action
and achieves by three orders of magnitude higher speed by
the last planning session.

Importantly, an optimal action was selected in all
planning sessions by the proposed t-bsp based on bsVN
as can be seen from Figure 15. Its only limitation is that
optimality cannot always be guaranteed using topological
entropy bounds. Information gain of candidate actions, in
those planning sessions where it is the case, is indeed very

Figure 14. Run-time comparison of batch BSP algorithms. Standard BSP is based on Levenberg-Marquardt optimization and explicit
calculation of objective function (6) by doing Cholesky factorization of information matrix. t-bsp based on sST uses the same method
of Cholesky factorization to calculate the number of spanning trees of a topological graph.

Figure 15. Action consistency of t-bsp based on approx. von
Neumann entropy bsVN and optimality guarantees in relation to
information gain of candidate actions (each dot of the same color
represents one candidate action in a single planning session).
Optimal action is selected by t-bsp in all planning sessions,
but its optimality can be guaranteed in sessions 1, 2, 5, 7, and
10 where one action is clearly distinctive in information gain.
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similar and then non-topological factors determine the
solution.

Let us have a closer look into two extreme cases: one
in which the optimal action can be guaranteed and the
other with a small percentage of suboptimal actions
detected by t-bsp. The representative of the first case
is the planning session 5 (S5) with relevant plots shown
in Figure 16, and of the second, planning session 8 (S8)
analyzed in Figure 17. The whole simulation and

analysis of the rest of the planning sessions can be seen
in Extension 2.

S5’s candidate paths together with the inferred map and
the past robot’s trajectory are shown in Figures 16(a)–16(b).
It can be seen that there exists a single candidate path
(marked with light green color) which leads to the previ-
ously mapped area and from the information-theoretic
perspective is optimal as it significantly reduces uncer-
tainty of the robot’s trajectory as shown in Figure 16(f). For

Figure 16. Planning session 5.
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illustration, we also show the uncertainty of the worst action in
that session in Figure 16(e) where ellipses represent the
marginal pose’s uncertainty in both plots. In this case, topology
solely is enough to disqualify other actions (Figure 16(d)).

S8’s candidate paths together with the inferred map
and the past robot’s trajectory are shown in Figures
17(a)–17(b). First we notice that in that session there
was a smaller number of candidate paths (only 4) which
belong to two homology classes, either going left or right
around the wall obstacle. Three of them are quite similar
in the geometrical shape and all of them passing through
already mapped areas. Therefore, it makes sense that the
expected accuracy (path entropy) obtained by following
either path will roughly be the same as can be seen in

Figures 17(e)–17(f) for the worst and best actions from
that set. Even in that unfavorable situation for t-bsp, it
still managed to find an optimal action (Figure 17(c))
where maximum of bsVN corresponds to the minimum of
the joint entropy, but not to guarantee its optimality. Two
other actions need to be inspected further for that, which
is visible from Figure 17(d). We can use an upper to-
pological bound which gives an uncertainty margin for
deciding that. We argue that in most practical applications
this difference in information gain will be insignificant
and t-bsp is good for coarse-level planning especially,
when a loss of precision up to the model approximation
gap is higher than a difference between actions’ objective
values.

Figure 17. Planning session 8.
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6.4.2. Incremental BSP algorithms. In the experiment b) we
compare running times of incremental BSP algorithms.
Standard incremental BSP was realized by employing state-
of-the-art incremental smoothing and mapping algorithm
ISAM2 from GTSAM library. It updates Cholesky fac-
torization of an information matrix incrementally using
operations on a graphical model called Bayes tree (Kaess
et al. 2010). For the purpose of this analysis, we measure the
run-time of only updating the Bayes tree of posterior beliefs
corresponding to the candidate actions, since after obtaining
this form calculating the information-theoretic cost is a
simple operation of calculating a determinant of a triangular
matrix. Topological BSP is based on the approximated von
Neumann entropy bsVN signature calculated incrementally
using the formula (16). The cumulative planning time across
all planning sessions in MPCmode is shown in Figure 18(a)
for standard BSP and in Figure 18(b) for the t-bsp based
on bsVN . Again, t-bsp outperforms standard BSP (by two
orders of magnitude). For reference, we also show non-
incremental t-bsp based onbsVN which is also much faster
then ISAM2 BSP. The graph in Figure 18c presents

