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Abstract. Autonomous systems operating in uncertain environments
require robust decision-making capabilities to ensure safety and effi-
ciency. The partially observable Markov decision process (POMDP) frame-
work provides a structured approach for such decision-making under un-
certainty. However, conventional methods relying on expected returns
fail to account for the risk of undesirable events. In this paper, we in-
vestigate simplification techniques in the context of risk-aware POMDP
planning, replacing the conventional expectation operator with Condi-
tional Value at Risk (CV aR). We explore the concept of a risk envelope
and its implications for CV aR-based POMDPs, and present two novel
simplification techniques to reduce computational complexity, while an-
alyzing the impact of each on the risk envelope. These techniques in-
clude lightweight bounds over belief-dependent rewards and clustering
of future observations. Our theoretical analysis demonstrates that these
methods can accelerate risk-aware POMDP planning, while providing
formal planning performance guarantees on the impact of simplification.
The proposed framework enhances the practicality of risk-aware POMDP
planning, bringing it closer to become a viable alternative for real-world
applications in autonomous systems.

1 Intro

Risk awareness is a fundamental capability in AI and robotics, particularly in
the context of safe autonomous decision-making. Autonomous systems, which
perform complex tasks in uncertain scenarios without human intervention, have
become a significant focus in recent research. Endowing these systems with the
capability of assessing risk and making risk-aware decisions is essential to en-
hance their robustness and safety.

In such systems the agent has access only to sensor observations and not to its
state directly. The partially observable Markov decision process (POMDP) [1] is
a mathematically principled framework for addressing decision-making problems
in these challenging settings. POMDP models an agent acting in an uncertain
environment, where the agent cannot directly observe the state and instead
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maintains a distribution over the state, which is referred as the belief. POMDP
problems are computationally intractable [2] due to their inherent complexity,
due to the curse of dimensionality or the curse of history, where optimal policies
may depend on the entire sequence of actions and observations. The research
community has been extensively investigating approximate offline and online
planning approaches to provide better scalability to support real world problems,
see e.g. recent surveys [3][4].

A recently developed framework suggested the notion of simplification, see
e.g. [5][6][7][8][9]. This framework adapts one or more of the POMDP problem
components in order to solve the decision problem more efficiently, while guar-
anteeing either to find the same actions as in the original problem, or at least
bound the loss in the solution quality with respect to the original problem. Yet,
the used objective in those algorithms is the expectation of the return with
respect to future measurements, with the exception of [10].

However expectation is inherently flawed as it is oblivious to the distribu-
tion over the return hence it is unable to express the risk in the selected action
and is unable to prevent selecting actions that lead to rare undesirable events.
This limitation is crucial in numerous problems in AI and robotics (e.g. con-
sidering safety aspects). In contrast to the expectation operator, reasoning on
the level of distribution over reward (or return) or constraint, facilitates robust
decision-making by utilizing distribution-aware objective operators, known as
risk measures.

Quantifying risk can be done using different risk measures. Among these, co-
herent risk measures have been identified to possess desirable properties for as-
sessing risk [11]: monotonicity, translation invariance, positive homogeneity, sub-
additivity. Risk measures that are not coherent could lead to an agent (e.g. robot)
behaving in an irrational manner, which may lead to unreasonable and unsafe
decisions. Examples of coherent risk measures include the conditional value at
risk (CVaR) [12], and entropic value-at-risk (EVaR) [13]. In contrast, the com-
mon risk measure value-at-risk (VaR) is not a coherent risk measure (does not
satisfy subadditivity). Recently, coherent risk measures have been advocated for
quantifying risk in robotics applications [14].

Replacing the expectation operator and the applicability of the recursive
formulation in the context of MDP with a discrete state space has been discussed
in [15]. Formulating a recursive formulation for known risk objectives such as
CVaR and approximating Value Iteration algorithm while considering discrete
state spaces has been done in [16]. Recently, a sampling based approach with
CVaR as the objective was developed [?], yet it considers only a Bayes adaptive
MDP formulation.

In the POMDP setting, risk averse planning started to emerge only recently
[17,18,10]. However, simplification of risk-averse decision making problems, has
not been investigated thus far, except for [10]. In that work, it was shown that
computationally cheaper bounds on the return yield deterministic bounds on
Value At Risk. To the best of our knowledge, that work was the first work to
investigate simplification for risk aware planning. However that work considers
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only the VaR objective which is not sensitive to the tail distribution of the return,
i.e. the risky region. For those reasons we consider using coherent risk measures,
which have been suggested as a measure to quantify risk in autonomous systems
[14]. To our knowledge, simplification of decision making problems with coherent
risk measures has not been investigated thus far.

In this work, we investigate simplification techniques in the context of risk-
aware POMDP planning, replacing the conventional expectation operator with
CV aR. First, we examine the risk envelope, a key component in defining coherent
risk measures, and explore its implications for decision-making under uncertainty
considering the original and simplified problem definitions. We then introduce
two specific simplification methods that leverage the structure of POMDPs to
reduce computational complexity. The first simplification leverages lightweight
bounds over belief-dependent rewards, while the second simplification is based on
clustering of future observations. In both cases, we consider information-theoretic
rewards (e.g. in the context of informative planning and active SLAM), which
are typically computationally more expensive than state-dependent rewards. We
prove the risk envelope does not change for the first simplification, and is im-
pacted for the second simplification. Leveraging these findings we then derive
rigorous bounds on planning performance considering the simplified and the orig-
inal problem definitions. Overall, our approach provides theoretical foundations
and practical methods for accelerating risk-aware planning, ensuring that the
quality of decisions remains within acceptable bounds.

To summarize, the main contributions of this paper are: (a) we conduct
an in-depth analysis of the risk envelope for CV aR-based POMDPs; (b) we
introduce a general simplification formulation for risk-aware POMDPs and the
corresponding simplified risk envelope; (c) we propose two specific simplification
techniques, each backed by rigorous theoretical foundations. We envision these
foundations will lead to accelerated risk-aware POMDP planning with formal
performance guarantees.

