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Abstract

Markovian Belief Space Planning (BSP), also known as Partially Observable Markov Decision Process (POMDP)
planning, is a necessary task in robotics and artificial intelligence. In a partially observable setting, due to
uncertainty stemming from noisy sensors, imperfect actuation, and possibly an unknown environment, the robot
makes decisions using the belief over the state instead of the state itself, which is hidden. Being undecidable in
finite time in an exact way, the POMDP model gave rise to a multitude of approximations leveraging different
assumptions. However, providing strict guarantees on the impact of such approximations remains a challenge. In
this thesis, we take a different path. Instead of leveraging approximations, we are aiming to simplify the POMDP
and provide guarantees on the impact of such a simplification. In addition, risk awareness is an indispensable
part of robust and reliable autonomy. Yet, the classical POMDP formulation utilizes the expectation as the
operator to compare the distributions stemming from future rewards. The expectation poorly accounts for risk.
In this dissertation we tackle this gap.

This thesis includes five works. In the first work, we introduce the simplification paradigm, in conjunction
with a risk aware objective. In our second work, we focus on the exploration problem. In this problem, the
robot must explore an unknown map. Usually, the dimension of the map is large, therefore, the state over
which the belief is maintained becomes high dimensional. Thus, such a POMDP exhibits a great computational
complexity. This computational burden makes solving this problem in real time a major challenge. At the
core of our second work is our novel formulation of a belief-dependent Probabilistic Constraint. We utilize
this constraint to speed-up the autonomous exploration or serve as a stopping exploration criterion. In our
third work, we apply the simplification paradigm to a belief-dependent continuous POMDP. In support of
this concept, we present several contributions. We begin with a thorough description of a novel and general
theoretical framework of the simplification. We, then, discuss two settings, a given belief tree and a Monte Carlo
Tree Search (MCTS). In both settings, we accelerate POMDP planning without compromising the quality of the
obtained solution. In our fourth work, we consider our probabilistically-constrained belief-dependent POMDP
again. Here we focus on the safety aspect. In this work, we suggest fast algorithms for probabilistically-
constrained and chance-constrained nonparametric continuous POMDP, considering the setting of a given belief
tree. We continue to the setting of MCTS in our fifth paper. We demonstrate the benefits of our methods on
several robotics related problems, namely active Simultaneous Localization And Mapping (SLAM) for mobile
robots, autonomous navigation to the goal, sensor placement, autonomous robotic cleaner, and target tracking.

Overall, the results of this research improve the robot’s efficiency and quality of online decision making
under uncertainty.
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Nomenclature

x = y The two random variables x and y are equal if they are equal as functions on their measurable space:
x(ω) = y(ω) ∀ω.

1A(·) Indicator function defined on set A. Typically set deined by inequality so we indicate only the inequalty
as the set. Given a probability space (Ω,F ,P) with A ∈ F , the indicator random variable 1A : Ω 7→ R
is defined by 1A(ω) = 1 if ω ∈ A, otherwise 1A(ω) = 0.

a ∨ b max{a, b} where a, b ∈ R.

a ∧ b min{a, b} where a, b ∈ R.

f ≡ g for two functions f, g if we have f(x) = g(x) ∀x.
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Chapter 1

Introduction

The demand for autonomous systems has increased drastically in various fields such as autonomous navigation,
robotic arm operations, humanoid robots, and artificial intelligence. One of the most important applications
is autonomous vehicles operating as a single autonomous entity and relying solely on onboard sensors. Other
examples include unmanned aerial robots for inspection and testing, agricultural robots, etc. Applications
are ubiquitous. Decision making under uncertainty is at the heart of any autonomous system acting with
imperfect information. The renowned framework for making decisions using incomplete information is the
POMDP. In a partially observable setting, which is common in real world scenarios, there is no direct access
to the POMDP state. Instead, the robot must make a decision relying on the history of performed actions
and received observations in an interleaving manner. The history also includes the prior knowledge about the
POMDP state in the form of a distribution over the state, which is called the prior belief.

The robot utilizes the history in the form of Predictive State Representation (PSR) [32], [19] or distribution
over the POMDP state given the concurrent history, the belief. In this thesis we focus on the belief approach.
The belief is the posterior distribution over the state given all information available up to the current time. The
state could regard the robot’s position (pose) as in the localization problem where the map is known and given.
In the more challenging active SLAM problem, the state also consists of a map to be explored.

The robot maintains a belief conditioned on the available history at each time instant. This history is
obtained by the robot while it performs its task (Inference rectangle in Fig. 1.1). In the planning stage, the
posterior belief about the POMDP state serves as input to the planner (Orange rectangle in Fig. 1.1). Within the
decision making stage the robot simulates future histories, maintains corresponding beliefs, and reasons about
their evolution while accounting for different sources of uncertainty. There are two types of uncertainty, namely
outcome uncertainty and state uncertainty. The outcome uncertainty stems from imperfect robot actuators and
materializes in the form of a probabilistic transition model. The state uncertainty is the result of observing the
state through the lens of imperfect onboard sensors. Examples of sensing devices include a camera or Laser
Imaging, Detection, And Ranging (LIDAR). When the robot operates in the field, it perceives the world with
the available sensors, gathers information, and plans its next action(s) (Fig 1.1). The operation continues in a
cyclical interleaving manner of information gathering using onboard sensors and BSP.

This research focuses on the active problem of planning under uncertainty in the robot’s loop, Fig 1.1. When
a robot performs planning in the belief space, it must solve a POMDP. Solving a POMDP, i.e., calculating the
“right decision” in terms of an optimal action sequence or policy, involves anticipating every imaginable turn
of future events with a predefined number of steps ahead into the future (the planning horizon). Each future
event is defined by the simulated future history and the corresponding belief. The robot’s task is defined by a
belief-dependent reward function. In this thesis, we focus on information-theoretic rewards such as differential
entropy, expected (with respect to belief) distance to goal, and minus trace of the covariance matrix of the
belief. The future instant rewards, that correspond to a future observations episode (decision epoch or script)
under a particular execution policy, are then combined into a single value called the return (long-term reward
in some papers, e.g. [38]). One typical example of the return is the future cumulative reward.

The POMDP planning can be done with finite or infinite horizons. In a finite horizon setting, the agent
performs planning with a fixed number of steps ahead of time. As the horizon grows, the robot can contemplate
and reason about a more distant future. Within the planning session, equipped with motion and observation
models, the agent must ponder over every possible realization of the future observations episode, of the length of
the horizon, for every available reactive action sequence (policy). For each realization of the future observations
and actions episode (decision epoch or script), it calculates a series of beliefs the size of a horizon, on each
of which it calculates a reward and sums up the rewards. The realization of a cumulative reward is a single
realization of the future. In a sampled form, this abundance of possible realizations of action-observation pairs
constitutes a belief tree (Fig. 1.2). If the belief-dependent reward is merely the expectation, with respect to
belief, of a state-dependent reward, the belief tree will not necessarily contain the entire belief at each node.
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Figure 1.1: Deployed robot’s loop. By bk(xk) we denote the belief in time index k over possibly high
dimensional state xk. Output of BSP is the best static action sequence a∗k:k+L−1 or reactive one π∗, namely the
policy. Having performed an action/actions the robot senses environment and obtain measurements zk. With
performed actions and received observations it updates its belief.

In this case, instead of the belief tree, the robot has a history tree with different belief approximations at each
node [41]. In our setting of general belief-dependent rewards the robot has a belief tree. Building the full belief
tree is intractable since each node in the tree repeatedly branches with all possible actions and all possible
observations. The number of belief nodes grows exponentially with the horizon. Here emerges the problem: to
be more productive and reach the goal faster, the robot must cogitate (speculate) about a more distant future.
Namely, to increase the horizon as large as possible. However, a larger horizon corresponds to a deeper belief
tree, meaning a heavier decision making problem from the computational point of view. Therefore, choosing an
optimal action (policy) is exceptionally computationally demanding and prohibitively expensive. POMDPs are
notoriously hard to solve. This issue is exacerbated when the state over which the belief is maintained is high
dimensional.

Alternatively, BSP (POMDP) can be formulated with an infinite horizon. Each immediate reward is mul-
tiplied by a non-negative discount factor smaller than one [42]. Such an infinite series is convergent if the
reward is bounded [45]. The agent is given a terminating action or terminating condition on the belief. Using
dynamic programming under the assumption of bounded reward and a not too large discrete state, action, and
observation spaces, POMDP with an infinite horizon can be solved exactly. This means that, in some limited
cases, reasoning about the belief tree can be avoided. Instead, one employs tabular, also known as full width
methods [37]. We focus in this thesis on continuous state and observation spaces, leading to a continuous space
of the reachable future beliefs space at any future time instance. The reachable future beliefs space is the space
constituted by the future beliefs, in a particular time index, that can be obtained from the belief given as a
result of the inference stage (Fig. 1.1). This belief is fed to the planner. As a result of the inference stage, the
robot can have any belief. All in all, even to employ tabular methods for a given belief, one shall visit an infinite
uncountable number of beliefs. This means that, in continuous domains, the robot has to solve BSP online.
One way to do that is to resort to sampling and construct a belief (history) tree such that, even the infinite
horizon formulation is approximated by the belief tree of the depth as large as possible. Offline approximate
methods do not produce satiable results.

General belief-dependent rewards such as information theoretic rewards are essential for BSP. However,
rewards of this type introduce an additional computational burden. The common POMDP formulation assumes
that the belief-dependent reward is nothing but an expectation, with respect to belief, over the state reward. So far
we found a single state dependent reward, minus distance to a goal state, which accounts for uncertainty when
averaged with respect to belief. We show a proof of that claim in our fourth work. In many other continuous
problems, e.g., autonomous exploration, localization, and sensor deployment, the reward is belief-dependent. It
can be a minus trace of the covariance matrix of the belief or a minus of differential entropy. These rewards
cannot be represented as an expectation of a state dependent reward.

Typically the algorithms for online planning under uncertainty use approximations without accounting for
their impact on the decision making outcome. On the contrary, we focus on the simplification paradigm.
To simplify the decision making problem means carefully examining all the components and possibly making
them more simple or coarse through accounting for the impact of the simplification. An inherent part of the
simplification paradigm is the guarantees on the effect of the simplification.

Our key insight is as follows. When the candidate action sequences or policies are far enough in terms of the
objectives over the returns, computationally demanding components of the decision making can be simplified.
Such a simplification incurs no impact on the precedence of the candidates in terms of the objectives. In other
words, it preserves the trend. We call such a phenomenon action consistency.

We now provide a literature survey on the current state-of-the-art methods to make a decision under uncer-
tainty with general belief distributions. This problem is often referred to as BSP, POMDP, stochastic control,
and active perception. We aim to provide an overview of state-dependent and belief-dependent POMDPs solvers
that provide an approximate solution [30, 37, 48, 41, 13] as well as safety and risk aware approaches [6], [14]
[36].

POMDP [21] has proven to be a celebrated mathematical framework for planning under uncertainty. POMDP
consists of a transition (motion) model, observation model, reward/cost for being at some particular state, and
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Figure 1.2: Objective function tree, bk is the belief at time k, a1k, a
2
k, a

3
k are the actions, b−k+1 is the belief at
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2
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3
k+1 are sampled

observations.

executing some action. The transition model is the Probability Density Function (PDF) of being at some mo-
mentary state given the previous momentary state and action (control). The observation model is the PDF
to receive some observation given the momentary POMDP state. Notably, such POMDP formulation can
be converted to Belief-MDP (BMDP), where the belief is the state of the resulting Markov Decision Process
(MDP) and the reward over the belief is the expected, with respect to belief, reward over the state or general
belief-dependent reward. The fundamental problem in POMDP is to devise an optimal policy from the belief
to the action. An equivalent definition of the meaning of solving POMDP is to find a policy from the history
to the action. The belief is merely a way to accumulate and represent the history. A conventional and most
common objective operator is the expected value over the returns. The journey to solve POMDP started from
offline methods [26],[25]. These methods are designed to perform most of the, unbearable online to the robot,
computations before execution. As we mentioned before, in very small discrete problems it is possible to visit
all the states and observations.

These earlier offline attempts are based on dynamic programming and provide poor performance when the
state and observation spaces grow.

Algorithms to solve POMDP online operate on the belief tree (Fig. 1.2) or history tree [41] depending on
the reward structure. The exponential growth with the horizon is not the only problem of belief tree based
approaches. Additionally, the number of possible states grows exponentially with the state space dimension,
and consequently, an adequate representation of the belief requires more particles. Those last two problems are
known as the curse of history and the curse of dimensionality respectively.

Some of the approaches are designed solely for discrete spaces. Further, we elaborate separately on each
method whether or not it extends to continuous domains and general belief-dependent rewards. Note that in
large discrete spaces and continuous spaces, one should resort to sampling. However, in continuous spaces,
the probability of receiving the same sample twice is zero. Therefore, continuous spaces require additional
treatment.

Offline solvers and state-dependent rewards Classical offline methods [25] are intended to find offline
a policy that is optimal for all possible beliefs. These methods are based on α-vectors and point-based value
iteration [30, 34, 38]. The α-vectors approach leverages the fact that the reward is state-dependent and the
belief-dependent reward is obtained by the averaging with respect to belief. Another name for policy is the
reactive plan [25]. One can interpret a policy as a conditional plan represented as a tree. We also can define
a conditional subplan as a policy associated with a particular observation, see [25]. Each possible observation
defines a conditional subplan. Note that since the reward is state-dependent, in an infinite horizon setting,
the conditional subplan depends on the observation instead of the entire history. This is because in discrete
spaces we exhaustively enumerate all the states and the observations. In a finite horizon setting, the conditional
subplan depends also on the horizon and it gets smaller when the time index progresses. The α-vector is the
vector of the values of state-dependent utility functions, starting from the state realizations or samples from
the belief distribution [13], under the conditional plan, the set of α-vectors, each annotated with an action,
can represent the policy for all beliefs. The application of such policy is to find α-vector maximizing the inner
product with the belief, meaning maximizing the utility function. The action appropriate to such α-vector is
optimal. Importantly, representing optimal value function as the maximum over α-vectors of the inner product
of an alpha vector with the belief indicates its PieceWise Linear Convex (PWLC) property and enables pruning
suboptimal α-vectors safely. Alternatively, a one-step look-ahead can be used to avoid keeping track of the
actions associated with the alpha vectors. This strategy utilizes the Bellman form of the belief-dependent
utility function and selects using α-vectors the maximal utility in the next step, appropriate to every possible
action and observation.
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Point-based value iteration is based on a set of representative beliefs. For each belief, one α-vector is
associated. Each α-vector is initialized, such that, when multiplied with the corresponding belief, it yields a
lower bound of the optimal value function for this belief. The algorithm updates the α-vector of each belief.
The backup process is applied to each belief from the set individually. It iterates through actions. For each
action, it iterates through observations, updates belief with the action and the observation, and chooses the
best α-vector from the set with regard to the posterior belief. It then performs a backup operation for each
state using selected α-vectors appropriate to the observations at the next step. At the end of the loop through
actions, the algorithm is left with one α-vector per action, and it returns the best one [26]. This algorithm
improves the set of α-vectors. Since each α-vector is appropriate to the best action for the corresponding belief
from the set, when a new belief comes for query the planner to return the best action, the best action is set
by selecting the best α-vector. Point-based value iteration provides an approximate solution but substantially
speeds up the exact solution by the α-vector method. These methods are designed for discrete state, action,
and observation spaces. Moreover, α-vector is hyperplane [45] in the belief space, meaning that the reward over
the belief is assumed to be merely expectation over the reward of the state as opposed to the general setting of
belief-dependent rewards we consider.