planning time per candidate action with the change of state
dimension over time. As the theoretical analysis suggests,
time complexity is nearO(1) for the incremental t-bsp and
nearO(m) for its batch equivalent, wherem is the number of
edges in the topological graph, which in this case increases
almost linearly with the state dimension.

7. Conclusions

This work provides theoretical foundations for information-
theoretic topological belief space planning (t-bsp), a
novel paradigm for highly efficient decision-making under
uncertainty. The main idea consists of transforming the
original optimization problem to a topological space where
a solution is easier to find and then establish the error
bounds with respect to the optimal solution. Doing so, we
avoid belief propagation and explicitly calculating an ob-
jective function which offers significant speed-up to
decision-making. Very importantly, even when using such
approximations, an optimal BSP solution can still be ob-
tained in cases when two optimization problems are action

Figure 18. Run-time comparison of incremental BSP algorithms in MPC mode. Standard BSP is based on ISAM2 algorithm for belief
propagation and information matrix factorization (Figure 18(a)). Topological BSP is based on approximated von Neumann entropybsVN
signature (Figure 18(b)). Topological signature update per candidate action demonstrates almost constant-time complexity of
incremental t-bsp and near linear-time of its batch equivalent (Figure 18(c)). The plot in Figure 18(b) shows cumulative planning time,
that is, summation of planning times over the sessions and candidate actions from Figure 18(c).
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consistent, a concept introduced in this work for objective
function approximations. In the general case, one can resort
to t-bsp to drastically reduce computational cost while
carefully monitoring a conservative estimate on the sacrifice
in performance, that would be provided by the error bounds,
or to find globally optimal solution by evaluating generally a
much smaller number of candidate actions.

Topological signatures are defined on topologies of
factor graphs that correspond to future posterior beliefs
associated to candidate actions and their design depends on
the objective function. In this work, we consider
information-theoretic objective functions and pairwise
factors whose topologies can be represented with simple
graphs. Two topological signatures are proposed: normal-
ized number of spanning trees of a graph and approximation
of its von Neumann entropy by a function of node degrees.
The first shows better action consistency, but the special
focus in this paper is given to the second signature as it
enables real-time performance of BSP while still offering
good action consistency. It can be used in either batch or
incremental mode. For both signatures, we derived error
bounds of t-bsp that depend on topological parameters,
measurement noise, and prior state estimate under maxi-
mum likelihood estimation framework and the bounds can
be calculated with a small additional computational cost.

We presented an evaluation of our approach in realistic
active SLAM simulations and in random pose-graph op-
timizations. Results show t-bsp was optimal in all
planning sessions, but optimality could not always had been
guaranteed depending on the measurement noise charac-
teristics and diversity of candidate actions (topological and
geometrical). However, in those sessions candidate paths
carry very similar information gain and which action will be
chosen is often irrelevant in practice, but when it is im-
portant, t-bsp can be used as a pre-processing tool to
reduce the action search space. Also, decision-making is
done by the upper entropy bound which is much more
resilient to noise than the lower bound needed for the
guarantees. Time performance improved drastically com-
pared to state-of-the-art. Incremental t-bsp based on von
Neumann entropy exhibits O(1) asymptotic complexity in
active SLAM MPC-style planning. Also, update of the
topological signature is very intuitive and its complexity is
independent on which variables loop closure affects.