2 Preliminaries and notations

2.1 POMDP

Formally the POMDP is defined as a tupleM = ⟨X ,A,Z, T, Z, r, bk⟩, where X ,A
and Z are the state, action and observation spaces, and T (x′ | x, a) and Z(z |
x) are the probabilistic transition and observation models, respectively. bk ≜
bk[xk] = P(xk|a0:k−1, z1:k) is the belief over the state at planning time instant
k. The belief can be updated via Bayesian inference as b[x′] = ψ(b[x], a, z′) ≜
η−1

∫
Z(z′ | x)T (x′ | x, a)b[x]dx, where η is a normalization constant.

The belief transition model describes how the belief state evolves over time,
incorporating the effects of actions and observations. Given a belief state bk,
action ak, and observation zk+1, the updated belief state bk+1 is computed using
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the observation model Z and the transition model T according to

P(bk+1 | bk, ak) =
∫
zk+1

P(bk+1|bk, ak, zk+1)

∫
xk+1

Z(zk+1|xk+1)· (1)∫
xk

T (xk+1|xk, ak)bk(xk)dxkdxk+1dzk+1,

where P(bk+1|bk, ak, zk+1) = P(bk+1|ψ(bk, ak, zk+1)).
In the conventional setting, the value function is defined as the expected

return V πk+(bk) = EGk
[Gk | bk, πk+], where the return Gk is defined as

Gk(bk, πk+) ≜
L−1∑
i=0

r(bk+i, πk+i(bk+i)) + r(bk+L), (2)

where L is the planning horizon, and the expectation is with respect to the
return distribution

P(Gk | bk, πk+). (3)

For simplicity we denote πk+ ≜ {πk, . . . , πk+L−1}, where πk+j represents a belief
dependent policy for time step k+ j, i.e. πk+j(bk+j) determines the action ak+j .
We shall also denote the random variable (RV) reward at any time instant t by
rt.

The goal of POMDP is to maximize the objective function by finding the
optimal policies for each time step π∗

k+ = argmaxπk+
V πk+(bk).

Under the assumption that

P(rt | bt, at) = δ(rt − r(bt, at)) (4)

P(bk+1|ψ(bk, ak, zk+1)) = δ(bk+1 − ψ(bk, ak, zk+1)), (5)

the value function can be expressed as V πk+(bk) = Ezk+1:k+L
[Gk(bk, πk+)]. It can

be also written recursively as,

V πk+(bk) = r(bk, πk(bk)) + E
zk+1

[V π(k+1)+(bk+1) | bk, πk+]. (6)

The standard POMDP formulation uses a state dependent reward function,
meaning the belief dependent reward is expectation over the states with respect
to the belief r(b, a) = Ex∼b[r(x, a)]. Recent works extended the POMDP frame-
work to support information-theoretic rewards over the belief (see, e.g. [19,20]).
This extension allows to to perform tasks such as exploration, e.g. informative
planning, information gathering, but raises the reward computation time.

2.2 Coherent Risk Measures and Conditional Value at Risk

Coherent risk measures are a class of risk assessment tools used to evaluate and
manage risk in uncertain environments. It has been shown [12] that coherent
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risk measures have a dual representation that expresses a coherent risk measure
as an optimization problem over expectation. For some random variable (RV)
X ∼ P(X), we have

ϕ(X) = inf
ξ∈U

EX∼ξP(X)[X], (7)

where U is the risk envelope (see e.g. [13][14]),

U(P(ω)) = {ξ(ω) : ϕ(X) ≤ EX∼ξP(X)[X],

∫
Ω

ξ(ω)dP(ω) = 1}. (8)

Each member ξ ∈ U in the risk envelope defines a density over the return,
Qξ(X) ≜ ξ(X)P(X). The dual form (7) states that the CRM is the expected
value of the RV X with respect to the worst case density Qξ⋆(X).

CVaR VaR E

Fig. 1: Illustration
of CV aR, V aR and
expectation for a
general distribution
P(X).

A widely used coherent risk measure is the CVaR.
CVaR can be defined using the value at risk (V aR) a RV
X ∼ P(X) as:

CV aRα(X) =
1

α
E[X|X ≤ V aRα], (9)

V aRα(X) = sup{x : F (x) ≤ α}.

See Figure 1 for illustration of VaR, CVaR and expecta-
tion.

In the case of CV aR, the risk envelope is defined as

Ucvar(α,P(ω)) = {ξ(ω) : 0 ≤ ξ(ω) ≤ 1

α
,

∫
Ω

ξ(ω)dP(ω) = 1},
(10)

and by applying change of variable formula [21] we can
write the risk envelope as

Ucvar(α,P(x)) = {ξ(x)|0 ≤ ξ(x) ≤ 1

α
,

∫
x∈R

ξ(x)dPX(x) = 1}. (11)

This risk envelope corresponds to all distributions Qξ(X) for which the ratio
ξ(X) = Qξ(X)/P(X) is bounded by 1/α. In our context, X is the return Gk,
and P(X) is P(Gk | bk, πk+).

3 Approach

We define the value function in a risk averse setting considering a coherent risk
measure ϕ(.) from (7) as V πk+(bk, α) ≜ ϕ(Gk(bk, πk+)),

where Gk(bk, πk+) is the return (2). Specifically, in this work we focus on
CV aR, i.e.

V πk+(bk, α) ≜ CV aRα(Gk(bk, πk+)|bk, πk+). (12)
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3.1 Risk Envelope of a POMDP

In the context of a risk averse POMDP with the CV aR risk measure, understand-
ing the risk envelope plays a crucial role in decision-making under uncertainty.
In this section we analyze this risk envelope, starting with the myopic case, and
then generalizing to a non-myopic setting.

Myopic Case We start our analysis by observing the myopic case i.e. look-
ing one time step ahead. The corresponding risk envelope (11) can be written
explicitly as,

Ucvar(α,P(rk+1|bk, ak)) = (13)

{ξ(rk+1) :

∫
rk+1

ξ(rk+1)P(rk+1|bk, ak)drk+1 = 1, ξ(rk+1) ≤
1

α
}.