The [38, 39] presented Heuristic Search Value Iteration (HSVI) algorithm which augmented the point-based
value iteration method with a forward exploration heuristic leveraging lower and upper bounds of the optimal
value function to the full extent. The heuristic that drives the exploration of the reachable belief space is the
gap, obtained by the Bellman update, between the upper and lower bounds of the value function. Their lower
bound is based on α-vectors and point-based value iteration described above. The upper bound is based on
a set of points belief/value function bound, known as Sawtooth Upper Bound [25]. HSVI periodically prunes
dominated elements in both the lower bound vector set and the upper bound point set. This approach received
the name Sawtooth Heuristic Search [25]. While the lower bound is updated using a backup operation and
adding a new α-vector to the set, the upper bound is updated with a local Bellman update, and adding a new
belief/value bound point to the set. These bounds are limited to state-dependent rewards or specific forms of
belief-dependent rewards which we discuss further. The α-vectors by definition can not accommodate a general
belief-dependent reward. The Sawtooth Upper Bound leverages the convexity of value function and it is based
on an initial set of belief-value pairs and has to contain all of the standard basis beliefs. Typically, Fast Informed
Bound is used on the values corresponding to the beliefs from this initial set, which is again based on α-vectors
[25]. In addition, evaluation of this bound on the new belief requires linear interpolation; so to remain bound
for the new belief point it requires convexity of the optimal value function [15].

Algorithms which use point based value iteration and sawtooth upper bound require a set of beliefs. Al-
gorithm Successive Approximations of the Reachable Space under Optimal Policies (SARSOP) uses successive
approximations of the optimal policy to iteratively generate the above mentioned set of beliefs. The SARSOP
algorithm build upon HSVI. Extension of the point-based value iteration solvers to continuous domains requires
additional research. Although α-vectors are theoretically valid for continuous spaces, utilizing sampling may
introduce additional complexities. As we will further discuss, [13] can possibly be extended to continuous spaces
through determinization [25].

Online solvers and state-dependent rewards More recently, online methods have become successful.
These algorithms are approximations and some of them are suitable for continuous state and observation spaces.
The output of these methods is an action recommended for the current belief. The algorithm itself is a (random)
policy that maps from beliefs to actions online.

Many of these algorithms were designed for an MDP setting of a fully observable state and further extended
to POMDP. One example is the Sparse Sampling (SS) algorithm [22]. This algorithm applies to continuous
MDP by sampling the next states from the generative model. Recursively, it opens all the actions until the depth
is equal to the horizon. Naturally, it extends to POMDP through BMDP formulation. It can be thought of as
a sampling version of forward search [26]. Another distinguished algorithm for MDP is MCTS. This algorithm
tackles the curse of history by building a belief tree incrementally, and revealing only the “promising” parts of
the tree. It can also operate with high dimensional and large state space since it only samples the state from a
generative model (Similar to SS) so it applies to BMDP.

An inherent part of MCTS based algorithms is the exploration technique, e.g., Upper Confidence Bound
(UCB) [3], [27]. The exploration technique is designed to balance exploration and exploitation while building
the belief tree. Let us describe an out-of-the-box MCTS for discrete MDP. MCTS opens the belief tree by
looping over the simulations (tree queries). Each simulation progresses with expanding state-action nodes and
state nodes along the way in an alternating manner. To expand the state-action node from the upper level
state node it firstly opens all the actions and then at each arrival to the state node it selects an action to go
with UCB. It then samples the next state from the generative model, to create a state node. (Reward generally
depends on the state and action emanating from it and the subsequent state.) If the drawn state is already a
child of the current state action node, the simulation continues down the tree. In the case where the drawn
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state is new, a rollout with random or offline policy is carried out from the new state and the algorithm backups
up to the root.

Note that this out-of-the-box MCTS algorithm does not apply to BMDP with continuous state and observa-
tion spaces. In case that state space is continuous, the same state will never be drawn, resulting in an extremely
shallow and non-representative tree. There are other renowned algorithms such as Partially Observable Monte
Carlo Planning (POMCP) [37] (extension of MCTS to POMDP) and Determinized Sparse Partially Observable
Tree (DESPOT) [48]. However, these algorithms employ the assumption/limitation that reward over the belief
is the expected value of reward over the state. Therefore, they apply to Artificial Intellegence (AI) problems and
are less relevant to BSP where the reward is a general function of the belief. Such rewards, e.g., information-
theoretic, pose additional computational difficulty as we already mentioned. Moreover, information-theoretic
rewards such as differential entropy are not bounded, rendering foundations of UCB invalid; Since UCB is based
on Hoeffding bound [16]. To our knowledge, there is also no proof that differential entropy is Lipshitz.

Offline solvers and simple forms of belief dependent rewards Earlier attempts such as [2], [11], [7] were
tackling offline solvers with simple forms of belief-dependent rewards, such as PWLC [2] or Lipshitz Continuous
(LC) [11]. Concretely, the authors of [2] proposed to perform a piecewise linear approximation to the convex
belief-dependent reward and extend point-based value iteration, e.g, HSVI [38]. The authors from [11] extended
HSVI further to LC belief-dependent rewards. They showed that the Bellman update operator(also known as
the Bellman optimality operator) preserves LC for finite horizons. The authors show how to define, initialize,
update, and prune LC upper and lower bounding approximators of the optimal value function and derive a
variant of the HSVI algorithm. Authors of [7] present SARISA - an extension of SARSOP to information-
seeking actions. This algorithm is also limited to PWLC rewards.

Information theoretic reward in the context of online solvers for continuous POMDP Incorpo-
ration of information-theoretic reward into POMDP is a long-standing effort. In the context of robotics, such
rewards are especially important for precise navigation. The robot should be able to steer itself to areas of
high visibility to decrease uncertainty about its state. Info-theoretic reward allows robot to reason about its
own uncertainty. Monte Carlo Tree Search made a significant breakthrough in overcoming the course of history.
However, when the reward is a general function of the belief, the origin of the computational burden is shifted
towards the reward calculation. Moreover, belief-dependent reward prescribes the complete set of belief parti-
cles at each node in the belief tree. Therefore, algorithms such as POMCP [37], and its numerous predecessors
are inapplicable since they simulate, each time, a single particle down the tree when expanding it. DESPOT
based algorithms behave similarly [48], with the DESPOT-α being an exception [13]. DESPOT-α simulates a
complete set of particles. However, this algorithm depends on α-vectors. In particular, as in other DESPOT-like
algorithms, the belief tree is determinized. Therefore, sibling belief nodes have identical particles and are dis-
tinct solely by their weights. DESPOT-α leverages this regard and uses the α-vectors to efficiently approximate
the lower bound of the value function of the sibling belief nodes without expanding them. Since DESPOT-like
methods are based on the gap heuristic search [25], this lower bound is an essential part of the exploration
strategy. In other words, the DESPOT-α tree is built using α-vectors, such that they are an indispensable part
of the algorithm. Note that an integral part of this approach is that the reward is state-dependent, and the
reward over the belief is merely an expectation of the state reward with respect to belief. Thus, DESPOT-α
does not support belief-dependent rewards since it contradicts the application of the α-vectors.

The only approach posing no restrictions on the structure of belief-dependent reward is the Particle Filter
Tree (PFT) [41]. The idea behind PFT is to apply MCTS over BMDP. [41] augmented PFT with Double
Progressive Widening and coined the name PFT-DPW. PFT-DPW utilizes the UCB strategy and maintains
a complete belief particle set at each belief tree node. It applies to a continuous space, which is the space of
the particle represented beliefs. Recently, [12] presented Information Particle Filter Tree (IPFT), a method to
incorporate information-theoretic rewards into PFT. The IPFT planner is remarkably fast. It simulates small
subsets of particles sampled from the root of the belief tree and averages entropies calculated over these subsets.
However, differential entropy estimated from a small-sized particle set can be significantly biased. This bias
is unpredictable and unbounded and, therefore, may severely impair the performance of the algorithm. The
authors from [12] provide guarantees solely for the asymptotic case, i.e, the number of state samples (particles)
tends to infinity. Asymptotically their algorithm behaves precisely as the PFT-DPW in terms of running
speed and performance. Yet, in practice, the performance of IPFT in terms of optimality can degrade severely
compared to PFT-DPW. Moreover, [12] does not provide any reliable study of comparison of IPFT against
PFT-DPW with an information-theoretic reward.

Risk aware, chance-constrained and robust POMDP The discussed algorithms stem from the AI com-
munity and are designed for general POMDP problems. The Robotics community is primarily concerned with
navigation problems. In these problems, notions of safety and risk are fundamental. One example is collision
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and obstacle avoidance. Some prominent attempts are Belief Road Map (BRM) [35], Rapidly-exploring Ran-
dom Belief Tree (RRBT) [6], and Feedback-based Information RoadMap (FIRM) [1] which consider Gaussian
beliefs. The paper [6] explicitly defines the probability of collision as a chance constraint of the decision-making
problem. The authors utilize closed-loop control within the planning and consider the probability of collision
on top of the controller steering the robot to the nominal trajectory. Another example of chance constraint can
be the probability that the path is too long and that fuel in a flying vehicle will run out before reaching the
goal. Namely, for a possible sequence of future observations (episode) and the beliefs, along a subset of state
trajectories, is considered to be valid. A more recent algorithm tackling general distributions but discrete state
and observation spaces is Risk Bounded AO* (RAO*) [36]. This algorithm extends A heuristic search procedure
for AND/OR graphs (AO*) [33] to the Risk-bounded variant. The authors of [36] exemplify their algorithm on
automated planning for the science agents problem, visualizing the importance of the chance constraints. The
science agent starts from some initial position and operates on the map with obstacles. The agent can visit
four different sites on the map. At each site, it can find a discovery with some probability. Since the agent’s
position is uncertain, collision is probable. The agent is required to finish at the relay station. In a limited
time, the agent has to gather as much information as possible and arrive at the relay station. The duration of
each traversal is uncontrollable but bounded. The authors of [36] used a single chance constraint that the event
“arrives at the relay location on time” happens with a probability of at least some given parameter. There are
other notable works, e.g., [23] combines POMCP and FIRM, and very recent [47].

Simplification paradigm The computational burden incurred by the complexity of POMDP planning in-
spired many research works to focus on approximations of the problem, e.g., [17]. Typically, approximation
based planners show asymptotical guarantees, e.g., the convergence of the algorithms. Recently, the novel
paradigm of simplification has appeared in literature [44, 8, 18, 24]. The simplification is concerned with care-
fully replacing the nonessential elements of the decision-making problem and quantifying the impact of this
relaxation. Specifically, simplification methods are accompanied by stringent guarantees, while alleviating the
computational burden of the decision-making problem.

Thus far, simplification has been utilized in the high-dimensional setting with Gaussian beliefs. However,
general belief distributions and risk-aware formulations received less attention. Recently [43] developed novel
adaptive bounds on a differential entropy estimator based on a belief representation by weighted particles [5]. A
technique that appears to be close to our notion of simplification is described in [17]; where the authors describe
successive multi-level approximations of the models from coarse to fine. Another interesting work utilizes
confidence intervals to eliminate actions in the context of MDP and Multi Armed Bandit (MAB) problem [9].

The extremely challenging high dimensional active SLAM problem was addressed when the belief is modeled
as a Gaussian [28, 29], as well as general belief distributions [10]. These works reduce computational complexity
by reusing the calculations between common parts of non-myopic candidate actions [29], and between planning
sessions [10]. Another line of works builds upon the simplification paradigm in the context of Gaussian beliefs
such as [8] sparsifies the belief, while [24] bypasses costly calculations, substituting the reward by a topological
signature.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss our methodology. We then
continue to the Chapter 3 where we present our published papers. Chapter 4 is a collections our unpublished
papers. Chapter 5, the conclusion, discusses all the published and unpublished papers in this thesis.



Chapter 2

Methodology

In this chapter, we discuss our methodology. Works such as [46], [9], [38] are especially close to our methods. In
general, our approach leans on adaptive bounds over the objective. Let us, in this section, give an example of
the bounds usage, namely providing guarantees using confidence intervals. Taking inspiration from [22], we will
construct confidence intervals over all the candidate action sequences simultaneously. We will see that stochastic
intervals do not convey the desired information. We would like to know absolutely if any impact has been made
by simplification. This question translates to the presence of any overlap of the intervals, for each candidate
policy, induced by the lower and upper bounds over the objective. Let us consider the decision-making with
static action sequences. We will now describe how to make an optimal decision, with some probability, using
an adaptive finite number of observation episodes laces.

2.1 Partially Observable Markov Decision Process

Purely for clarity of the exposition, we focus, in this chapter, on the static candidate action sequences
Ak = {ak:k+L−1} instead of policies. Further, we separately redefine POMDP and corresponding policies in
each paper. The POMDP is a tuple

⟨X ,Ak,Z,T,O, ρ, γ, b0⟩ (2.1)

where x ∈ X , z ∈ Z and the individual state and observation and X and Z are state and observation spaces.
The γ ∈ (0, 1] is a discount factor and b0 is a prior belief. The state evolves according to the transition model

PT(x
′|x, a) (2.2)

that models outcome uncertainty. The state is accessible solely through observations using the observation
model

PO(z|x) (2.3)

that models the state uncertainty. The Ak is the space of candidate action sequences obtained by an external
process separately for each planning time index k. The agent has access and maintains the belief over the
POMDP state

bk(xk) ≜ P(xk|b0, a0:k−1, z1:k). (2.4)

The BSP objective is to find an action sequence ak:k+L−1 ∈ Ak that maximizes the value function

V (bk, ak:k+L−1) = E
[ k+L−1∑

ℓ=k

γℓ−kρ(bℓ, aℓ, bℓ+1)
∣∣∣bk, ak:k+L−1

]
. (2.5)

In this research we assume that ρ is a general belief dependent reward.

2.2 Confidence Intervals

Suppose the reward is bounded ρmin ≤ ρ ≤ ρmax and the maximal horizon is Lmax. Denote Vmax = ρmaxLmax

and denote a∗k+ = argmaxak+∈A V (bk, ak+) where V is the theoretical Value function. Let also be a†k+ =

argmaxak+∈A V̂
(m)(bk, ak+).

10
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Figure 2.1: Simple application of confidence bounds. These bounds hold with some probability and the
intervals themselves are stochastic.

Lemma 1 (Chernoff bound). For any given belief bk and an action sequence ak+ with probability of at least

1− e−
λ2m
V 2
max it holds that

|V (bk, ak+)− V̂ (m)(bk, ak+)| ≤ λ (2.6)

where V̂ (m)(bk, ak+) =
1
m

∑m
i=1

∑k+L−1
ℓ=k ρ(biℓ, aℓ, b

i
ℓ+1) and the probability is taken over the draw of the ρk:k+L

from P(ρk:k+L|bk, ak+).

The proof is immediate using Chernoff bound and Hoeffding Lemma. Now we want to bound |V (bk, a
∗
k+)−

V̂ (m)(bk, a
†
k+)|.

2.3 Probability Construction

Defining probability on a product space from A when each product is induced by the candidate action se-

quence, we obtain the new outcomes space (Ωi,Fi)|A|
i=1 with an outcome being ω1ω2 . . . ω|A| ∈ ×|A|

i=1Ωi and

σ-algebra ⊗|A|
i=1Fi. The set N ∈ ⊗|A|

i=1Fi is defined as N ≜ ∩i=1Bi with Bi∈Fi. The PDF over this space is
P((ρak+

k:k+L)ak+∈A||bk,A) =
∏
ak+∈A P(ρak+

k:k+L|bk, ak+).

2.4 Probabilistic Intervals

Using the previously seen lemma we have that

P
(⋂

ak+∈A

{
|V (bk,ak+)−V̂ (m)(bk,ak+)|≤λ

}∣∣∣bk,A
)
=

( ∏

ak+∈A
P
(
|V (bk,ak+)−V̂ (m)(bk,ak+)|≤λ

∣∣∣bk,ak+
))
≥(1−e−

λ2m
V 2
max )|A|.

(2.7)

We use

V̂ (m)(bk, ak+)− λ ≤ V (bk, ak+)≤V̂ (m)(bk, ak+) + λ ∀ak+ ∈ A (2.8)

max
ak+∈A

V̂ (m)(bk, ak+)− λ ≤ max
ak+∈A

V (bk, ak+)≤ max
ak+∈A

V̂ (m)(bk, ak+) + λ (2.9)

with probability of at least (1−e−
λ2m
V 2
max )|A|. Note that here we know where the true optimal value can be using

the estimated value, but we do not know if the same action sequence was selected. It will happen if no overlap is
present, namely, we denote a† = argmaxak+∈A V̂

(m)(bk, ak+). If V̂
(m)(bk, a

†
k+)−λ ≤ maxak+∈A\a† V̂

(m)(bk, ak+)+
λ. However, we do not know with which probability it will happen. This is because the intervals themselves
are stochastic due to the dependence on the estimated value (Fig. 2.1). We need deterministic bounds over the
objective. This brings us to this research beginning in the next section.
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(a) (b)

Figure 2.2: These are analytical bounds. The intervals are deterministic. (a) The simplification loss is the
overlap ; (b) No simplification impact in this case.