This work opens several research directions which might
be interesting in the context of simplifications approaches
for BSP. One is to investigate if a wider class of objective
functions to which t-bsp is applicable exists, that is,
where the solution is strongly characterized by the belief
topology. Also, we might consider relaxing the assumptions
on Gaussian beliefs, isotropic measurements noise or
pairwise relations in measurement model used in this work.
A first work in that direction is (Shienman et al. 2021) where
uncertainty minimization of a predefined subset (focused
set) of variables and uncorrelated differently weighted
measurements are addressed, building upon the t-bsp
approach for the unfocused case introduced here. Improving

tightness of the error bounds would be of great interest for
guarantees in fine-level planning, when control actions are
topologically similar. Finally, topology prediction models
could be further improved to increase prediction accuracy,
for example, by taking into account probabilities of data
associations. Overall, the presented approach contains both
fundamental and practical contributions to belief space
planning and we expect it will motivate further research and
find diverse applications.
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Note

1. Since the state x0 is considered deterministic, here we estimate
the rest of the variables Xk = {x1, x2, …, xk} and I(Xk) denotes
their joint information matrix from now on.
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Appendix

Appendix A: Index to Multimedia Extensions

1. Video Active SLAM small-scale real-world experi-
ment (Supplemental Video 1)

2. Video Active SLAM large-scale simulation
(Supplemental Video 2)

Appendix B: Corollary 1

Proof. Rewrite ΔJmax as

ΔJmax ¼
8<:J
�bU�þ UB

h
J
�bU�i� J

�bU�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δðbUÞ≥0

9=;

þ

8>><>>:�JðU*Þ þ JðU*Þ �min
U

LB½JðUÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δðU*Þ≥0

9>>=>>;
Therefore, δ ¼ δðbUÞ þ δðU*Þ≥0 and ΔJmax ¼ JðbUÞ�

JðU*Þ þ δ≥0 because U* is the minimum of the entropy.

Also, UB½JðbUÞ�¼ �sST ðbUÞ is the minimum upper bound
of all actions if we select action in t-bsp according to
equation (7). We know that the optimal action must have
entropy below or equal to this value, otherwise the selected
action would be better which is a contradiction by itself.

Then, ΔJmax ¼ JðbUÞ� JðU*Þþ δ ¼ jJðbUÞ � JðU*Þjþ
δ0jJðbUÞ �JðU*Þj ¼ εðJ , sÞ¼ ΔJmax � δ#ΔJmax. □

Appendix C: Theorem 1

Proof. Let D = diag(d1, d2…, dn), and S = D�1/2.
By definition, the normalized graph LaplacianbL^D�1=2LD�1=2 ¼ SLST , since S = ST.

bL is a real symmetric matrix with dimension n which

implies all its eigenvalues are real and bL has n linearly
independent eigenvectors, i.e. can be diagonalized by an
orthogonal matrix according to the spectral theorem
(Horn and Johnson 2013, theorems 2.3.1, 4.1.5). Let the
spectral decomposition of the normalized graph Lap-
lacian be bL ¼ bQbΛbQ�1

where bΛ ¼ diagðbλ1,bλ2,…,bλnÞ
represents a diagonal matrix with eigenvalues of bL on the

main diagonal and bQ an orthogonal matrix ðbQ�1 ¼ bQT Þ
whose columns are unit eigenvectors of bL associated to
them. Even if there are degenerate (repeated) eigen-
values, it is always possible to find an orthogonal basis of

R
n consisting of n eigenvectors of bL e.g. by the Gram-Schmidt

orthonormalization process (Horn and Johnson 2013, §0.6.4).
Analogously, the spectral decomposition of the graph Lap-
lacian is given by L = QΛQ�1 with Λ = diag(λ1, λ2…., λn)
where λi, i = 1, 2,…, n, are the eigenvalues of L and columns
of Q are their corresponding orthogonal unit eigenvectors.bQ,Q and S are invertible, thus we can writebΛ ¼ bQT

SQ|fflffl{zfflffl}
M

ΛQTST bQ|fflfflfflffl{zfflfflfflffl}
MT

.