This set includes all the permissible risk ratios ξ(rk+1) that satisfy the nor-
malization condition and are bounded by 1

α . Under standard assumptions in
POMDPs, we derive conditions for the risk ratio to belong to the risk envelope
by sequentially integrating over the belief state and action transitions:∫

rk+1

ξ(rk+1)P(rk+1|bk, ak)drk+1 =

∫
zk+1

ξ ◦ ρ ◦ ψ(bk, ak, zk+1)· (14)∫
xk+1

Z(zk+1|xk+1)

∫
xk

T (xk+1|xk, ak)bk(xk)dxkdxk+1dzk+1 = 1.

For a full derivation see Appendix A.1. We denote ξ ◦ ρ as ξρ, and rewrite (14),∫
zk+1

ξρ(ψ(bk, ak, zk+1))P(zk+1|bk, ak)dzk+1 = 1. (15)

Therefore, we can express the risk envelope (13) using the observation likelihood
P(zk+1|bk, ak),

Ucvar(α,P(zk+1|bk, ak)) = (16)

{ξρ(ψ(bk, ak, zk+1)) : E
zk+1|bk,ak

[ξρ(ψ(bk, ak, zk+1))] = 1,ξρ(ψ(bk, ak, zk+1)) ≤
1

α
}.

Similarly, we can express the risk envelope via the belief transition model,

Ucvar(α,P(bk+1|bk, ak)) = {ξρ(bk+1) : E
bk+1|bk,ak

[ξρ(bk+1)] = 1, ξρ(bk+1) ≤
1

α
}.

By focusing on the belief transition model P(bk+1|bk, ak) or observation likeli-
hood P(zk+1|bk, ak) instead of the distribution over the reward P(rk+1|bk, ak),
we simplify the analysis of the risk envelope. This approach leverages the natural
structure of POMDPs.
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Non-myopic Case We now extend our analysis to the non-myopic case. Re-
calling the definition of the return (2), we define the risk envelope as follows,

Ucvar(α,P(Gk+1|bk, πk+)) = (17)

{ξ(Gk+1) :

∫
Gk+1

ξ(Gk+1)P(Gk+1|bk, πk+)dGk+1 = 1, ξ(Gk+1) ≤
1

α
}.

We further analyze the non-myopic risk envelope (17):∫
Gk+1

ξ(Gk+1)P(Gk+1|bk, πk+)dGk+1 = (18)∫
Gk+1

ξ(Gk+1)

∫
bk+1:k+L

P(Gk+1|bk, πk+, bk+1:k+L)P(bk+1:k+L | bk, ak)dbk+1:k+LdGk+1 =∫
Gk+1

∫
bk+1:k+L

δ(Gk+1 −Gk+1(bk:k+L, πk+))P(bk+1:k+L | bk, πk+)dbk+1:k+LdGk+1 =∫
bk+1:k+L

P(bk+1:k+L | bk, πk+)

∫
Gk+1

ξ(Gk+1)δ(Gk+1 −Gk+1(bk+1:k+L, πk+))dGk+1dbk+1:k+L =∫
bk+1:k+L

P(bk+1:k+L | bk, πk+)ξ(Gk+1(bk+1:k+L, πk+))dbk+1:k+L =∫
bk+1

P(bk+1|bk, πk(bk))

∫
bk+2:k+L

P(bk+2:k+L | bk+1, π(k+1)+)ξ(Gk+1(bk+1:k+L, πk+))dbk+1:k+L,

where Gk+1 refers to the return as a random variable, and Gk+1(bk+1:k+L, πk+)
to the value of the return given specific realizations of bk+1:k+L and πk+.

Further, we denote

ξ̃(bk+1) ≜
∫
bk+2:k+L

P(bk+2:k+L | bk+1, π(k+1)+)ξ(Gk+1(bk+1:k+L, πk+))dbk+2:k+L,

and notice that
∫
bk+1

ξ̃(bk+1)P(bk+1|bk, πk(bk)) = 1 and 0 ≤ ξ̃(bk+1) ≤ 1
α .

The corresponding risk envelope is therefore

Ũcvar(α,P(bk+1 | bk, πk(bk)))= (19)

{ξ̃(bk+1) :

∫
bk+1

ξ̃(bk+1)P(bk+1|bk, πk(bk))dbk+1 = 1, 0 ≤ ξ̃(bk+1) ≤
1

α
}.

Using this belief transition model’s risk envelope, we now extend the CVaR
decomposition theorem [22] to a Belief-MDP framework.

CV aRα(Gk(bk, πk+) | bk, πk+) = r(bk, πk) + min
ξ∈Ucvar(α,P(bk+1|bk,πk))

∫
bk+1

P(bk+1|bk, πk)·

ξ(bk+1)CV aRαξ(bk+1)(Gk+1(bk+1, π(k+1)+)|bk+1, π(k+1)+)dbk+1, (20)

where to reduce clutter we used πk = πk(bk).
This formulation provides a recursive structure for the CV aR in Belief MDPs.
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3.2 Risk Envelope in a Simplified POMDP

Policiesπk+

Return

original

simplified

…

s simplification

s

P(Gk | bk,πk+)

P̄(Gk | bk,πk+)

Fig. 2: Conceptual illustra-
tion of the original (3)
and simplified (21) distri-
butions over the return.

Simplification techniques in POMDPs aim to re-
duce computational complexity while preserving
or bounding the quality of decision-making out-
comes. These techniques often modify components
of the POMDP M = ⟨X ,A,Z, T, Z, r, b0⟩, thereby
defining a simplified POMDP M̄ , to accelerate the
decision-making process. So far, simplification of
POMDP problems with formal guarantees has been
developed considering an expectation operator (see,
e.g. [5,6,7,8,?]). To our knowledge, simplification in
a risk averse setting with coherent risk measures,
and its effect on the risk envelope, has not been
investigated thus far.

By expressing the risk envelope in terms of POMDP components, we can
analyze how modifications to these components impact the risk envelope and its
relation to the risk envelope of the unmodified POMDP.