2.5 Deterministic Intervals and the Overlap

Having established the necessity for deterministic bounds we outline our approach. We will try to bound the
objective deterministically as such

V (bk, ak+) ≤ V (bk, ak+) ≤ V (bk, ak+) (2.10)

As we see in Fig. 2.2a the simplification loss is the overlap. On the contrary, in Fig. 2.2b no simplification
impact is present due to absence of the overlap.
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Abstract
It is a long-standing objective to ease the computa-
tion burden incurred by the decision-making prob-
lem under partial observability. Identifying the sen-
sitivity to simplification of various components of
the original problem has tremendous ramifications.
Yet, algorithms for decision-making under uncer-
tainty usually lean on approximations or heuristics
without quantifying their effect. Therefore, chal-
lenging scenarios could severely impair the per-
formance of such methods. In this paper, we ex-
tend the decision-making mechanism to the whole
by removing standard approximations and consid-
ering all previously suppressed stochastic sources
of variability. On top of this extension, we scruti-
nize the distribution of the return. We begin from
a return given a single candidate policy and con-
tinue to the pair of returns given a corresponding
pair of candidate policies. Furthermore, we present
novel stochastic bounds on the return and novel
tools, Probabilistic Loss (PLoss) and its online ac-
cessible counterpart (PbLoss), to characterize the
effect of a simplification.

1 Introduction
While operating in a partially observable setting, the robot
repetitively performs actions and receives observations from
the environment in an interleaving manner. The result of each
action is a imprecise change in the robot’s state. The robot
has access to the probability density of the state, given the
history of its actions and the observations alongside the prior.
We call this probability density a belief. In each planning
session, the robot shall reason about future beliefs and se-
lect an optimal action based on its current belief using belief-
dependent rewards and the objective operator. The robot shall
look into the future as far as possible. With the growing
horizon, however, the computational burden is becoming un-

∗The original journal paper: A. Zhitnikov and V. Indelman. Sim-
plified Risk Aware Decision Making with Belief-dependent Rewards
in Partially Observable Domains. Artificial Intelligence, Special Is-
sue on “Risk-Aware Autonomous Systems: Theory and Practice”,
2022.

e eobservation

extensione

Figure 1: The Extended Belief Tree versus the standard.

bearable for the robot due to exponential growth in complex-
ity [Papadimitriou and Tsitsiklis, 1987]. Many research ef-
forts in Artificial Intelligence (AI) and Robotics communi-
ties have tackled the described problem. In AI community,
it received the name Partially Observable Markov Decision
Process (POMDP), whereas, in the Robotics community, it is
known as Belief Space Planning (BSP). In classical POMDP
the belief-dependent reward is assumed to be the average of
the state-dependent reward with respect to belief. While al-
leviating the solution, this assumption hinders the ability to
actively decrease uncertainty over the belief using general
belief-dependent operators. In BSP, general belief-dependent
rewards are essential, e.g., navigation, sensor placement prob-
lems. The classical assumption in BSP is that the belief fol-
lows Gaussian distribution [Indelman et al., 2015].

The AI community began to introduce general belief-
dependent rewards starting from the discrete domains [Araya
et al., 2010], [Fehr et al., 2018], and limiting assumptions
concerning the reward operators [Dressel and Kochenderfer,
2017]. More recent approaches such as Sparse Sampling (SS)
[Kearns et al., 2002], and Monte Carlo Tree Search (MCTS)
[Sunberg and Kochenderfer, 2018] build upon Belief-MDP
(BMDP). These methods are suitable for continuous domains.
Still, in the continuous setting of states and observations,
these methods give an approximate solution with only asymp-
totical optimality guarantees. On the other hand, the BSP
community introduced a concept of simplification [Indelman,
2016],[Elimelech and Indelman, 2022], [Shienman and Indel-
man, 2022b], [Kitanov and Indelman, 2019]. As opposed to
approximations, the simplification paradigm substitutes var-
ious parts of the decision-making problem while providing
guarantees on the impact of such a substitution.
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In this work, we focus on the distribution of the rewards
in a nonparametric setting. Our objective is to simplify the
decision-making problem and analyze the impact of the sim-
plification.

2 Notations and Problem Formulation
Let P be the probability density and P the probability. In
this paper, we focus on the finite horizon setting. Fur-
ther, to shorten notations, we shall often use □k+ to denote
□k+1:k+L, where L is the planning horizon. By ≡ we denote
identity.

2.1 POMDP with Belief Dependent Rewards
ρ-POMDP [Araya et al., 2010] is an eight tuple

⟨X ,A,Z, T,O, ρ, γ, b0⟩, (1)
where X ,A,Z are state, action, and observation spaces with
x ∈ X , a ∈ A, z ∈ Z the momentary state, action, and
observation, respectively, T (x, a, x′) ≜ PT (x′|x, a) is the
transition model from the past momentary state x to the next
x′ through action a, O(z, x) ≜ PZ(z|x) is the observation
model, ρ (b′, z′, a, b) is a scalar reward operator, γ ∈ (0, 1] is
the discount factor, and b0 is the prior belief.

2.2 Belief Space Planning
The posterior belief at time instant k is given by

bk(xk) ≈ P (xk|b0, a0:k−1, z1:k) . (2)
The usual assumption is that the belief is a sufficient statistic
for decision making objective [Bertsekas, 1995]. However,
in practice, the belief requires some representation. This rep-
resentation is not perfect, e.g., parametric or sampled form;
thus, in (2), we used the ≈ sign. In a real life scenario
bk = ψ(ψ(. . . ψ(b0, a0, z1), ak−2, zk−1), ak−1, zk), where ψ
is a method for updating the belief. By π ≜ πk:k+L−1 we
denote a vector of policies for L time steps starting from time
step k. Each such policy πℓ at time step ℓ maps belief to an
action πℓ(bℓ) = aℓ. The general decision making under un-
certainty objective function is of the following form

V L(bk, π) = φ
(
P (ρk+1:k+L|bk, πk:k+L−1) , gk

)
(3)

s.t. bℓ = ψ(bℓ−1, πℓ−1(bℓ−1), zℓ),

where L is the planning horizon, ρℓ is a random immediate
reward, φ is an objective operator, and gk ≜ fgk

(ρk+1:k+L)
is the return [Sutton and Barto, 2018]. A common choice
for φ is expectation over the distribution of future rewards
given all data available [Defourny et al., 2008]. The re-
turn is a deterministic known function of the realization of
ρk+1:k+L, e.g., it could correspond to the cumulative reward
gk =

∑L
ℓ=1 ρk+ℓ. Finally, ψ is a general method for propa-

gating the belief with action and updating it with the received
observation.

The objective (3) is ultimately based on the distribution
of the return given all information available for planning
under selected policy P(gk|bk, πk), which decomposes via
marginalization over future observations zk+ ≡ zk+1:k+L as

P(gk|bk,π)=
∫
zk+

P(gk|bk, π, zk+)P(zk+|bk, π)dzk+. (4)

A common assumption is that P(gk|bk, π, zk+, ) is a Dirac
delta function.

3 Foundations
In this section we introduce probabilistic ρ-POMDP and rig-
orously define the simplification paradigm. We further con-
tinue to the formulation of the general bounds on the re-
ward/return which can be analytical or stochastic.

3.1 Extended Setting, Probabilistic ρ-POMDP
Sometimes the belief bℓ−1 has a simple parametric form,
where θℓ−1 is a vector of parameters, e.g., a Gaussian be-
lief. In this case, belief update ψ can be deterministic,
and is denoted by ψdt(θℓ−1, πℓ−1(θℓ−1), zℓ). In more gen-
eral and challenging scenarios the belief bℓ−1 is given by a
set of weighted samples {(wiℓ−1, x

i
ℓ−1)}Ni=1. Therefore, ψ

is a stochastic method, e.g., a particle filter [Thrun et al.,
2005]. Applying multiple times ψ on the same input will
yield different sets of samples approximating the same dis-
tribution of the posterior belief. We denote the stochastic ψ
by ψst(bℓ−1, πℓ−1(bℓ−1), zℓ). Another form to formulate the
above is that the distribution

B(bℓ−1, aℓ−1, zℓ, bℓ) ≜ PB (bℓ|bℓ−1, aℓ−1, zℓ) , (5)

is not a Dirac delta function. This aspect was disregarded so
far, to the best of our knowledge. Note that in a Belief MDP
(BMDP) formulation, the assumption is that B is a Dirac
delta function. Similar arguments hold for the momentary
reward operator of the belief. We extend ρ (b′, z′, a, b) to

R(bℓ−1, aℓ−1, zℓ, bℓ, ρℓ) ≜ PR (ρℓ|bℓ, zℓ, aℓ−1, bℓ−1) , (6)

To our knowledge, we are the first who treat these aspects as
random.

Before introducing simplification formally and analyzing
its impact, we shall account for all potential sources of vari-
ability. We remove conventional approximations by extend-
ing (1) to a probabilistic reward modelR (6) and probabilistic
belief update B (5), and introduce

M = ⟨X ,A,Z, T,O,R, γ, bk, B⟩, (7)

which we name probabilistic ρ-POMDP (Pρ-POMDP). The
rationale behind these conditional distributions (R and B) is
to capture additional sources of stochasticity, such as stochas-
tic belief update, stochastic calculation of a given reward op-
erator or simply not knowing the operator reward in an ex-
plicit analytic form.

As discussed earlier, the value function (3) is based on (4).
These previously overlooked sources of stochasticity impact
the likelihood of the observations

P (zk+1:k+L|bk, π) , (8)

as well as the joint reward distribution P (ρk+|bk, π, zk+) ≡
P (ρk+1:k+L|bk, πk:k+L−1, zk+1:k+L) given a realization of
future observations. In contrast, in the regular setting of
POMDP and ρ-POMDP P (ρk+|bk, π, zk+) is Dirac’s delta
function. IfB is a Dirac function, a sample from (8) uniquely
defines the corresponding posterior beliefs bk+1:k+L. This,
therefore, corresponds to the classical belief tree (R could
still be non a Dirac function). In contrast, our Pρ-POMDP
(7), corresponds to an extended belief tree, which, due to (5),
allows many samples of the beliefs bk+1:k+L for each sample
of zk+1:k+L from (8) ( See Fig. 1).
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Figure 2: Our extension and the simplification in the context of a
single candidate policy.

3.2 Simplification Formulation
To formally define the simplification procedure, we augment
the Pρ-POMDP tuple (7) with a simplification operator ν ≜
νk, . . . , νk+L,

Mν = ⟨X ,A,Z, T,O,R, γ, bk, B, ν⟩. (9)

This general operator defines any possible modification of the
original problem defined by (7) alongside with (3) to a new,
simpler to solve, problem. The definition (9) allows us to re-
tain the connection to the original nonsimplified problem (7)
and examine the impact of the simplification on (7). The op-
erator ν can be for example, sparsification of the initial belief
bk [Elimelech and Indelman, 2022], replacing the reward by
its topological signature [Kitanov and Indelman, 2019], di-
rect calculation of lightweight reward bounds [Sztyglic and
Indelman, 2022], selecting a subset of hypotheses in a hybrid
or mixture belief [Shienman and Indelman, 2022a], to name
a few.

Generally, M and Mν are different decision making prob-
lems. We shall be interested in working online with the latter
while providing the guarantees with respect to the former. To
distinguish a simplified reward from the original reward, we
denote the former by ρ̆ instead of ρ; similarly, we denote the
simplified belief by b̆ instead of b. Note the operator ν can be
stochastic, as discussed below. Specifically, belief simplifica-
tion is described by the distribution

P(b̆ℓ|bℓ; νbℓ ). (10)

In general, the distribution (10) over the simplified belief b̆ℓ
corresponds to a stochastic simplification operator νbℓ . This
is the case, for example, when bℓ is represented by a set of
N weighted samples and νbℓ is the operation of subsampling
n samples according to weights; i.e., applying this operation
on bℓ multiple times leads to different sets of n samples, each
representing another realization of b̆ℓ from (10). Overall there
are

(
N
n

)
such combinations. For a deterministic operator νbℓ ,

(10) is a Dirac function.
Further, there are several cases of how a simplification af-

fects belief update (5) from time ℓ− 1 to ℓ.

1. Without any simplification we have
PB(bℓ|bℓ−1, πℓ−1, zℓ) from (5).

2. Given a simplified belief b̆ℓ−1, while keeping the
original stochastic belief update ψst, we have

PB(b̆ℓ|b̆ℓ−1, πℓ−1, zℓ), where each realization of b̆ℓ
is obtained via ψst. Thus, given b̆ℓ−1, this distribution is
not a function of ν.

3. We can also simplify the belief update operator, ψst, to
ψ̆st. Denoting the corresponding simplification operator
νψℓ , this yields PB̆(b̆ℓ|b̆ℓ−1, πℓ−1, zℓ; ν

ψ
ℓ ).

4. Finally, one can decide at time ℓ to apply simplification
on the belief (determined by νbℓ ) via (10). The corre-
sponding belief update can be written as

PB̆(b̆ℓ|b̆ℓ−1, πℓ−1, zℓ; ν
b
ℓ , ν

ψ
ℓ ) =∫

b̃ℓ

P(b̆ℓ|b̃ℓ; νbℓ )PB̆(b̃ℓ|b̆ℓ−1, πℓ−1, zℓ; ν
ψ
ℓ )db̃ℓ,

where b̃ℓ is the integration variable.

We combine these cases and write

B̆
(
b̆ℓ−1, πℓ−1, zℓ, b̆ℓ; ν

)
≜PB̆(b̆ℓ|b̆ℓ−1, πℓ−1, zℓ; ν

b
ℓ , ν

ψ
ℓ ). (11)

Similarly, reward simplification could be, in general, stochas-
tic, leading to the distribution

P(ρ̆ℓ|ρℓ; νρℓ ). (12)

Thus, given a simplified belief b̆ℓ and b̆ℓ−1, and recalling (6),
the distribution over ρ̆ℓ is

PR̆(ρ̆ℓ|b̆ℓ, zℓ, πℓ−1(b̆ℓ−1), b̆ℓ−1; ν) =∫

ρ̃ℓ

P(ρ̆ℓ|ρ̃ℓ; νρℓ )PR(ρ̃ℓ|b̆ℓ, zℓ, πℓ−1(b̆ℓ−1), b̆ℓ−1)dρ̃ℓ,

which we denote as the simplified reward model,

R̆(b̆ℓ, zℓ, πℓ−1(b̆ℓ−1), ρ̆ℓ; ν) ≜
PR̆

(
ρ̆ℓ|b̆ℓ, zℓ, πℓ−1(b̆ℓ−1), b̆ℓ−1; ν

)
.

(13)

Throughout the document we assume that operator ν does not
affect the observations likelihood. In other words, the mea-
surements are sampled as in the original problem as in (8).
For the further discussion we make the following shorthand
notation. Let Hk+L ≜ {bk, π, zk+} be future history at the
time index k + L.

3.3 Online Stochastic and Analytical Bounds
We turn now to the joint distribution over original and simpli-
fied rewards, given the future history and operator ν, namely
P (ρk+, ρ̆k+|Hk+L, ν). In an online setting we do not have
access to the original rewards as calculating them explicitly
defeats the purpose of simplification. Instead, we shall now
utilize simplification to provide bounds over the original re-
wards. These bounds can be used to provide performance
guarantees, and should be cheaper to calculate than the orig-
inal unsimplified rewards. Further, the bounds can be analyt-
ical as in previous simplification approaches, e.g, [Elimelech
and Indelman, 2022]. Ultimately for each realization of the
return we are interested in the following relation

l ≤ gk ≤ u. (14)
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Figure 3: The simplification in our extended setting and its impact
of the joint distribution of a pair of the returns corresponding to the
pair of the candidate policies.