We can perform partitioning M ¼

a b
c D

�
, MT ¼

a c
b D

T

�
, Λ ¼


λ1 0
0 ~Λ

�
and bΛ ¼

bλ1 0
0 �Λ

�
, where

λ1 ¼ bλ1¼ 0. The multiplicity of 0 as a Laplacian ei-
genvalue of an undirected graph equals the number of
connected components of the graph (Brouwer and
Haemers 2011). Both graph Laplacians are
positive semidefinite, and therefore for connected
graphs, have exactly one zero eigenvalue making �Λ > 0,

�Λ ¼ D~ΛD
T
: (46)

Taking the determinant of equation (46), we get

∏
n

i¼2

bλi ¼ det
�
D
�
∏
n

i¼2
λidet

�
D

T�
: (47)

Since detðDÞ ¼ detðDT Þ and tðGÞ¼ 1=n∏n
i¼2 λi (matrix

tree theorem) 0

tðGÞ ¼ ∏n
i¼2
bλi

n det
�
D
�2 (48)

Let S ¼ diagðsÞ, bQ ¼ �bq1 … bqn � and
Q ¼ � q1 … qn

�
with s2R

n being the main diagonal of

S, and bqi, qi, the i-th column vector of bQ andQ, respectively.
Then, after multiplication
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M ¼

0BBBB@
�
s ° bq1�Tq1 �

s ° bq1�Tq2 …:
�
s ° bq1�Tqn�

s ° bq2�Tq1 �
s ° bq2�Tq2 …:

�
s ° bq2�Tqn

« « 1 «
ðs ° bqnÞTq1 ðs ° bqnÞTq2 … ðs ° bqnÞTqn

1CCCCA
Now we can read partitions of M: a ¼ ðs ° bq1ÞTq1 ¼

ðSbq1ÞTq1 and b ¼
�
ðs ° bq1ÞTq2 … ðs ° bq1ÞTqn �. Here

the operator ‘◦’represents element-wise multiplication of its
vector operands.

Graph Laplacian always has the eigenpair λ1¼ 0,

q1¼ 1=
ffiffiffi
n

p ð 1 … 1 ÞT¼ 1=
ffiffiffi
n

p
1 (sum of its rows/col-

umns is zero). Also, if v is an eigenvector of bL, after rescaling
by S it becomes a generalized eigenvector u of L, i.e.

bLv ¼ bλv
D�1=2LD�1=2v ¼ bλv
LD�1=2v|fflfflffl{zfflfflffl}

u

¼ bλD1=2v

Lu ¼ bλDu
Lq1 ¼ bLbq1¼ 00bq1 ¼ D1=21 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1di

p
, the unit ei-

genvector associated to bλ1 =0. Now we can determine

a ¼ �Sbq1�Tq1 ¼

0BBBB@D�1=2 D1=21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1di

p
1CCCCA

T

1ffiffiffi
n

p ¼ … (49)

¼ 1T1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1di
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPn
i¼1di

:

r
(50)

Also, because Sbq1 ¼ 1=
Pn

i¼1di it follows that

b ¼ 1Pn
i¼1di


1Tq2|ffl{zffl}

0

…1Tqn|ffl{zffl}
0

�
¼ 0

Elements of the vector part of b are scalar products of
the last n � 1 eigenvectors of L with the first eigenvector
which all equal to zero since eigenvectors are orthogonal.
D is non-singular as can be seen from equation (47) so its
Schur complement exists. Because of the orthogonality of
Q and bQ 0jdetðQÞj ¼ jdetðbQÞj¼ 1 and after applying the
matrix determinant lemma we get

jdetðMÞj¼jdetðSÞj ¼ ��det�D��� det�a� bD
�1
c
���0��det�D���¼ ffiffiffi

d
p

∏
n

i¼1
sðiÞ, where d ¼

Pn
i¼1di
n

(51)