Specifically, let us denote the simplified distribution over the return by P̄(Gk |
bk, πk+). See illustration in Fig. 2. For instance, considering a simplified POMDP
tuple M̄ = ⟨X ,A,Z, T̄ , Z̄, r, bk⟩, where the simplified components are denoted
by □̄, this distribution can be expressed as

P̄(Gk | bk, πk+)=
∫
bk+1:k+L

P(Gk | bk:k+L, πk+)

L−1∏
t=k

P̄(bt+1 | bt, πt(bt))dbk+1:k+L, (21)

where the belief transition model (1) is simplified to

P̄(bt+1 | bt, at)=
∫
zt+1

P(bt+1|bt, at, zt)
∫
xt+1

Z̄(zt+1 | xt+1)· (22)∫
xt

T̄ (xt+1 | xt, at)bt(xt)dxtdxt+1dzt+1.

The simplified distribution over the return (21) and the corresponding simplified
belief transition model (22) can be appropriately adjusted to support simplifi-
cation of additional components in the POMDP M̄ .

The corresponding risk envelope is Ucvar(α, P̄(Gk|bk, πk+)), assuming the sim-
plification does not change the risk measure. The effect of simplification on the
risk envelope, i.e.

Ucvar(α,P(Gk|bk, πk+)) vs. Ucvar(α, P̄(Gk|bk, πk+), (23)

can be analyzed in terms of how it alters the risk ratios ξ.
In the following sections, we investigate specific simplification strategies and

their theoretical underpinnings to accelerate risk-aware planning, emphasizing
both the consistency of decision-making and computational efficiency while an-
alyzing how each simplification impacts the risk envelope.
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3.3 Bounds on Belief-Dependent Rewards

We begin by utilizing existing computationally lightweight analytical upper and
lower bounds over the reward to bound the CV aR risk measure, and hence the
value function. Referring to our formulation from Section 3.2, such a simplifi-
cation can be represented as a simplified POMDP M̄ = ⟨X ,A,Z, T, Z, r̄, bk⟩,
where r̄ corresponds to either the lower or the upper bound.

Specifically, suppose we have bounds over the immediate reward due to sim-
plification,

lt ≜ l(bt, at) ≤ r(bt, at) ≤ u(bt, at) ≜ ut, ∀bt, at. (24)

For example, these bounds can utilize less state samples [10] or less hypothe-
ses [23], and hence are computationally more efficient. Denote the cumulative
summation over the upper bound by

Gu
k(bk, πk+) ≜

L−1∑
i=0

u(bk+i, πk+i(bk+i)) + u(bk+L)|bk, πk:k+L−1, (25)

and define similarly Gl
k(bk, πk+) for the lower bound l.

We now prove that the relation between the bounds is preserved when ap-
plying CV aR on the return. To the best of our knowledge, this result did not
appear previously in literature.

We begin by showing that the simplified and the original problem have the
same risk envelope.

Lemma 1. Let lt+1, ut+1 be lower and upper bounds on ρ such that (24) holds,
then CV aRα(ut+1 | bt, πt(bt)), CV aRα(lt+1 | bt, πt(bt)) and CV aRα(rt+1 |
bt, πt(bt)) have the same Risk envelope with respect to a belief transition model
(1) for all time instances t.

Proof. Let at ≜ πt(bt), then:

ξρ ∈ Ucvar(α,P(rt+1|bt, at)) ⇒ ξρ ≤ 1

α
,

∫
bt+1

ξρ(bt+1)P(bt+1|bt, at)dbt+1 = 1,

ξu ∈ Ucvar(α,P(ut+1|bt, at)) ⇒ ξu ≤ 1

α
,

∫
bt+1

ξu(bt+1)P(bt+1|bt, at)dbt+1 = 1,

and similarly for ξl. Hence ξρ, ξu, ξl ∈ Ucvar(α,P(bt+1|bt, at)). ⊓⊔
Lemma 1 and the CVaR recursive formulation (20) provide the necessary math-
ematical structure to extend known computationally lightweight reward bounds
(24) to bounds on the CV aR risk measure over the return Gk, which is central
to the proof of the following theorem.

Theorem 1. Given the reward bounds (24), the CVaR value function (12) can
be bounded, for any policy πk+, by

V πk+,l(bk, α) ≤ V πk+(bk, α) ≤ V πk+,u(bk, α), (26)
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where
V πk+,u(bk, α) ≜ CV aRα(G

u
k(bk, πk+)|bk, πk+) (27)

V πk+,l(bk, α) ≜ CV aRα(G
l
k(bk, πk+)|bk, πk+). (28)

For proof see Appendix A.2.
We envision these bounds (26) can be used to speedup risk-averse POMDP

planning while providing formal performance guarantees, in-line with the sim-
plification framework (e.g. [24], [9]). We leave the investigation of these aspects
to future research.

3.4 Simplifying by Clustering Observations

In this section we focus on another simplification technique that is based on
clustering observations, aiming to speedup risk-averse POMDP planning with
belief-dependent rewards, while still maintaining a high level of performance and
providing formal guarantees. In [25], such a simplification and corresponding
bounds were developed considering the conventional expectation operator. To
our knowledge, our work is the first to consider such a simplification in a risk-
averse POMDP setting.

Following [25], we define an abstract observation model by partitioning the
observation space into C clusters, with each cluster containing K observations,

Z̄(zm | x) ≜ 1

K

K∑
k=1

Z(zk | x), ∀m ∈ [1,K], (29)

where Z(zk | x) corresponds to the original observation model. By construction,
the abstract observation model Z̄(zm | x) assigns a uniform probability to all
observations within that cluster. Referring to Section 3.2, this corresponds to
the simplified POMDP M̄ = ⟨X ,A,Z, T, Z̄, r, bk⟩.

We further denote the observation likelihood after performing action ak from
belief bk and utilizing the abstract observation model (29) as P̄(zk+1|bk, ak), i.e.