One way to do that is to develop analytical bounds, which
will hold for any possible observation zk+1:k+L received and
any corresponding return, e.g, as in [Sztyglic and Indelman,
2021].

Our extension allows R and B, as well as R̆ and B̆ to be
any distributions. They can remain Dirac functions, e.g., if
belief update and the reward calculation have a closed form.
Successively, P(gk|bk, π, zk+, ) remains Dirac delta. How-
ever, in the more general case, following our extension, there
is a joint distribution of original and simplified returns given
a realization of the future and the present

P(gk, ğk|Hk+L, ν), (15)
as illustrated in Fig. 2. Given the history Hk+L, the return gk
as well as the simplified return ğk has variability, in contrast
to the conventional approach. Ordinarily, the belief update
is commenced once and treated as deterministic. So as the
rewards and return do not have variance given the history of
the actions and the observations. Since (15) is no longer a
Dirac function, we can use knowledge about this distribution
to design bounds, which will hold with some probability. In
the main paper [Zhitnikov and Indelman, 2022], we show that
it is possible to harness the structure of (15) to design the
mentioned more lenient online bounds. Moreover, analytical
bounds, designed in a conventional setting, can be used in
our extended setting without any revision. In our extended
setting, they will bound with probability one.

Having introduced the novel stochastic bounds, we proceed
to the formulation of the constraints, that these bounds shall
fulfill to be meaningful. Let the parameter controlling the
confidence level be α ∈ [0, 1). For every possible sample
ğk we do not know which sample gk one could obtain in the
original problem. However, if the bounds are designed such
that P(gk, l, u|Hk+L, ν) render

1 − α ≤ P (1{l ≤ gk ≤ u} = 1|Hk+L, ν) (16)
these bounds can be useful. Notably, the above equation does
not involve simplified return, so is applicable also in the case
bounds are directly formulated (and not via a simplified re-
turn). However, in this case the bounds are analytical and
α = 0. To summarize, there are three types of online re-
ward/return bounds:

1. Deterministic bounds. These analytical bounds exist in
case of a closed form belief update ψdt and a determin-
istic operator reward, e.g., belief is a Gaussian and the

reward is differential entropy. In this case, even in our
extended setting R and B remain Dirac functions.

2. Stochastic bounds that hold with probability one,
namely α = 0. These are also analytical bounds. In
our extended setting R and B are no longer Dirac func-
tions. However, these bounds hold for any realization of
sample approximation, as stated around (14).

3. Stochastic bounds that hold at least with probability 1 −
α. They exist only in our extended setting when R and
B are not Dirac functions.

4 The Return Given a Candidate Policy
Applying the marginalization over the observations we obtain
the distribution of the original and the simplified return given
the candidate policy and the operator ν (See Fig. 2).

P(gk, ğk|bk, π, ν)=
∫

zk+

P(gk, ğk|Hk+L, ν)P(zk+|bk, π)dzk+.

For further discussion please see [Zhitnikov and Indelman,
2022].

5 The Pair of the Returns Corresponding to
the Pair of Candidate Policies

Imagine a pair of a candidate policies. In such a setting we
are interested in the following distribution (See Fig. 3)

P(gk, g
′
k, ğk, ğ

′
k|bk, π, π′, ν). (17)

On top of (17) we propose a tool to examine the simplifica-
tion impact on the original not simplified problem. We call it
Probabilistic Loss.

5.1 Probabilistic Loss (PLoss)
Consider a random variable L : Ω → R over the events space
Ω defined as such

L(ω)≜





max{g′
k(ω) − gk(ω), 0} if ğk(ω) > ğ′

k(ω)

max{gk(ω) − g′
k(ω), 0} if ğk(ω) < ğ′

k(ω)

0 if ğk(ω) = ğ′
k(ω)

(18)

The realization of random variable L(ω) = ∆ differs from
zero if the simplification have switched the ordering of the
original returns and the original difference between returns
was ∆.

5.2 Online Bound on Probabilistic Loss (PbLoss)
Since the PLoss is inaccessible online we propose another
random variable which is accessible.

L̄(ω) ≜





max{u′(ω) − l(ω), 0} if ğk(ω) > ğ′
k(ω)

max{u(ω) − l′(ω), 0} if ğk(ω) < ğ′
k(ω)

0 if ğk(ω) = ğ′
k(ω)

(19)

To give to the reader a glimpse into the connection between
PLoss and PbLoss suppose the bounds (14) are analytical.
This implies that L(ω) ≤ L̄(ω) ∀ω ∈ Ω and this implies

P(∆ ≤ L(ω)) ≤ P(∆ ≤ L̄(ω)) (20)
To the impact of the proposed ideas onto Decision Making
please refer to the journal paper [Zhitnikov and Indelman,
2022].
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With the recent advent of risk awareness, decision-making algorithms’ complexity in-
creases, posing a severe difficulty to solve such formulations of the problem online. Our 
approach is centered on the distribution of the return in the challenging continuous do-
main under partial observability. This paper proposes a simplification framework to ease 
the computational burden while providing guarantees on the simplification impact. On top 
of this framework, we present novel stochastic bounds on the return that apply to any re-
ward function. Further, we consider simplification’s impact on decision making with risk 
averse objectives, which, to the best of our knowledge, has not been investigated thus far. 
In particular, we prove that stochastic bounds on the return yield deterministic bounds on 
Value at Risk. The second part of the paper focuses on the joint distribution of a pair of 
returns given a pair of candidate policies, thereby, for the first time, accounting for the cor-
relation between these returns. Here, we propose a novel risk averse objective and apply 
our simplification paradigm. Moreover, we present a novel tool called the probabilistic loss 
(PLoss) to completely characterize the simplification impact for any objective operator in 
this setting. We provably bound the cumulative and tail distribution function of PLoss
using PbLoss to provide such a characterization online using only the simplified problem. 
In addition, we utilize this tool to offer deterministic guarantees to the simplification in 
the context of our novel risk averse objective. We employ our proposed framework on a 
particular simplification technique - reducing the number of samples for reward calculation 
or belief representation within planning. Finally, we verify the advantages of our approach 
through extensive simulations.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous online decision-making is a fundamental aspect of intelligence. In a partially observable setting, which is 
common in real world scenarios, there is no direct access to the state. Instead, the robot has to maintain a belief over the 
state and reason about its evolution while accounting for different sources of uncertainty within the decision-making stage. 
The renowned framework to do so is the Partially Observable Markov Decision Process (POMDP) [18]. Crucial elements 
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defining the robot’s behavior are the random reward and the objective operator applied to the reward distribution. The 
random nature of the reward arises from the uncertainties in the system.

Solving a POMDP, i.e., calculating the “right decision” in terms of an optimal action sequence or policy, involves antici-
pating every imaginable turn of future events and computing the returns based on the corresponding rewards. One typical 
example of the return is the future cumulative reward.

There is a large body of algorithms, formulated on top of POMDP, to approximate decision-making under uncertainty. 
Classical offline methods [21] are trying to find offline a policy that is optimal for all possible beliefs. These methods are 
based on α-vectors and point based value iteration [24,26,34]. Since the α-vector is the vector of the utility function values, 
starting from the state realizations or samples from the belief distribution, under the conditional plan, the set of α-vectors, 
each annotated with an action, can represent the policy for all beliefs. The application of such policy is to find α-vector 
maximizing the inner product with the belief. Unfortunately, these methods are suitable solely for the discrete state, action, 
and observation spaces. Some work on extending the α-vectors to continuous spaces has been done by [28]. More recent 
formulations suitable for continuous spaces are operating on the belief tree.

A necessary factor for planning to be successful is the number of future steps ahead (horizon) that an agent considers in 
the decision-making process. The belief tree grows exponentially with the horizon. However, the exponential growth with 
the horizon is not the only problem of the belief tree based approaches. Additionally, the number of possible states grows 
exponentially with the state space dimension, and consequently, an adequate representation of the belief requires more 
particles in the setting of non-parametric beliefs. Those last two problems are known as the curse of history and the curse of 
dimensionality respectively.

More recently, online methods became successful. Some of them are suitable for continuous state and observation spaces. 
The output of these methods is an action recommended for the current belief. The algorithm itself is a policy which maps 
from beliefs to actions online. Prominent examples are POMCP [33] and its various extensions (e.g., [37]), an algorithm 
designed for large POMDP and based on Monte Carlo tree search. Another popular algorithm, DESPOT [35] [44], focuses on 
the set of randomly sampled scenarios over the belief tree, avoiding drawbacks of the UCT [22] algorithm used in POMCP.

Standard POMDP formulations consider state-dependent rewards and assume that the belief-dependent reward is noth-
ing but expectation over the state reward. POMDP with belief-dependent rewards received much less attention, although these 
rewards are essential in numerous problems, such as information gathering, autonomous navigation, and active sensing. 
Information theoretic rewards are especially significant for belief space planning (BSP) [17], [10]. Araya et al. [1] introduced 
ρ-POMDP and extended the exact α-vectors method and a family of point based approximation algorithms to consider 
convex belief-dependent reward functions. Later Fehr et al. [9] extended their work further to Lipschitz-continuous reward 
functions. Spaan et al. [36] proposed to augment action space with information-reward actions. Dressel and Kochenderfer [7]
proposed an extension of SARSOP [24] to specific forms of belief-dependent rewards. However, these extensions are limited 
either to a discrete setting or to specific forms of belief dependent rewards. In a general setting, belief-dependent rewards 
are computationally demanding and prohibitively expensive.

Further, the most popular and widespread objective operator is the expected value of the return. However, the expected 
value as the objective has inherent flaws. It is oblivious to the distribution of the reward. Meaning it is unable to account 
for the risk that the selected action or policy is suboptimal and to prevent rare undesirable events. One way to introduce 
the notion of risk to decision making is to augment the expected return value with chance constraints. This augmentation, 
however, introduces additional complications which are out of the scope of this paper [31]. With this motivation in mind, 
we focus on an alternative to the expected value objectives in the context of BSP in continuous domains.

Replacing expected value by other objectives in the context of MDP has been discussed in [6]. Importantly, Defourny 
et al. [6] discuss risk measures and applicability of Bellman form. Attractive risk averse objectives include Value at Risk 
(VaR) and Conditional VaR (CVaR) [5]. VaR and CVaR were extensively studied in the context of MDP, whereas in the POMDP 
planning community, they started to emerge only recently [12,13]. So far, we did not find work considering belief-dependent 
rewards in the context of decision making under uncertainty with risk averse objectives.

The computational burden incurred by the complexity of POMDP planning inspired many research works to focus on 
approximations of the problem, e.g., [14]. Typically, approximation based planners show asymptotical guarantees, e.g., the 
convergence of the algorithms. We take a different path, which is to simplify the original decision-making problem. In other 
words, instead of approximating the problem, we substitute it with a simpler one. If the order of policies with respect to 
the original and simplified problems’ objective is preserved, such substitution does not affect the decision-making quality. 
Moreover, suppose we can find online bounds over the original problems’ returns/rewards or objective function, utilizing 
the simplified problem. In that case, it is possible to account for the simplification loss.

Replacement of various parts of the decision making problem to ease the computation burden while preserving the 
precedence of objectives for potential action plans recently appeared in the literature under the names simplification
paradigm [39,41,8,16,19] [32,2], action consistency [8,19] and tree consistency [41]. Yet, these works have limitations. A 
common assumption is a specific objective operator - expectation. Moreover, Elimelech and Indelman [8], Kitanov and In-
delman [19] assume Gaussian distributions and maximum likelihood observations while working in the highly challenging 
setting of a high dimensional state. Sztyglic et al. [41] consider non-parametric beliefs; however, they build upon a specific 
belief dependent reward operator.

The general simplification paradigm is concerned with carefully replacing the nonessential elements of the decision 
making problem and quantifying the impact of this relaxation. Specifically, simplification methods are accompanied by 
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stringent guarantees while alleviating the computational burden of the decision making problem. Therefore, previous works 
formulated the simplification paradigm on top of analytical bounds and a conventional expectation operator as the objective. 
Existing works consider a deterministic belief update; however this is problematic for non-parametric beliefs which cannot 
be updated in a deterministic way. In the setting of general beliefs, we shall resort to a particle filter [42] which is a 
stochastic belief update method since it is based on sample approximations.

1.1. Contributions

We study the simplification impact on decision making under uncertainty considering a general objective operator and 
non-parametric beliefs, which therefore involves the distribution over returns. This distribution conveys all the information 
about the decision making problem. Our overall goal is to examine how the simplification method influences the perfor-
mance of the decision-maker while accelerating the decision making process.

To account for the impact of simplification on the distribution over returns, we first relax typical assumptions regarding 
the belief update along with the operator reward and introduce probabilistic ρ-POMDP, which we denote as Pρ-POMDP. 
Given a simplification and an objective operator, we utilize bounds over the return to provide performance guarantees in 
terms of quality of solution with respect to the original (un-simplified) decision making problem. These bounds can be 
analytical, and thus hold with probability one. Crucially, we also introduce stochastic bounds that are applicable to any 
reward function, in contrast to analytical bounds that must be derived for each reward function separately.

Further, we consider specifically simplification impact on decision making with risk averse objectives. To the best of 
our knowledge, this is the first work that investigates simplification in this context. Our key result is the derivation of 
deterministic bounds on the risk averse objective (Value at Risk) using stochastic bounds on the return/reward. Consequently, 
we obtain solving speedup and provide guarantees.

Moreover, we examine how simplification impacts the joint distribution over the returns for two candidate policies. 
We believe this distribution conveys previously unaccounted information, as generally the returns for different policies, 
conditioned on the current belief, are coupled. To the best of our knowledge, this joint distribution has not been studied 
yet. Towards this end, we propose a novel risk aware objective operator on top of the joint distribution over returns for 
two candidate policies. This is as opposed to conventional objectives that are based on the marginal distribution of the 
return given a policy. Furthermore, we develop a method to provide guarantees for the simplification of such an objective. 
Specifically, we introduce probabilistic loss (PLoss) and the corresponding online bound on probabilistic loss (PbLoss) 
to completely characterize the simplification impact on the joint distribution of the rewards given two candidate policies, 
meaning for any objective operator. We then utilize the latter to provide performance guarantees in terms of deterministic 
bounds considering the mentioned risk aware objective operator.

Finally, we apply our general formulation considering a specific simplification: reducing the number of samples of the 
belief for the reward calculation. To be precise, in the setting of an explicitly given belief surface (e.g. Gaussian mixture 
model), we endow the stochastic bounds with an adaptivity property and show how to take the lowest possible number of 
samples while remaining action consistent. In the setting of general beliefs represented by particles we lower the number 
of particles of the belief and provide performance guarantees.

To summarize, our key contributions are as follows. (a) We extend ρ-POMDP to probabilistic ρ-POMDP (Pρ-POMDP) by 
relaxing the assumption that the reward operator and the belief update are deterministic; (b) We introduce novel stochastic 
bounds on the return/reward and rigorously formulate the simplification framework on top of general objective operators 
and returns/rewards; (c) Using our formulations we present simplification of risk averse decision making under uncertainty; 
(d) We present a novel objective utilizing joint distribution of the rewards corresponding to two candidate policies and de-
scribe a method to simplify such decision making while preserving action consistency; (e) We introduce the general concept 
of PLoss and provide its online description with PbLoss and utilize it to provide guarantees in terms of deterministic 
bounds; (f) Finally, we exemplify our framework on a particular simplification technique, which is reducing the number of 
samples within planning.

1.2. Paper structure

This paper is organized as follows. In section 2 we introduce the notations and formulate the problem. In section 3 we 
provide mathematical foundations for our approach. We then focus on the marginal distribution of the return in section 4
and on the joint distribution of a pair of the returns corresponding to two candidate policies in section 5. We present a 
specific simplification in section 6. In section 7 we exemplify our findings on the problem of autonomous navigation with 
light beacons.

2. Notations and problem formulation

Let us denote by P the probability density function and by P the probability. By lowercase letter we denote a random 
vector or its realization. For two random variables x and y, we say that they are equal x = y if they are equal as functions on 
their measurable space. Further, to shorten notations, we shall often use �k+ to denote �k+1:k+L , where L is the planning 
horizon. By ≡ we denote identity. We summarize important notations used throughout the paper in Table 1.
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Table 1
List of important notation.