Finally, substituting (51) into (48), the theorem statement
follows

tðGÞ ¼ ∏n
i¼2
bλi

n
��D��2 ¼ ∏n

i¼1diPn
i¼1di

∏
n

i¼2

bλi □ (52)

Appendix D: Proposition 1

Proof. Using Theorem 1 and equation (35), we

can write τðGÞ ¼ ln ð∏di=
P

diÞ þ Pn
i¼2lnbλi ¼

ln ð∏di=
P

diÞ þ Pn
i¼2 ½Tr

1ðbλiÞþ Rr
1ðbλiÞ�. Now we can

see that the error εðG, rÞ ¼Pn
i¼2R

r
1ðbλiÞ. Sincebλi2ð0; 2� for every i > 1 of a connected graph G and

this interval is an interval of convergence of the
Taylor series of the logarithm function, it follows
limr→∞ ε(G, r) = 0.
Consider the remainder term Rr

1ðbλiÞ given by the
equation (36) for r = 2k � 1 and k2N.

For bλi≥10Rr
1ðbλiÞ≤0.

Also, for bλi < 10Rr
1ðbλiÞ ¼ ð�1Þrð�1Þrþ1ð1�bλiÞrþ1=

ððrþ1Þξrþ1Þ< 0.
Therefore, "bλi and r¼ 2k�10εðG, rÞ≤00bτðG, rÞ ≥ τðGÞ. □

Appendix E: Relation between
topological signatures

Recall thatbτðG, rÞ ¼ ln ð∏di=
P

diÞ þ
Pr
k¼1

Pk
l¼0

aklTr½bLk�l�
with

akl ¼ ð�1Þkþl�1

k

 
k

l

!

Tr
hbL0
i
: ¼n�1

Tr
hbLi ¼ n:

Also,

bsVNðGÞ ¼ n ln 2

2
�1

2

�
Tr
hbL2
i
� n
�
: (53)

Grouping all the coefficients next to Tr½bL2�, Tr½bL� and

Tr½bL0�, i.e. for all k � l = 2, 1, 0 0

bτ ðG,rÞ¼ ln
∏diP

di
þ
Xr
k¼1

Xk
l¼0

aklTr
hbLk�l

i
¼ ln

∏diP
di
þ
Xr
k¼2

ak,k�2Tr
hbL2
i

þ
Xr
k¼1

ak,k�1Tr
hbLiþXr

k¼1

ak,kTr
hbL0
i
þ
Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
(54)
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¼ ln
∏diP

di
þ
Xr
k¼2
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Tr
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(55)

¼ ln
∏diP
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þ Tr
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þTr
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aklTr
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i
(56)

¼ ln
∏diP

di
�
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i

2

rðr�1Þ
2

þ nr � ðn�1ÞHðrÞ

þ
Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i (57)

¼ ln
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i

2

rðr�1Þ
2

þ
�
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4
n� rðr�1Þ

4
n

�

þnr � ðn�1ÞHðrÞ þ
Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
(58)

¼ ln
∏diP
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� rðr�1Þ

2 � 2
h
Tr
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i
� n
i
� rðr�1Þ

4
nþ nr

�ðn�1ÞHðrÞ þ
Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
:

(59)

Putting (53) into (59) 0

bτðG, rÞ ¼ ln
∏diP

di
þ rðr�1Þ

2

bsVNðGÞ � n ln 2

2

�

�rðr�1Þ
4

nþ nr � ðn�1ÞHðrÞ þ
Xr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
(60)

where HðrÞ ¼Pr
k¼11=k is a harmonic number of r.

After rearranging,

bτðG,rÞ ¼ rðr�1Þ
2

bsVNðGÞþXr
k¼3

Xk�3

l¼0

aklTr
hbLk�l

i
þ ln

∏diP
di

þ
�
r� rðr�1Þðln2þ1Þ

4
�HðrÞ

�
nþHðrÞ

(61)

and substituting it into (9) we obtain power series re-
lation between topological signatures given by equation
(40).
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