P̄(zt+1 | bt, at) ≜ Ext|btExt+1|xt,at
Z̄(zt+1 | xt+1). (30)

In contrast to the simplification from Section 3.3, we first show that cluster-
ing observations impacts the risk envelope. We then derive bounds between the
original and simplified risk measure functions while accounting that each has its
own risk envelope. Specifically, the following lemma shows that clustering obser-
vations preserves the simplified risk envelope within the original one, providing
a basis for further theoretical development:

Lemma 2. Let Z̄(zm|x) and P̄(zt+1|bt, at) be the abstract observation model
(29) and likelihood (30), then

Ucvar(α, P̄(zt+1|bt, at)) ⊆ Ucvar(α,P(zt+1|bt, at)), (31)

where Ucvar(α,P(zt+1|bt, at)) is the CVaR risk envelope (16).



Simplified Risk Aware CVaR-based POMDP With Performance Guarantees 11

Proof. Let ξ̄ ∈ Ucvar(α, P̄(zt+1|bt, at)). Then, by marginalizing over the state and
recalling the definitions of the abstract observation likelihood (30) and model
(29), the following follows:

Nz∑
i=1

ξ̄(zit+1)P̄(zit+1|bt, at) =
Nz∑
i=1

ξ̄(zit+1)

∫
xt+1

Z̄(zit+1|xt+1)P(xt+1|bt, at) (32)

=

∫
xt+1

P(xt+1|bt, at)
C∑

c=1

K·c∑
k̄=c(K−1)+1

ξ̄(zk̄t+1)Z̄(z
k̄
t+1|xt+1)

=

∫
xt+1

P(xt+1|bt, at)
C∑

c=1

K·c∑
k̄=c(K−1)+1

ξ̄(zk̄t+1)
1

K

K·c∑
j=c(K−1)+1

Z(zjt+1|xt+1)

=

∫
xt+1

P(xt+1|bt, at)
Nz∑
i=1

ξ̄(zit+1)Z(z
i
t+1|xt+1) =

Nz∑
i=1

ξ̄(zit+1)P(zit+1|bt, at) = 1.

Therefore, ξ̄ ∈ Ucvar(α,P(zt+1|bt, at)). ⊓⊔

We now define CVaR that is calculated based on the abstract observation like-
lihood (30), and the corresponding risk envelope Ucvar(α, P̄(zt+1|bt, at)) as

CV aRα(rk+1|bk, ak) ≜ min
ξ∈Ucvar(α,P̄(zk+1|bk,ak))

Ēzk+1
[ξ(zk+1)rk+1|bk, ak], (33)

where the expectation Ēzk+1
[.] is taken with respect to the abstract observation

likelihood (30).

While Lemma 2 is valid for general belief-dependent rewards, similar to Sec-
tion 3.3, we shall focus on information-theoretic rewards, which are typically
computationally more expensive than state-dependent rewards. Specifically, we
now consider minus the differential entropy as the reward function, and develop
bounds over future differential entropy considering CV aR as the coherent risk
measure and observation clustering as the simplification. Lemma 2 is crucial as
it forms the basis for these bounds (see proof of Theorem 2 below).

To represent the belief, we employ a particle filter [26] where b̂t = {xit, qit}Ni=1.
Particle filters approximate the belief in POMDPs by representing the belief as a
set of weighted particles. Each particle represents a possible state of the system,
and the weights correspond to the likelihood of each state given the observations.
This approach allows us to approximate complex belief distributions. Let b̂k =
ψPF (b̂k−1, ak−1, zk) represent the particle filter Bayesian update. Further, let
¯̂
bk = ψ̄PF (b̂k−1, ak−1, zk) represent this update utilizing the abstract observation
model (29).

The entropyH(b(x)) of a belief b(x) is defined asH(b) = −
∫
X b(x) log(b(x))dx,

which, however, cannot be calculated exactly for general distributions. We adopt
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the estimator proposed by [27] considering a particle-based belief representation,

H(b̂k) = log(

N∑
i=1

Z(zk|xik)qik−1)−
N∑
i=1

qik · log
[
Z(zk|xik)

N∑
j=1

T (xik|xjk−1, ak−1)q
j
k−1

]
.

(34)

This estimator provides a method to calculate the entropy of the belief repre-
sented by particles. More precisely, it requires access to b̂k, b̂k−1, ak−1, and zk. It
calculates entropy using the particle weights, offering a robust and efficient way
to estimate the belief state’s entropy without needing a closed-form expression
for the belief distribution.

We now present the following theorem, which provides a bound on the CV aR
of entropy. This theorem demonstrates the relationship between the CV aR of the
entropy for the abstract observation model and the original observation model.

Theorem 2. Let CV aRα(H(b̂k+1) | b̂k, ak) and CV aRα(H(b̂k+1) | b̂k, ak) be
the CV aR of the entropy estimator (34) considering abstract and original ob-
servation models, respectively. Then,

0 ≤ CV aRα(H(b̂k+1) | b̂k, ak)− CV aRα(H(b̂k+1) | b̂k, ak) ≤ log(K). (35)

For proof see Appendix A.3.
These computationally-lightweight bounds are in-line with the work [25]

which developed bounds for entropy under the expectation objective consid-
ering observation clustering as a simplification. To our knowledge, this is the
first time it is shown that these bounds are also valid for the CV aR coherent
risk measure.

4 Conclusion

In this paper, we introduced a novel approach to simplifying risk-aware planning
under the Conditional Value at Risk (CV aR) coherent risk measure within the
framework of Partially Observable Markov Decision Processes (POMDPs). We
first considered a general simplification formulation and reveal it has its own
risk envelope, which may be different than the risk envelope of the original risk-
averse POMDP problem. We then considered two specific simplifications, that
were previously only suggested and analyzed for the conventional expectation
operator: (i) lightweight bounds on a belief-dependent reward function, and (ii)
clustering of future observations.