Nomenclature

X ,A,Z State, Action, and Observation spaces

xk ∈ X ,ak ∈ A, zk ∈ Z Momentary state, action, and observation, respectively.

1{·} Indicator function defined on set {}.

a ∧ b min{a,b} where a,b ∈R.

a ∨ b max{a,b} where a,b ∈R.

ρk+ , ρk+1:k+L Reward vector from time index k + 1 until k + L including the ends.

ρ̆k+ , ρ̆k+1:k+L Simplified reward vector.

gk
Return calculated from the reward vector, such that gk � f gk (ρk+1:k+L)

and f gk is some deterministic function.

ğk Simplified return calculated from simplified reward vector.

zk+ , zk+1:k+L Observation vector from time index k + 1 until k + L including the ends.

ψ A general method for updating the belief.

π , πk:k+L−1 Policy sequence from time index k up until k + L − 1 including the edges.

ν , νk:k+L
The sequence of simplification operators

from time index k up until k + L including the edges.

Hk+L � {bk,π, zk+} The future history at the time index k + L.

2.1. POMDP with belief dependent rewards

Let k be an arbitrary time step. ρ-POMDP [1] is an eight tuple

〈X ,A,Z, T , O ,ρ,γ ,b0〉, (1)

where X , A, Z are state, action, and observation spaces with xk ∈ X , ak ∈ A, zk ∈ Z the momentary state, action, and 
observation, respectively, T (xk, ak, xk+1) = PT (xk+1|xk, ak) is the stochastic transition model from the past momentary state 
xk to the next xk+1 through action ak , O (zk, xk) = PZ (zk|xk) is the stochastic observation model, ρ

(
bk+1, zk+1,ak,bk

)
is 

a scalar reward operator, γ ∈ [0, 1] is the discount factor, and b0 is the belief about the initial state (prior). Notably, the 
infinite horizon planning case necessitates γ < 1, whereas γ = 1 is permitted in a finite horizon. In this paper, we focus on 
the finite horizon setting. Moreover, the reward can be dependent on consecutive beliefs and the elements relating them 
(e.g., information gain [10]).

2.2. Belief space planning

The posterior belief at time instant k is given by

bk(xk) ≈ P
(
xk|b0,a0:k−1, z1:k

)
. (2)

The belief is an efficient way of storing all relevant information that has been obtained so far. The usual assumption is 
that the belief is a sufficient statistic for decision making objective [3]. However, in practice, the belief requires some 
representation. In general, this representation is not perfect, e.g., parametric or sampled form; thus, in (2), we used the ≈
sign. In a real life scenario

bk = ψ(ψ(. . .ψ(b0,a0, z1),ak−2, zk−1),ak−1, zk), (3)

where ψ is a method for updating the belief. Denote by π� policy at time step � such that π�(b�) = a� maps belief to the 
action. It is noteworthy that policy π(b) is a random function of the belief in general. For simplicity we assume that policy 
is deterministic. However, our development is not constrained to deterministic policies. By π � πk:k+L−1 we denote a vector 
of policies for L time steps starting from time step k. Let us focus on the finite horizon setting. The general decision making 
under uncertainty objective function is of the following form

V L(bk,π) = ϕ

(
P
(
ρk+1:k+L |bk,πk:k+L−1

)
, gk

)
(4)

s.t. b� = ψ(b�−1,π�−1(b�−1), z�),

where L is the planning horizon, ρ� is a random immediate reward, ϕ is an objective operator, and gk � f gk (ρk+1:k+L) is 
the return [38]. The return is a deterministic function of the realization of ρk+1:k+L . A common choice for ϕ is expectation 
over the distribution of future rewards given all data available [6]. The return is some known function of the realization 
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of ρk+1:k+L ; as discussed in [6], e.g., it could correspond to the cumulative reward gk =∑L
�=1 ρk+� . Finally, ψ is a general 

method for propagating the belief with action and updating it with the received observation.
The objective (4) is ultimately based on the distribution of the return given all information available for planning and some 

selected policy P (gk|bk, πk:k+L−1), which decomposes via marginalization over future observations zk+ ≡ zk+1:k+L as

P (gk|bk,π) =
∫

zk+

P (gk|bk,πk:k+L−1, zk+1:k+L) · P (zk+1:k+L |bk,πk:k+L−1)dzk+1:k+L . (5)

A conventional assumption is that P (gk|bk, π, zk+, ) is a Dirac delta function.

3. Foundations

In this section we extend POMDP with belief-dependent rewards to probabilistic POMDP and rigorously define the sim-
plification paradigm. We further continue to the formulation of the general bounds on the reward/return which can be 
analytical or stochastic. We conclude this section with our key insight.

3.1. Extended setting, probabilistic POMDP with belief dependent reward

Sometimes the belief b�−1 has a simple parametric form, where θ�−1 is a vector of parameters, e.g., a Gaussian be-
lief. In this case, belief update ψ can be deterministic, and is denoted by ψdt(θ�−1, π�−1(θ�−1), z�), where the subscript dt
stands for deterministic. In more general and challenging scenarios the belief b�−1 is given by a set of weighted samples 
{(wi

�−1, x
i
�−1)}N

i=1. Therefore, ψ is a stochastic method, e.g., a particle filter [42]. Applying multiple times ψ on the same in-
put will yield different sets of samples approximating the same distribution of the posterior belief. We denote the stochastic 
ψ by ψst(b�−1, π�−1(b�−1), z�). Thus, ψst is a random function of the previous belief, an action and the observation. Note 
also another common situation where b�−1 is parameterized, but there is no closed form update. In this case, ψ is also a 
stochastic method. Another form to formulate the above is that the distribution

B(b�−1,π�−1(b�−1), z�,b�) � PB (b�|b�−1,π�−1, z�) , (6)

is not a Dirac delta function. This aspect was disregarded so far, to the best of our knowledge. Note that in a Belief MDP 
(BMDP) formulation, the assumption is that B is a Dirac delta function.

Similar arguments also hold for the momentary reward operator of the belief and the previous action. In its pure theo-
retical form, the momentary reward is a deterministic operator of the posterior belief and possibly an action. For example, 
a common immediate reward is of the form

ρdt(b) = Ex∼b [ f (b(x), x)] =
∫
x

b(x) f (b(x), x)dx, (7)

where usually f (b(x), x) = − log b(x) or some reward on the state f (b(x), x) = r(x), producing differential entropy or mean 
distance to goal. Unfortunately, an analytical expression for the reward operator ρdt(·) is available in only limited scenarios, 
e.g., if the belief is modeled as Gaussian and the reward is differential entropy. The representation of the beliefs in (6)
dictates adequate practical reward operators. Sometimes the deterministic operator can be constructed on top of a particular 
belief representation. E.g., (6) outputs a set of weighted samples and (7) is adapted to be a deterministic operator of this 
output [4]. However, it is not always possible. In extremely challenging situations the reward includes modification of the 
representation of the belief. This could introduce an additional source of stochasticity. We extend (7) to

R(b�−1,π�−1(b�−1), z�,b�,ρ�) � PR (ρ�|b�, z�,π�−1(b�−1),b�−1) , (8)

embracing these possibilities. To our knowledge, we are the first who treat these aspects as random.
Before introducing simplification formally and analyzing its impact, we shall account for all potential sources of variabil-

ity. We remove conventional approximations by extending (1) to a probabilistic reward model R (8) and probabilistic belief 
update B (6), and introduce

M = 〈X ,A,Z, T , O , R, γ ,bk, B〉, (9)

which we name probabilistic ρ-POMDP (Pρ-POMDP). The rationale behind these conditional distributions (R and B) is to 
capture additional sources of stochasticity, such as stochastic belief update, stochastic calculation of a given reward operator 
or simply not knowing the operator reward in an explicit analytic form.

As discussed earlier, the value function (4) is based on (5). These previously overlooked sources of stochasticity impact 
the likelihood of the observations

P
(
zk+1:k+L |bk,π

)
, (10)

5
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Fig. 1. Illustration of one branch of the extended belief tree. In a conventional setting (bottom), under the policy π , a specific realization of observations 
zk+1:k+3 defines the beliefs along the way. In our extended setting (top), that is not the case, as discussed in text. It is customary to choose the same 
beliefs used to build the tree to obtain reward distribution or samples from the reward. We decoupled beliefs from the tree and beliefs from the reward 
calculation. By the red arrow, we denote our extension (red e). (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

as well as the joint reward distribution P
(
ρk+|bk,π, zk+

)≡ P
(
ρk+1:k+L |bk,πk:k+L−1, zk+1:k+L

)
given a realization of future 

observations. The latter can be factorized as

P
(
ρk+|bk,π, zk+

)=∫
bk+1

PR
(
ρk+1|bk+1, zk+1,πk,bk

)
PB

(
bk+1|bk,πk, zk+1

)
∫

bk+2

. . .

∫
bk+L

PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
dbk+L . . . dbk+2dbk+1. (11)

In contrast, in the regular setting of POMDP and ρ-POMDP P
(
ρk+|bk,π, zk+

)
is Dirac’s delta function. If B is a Dirac 

function, a sample from (10) uniquely defines the corresponding posterior beliefs bk+1:k+L . This, therefore, corresponds to 
the classical belief tree (R could still be non a Dirac function). In contrast, our Pρ-POMDP (9), corresponds to an extended
belief tree, which, due to (6), allows many samples of the beliefs bk+1:k+L for each sample of zk+1:k+L from (10). We 
illustrate this in Fig. 1.

3.2. Simplification formulation

To formally define the simplification procedure, we augment the Pρ-POMDP tuple (9) with a simplification operator ν ,

Mν = 〈X ,A,Z, T , O , R, γ ,bk, B, ν〉, ν � νk, . . . , νk+L . (12)

This general operator defines any possible modification of the original problem defined by (9) alongside with (4) to a new, 
simpler to solve, problem. The definition (12) allows us to retain the connection to the original nonsimplified problem (9)
and examine the impact of the simplification on (9). Further, we also define a novel decision making problem, undergoing 
simplification to ease the computational burden. The operator ν can be for example, sparsification of the initial belief bk
[8], substitution of the operator differential entropy by a simpler operator, e.g., trace of covariance matrix, discarding the 
normalizer in the differential entropy operator [30], replacing the reward by its topological signature [19], direct calculation 
of lightweight reward bounds [40], selecting a subset of hypotheses in a hybrid or mixture belief [32]. In Section 6, we 
consider a specific simplification of taking less samples for reward calculation considering parametric and non-parametric 
beliefs.

Generally, M and Mν are different decision making problems. We shall be interested in working online with the latter 
while providing the guarantees with respect to the former.

To distinguish a simplified reward from the original reward, we denote the former by ρ̆ instead of ρ; similarly, we 
denote the simplified belief by b̆ instead of b. Note the operator ν can be stochastic, as discussed below.

Specifically, belief simplification is described by the distribution

P (b̆�|b�;νb
� ). (13)

In general, the distribution (13) over the simplified belief b̆� corresponds to a stochastic simplification operator νb
� . This is 

the case, for example, when b� is represented by a set of N weighted samples and νb
� is the operation of subsampling n

samples according to weights; i.e., applying this operation on b� multiple times leads to different sets of n samples, each 

6
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representing another realization of b̆� from (13). Overall there are 
(N

n

)
such combinations. For a deterministic operator νb

� ,
(13) is a Dirac function.

Further, there are several cases of how a simplification affects belief update (6) from time � − 1 to �.

1. Without any simplification we have PB (b�|b�−1, π�−1, z�) from (6).
2. Given a simplified belief b̆�−1, while keeping the original stochastic belief update ψst , we have

PB(b̆�|b̆�−1,π�−1, z�),

where each realization of b̆� is obtained via ψst. Thus, given b̆�−1, this distribution is not a function of ν .
3. We can also simplify the belief update operator, ψst , to ψ̆st. Denoting the corresponding simplification operator νψ

� , this 
yields

PB̆(b̆�|b̆�−1,π�−1, z�;νψ
� ).

4. Finally, one can decide at time � to apply simplification on the belief (determined by νb
� ) via (13). The corresponding 

belief update can be written as

PB̆(b̆�|b̆�−1,π�−1, z�;νb
� , ν

ψ
� ) =

∫
b̃�

P (b̆�|b̃�;νb
� )PB̆(b̃�|b̆�−1,π�−1, z�;νψ

� )db̃�,

where b̃� is the integration variable.

We combine these cases and write

B̆
(
b̆�−1,π�−1, z�, b̆�;ν

)
�PB̆(b̆�|b̆�−1,π�−1, z�;νb

� , ν
ψ
� ). (14)

Similarly, reward simplification could be, in general, stochastic, leading to the distribution

P (ρ̆�|ρ�;νρ
� ). (15)

Thus, given a simplified belief b̆� and b̆�−1, and recalling (8), the distribution over ρ̆� is

PR̆(ρ̆�|b̆�, z�,π�−1(b̆�−1), b̆�−1;ν)=
∫
ρ̃�

P (ρ̆�|ρ̃�;νρ
� )PR(ρ̃�|b̆�, z�,π�−1(b̆�−1), b̆�−1)dρ̃�,

which we denote as the simplified reward model,

R̆(b̆�, z�,π�−1(b̆�−1), ρ̆�;ν) � PR̆

(
ρ̆�|b̆�, z�,π�−1(b̆�−1), b̆�−1;ν

)
. (16)

Throughout the document we assume that operator ν does not affect the observations likelihood. In other words, the 
measurements are sampled as in the original problem as in (10).

3.2.1. Joint distribution of simplified and the original reward given the candidate policy and the observations
Consequently, the models (14) and (16) impact (11), and lead to several alternatives for the original and the simplified 

joint reward distribution given a realization of the future observations. The first alternative is to simplify the initial belief 
bk to b̆k and apply the update method ψst on the simplified belief

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)=∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

PB̆

(
b̆k+1|b̆k,πk, zk+1;ν

)
PB

(
bk+1|bk,πk, zk+1

)

· PR̆

(
ρ̆k+1|b̆k+1, zk+1,πk, b̆k;ν

)
PR

(
ρk+1|bk+1, zk+1,πk,bk

) ∫
bk+2

∫
b̆k+2

. . . (17)

∫
bk+L

∫
b̆k+L

PB̆

(
b̆k+L |b̆k+L−1,πk+L−1, zk+L;ν

)
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)

PR̆

(
ρ̆k+L |b̆k+L, zk+L,πk+L−1, b̆k+L−1;ν

)
PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
dbk+Ldb̆k+L . . .

dbk+2db̆k+2dbk+1db̆k+1db̆k.

7
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The second alternative is to maintain/update the original belief. In this situation, we maintain and update the original 
belief and then use it to determine a simplified belief to calculate the simplified reward. This is in contrast to updating 
based on simplified beliefs from previous times as in (17). Thus,

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)=∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

PR̆(ρ̆k+1|b̆k+1, zk+1,πk(b̆k), b̆k;ν)PR
(
ρk+1|bk+1, zk+1,πk,bk

)

P (b̆k+1|bk+1;νb
k+1)PB

(
bk+1|bk,πk, zk+1

) ∫
bk+2

∫
b̆k+2

. . .

∫
bk+L

∫
b̆k+L

PR̆(ρ̆k+L |b̆k+L, zk+L,πk+L−1(b̆k+L−1), b̆k+L−1;ν)PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
(18)

P (b̆k+L |bk+L;νb
k+L)PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
dbk+Ldb̆k+L . . . dbk+2db̆k+2dbk+1db̆k+1db̆k.

Having introduced the two alternatives above, we are ready to go through their differences. The simplification approach 
defined by (17) uses only the observations from the belief tree. In the sequel, we explain why it is advantageous. In this 
setting, in addition to maintaining/updating b� for constructing the extended belief tree, we also have to maintain/update 
the simplified version b̆� . Nevertheless, the advantage is that by definition of (17), we nullify covariance between simplified 
and the original reward/return as opposed to the equation (18). In other words, considering (17) one can write,

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)= P
(
ρk+|bk,π, zk+

)
P
(
ρ̆k+|bk,π, zk+, ν

)
(19)

Alternatively, if maintaining/updating a simplified belief is not desirable, e.g., belief is given as a surface but no closed 
form solution for reward exists, the update of a simplified belief b̆� can be avoided. Towards this end we use (18). This is 
in contrast to updating based on simplified beliefs from previous times as in (17). Such simplification does not necessarily 
require to sample the original beliefs again. One could utilize original beliefs already present in the belief tree for simulating 
the observations. In the next section we delve into the subject of the bounds. Importantly, from structure of (18) we see 
that this distribution cannot be broken down to the multiplication of the marginals as in (19). In particular, the correlation 
is present through the component P (b̆�|b�; νb

� ).
Note, sometimes estimators of the reward, e.g., [4] require a specific connection between two consecutive beliefs.

3.3. Online stochastic and analytical bounds

While thus far we considered the joint distribution over original and simplified rewards, P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)
, in 

an online setting we do not have access to the original rewards as calculating them explicitly defeats the purpose of 
simplification. Instead, we shall now utilize simplification to provide bounds over the original rewards. These bounds can be 
used to provide performance guarantees, and should be cheaper to calculate than the original rewards.

Further, the bounds can be analytical as in previous simplification approaches, e.g., [8]. The bounds can be obtained via 
a simplified reward or directly as in [39]. For example, the authors of [39] proposed lightweight analytical adaptive bounds, 
calculated from the original belief, such that l� ≤ ρ� ≤ u� is always true by definition. If the bounds are calculated directly, 
we skip (18) and have instead the following.

P
(
ρk+, lk+, uk+|bk,π, zk+, ν

)=
∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

P (ρk+1, lk+1, uk+1|bk+1, b̆k+1, zk+1,πk(bk),bk, b̆k;ν)P (b̆k+1|bk+1;νb
k+1)PB

(
bk+1|bk,πk, zk+1

)
(20)∫

bk+2

∫
b̆k+2

. . .

∫
bk+L

∫
b̆k+L

P (ρk+L, lk+L, uk+L |bk+L, b̆k+L, zk+L,πk+L−1(bk+L−1),bk+L−1, b̆k+L−1;ν)

P (b̆k+L |bk+L;νb
k+L)PB

(
bk+L |bk+L−1,πk+L−1, zk+L−1

)
db̆k+Ldbk+L . . . db̆k+2dbk+2db̆k+1dbk+1db̆k.

The simplification type depicted by (20) is an extension of in-place simplification described in [39] to an extended setting. 
Ultimately for each realization of the return we are interested in the following relation

l ≤ gk ≤ u. (21)

8
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Fig. 2. Our extended setting permits variability of the reward given the present and a realization of the future. On the contrary, in a conventional setting, 
(23) is always a Dirac delta function. Our extension reflects on the original distribution of the return as well as the simplified.

One way to do that is to develop analytical bounds, which will hold for any possible observation zk+1:k+L received and any 
realization of return, e.g., as in [39].

In this section we show that there is another way to find more lenient bounds. Let Hk+L � {bk, π, zk+} be future history 
at the time index k + L. Our extension allows R and B , as well as R̆ and B̆ to be any distributions.

They can remain Dirac functions, e.g., if belief update and the reward calculation have a closed form

P (ρ�|b�−1,a�−1, z�)=δ(ρ�−ρdt(ψdt(θ�−1,a�−1, z�))). (22)

Successively, P (gk|bk, π, zk+, ) remains Dirac delta. However, in the more general case, following our extension, there is a 
joint distribution of original and simplified returns given a realization of the future and the present

P (gk, ğk|Hk+L, ν), (23)

as illustrated in Fig. 2. As we observe in Fig. 2, given the history Hk+L , the return gk as well as the simplified return ğk
has variability, in contrast to the conventional approach. Ordinarily, the belief update is commenced once and treated as 
deterministic. So as the rewards and return do not have variance given the history of the actions and the observations. Since 
(23) is no longer a Dirac function, we can use knowledge about this distribution to design bounds, which will hold with 
some probability. In Section 6, we show that it is possible to harness the structure of (23) to design the mentioned more 
lenient online bounds.

Our framework permits to detach the process of estimation of the bounds from the realization of the reward and truly 
use all accessible information in a simplified problem. For example, one way to design probabilistic bounds is to find online 
a random variable or deterministic scalar ε such that the probability

P (|gk − ğk| ≤ ε|Hk+L, ν) (24)

is bounded from below. The corresponding probabilistic lower and upper bounds will be l = ğk − ε and u = ğk + ε , re-
spectively. We, therefore, refer to l and u as random variables. In our setting, even if the bounds actually bound with very 
low probability, it is still possible to analyze the quality of the simplification. Moreover, analytical bounds, designed in a 
conventional setting, can be used in our extended setting without any revision. In our extended setting, they will bound 
with probability one.

Having introduced the novel stochastic bounds, we proceed to the formulation of the constraints, that these bounds shall 
fulfill to be meaningful. The following conditional P (gk, ̆gk, l, u|Hk+L, ν) encloses all the variables situated in the problem. 
Let the parameter controlling the confidence level be α ∈ [0, 1). For every possible sample ğk we do not know which sample 
gk one could obtain in the original problem. However, if the bounds are designed such that P (gk, l, u|Hk+L, ν) render

1 − α ≤ P
(
1{l ≤ gk ≤ u} = 1|Hk+L, ν

)
(25)

these bounds can be useful. Notably, the above equation does not involve simplified return, so is applicable also in the case 
bounds are directly formulated (and not via a simplified return). However, in this case the bounds are analytical and α = 0. 
To summarize, there are three types of online reward/return bounds:

1. Deterministic bounds. These analytical bounds exist in case of a closed form belief update ψdt and a deterministic 
operator reward ρdt(b) from (7), e.g., belief is a Gaussian and the reward is differential entropy. In this case, even in 
our extended setting R and B remain Dirac functions.

2. Stochastic bounds that hold with probability one, namely α = 0. These are also analytical bounds. In our extended 
setting R and B are no longer Dirac functions. However, these bounds hold for any realization of sample approximation, 
as stated around (21).

3. Stochastic bounds that hold at least with probability 1 − α. They exist only in our extended setting when R and B are 
not Dirac functions.

9
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3.4. Key insight - characterization of the return using stochastic bounds

Let us recite that our goal is to accelerate the decision making. We recall the notion of “usual stochastic order” and 
interpret the definition within our context.

Usual stochastic order implies, that if for three random variables l, gk, u given bk, π holds l ≤ gk and gk ≤ u for ∀ω ∈ �, 
so ∀ξ ∈ (−∞, ∞)

P (l > ξ |bk,π,ν) ≤ P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν). (26)

Let us present out main theorem which we will extensively use further.

Theorem 1 (Characterization of the return using stochastic bounds). Fix α ∈ [0, 1). Assume that (25) holds. This implies that ∀ξ ∈
(−∞, ∞)

(P (l > ξ |bk,π,ν) − α) (1 − α) ≤ P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν)

1 − α
+ α. (27)

For the detailed proof please refer to Appendix A.1. Let us further improve the bounds as such

LBα(ξ) = 0 ∨ (
P (l>ξ |bk,π,ν) − α

)
(1 − α) ≤ P (gk >ξ |bk,π), (28)

where ∨ is a maximum operator.

P (gk >ξ |bk,π) ≤ 1 ∧
(

P (u>ξ |bk,π,ν)

1 − α
+ α

)
= UBα(ξ), (29)

where ∧ is the minimum operator.

4. Simplification impact on a marginal distribution of the return

Previously, we defined a simplification procedure that results in a corresponding new decision making problem that 
should be easier to solve. From P

(
ρk+|bk,π, zk+, ν

)
and P

(
ρ̆k+|bk,π, zk+, ν

)
we arrive at the distribution of the original 

as well as simplified returns P (gk|bk, π) and P (ğk|bk, π, ν) for the evaluated candidate policy. In this section, we show 
how the stochastic bounds can be utilized in the context of known risk aware objectives such as VaR. Notably, this section 
presents a discussion concerning the marginal distribution of the pair of the returns - original and simplified given a 
candidate policy.

4.1. Distributions affected by the simplification

In this section we decompose the distribution of interest. To grasp the simplification impact we shall assess the relation 
between simplified and original returns portrayed by the following distribution

P (gk, ğk|bk,πk:k+L−1, ν) =
∫

zk+

P (gk, ğk|bk,π, zk+, ν) · P (zk+|bk,π)dzk+. (30)

Recall that zk+1:k+L ≡ zk+ . In general the simplification operator ν can affect also the observation likelihood (10). We leave 
it to future research.

4.2. Decision making

Algorithm 1 Generic simplified with performance guarantees sampling based decision making algorithm with challenging re-
wards and objectives (note that the theory is formulated for policies but here we discuss discrete space of action sequences 
A).

Input: belief bk , action space A.
for action sequence ai from all possible action sequences i ∈ 1 : |A| do

Sample returns and calculate interval LBi , UBi .
end for
Set optimal action sequence ai∗ by i∗ = arg maxi=1:|A| LBi

Find j� = arg max j=1:|A|\i∗ UB j . Define loss incurred by the simplification as follows max{0, UB j� − LBi∗ };

In case that absolute loss doesn’t have meaning, define relative loss as follows max{0,UB j� −LBi∗ }
min{|LBi∗ |,|UB j� |} ≥ V ∗−V (bk ,ai∗ )

|V ∗| , where V ∗ is true optimal value.

10
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Fig. 3. Illustration of Value at Risk. Probability that the return will be under VaR is β . In other words VaR is β-quantile of the return.

In this section, we apply our findings in order to bound popular objectives with lightweight bounds to accelerate the 
decision making mechanism. We skip the most common objective operator, the expectation, since it is oblivious to the dis-
tribution of the returns. Therefore the expectation is not a risk averse objective. Motivated by this assertion, we consider 
more versatile objectives. Since it is not clear whether or not these objectives conform to Bellman form we incorporate 
simplification with generic decision making (Algorithm 1). In this algorithm, we traverse the loop over the possible action 
sequences. We calculate the interval defined by the upper and lower bound on the value function in each loop iteration. 
Finally, we select the action sequence with the highest lower bound and compare it with the highest upper bound corre-
sponding to all other action sequences. We report a relative loss. Using analytical or stochastic bounds on the return our 
goal is to bound the value function V as such

LB ≤ V ≤ UB (31)

to accelerate the decision making. To our knowledge there are no attempts to simplify risk aware decision making under 
uncertainty through maintaining guarantees on the simplification impact.

Risk averse objectives One possible risk averse probabilistic objective for POMDP is

E[1{gk > a}|bk,π ] = P (gk > a|bk,π), (32)

where a ∈ R. Maximizing this objective can be thought as maximizing the probability of achieving the target a. If we 
choose belief dependent reward to be the negative entropy I(bk) = −H(bk), set a = I(bk) and the return to be terminal 
reward gk = ρL , or gk = 1

L

∑k+L
�=k+1 ρ� [21], such objective quantifies the probability that information gain is positive; and 

such decision making prefers the action which maximizes probability of positive information gain. We can further control 
amount of most probable information gain by setting a = c · I(bk), where c is a factor larger than one. Once optimal action 
is obtained we are confident that gk > a with probability P (gk > a|bk, π). Substituting ξ by a the bounds from (28) and 
(29) hold for this objective.

Another objective is reward variant of Value at Risk (VaR) (Fig. 3)

VaRβ(gk|bk,π) = sup{ξ s.t P (gk > ξ |bk,π) ≥ 1 − β}. (33)

This objective articulates that we are interested in the maximal worst case return. Meaning maximal return such that 
probability mass to be above this return is larger than 1 − β . Notably, if gk|bk, π has a strictly increasing Cumulative 
Distribution Function (CDF), the VaR is its β-quantile VaRβ(gk|bk, π) = P−1(gk ≤ β|bk, π). The CDF of a continuous random 
variable is strictly increasing if it does not have intervals on a real line happening with probability zero. In the case of 
symmetrical distributions, the expected value overlaps with median, which is VaR with confidence level β = 0.5. Using 
again usual stochastic order, we can bound this objective with analytical return bounds as well as with stochastic return 
bounds. We start from analytical bounds. Let us focus on the lower bound. We want to show that

VaRβ(l|bk,π,ν) ≤ VaRβ(gk|bk,π). (34)

Since the bounds are analytical we use (26) to behold

{ξ s.t. P (l > ξ |bk,π,ν) ≥ 1 − β} ⊆ {ξ s.t. P (gk > ξ |bk,π) ≥ 1 − β}. (35)

We know that maximum on the containing set is above or equal to maximum on the contained. This argument yields

11
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sup{ξ s.t. P (l>ξ |bk,π) ≥ 1 − β} ≤ sup{ξ s.t. P (gk >ξ |bk,π) ≥ 1 − β}. (36)

Switching roles of l to gk and gk to u we have that

VaRβ(gk|bk,π,ν) ≤ VaRβ(u|bk,π,ν). (37)

Now let us bound the objective (33) using stochastic bounds.

Theorem 2 (Deterministic bound of Value at Risk using stochastic bounds on the return). Assume that (25) holds. Let 0 ≤ α < 1 , 0 ≤
β < 1. Assume that α(2 − α) ≤ β ≤ 1 − α.

VaR β−α(2−α)
1−α

(l|bk,π,ν)≤VaRβ(gk|bk,π)≤VaRβ+α(2−β−α)(u|bk,π,ν). (38)

The reader can find the detailed proof in Appendix A.2. Let us mention that the above bounds hold for theoretical 
objectives. In practice, however, the sample approximations are sufficiently close to the theoretical values.

5. Simplification impact on the joint distribution of the returns given two policies

So far, we analyzed marginal distributions over the returns/rewards corresponding to a candidate policy in the context 
of known risk aware objectives. Interestingly, if we consider the joint distribution over the returns corresponding to two 
candidate policies, as we further show, we can define novel objectives and harness the information encoded in the joint 
distribution.

We start by showing that P (gk, g′
k|bk, π, π ′) �=P (gk|bk, π) ·P (g′

k|bk, π ′). The source for correlation is the mutual likeli-
hood of observations:

P (gk, g′
k|bk,π,π ′) =

∫
zk+
z′

k+

P (gk, g′
k|bk,π,π ′, zk+, z′

k+) · P (zk+, z′
k+|bk,π,π ′)dzk+dz′

k+ = (39)

∫
zk+
z′

k+

P (gk|bk,π, zk+)P (g′
k|bk,π

′z′
k+) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+ (40)

Let us observe the joint likelihood of observations given the belief at present time and two candidate policies 
P
(

zk+1:k+L, z′
k+1:k+L |bk,π,π ′

)
breaks down using chain rule as follows

P
(
zk+1:k+L, z′

k+1:k+L |bk,π,π ′)= P
(
zk+1, z′

k+1|bk,πk,π
′
k

)∫
bk+1

∫
b′

k+1

P
(
zk+2|bk+1,πk+1

)
P
(
z′

k+2|b′
k+1,π

′
k+1

)
PB

(
bk+1|bk,πk, zk+1

)
PB

(
b′

k+1|b′
k,π

′
k, z′

k+1

)
(41)

∫
bk+2

∫
b′

k+2

. . .

∫
bk+L−1

∫
b′

k+L−1

P
(
zk+L |bk+L−1,πk+L−1

)
P
(
z′

k+L |b′
k+L−1,π

′
k+L−1

) ·
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
PB

(
b′

k+L |b′
k+L−1,π

′
k+L−1, z′

k+L

)
dbk+L−1db′

k+L−1 . . . dbk+2db′
k+2dbk+1db′

k+1

The myopic observations P
(

zk+1, z′
k+1|bk,πk,π

′
k

)
are correlated through the present time belief bk . To see this explicitly 

we marginalize over the propagated states and employ the observation and motion models

P
(
zk+1, z′

k+1|bk,πk,π
′
k

)=∫
xk+1
x′

k+1
xk

PZ (zk+1|xk+1)PZ (z′
k+1|x′

k+1)PT (xk+1|πk(bk), xk)PT (x′
k+1|π ′

k(bk), xk)bk(xk)dxk+1dx′
k+1dxk. (42)

This insinuates that to base decision making on marginal means to lose this correlation which we aim to exploit. Prompted 
by this insight we suggest an objective uncovered in the next section.