For the first simplification, we proved that the risk envelope does not change,
and using this fact we derived computationally efficient bounds on the original
CVaR-based value function. For the second simplification, considering a myopic
setting and differential entropy as the reward function, we utilize the connection
between the original and the simplified risk envelopes to show, for the first time,
that the bounds that were originally developed for the expectation operator are
also valid for the CVaR risk measure.
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Our findings suggest that our simplification framework of risk-averse POMDP
can significantly reduce the computational burden in online non-myopic planning
scenarios, considering computationally expensive belief-dependent reward func-
tions (such as entropy), while providing formal performance guarantees. These
can be used to either ensure that the actions selected are sufficiently close to
optimal, thus maintaining safety and robustness, or as a mechanism to adapt
the simplification and thereby tighten the bounds until achieving an acceptable
level of planning performance.

Furthermore, we believe the theorems presented in this paper are a key step
toward achieving optimal decision-making using Bellman optimality in risk-
sensitive contexts. The application of these theoretical results can potentially
be extended to a broader range of decision-making scenarios, including those
involving multiple risk measures or more complex decision frameworks. In terms
of a practical application, our approach offers a pathway to more efficient and
effective planning in various domains, including robotics, autonomous vehicles,
and other systems requiring robust decision-making under uncertainty. Future
work will involve empirical validation in these areas to further test and refine our
methods, ensuring they are both robust and practical for real-world deployment.
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A Appendix

A.1 Derivation of (14)∫
rk+1

ξ(rk+1)P(rk+1|bk, ak)drk+1 =∫
rk+1

ξ(rk+1)

∫
bk+1

δ(rk+1 − ρ(bk+1))P(bk+1|bk, ak)dbk+1drk+1 =∫
bk+1

ξ(ρ(bk+1))P(bk+1|bk, ak)dbk+1=∫
bk+1

ξ(ρ(bk+1))

∫
zk+1

δ(bk+1 − ψ(bk, ak, zk+1))P(zk+1|bk, ak)dbk+1 =∫
zk+1

ξ(ρ(ψ(bk, ak, zk+1)))P(zk+1|bk, ak)dzk+1 =∫
zk+1

ξ(ρ(ψ(bk, ak, zk+1)))

∫
xk+1

P(zk+1|xk+1)

∫
xk

P(xk+1|xk, ak)bk(xk)dxkdxk+1dzk+1 = 1,

which can be written as (14):∫
zk+1

ξ ◦ ρ ◦ ψ(bk, ak, zk+1)

∫
xk+1

P(zk+1|xk+1)

∫
xk

P(xk+1|xk, ak)bk(xk)dxkdxk+1dzk+1=1.

A.2 Proof of Theorem 1

The value function (12) satisfies the recursive Bellman equation for Belief MDP
(20)

V πk+(bk,α) = r(bk, πk)+ (36)

min
ξ∈Ucvar(α,P(·|bk,πk))

∫
bk+1

P(bk+1|bk, πk)ξ(bk+1)V
π(k+1)+(bk+1, ξ(bk+1)α).

The bounds’ value functions (27)-(28) also satisfy the recursive Bellman equa-
tion. Furthermore, based on Lemma (1), the risk envelope remains unchanged
when applying the reward bounds. Therefore,

V πk+,u(bk, α) = u(bk, πk)+

min
ξ∈Ucvar(α,P(·|bk,πk))

∫
bk+1

P(bk+1|bk, πk)ξ(bk+1)V
π(k+1)+,u(bk+1, ξ(bk+1)α)

V πk+,l(bk, α) = l(bk, πk)+

min
ξ∈Ucvar(α,P(·|bk,πk))

∫
bk+1

P(bk+1|bk, πk)ξ(bk+1)V
π(k+1)+,l(bk+1, ξ(bk+1)α).

We denote:
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ξu ≜ argmin
ξu

{
∫
bk+1

P(bk+1|bk, πk)ξu(bk+1)CV aRαξu(bk+1)(G
u
k+1(bk+1, π(k+1)+))},

ξl ≜ argmin
ξl

{
∫
bk+1

P(bk+1|bk, πk)ξl(bk+1)CV aRαξl(bk+1)(G
l
k+1(bk+1, π(k+1)+))},

(37)

ξr ≜ argmin
ξr

{
∫
bk+1

P(bk+1|bk, πk)ξr(bk+1)CV aRαξr(bk+1)(G
r
k+1(bk+1, π(k+1)+))}.

We now prove that the relation between the bounds is preserved, utilizing the
above definitions of ξr, ξl and ξu. We start with the upper bound:

r(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξr(bk+1)· (38)

CV aRαξr(bk+1)(G
r
k+1(bk+1, π(k+1)+)|bk+1, π(k+1)+) ≤ (39)

r(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξu(bk+1)·

CV aRαξu(bk+1)(G
r
k+1(bk+1, π(k+1)+)|bk+1, π(k+1)+) ≤ (40)

u(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξu(bk+1)· (41)

CV aRαξu(bk+1)(G
r
k+1(bk+1, π(k+1)+))|bk+1, π(k+1)+). (42)

Similarly, for the lower bound:

r(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξr(bk+1)· (43)

CV aRαξr(bk+1)(G
r
k+1(bk+1, π(k+1)+)|bk+1, π(k+1)+) ≥ (44)

l(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξr(bk+1)· (45)

CV aRαξr(bk+1)(G
l
k+1(bk+1, π(k+1)+)|bk+1, π(k+1)+) ≥ (46)

l(bk, πk) +

∫
bk+1

P(bk+1|bk, πk)ξl(bk+1)· (47)

CV aRαξl(bk+1)(G
l
k+1(bk+1, π(k+1)+)|bk+1, π(k+1)+). (48)

Putting (38)-(42) and (43)-(48) together yields V πk+,l(bk, α) ≤ V πk+(bk, α) ≤
V πk+,u(bk, α). ⊓⊔
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A.3 Proof of Theorem 2

Denote by ξ̄ ∈ Ucvar(α, P̄(zk+1|bk, ak)) and ξ∗ ∈ Ucvar(α,P(zk+1|bk, ak)) the
optimal risk ratios, considering the corresponding risk envelopes,

CV aRα(H(b̂k+1) | b̂k, ak) = min
ξ∈Ucvar(α,P̄(zk+1|b̂k,ak))

Ēzk+1
[ξ(zk+1)H(b̂k+1)|b̂k, ak] =

Ēzk+1
[ξ̄(zk+1)H(b̂k+1)|b̂k, ak],

CV aRα(H(b̂k+1)|b̂k, ak) = min
ξ∈Ucvar(α,P(zk+1|b̂k,ak))

Ezk+1
[ξ(zk+1)H(b̂k+1)|b̂k, ak] =

Ezk+1
[ξ∗(zk+1)H(b̂k+1)|b̂k, ak].