Remark: Note that when the belief is parametric, we do not have a way to jointly parametrically propagate the belief 
with a pair of actions as in (42). However, we can always sample the parametric belief. So even if the belief bk is parametric 
we still can account for correlation in (42) by switching to samples.

12
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Fig. 4. This figure shows alteration of the distribution of joint returns gk and g′
k of two candidate policies π and π ′ as a result of simplification. Color 

intensity denotes distribution values. This is a conceptual illustration, i.e., we do not imply higher/lower rewards or change of support due to simplification.

Extension of the decision making objective Let us define the objective to be maximized involving two candidate policies.

J L(bk,π,π ′) = ϕ

(
P
(
ρk+1:k+L,ρ

′
k+1:k+L |bk,π,π ′

)
, (gk, g′

k)

)
(43)

s.t. b� = ψ(b�−1,π�−1(b�−1), z�).

5.1. Distributions affected by simplification

Now we stipulate on the quality of the simplification for two candidate policies π and π ′ . To quantify the impact of the 
simplification procedure, we shall concentrate on the joint distribution of the pair of simplified and original returns appro-
priate for two candidate polices P (gk, g′

k, ̆gk, ̆g′
k|bk, π, π ′, ν). Our goal is to examine how the simplification procedure alters 

the joint distribution P (gk, g′
k|bk, π, π ′) towards P (ğk, ̆g′

k|bk, π, π ′, ν). These two distributions are illustrated in Fig. 4. In 
the context of (43) we focus on

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν), (44)

i.e., the joint distribution over original and simplified returns of both policies. This distribution decomposes via marginal-
ization over future observations zk+ ≡ zk+1:k+L and z′

k+ ≡ z′
k+1:k+L as

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν) =
∫

zk+
z′

k+

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν, zk+, z′
k+) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+, (45)

which, according to (6), (8) and (14)-(16), decomposes to∫
zk+
z′

k+

P (gk, ğk|Hk+L, ν)P (g′
k, ğ′

k|H′
k+L, ν) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+. (46)

Note that the pair of histories is defined as follows Hk+L � {bk, π, zk+} and H′
k+L � {bk, π ′, z′

k+}; where the belief bk is 
shared by both histories.

In other words, the simplification operator ν independently affects each realization of the future. Given two such real-
izations (Hk+L, H′

k+L, ν), the pairs of original and simplified returns are statistically independent of all other rewards. This 
crucial observation will be significant in the sequel.

5.2. Decision making

This section outlines a generic algorithm for decision making favoring pairwise joint distribution of the returns (Algo-
rithm 2). This algorithm starts by taking the first action sequence as the best. We again traverse the loop over the possible 
action sequences. We compare two action sequences in each loop iteration and select the current optimal sequence. In the 
end, the optimal action sequence is optimal with respect to all possible action sequences. In particular, we propose a novel 
method to perform decision making using the joint distribution of the returns corresponding to the two candidate policies. 
The authors from [27] proposed to perform decision making with maximum likelihood observations. However, when the 
belief distribution is general and sophisticated, a generalization of [27] is to compare number of samples which fulfill the 

13
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Algorithm 2 Generic simplified with performance guarantees sampling based decision making based on pairwise joint distri-
butions (note that the theory is formulated for policies but here we discuss given discrete space A of action sequences).

Input: belief bk , A.
a∗ ← a1

for action sequence ai from all possible action sequences do
Make simplified decision making using two actions a∗ and ai

a∗ ← action defined as optimal in the line above
end for
return a∗

Fig. 5. (a) Hypothesis based decision making; (b) The outcome of decision making is wrong with margin 6 samples due to simplification.

hypothesis that gk > g′
k with number of samples satisfying gk < g′

k . Such a decision making process can be thought as risk 
aware, since we are concerned with choosing an action which will be optimal with higher probability. Namely, if

s∑
i=1

1{gi
k > g′ i

k } ≥
s∑

i=1

1{gi
k < g′ i

k }, (47)

where the summation is over s samples of the pairs of the returns, we declare that π is better, else the π ′ is better. Note 
we assume that the event gk = g′

k happens with probability zero. This assumption is fulfilled with continuous distributions.

Simplified hypothesis based decision making Assume for the moment that bounds in (21) are analytical (hold with probability 
one), e.g., bounds from [39]. We can then define simplified returns as follows ğk = l+u

2 and ğ′
k = l′+u′

2 . Simplification of the 
decision making portrayed by (47) is as follows. We take a simplified return instead of the original and ask if the following 
inequality is fulfilled

s∑
i=1

1{ği
k > ğ′ i

k } ≥
s∑

i=1

1{ği
k < ğ′ i

k }. (48)

If the answer is yes, we declare that π is better, else π ′ is better. Similar to not simplified decision making (47) we assume 
that the event ğk = ğ′

k happens with probability zero.
The question is can we make a wrong conclusion with respect to the original problem due to the simplification, see 

Fig. 5. To provide guarantees on such a simplified decision making we first develop a novel mathematical tool we call 
Probabilistic Loss, which we believe has much bigger potential since it is able to describe the simplification impact for any
operator objective ϕ . We then, in section 5.4, show how to provide guarantees for the specific objective operator (47).

5.3. Probabilistic loss (PLoss)

Let us define the following random variable, which we shall refer to as “loss”

L� fL(gk, g′
k, ğk, ğ′

k)=
{

max{g′
k − gk,0} if ğk > ğ′

k,

max{gk − g′
k,0} if ğk < ğ′

k.
(49)

With (49) we aim to capture a complete impact of a simplification onto the decision making problem (43). Specifically, 
this definition captures for each possible realization of gk, g′

k, ̆gk, ̆g′
k the absolute difference between the original returns 

� = |g′
k − gk| in case action trend was not preserved on this realization. Meaning, at this realization, the optimal actions 

of original and simplified problems would differ. Given a sample (gk, g′
k, ̆gk, ̆g′

k), the simplification is action consistent at 
this sample if the sign of the difference of the returns is preserved. In other words, the same action would be identified 
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Fig. 6. Illustration of (a) the distribution of loss, and (b) the online bounds of the return.

as optimal with the original and simplified returns; else we must account for the loss (49). Our object of interest is the 
distribution density of L given all the information available at our disposal,

P
(
L|bk,π,π ′, ν

)
. (50)

We denote this distribution by Probabilistic Loss (PLoss). See illustration in Fig. 6a. E.g., if (50) is the Dirac delta function 
δ(L), the simplification method is absolute action consistent for every possible objective operator ϕ . Moreover, for any �, 
its CDF P

(
L ≤ �|bk,π,π ′, ν

)
provides probability to suffer loss at most �. Similarly, the Tail Distribution Function (TDF) 

P
(
L > �|bk,π,π ′, ν

)
provides probability to suffer loss greater than �. The source of distribution (50) is (44).

5.3.1. Online bound on probabilistic loss (PbLoss)
The distribution defined by (50) requires access to (44) which we do not have in an online setting. To circumvent 

the requirement of accessing gk and g′
k , we propose to substitute them by online lower and upper bounds l, u and l′, u′ , 

respectively. These bounds should be accessible without knowledge of original returns. Similar to section 3.3 we aim to 
bound each original return corresponding to its candidate policy.

Let us consider a sampled return realization (gk, g′
k, ̆gk, ̆g′

k) from (44). As in an online setting we do not actually have 
access to the original returns (gk, g′

k), we strive to bound the latter,

l ≤ gk ≤ u, l′ ≤ g′
k ≤ u′, (51)

where, for now, we assume (51) holds for any sample of (gk, g′
k, ̆gk, ̆g′

k); for example, these could be analytically-derived 
bounds. This setting is illustrated in Fig. 6b. However, further we also discuss a more general setting where we allow (21)
to be violated with probability larger than zero.

Using these bounds we are able to define online a bound on loss (49) without accessing the original problem (R and B),

L̄� fL̄(ğk, l, u, ğ′
k, l′, u′)=

{
max{u′−l,0} if ğk > ğ′

k,

max{u−l′,0} if ğk < ğ′
k.

(52)

Note that sometimes we can find bounds over the returns by applying the same function f gk on the bounds on the momen-

tary rewards (returns when L = 1), e.g., in case of cumulative reward u =∑k+L
�=k+1 u� and l =∑k+L

�=k+1 l� . However, this is not 
always possible, e.g., if gk deviates from the sum of momentary rewards or in the case of Bellman form of the objective. 
Sometimes it is, therefore, better to work with momentary bounds.

In an online setting, we are interested in the distribution density of L̄,

P
(
L̄|bk,π,π ′, ν

)
, (53)

which we denote by Probabilistic Bound on Loss (PbLoss).
As we discuss in Section 5.3.2, PbLoss characterizes the impact of a simplification in an online setting; thus, it enables 

to determine online if a candidate simplification is acceptable given a user-specified criteria. The decision to either accept 
or decline a (candidate) simplification is guided by probabilistic guarantees, as provided by our approach.

5.3.2. Description of PLoss online
In this section, we show how PbLoss can be used in an online setting to characterize PLoss (which is unavailable 

online). In turn, this enables us to provide online probabilistic performance guarantees for a considered simplification (rep-
resented by operator ν), or to decide if it is adequate given a user-specified criteria.

Specifically, recall PLoss CDF and TDF, i.e., probability to suffer loss at most, or greater, than � ∈R, respectively,

PLoss CDF: P
(
L ≤ �|bk,π,π ′, ν

)
(54)

PLoss TDF: P
(
L > �|bk,π,π ′, ν

)
. (55)
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We now aim to bound PLoss CDF (54) from below, and PLoss TDF (55) from above by utilizing PbLoss.
We now consider PLoss TDF and express P

(
L > �|bk,π,π ′, ν

)
as

P
(
L > �, L̄ ≥ L|bk,π,π ′, ν

)+P
(
L > �, L̄ < L|bk,π,π ′, ν

)
.

The first term can be written via chain rule as

P
(
L > �|L̄ ≥ L,bk,π,π ′, ν

)
P
(
L̄ ≥ L|bk,π,π ′, ν

)
. (56)

Performing chain rule similarly also on the second term and recalling that P (L̄ ≥ L|·) + P (L̄ < L|·) = 1, allows to express
PLoss TDF as

P
(
L > �|L̄ ≥ L,bk,π,π ′, ν

)
λ + P

(
L > �|L̄ < L,bk,π,π ′, ν

)
(1 − λ), (57)

where

λ � P
(
L̄ ≥ L|bk,π,π ′, ν

)≡ P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

. (58)

While λ from (58) is unavailable, we can bound it from below using

1 − α ≤ P
(
1{l≤gk≤u} = 1|Hk+L, ν

)
(59)

and

1 − α ≤ P
(

1{l′≤g′
k≤u′} = 1|H′

k+L, ν
)

(60)

and

Theorem 3 (Probability that bound bounds). Fix α ∈R. Assume that (59) and (60) hold. Then:

P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

≥ (1 − α)2. (61)

We provide the detailed proof in Appendix A.3. Now we show that given the event {L̄ ≥ L}, PLoss TDF is bounded 
from above by PbLoss TDF. It is clear that ∀� ∈R,

P
(
L > �|1{L̄≥L} = 1,bk,π,π ′, ν

)
≤ P

(
L̄ > �|1{L̄≥L} = 1,bk,π,π ′, ν

)
. (62)

Finally, we characterize PLoss as follows.

Theorem 4 (Upper and Lower bounds). Denote

θα(�) � min

{
1,

P
(
L̄ > �|bk,π,π ′, ν

)
(1 − α)2

+ 2α − α2

}
,

so

P
(
L > �|bk,π,π ′, ν

)≤ θα(�) ∀� ∈ R≥0 (63)

and

P
(
L ≤ �|bk,π,π ′, ν

)≥ 1 − θα(�) ∀� ∈ R≥0. (64)

The full proof can be found in Appendix A.4. With accessible online θα(�) we are able to obtain a complete characteriza-
tion of the simplification. Moreover, since 0 ≤ L, setting � = 0 in Algorithm 3 we can assess the probability to be absolute 
action consistent for any ϕ .
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Algorithm 3 Online empirical characterization of the PLoss with PbLoss.
Input: Two candidate policies π, π ′ . Initial belief bk . Samplers from P (ğk, l, u|Hk+L , ν) and P (ğ′

k, l′, u′|H′
k+L , ν).

Sample bk or take the initial samples from inference. Obtain s samples from P
(

zk+1:k+L , z′
k+1:k+L |bk,π,π ′

)
and create two belief policy trees.

for sample pairs (zk+1:k+L , z′
k+1:k+L) do

Obtain sample (ğk, l, u, ̆g′
k, l′, u′).

Calculate fL̄(ğk, l, u, ̆g′
k, l′, u′) according to (52).

end for
{ fL̄(ğk, l, u, ̆g′

k, l′, u′)} represents the set of samples of L̄.

Output: ∀� empirically calculated P
(
L̄ > �|bk,π,π ′, ν

)
as 

∑s
i=1[L̄i>�]

s .

5.3.3. Calculating PLoss offline and PbLoss online
One approach to obtain PLoss offline is to sample (gk, g′

k, ̆gk, ̆g′
k) from (44) using decomposition (46). PLoss is then 

represented by { fL(gk, g′
k, ̆gk, ̆g′

k)}.
We take samples of P (zk+, z′

k+|bk, π, π ′) from the corresponding extended belief policy trees. To sample

P (gk, ğk|Hk+L, ν) , P (g′
k, ğ′

k|H′
k+L, ν), (65)

we use the original (not simplified) rewards calculated from the beliefs present at the belief tree (belief tree does not 
undergo simplification) and their simplified counterparts.

So far, we did not explain how to calculate PbLoss (53). One approach is to sample (ğk, l, u, ̆g′
k, l

′, u′) from

P (ğk, l, u, ğ′
k, l′, u′|bk,π,π ′, ν) (66)

and evaluate L̄ for each such sample via (52). Then, PbLoss is represented by { fL̄(ğk, l, u, ̆g′
k, l

′, u′)}.
Generating samples from (66) involves marginalizing over future measurements zk+ ≡ zk+1:k+L and z′

k+ ≡ z′
k+1:k+L . Simi-

lar to (46), the (66) decomposes to∫
zk+
z′

k+

P (ğk, l, u|Hk+L, ν)P (ğ′
k, l′, u′|H′

k+L, ν)P (zk+, z′
k+|bk,π,π ′)dzk+dz′

k+ (67)

In practice, P (zk+, z′
k+|bk, π, π ′) corresponds to two extended belief policy trees, starting from the same root (bk) and 

having the same rule for choosing rollouts. The specific way of obtaining samples from

P (ğk, l, u|Hk+L, ν) , P (ğ′
k, l′, u′|H′

k+L, ν) (68)

depends on the operator ν . We summarized the proposed approach in Algorithm 3. In the next section, we elaborate on 
these aspects, considering a specific simplification operator.

5.4. Guarantees on simplified hypothesis based decision making

In this section we provide guarantees on the simplification portrayed by (48). We recite that the concept of PLoss
and PbLoss is valid for any objective operator ϕ . In this section we describe a specific usage for the objective operator 
presented in section 5.2. Let us make a following definition

�̆P �
∣∣∣∣∣

s∑
i=1

1{ği
k > ğ′ i

k } −
s∑

i=1

1{ği
k < ğ′ i

k }
∣∣∣∣∣ . (69)

Each not-action consistent sample decreases this margin by 2, so in order to be not-action consistent we need to satisfy

2 ·
s∑

i=1

1{Li > 0} ≥ �̆P . (70)

The following relation permits us to answer the question either or not it is possible that the order is switched due to 
simplification.

s∑
i=1

1{Li > 0} = s · P (L > 0|bk,π,π ′, ν). (71)

The offline condition that simplification is action consistent will be

2sP (L > 0|bk,π,π ′, ν) < �̆P . (72)
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From here we can define the online accessible condition that simplification is action consistent as

2 ·
s∑

i=1

1{L̄i > 0} < �̆P . (73)

We observe that the above relation involves PbLoss from Algorithm 3. Remarkably, for analytical or stochastic bounds for 
sufficiently large s so (59) and (60) hold, we obtain that the condition to be action consistent is

2sθα(0) < �̆P . (74)

Noteworthy, similar to VaR we provide deterministic guarantees using stochastic bounds.