Lower bound

We use the dual form and Lemma 2 to prove the lower bound,

CV aRα(H(b̂k+1) | b̂k, ak)− CV aRα(H(b̂k+1) | b̂k, ak) = (49)

Ezk+1
(ξ̄(zk+1)H(ˆ̄P(xk+1|b̂k, ak, zk+1))− E

zk+1

(ξ∗(zk+1)H(P̂(xk+1|b̂k, ak, zk+1))) ≥︸︷︷︸
Lemma 2

(50)

Ezk+1
(ξ̄(zk+1)H(ˆ̄P(xk+1|b̂k, ak, zk+1))− E

zk+1

(ξ̄(zk+1)H(P̂(xk+1|b̂k, ak, zk+1))),

(51)

where we use P̂(xk+1|b̂k, ak, zk+1) to explicitly denote the dependence of the

particle belief b̂k+1 on b̂k, ak and zk+1 (and similarly for ˆ̄P(xk+1|b̂k, ak, zk+1)

and b̂k+1).

We now plug-in the entropy estimator ((34) in the main paper)

−η̄k+1

M∑
m=1

ξ̄(zmk+1)

N∑
i=1

Z̄(zmk+1|xik+1)q
i
k log(

Z̄(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z̄(z
m
k+1|xi

′
k+1)q

i′
k

)+

(52)

η̄k+1

M∑
m=1

ξ̄(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z(z
m
k+1|xi

′
k+1)q

i′
k

) =

−η̄k+1

C∑
c=1

K·C∑
t=K·(c−1)+1

ξ̄(ztk+1)

N∑
i=1

Z(ztk+1|xik+1)q
i
k · log(

Z̄(ztk+1|xik+1)
∑N

i′=1 Z(z
t
k+1|xi

′
k+1)q

i′
k

Z(ztk+1|xik+1)
∑N

i′=1 Z̄(z
t
k+1|xi

′
k+1)q

i′
k

).
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Using the inequality log(x) ≤ x− 1,∀x > 0,

−η̄k+1

C∑
c=1

K·C∑
t=K·(c−1)+1

ξ̄(ztk+1)

N∑
i=1

Z(ztk+1|xik+1)q
i
k · log(

Z̄(ztk+1|xik+1)
∑N

i′=1 Z(z
t
k+1|xi

′
t )q

i′
k

Z(ztk+1|xik+1)
∑N

i′=1 Z̄(z
t
k+1|xi

′
k+1)q

i′
k

) ≥

(53)

η̄k+1

C∑
c=1

K·C∑
t=K·(c−1)+1

ξ̄(ztk+1)

N∑
i=1

Z(ztk+1|xik+1)q
i
k[1−

Z̄(ztk+1|xik+1)
∑N

i′=1 Z(z
t
k+1|xi

′
k+1)q

i′
k

Z(ztk+1|xik+1)
∑N

i′=1 Z̄(z
t
k+1|xi

′
k+1)q

i′
k

] =

η̄k+1

C∑
c=1

K·C∑
t=K·(c−1)+1

ξ̄(ztk+1)

N∑
i=1

Z(ztk+1|xik+1)q
i
k−

η̄k+1

C∑
c=1

K·C∑
t=K·(c−1)+1

ξ̄(ztk+1)

N∑
i=1

Z(ztk+1|xik+1)q
i
k = 0.

Upper bound

We now prove the upper bound:

CV aRα(H(b̂k+1) | b̂k, ak)− CV aRα(H(b̂k+1) | b̂k, ak) = (54)

Ezk+1
(ξ̄(zk+1)H(ˆ̄P(xk+1|b̂k, ak, zk+1))− E

zk+1

(ξ∗(zk+1)H(P̂(xk+1|b̂k, ak, zk+1))) =

(55)

−η̄k+1

M∑
m=1

ξ̄(zmk+1)

N∑
i=1

Z̄(zmk+1|xik+1)q
i
k log(

Z̄(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z̄(z
m
k+1|xi

′
k+1)q

i′
k

)+

(56)

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z(z
m
k+1|xi

′
k+1)q

i′
k

).

(57)

We select a general element g from the risk envelope Ucvar(α, P̄(zmk+1|b̂k, ak)).
Since a risk measure involves solving a minimization problem over this envelope,
considering a general element within the risk envelope makes the entire expres-
sion larger. Additionally, we define h(m) = [mK ] + 1 for a general integer m. We

define g as follows and then prove it indeed belongs to Ucvar(α, P̄(zmk+1|b̂k, ak)):

g(zmk+1) ≜

∑K·h(m)
t=K·(h(m)−1)+1 ξ

∗(ztk+1)P(ztk+1|b̂k, ak)∑K·h(m)
t=K·(h(m)−1)+1 P(z

t
k+1|b̂k, ak)

. (58)
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We now prove that g(zmk+1) ∈ Ucvar(α, P̄(zmk+1|b̂k, ak)):

M∑
m=1

g(zmk+1)P̄(zmk+1|b̂k, ak) =
M∑

m=1

∑K·h(m)

t=K·(h(m)−1)+1 ξ
∗(ztk+1)P(ztk+1|b̂k, ak)∑K·h(m)

t=K·(h(m)−1)+1 P(ztk+1|b̂k, ak)
P̄(zmk+1|b̂k, ak) =

M∑
m=1

∑K·h(m)

t=K·(h(m)−1)+1 ξ
∗(ztk+1)P(ztk+1|b̂k, ak)∑K·h(m)

t=K·(h(m)−1)+1

∑N
i=1 Z(z

t
k+1|xik+1)

∑N
j=1 T (x

i
k+1|x

j
k, ak)q

j
k

·

N∑
i=1

Z̄(zmk+1|xik+1)

N∑
j=1

T (xik+1|xjk, ak)q
j
k =

M∑
m=1

∑K·h(m)

t=K·(h(m)−1)+1 ξ
∗(ztk+1)P(ztk+1|b̂k, ak)∑K·h(m)

t=K·(h(m)−1)+1

∑N
i=1 Z(z

t
k+1|xik+1)

∑N
j=1 T (x

i
k+1|x

j
k, ak)q

j
k

·

1

K

N∑
i=1

K·h(m)∑
t=K·(h(m)−1)+1

Z(ztk+1|xik+1)

N∑
j=1

T (xik+1|xjk, ak)q
j
k =

M∑
m=1

1

K

K·h(m)∑
t=K·(h(m)−1)+1

ξ∗(ztk+1)P(ztk+1|b̂k, ak) = 1,

and

g(zmk+1) =

∑K·h(m)

t=K·(h(m)−1)+1 ξ
∗(ztk+1)P(ztk+1|b̂k, ak)∑K·h(m)

t=K·(h(m)−1)+1 P(ztk+1|b̂k, ak)
≤ 1

α

∑K·h(m)

t=K·(h(m)−1)+1 P(z
t
k+1|b̂k, ak)∑K·h(m)

t=K·(h(m)−1)+1 P(ztk+1|b̂k, ak)
=

1

α
.

(59)

To conclude, we showed that
∑M

m=1 g(z
m
k+1)P̄(zmk+1|b̂k, ak) = 1 and g(zmk+1) ≤ 1

α .

Therefore, according to (11), g(zmk+1) ∈ Ucvar(α, P̄(zmk+1|b̂k, ak)).
Referring to (54), we now take notice that log(

Z(zm
k+1|x

i
k+1)

∑N
j=1 T (xi

k+1|x
i
k,ak)q

j
k∑N

i′=1
Z(zm

k+1|x
i′
k+1)q

i′
k

) <

0, as the log of a discrete probability distribution. By replacing the optimal risk

ratio ξ̄(zmk+1) ∈ Ucvar(α, P̄(zmk+1|b̂k, ak)) with the risk ratio g(zmk+1) ∈ Ucvar(α, P̄(zmk+1|b̂k, ak)),
in (54), we get the bound

CV aRα(H(b̂k+1) | b̂k, ak)− CV aRα(H(b̂k+1) | b̂k, ak) ≤ (60)

−η̄k+1

M∑
m=1

g(zmk+1)

N∑
i=1

Z̄(zmk+1|xik+1)q
i
k log(

Z̄(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z̄(z
m
k+1|xi

′
k+1)q

i′
k

)+

(61)

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z(z
m
k+1|xi

′
k+1)q

i′
k

).

(62)

We now look at one of the clusters (without loss of generality, at the first one,
i.e. m = 1), plug-in the definition of the abstraction observation model (29), and
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define a matrix notation of the cluster,

g(zm=1
k+1 )

N∑
i=1

Z̄(ztk+1|xik+1)q
i
k =

∑K
t=1 ξ

∗(ztk+1)P(ztk+1|b̂k, ak)∑K
t=1 P(ztk+1|b̂k, ak)

N∑
i=1

Z̄(ztk+1|xik+1)q
i
k ≜

1

K

ξTP1TZq

1TP
,

(63)

where

ξ ≜


ξ∗(z1k+1)

.

.
ξ∗(zKk+1)

 , Zq ≜


∑N

i=1 Z(z
1
k+1|xik+1)q

i
k

.

.∑N
i=1 Z(z

K
k+1|xik+1)q

i
k

 , P ≜


P(z1k+1|b̂k, ak)

.

.

P(zKk+1|b̂k, ak)

 ,1 ≜


1
.
.
1

 .
(64)

We apply

1

K

ξTP1TZq

1TP
=

1

K

tr(ξTP1TZq)

tr(1TP )
≤ 1

K

tr(P1T )tr(Zqξ
T )

tr(1TP )
=

1

K
tr(Zqξ

T ) = ξTZq.

(65)

Hence, we re-write (61) as

−η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z̄(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z̄(z
m
k+1|xi

′
k+1)q

i′
k

)+

(66)

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)
∑N

j=1 T (x
i
k+1|xik, ak)qjk∑N

i′=1 Z(z
m
k+1|xi

′
k+1)q

i′
k

) =

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)

Z̄(zmk+1|xik+1)
)︸ ︷︷ ︸

(a)

+

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

∑N
i=1 Z(z

m
k+1|xik+1)q

i
k∑N

i=1 Z̄(z
m
k+1|xik+1)q

i
k

)︸ ︷︷ ︸
(b)

.

We now treat the terms (a) and (b) separately, starting with (a):

(a) = η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(K)+

η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

Z(zmk+1|xik+1)∑
Z(zmk+1|xik+1)

)

≤ η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(K) = log(K).
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For term (b), we utilize the Jensen’s inequality,

(b) = η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k log(

∑N
i=1 Z̄(z

m
k+1|xik+1)q

i
k∑N

i=1 Z(z
m
k+1|xik+1)q

i
k

)

≤ log(η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k(

∑N
i=1 Z̄(z

m
k+1|xik+1)q

i
k∑N

i=1 Z(z
m
k+1|xik+1)q

i
k

))

= log(η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z̄(zmk+1|xik+1)q
i
k).

We again look at one of the clusters in matrix notations (without loss of gener-
ality, at the first),

1

K
tr((1T ξ)(zT1)) ≤ 1

K
tr(ξzT )tr(11T ) = tr(ξzT ). (67)

Hence, for the term (b) we get,

log(η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z̄(zmk+1|xik+1)q
i
k) ≤ log(η̄k+1

M∑
m=1

ξ∗(zmk+1)

N∑
i=1

Z(zmk+1|xik+1)q
i
k) = 0.

(68)

Therefore, 0 ≤ CV aRα(H(b̂k+1) | b̂k, ak)−CV aRα(H(b̂k+1) | b̂k, ak) ≤ log(K).
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