6. Specific simplification

In this section, we exemplify our technique on a specific simplification method. Let us recite that if the simplification 
regime acts according to (17), it results in uncorrelated ğk|bk, π, zk+, ν and gk|bk, π, zk+ . Conversely, if the simplification 
strategy complies to (18), the correlation is present. We start from the setting of a given belief surface and continue to the 
general nonparametric setting. In the following section we describe adaptive stochastic bounds in the setting of an explicitly 
given belief surface.

6.1. Online adaptive bounds on sample based return with a given belief surface

Let us start from the scenario in which the belief surface is explicitly given and we are interested in negative differential 
entropy as a belief dependent reward. Assume the belief is represented in closed form as a Gaussian mixture such that we 
have a deterministic update ψdt (see e.g. [25]). Since the differential entropy doesn’t have a closed form solution, we are 
obliged to sample from the corresponding posterior belief. Assume we have n i.i.d. samples. One way to approximate the 
desired reward [10] is

I = E [ln(b(x))] ≈ −Ĥ = 1

n

n∑
i=1

ln(b(xi)). (75)

We refer to (75) as a simplified reward. This estimator is unbiased as

E

[
1

n

n∑
i=1

ln(b(xi))

]
= 1

n

n∑
i=1

E
[

ln(b(xi))
]

=︸︷︷︸
∀i xi∼b

E [ln(b(x))] = I. (76)

Assume that bk is a sampleable surface and

gk|Hk+L = f gk ((E [ln(b�(x�))])k+L
�=k+1) (77)

ğk|Hk+L, ν = f gk

⎛
⎝(1

n

n∑
i=1

ln(b�(xi
�))

)k+L

�=k+1

⎞
⎠ (78)

Note that gk|Hk+L is theoretical at this point. Its distribution is Dirac delta and its variance is zero. In case we have a belief 
surface represented as a Gaussian mixture with M components the complexity of calculating such simplified return will be 
O (n · M), where n is the number of samples from the surface.

Using a standard Gaussian confidence interval [29] we obtain

P
(|gk − ğk| ≤ zα/2se(n)|Hk+L, ν

)≈ 1 − α. (79)

Adaptive stochastic bounds Let us focus on variance of the reward. Assume that f gk is of the following form.

f gk (ρk+1:k+L) = 1

L

k+L∑
�=k+1

ρ�. (80)

Denote by 1 column vector of ones. The variance V

(
1
L

∑k+L
�=k+1 ρ̆�

∣∣∣∣∣bk,Hk+L, ν

)
can be written as

V

(
1

L
1T ρ̆k+1:k+L

∣∣∣∣∣bk,Hk+L, ν

)
= 1T �1

L2
≤ max

i
σ 2

ii . (81)
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Fig. 7. Potential simplification techniques: (a) Choosing a subset of samples only at time k and updating the simplified belief. Such a simplification corre-
sponds to (17).; (b) Choosing a subset of samples at each time � and updating the original belief. Such a simplification corresponds to (18).

From now let us focus on the variance of ρ̆�|bk, Hk+L, ν , which is (the samples from the belief surface are i.i.d.)

V

[
1

n

n∑
i=1

ln(b�(xi))|bk,Hk+�, ν

]
= 1

n
Vx∼b�

[ln(b�(x))|bk,Hk+�, ν] . (82)

If we knew how to update incrementally Vx∼b [ln(b(x))], this would yield adaptive stochastic bounds. We have samples 
from b, so we can calculate sample variance using n samples of the belief as

V̂x∼b�
[ln(b�(x))|bk,Hk+�, ν] = 1

n − 1

⎛
⎝ n∑

i=1

ln2(b�(xi)) −
(

1

n

n∑
i=1

ln(b�(xi))

)2
⎞
⎠ . (83)

Alternatively, using Taylor expansion similar to [15] we obtain an approximation for desired variance

Vx∼b�
[ln(b�(x))] = E[ln2(b�(x))] −E2[ln(b�(x))]. (84)

Suppose we use sample variance. It has readily available incremental update using Welford’s online algorithm. Suppose we 
have calculated se2

�(n) and ğn
k = 1

L

∑k+L
�=k+1 μn

� , now we want to tighten the bounds. We sample point x� ∼ b� from each 
surface � = k + 1 : k + L. Firstly we update the simplified return incrementally

ğn+1
k = 1

L

k+L∑
�=k+1

(
μn

� + ln b(x�) − μn
�

n

)
= ğn

k + 1

n

⎛
⎝1

L

k+L∑
�=k+1

ln b(x�) − ğn
k

⎞
⎠ . (85)

We then update the se2
�(n) towards se2

�(n + 1). Again the incremental update is readily available

(n + 1) · se2
�(n + 1) = n · se2

�(n) + (ln b(x�) − μn
�)(ln b(x�) − μn+1

� ). (86)

We will have to bookkeep μn
� .

Unfortunately, the belief surface is not always obtainable. Moreover, not always not-simplified reward has zero variance. 
To these aspects we devote the next section.

6.2. Online bounds on sample based return - general setting

Suppose we are given from the inference stage a belief represented by a set of N weighted particles bk = {wi
k, x

i
k}N

i=1. 
We would like to simplify planning by taking substantially less particles b̆k = {w j

k, x
j
k}n

j=1. Alternatively we subsample the 

original belief b� at each time index to obtain b̆� = {w j
�, x

j
�}n

j=1. Our simplification operator ν provides a way to choose a 
subset of n samples from the original N samples. For example, subsampling according to weights. We take ψst as an off-
the-shelf particle filter, which produces the same number of samples as the input. The two ways of updating the belief are 
illustrated in Fig. 7. To present development for (25), we continue with unbiasedness assumption and take an inspiration 
from confidence intervals. Let us introduce the following model(

gk
ğk

)
|Hk+L, ν ∼ N

((
μ
μ

)
;
(

se2(N) cov
cov se2(n)

))
, (87)

where se is the standard error and cov is the covariance. Online we do not have access to these quantities. The standard 
error depends on the number of samples N and n respectively, dwindling as the number of samples increases. We assume 
that each marginal is distributed around the same mean value μ (no bias).
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Denote y = gk − ğk . It is known that y is a zero mean Gaussian with the following variance

var(y) = se2(N) + se2(n) − 2cov. (88)

Let z = y√
var(y)

∼ N (0,1) and zα/2 = �−1 (1 − α/2), where � is a CDF of a standard normal variable so P (z > zα/2) = α/2

and

P
(−zα/2 ≤ z ≤ zα/2

)= 1 − α. (89)

In other words

P
(
|y| ≤ zα/2

√
var(y)|Hk+L, ν

)
= 1 − α. (90)

Using the facts se(N) ≤ se(n) and cov ≤ se(N)se(n) we arrive at two cases. The first case is the zero covariance (cov = 0).

var(y) = se2(N) + se2(n) ≤ 2se2(n). (91)

The second case is more general.

var(y) = se2(N) + se2(n) − 2cov ≤ 4se2(n). (92)

Thus, from (90) we obtain for both cases

P
(
|gk − ğk| ≤ zα/2

√
2se(n)|Hk+L, ν

)
≥ 1 − α. (93)

P
(|gk − ğk| ≤ zα/22se(n)|Hk+L, ν

)≥ 1 − α. (94)

6.2.1. Comparison to baseline methods
As a baseline we take conventional methods applying ψst once and treat the sample obtained as representative.

Sample mean Let us assume that the objective is the sample mean of the return with one sample of return per observation 
and {zk+1:k+L}s

i=1 samples of observations. Suppose that samples of observations are i.i.d. Let us recall that the variance of 
this sample mean is as follows

V

(
1

s

s∑
i=1

gi
k

)
= 1

s

(
Ez+[se2(zk+, N)] +V (μ(zk+))

)
. (95)

With analytical bounds we bound deterministically every sample gi
k so we bound sample mean. However in case of stochas-

tic bounds we can not bound expected value but we can use samples of simplified return instead original. Under the model 
(87) the expected value of the same sample mean will stay the same however the variance of the estimator will grow. In 
this case we will accelerate decision making but we will pay with increasing variance

V

(
1

s

s∑
i=1

ği
k

)
= 1

s

(
Ez+[se2(zk+,n)] +V (μ(zk+))

)
. (96)

We believe that this is an interesting relation.

Sample Value at Risk When the objective is sample approximation of VaR with analytical bounds as well with stochastic 
bounds, we can bound only the theoretical VaR.

6.2.2. Estimation of the variance
As we do not have access to se(n) in (93) and (94), it has to be estimated. The simplest way to do that is to repeatedly 

sample simplified returns m times from one of (17), (18), (20) depending on the simplification type. Note that a possible 
bias of the particle filter and the estimation of standard error make (90) only asymptotically correct. However, when dealing 
with a sufficient amount of samples N and n, these deviations from (87) are negligible. Even with repeated re-sampling we 
will reduce computational complexity, as we analyze in Section 7. The bounds for both simplification methods are

(no cov) u = ğk + zα/2
√

2ŝem l = ğk − zα/2
√

2ŝem, (97)

(cov) u = ğk + zα/22ŝem l = ğk − zα/22ŝem. (98)

Moreover, since we recalculate the simplified reward m times, we could improve the final simplified return. In this case, we 
take the average of the samples of the simplified return given the history (prior belief, candidate policy, and the realization 
of the observations) as a final simplified return for this history
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ğk = 1

m

m∑
j=1

ğ j
k (99)

and the model becomes

gk|Hk+L, ν ∼ N (ğk, se2(n)). (100)

The bounds in this case are

u = ğk + zα/2ŝem l = ğk − zα/2ŝem. (101)

These bounds asymptotically hold with probability at least 1 − α.
Using ği

k = 1
m

∑m
j=1 ğ j

k , where i = 1 : s we will obtain

V

(
1

s

s∑
i=1

ği
k

)
= 1

s

(
1

m
Ez+[se2(zk+,n)] +V (μ(zk+))

)
. (102)

6.3. Implementation details and computational complexity

Now we describe steps in building an extended belief tree which is common for all our simulations. First, we need to 
construct an extended belief tree appropriate to a given candidate policy (see Fig. 1); alternatively, if the objective operator is 
mounted on the joint distribution of a pair of returns given a pair of policies, as in (43), we shall construct a pair of coupled 
belief trees. Second, we shall apply the simplification and calculate simplified returns and bounds. In all simulations with 
nonparametric beliefs we choose ψst to be an off-the-shelf particle filter with low-variance re-sampling [42]. The entire 
belief update process complexity is O(N). Since the extended belief tree does not undergo simplification, it is common to 
the original and simplified problems.

In practice, the marginal likelihoods P (zk+|bk, π) and P (z′
k+|bk, π ′) as in section 4 or the mutual likelihood of the 

observations P (zk+, z′
k+|bk, π, π ′) as in section 5 (see (41)) correspond to two extended belief policy trees, starting from 

the same root (bk) and having the same rule for choosing rollouts.
Below we discuss the construction of the extended belief tree. Let N be a number of samples of the posterior belief. 

We choose the samples of the belief for creating the observations heuristically according to the following scheme. Let n(�)
z

be number of observations generated by each belief at level � of the tree. We specify n(1)
z (the number of observations 

generated by bk) and the dwindle factor c. Starting from � = 2 the number of observations generated by each belief on 
level � in the tree is calculated as n(�)

z = max{1, � n(1)
z

(�−1)·c �}. In the setting of nonparametric beliefs, we sample states for the 
observations from resampled posterior with Fisher-Yates shuffling (with early termination) [20]. This algorithm is O(N) for 
initialization, plus O(n(�)

z ) for random shuffling.
In our extended belief policy tree, there may be many beliefs stemming from an observation. Denote this number by nb . 

In the setting of nonparametric beliefs represented by the particles, the complexity of constructing the tree is

O(N)

L−1∑
�=1

�∏
i=1

nbn(i)
z . (103)

At each level of the tree beside the bottom, we must apply a particle filter number of times equal to the total number of 
the beliefs at the next level, which is 

∏�
i=1 nbn(i)

z at level �. Also, we need to subsample observations at the current level. 
Since the number of beliefs at the next level is not smaller than at the current level, and the subsampler and particle filter 
complexity is linear in N , we are left with (103). Let us mention that sampling from the belief and application of particle 
filters on each level can be done in parallel.

Now we analyze the speedup in running time as a result of simplification in the setting of nonparametric beliefs. As a 
momentary reward, we take the differential entropy estimator from [4]. This selection makes the complexity of calculating 
the momentary reward to be O(N2). For the bounds calculation depending on the simplification method we need to apply 
particle filter with n samples (17) or with N (18), (20)) samples, L times for each return. Since its complexity is linear in the 
number of samples, the expected speedup is governed only by the immediate reward and bounds calculation. The speedup 
is approximately

N2

n2 · m
. (104)

This acceleration has a rather intuitive explanation. Since we are comparing running time of exactly the same function the 
ratio gives approximately exact speedup. The empirical behavior of estimator is as �(N2). We obtained this speedup in all 
our simulations.
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Fig. 8. Gazebo simulated environment. Each square in the map corresponds to 1 × 1 meters square.

7. Simulations and results - autonomous navigation with light beacons

In this section, we demonstrate our findings. In the center of our focus are the risk-averse operators, and in all cases, 
simplification yields a significant speedup without sacrificing the quality of the solution. We consider the setting of marginal 
distributions over returns per candidate policy, as in Section 4, and the joint distribution over the returns given a pair of 
policies, as in Section 5. In both settings, we consider the problem of autonomous navigation to a pre-defined goal in an 
environment with known beacons.

We start from marginals of the return in the setting of a given belief surface and then proceed to the general domain of 
nonparametric beliefs and an inaccessible belief surface. We then continue to the joint distribution of a pair of the returns 
given two policies and PLoss and PbLoss simulations. Finally, we report the technical characteristics of computers used 
in simulations in Appendix B.

7.1. Marginal return distributions corresponding to candidate polices

For our simulations, we utilize a localization problem with a known map created in the Gazebo simulator [23]. We used 
a Pioneer 3-AT robot to perform navigation to the goal as illustrated in Fig. 8.

7.1.1. A given belief surface
We start by exemplifying the adaptive bounds from Section 6.1 in the setting described in [25]. We do not assume 

that we know which beacon generated an observation in this setting. Instead, we maintain a hypothesis about each pos-
sible configuration of the beacons creating the observation. Such an approach is realistic since, in the planning phase, the 
robot considers the future observations identically as in the inference phase when the real observation is obtained. It re-
sults in belief being a Gaussian Mixture Model (GMM), where each component corresponds to a possible configuration of 
data association. The weights of the components are probabilities of the hypothesis that the Gaussian component is an 
actual configuration. No analytical expression exists for differential entropy when the belief surface is GMM, so we are 
obliged to sample and want as few samples as possible. For simplicity, we consider only two possible paths to the goal, 

as shown in Fig. 9. We take the belief bk over of the robot’s 2D location as a Gaussian N (μ, �), where μ =
(

0.5
0.5

)
and 

� =
(

0.5 0
0 0.5

)
. The belief update is deterministic ψdt. Each beacon is visible on the maximum radius of 3 meters. Leave 

out the recursive setting instead of smoothing, we strictly follow the theory presented at [25]. Let us restate that, in plan-
ning, when considering possible observations, we do not assume that we know from which beacon they arrived; instead, 
we maintain hypotheses regarding each possible configuration of the beacons to yield an observation. We denote each such 
data association by βk+� .

In this study we utilize the following motion model T .

xk+1 = xk + ak + ‖ak‖ · wk wk ∼ N (0,�w), (105)

where x ∈ R2, a ∈ R2, �w = w · I (w is a given parameter) and action ak ∈ A. The A is the set of action sequences 
with actions of variable length. Each visible beacon b produces the observation according to the following model zi ∼
N (‖x − xb‖2

2, �v), where �v = v · I . We selected the following parameters w = 0.5 and v = 0.005. Overall observation is the 
concatenation of the observations received from all seen beacons. Let us denote by M the given map with its beacons. For 
simulating an observation for planning we sample state xk+� from the belief propagated with an action. We use the simplest 
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Fig. 9. Gazebo simulated scenario where the belief surface is explicitly given. The white numbers enumerate the paths, the black numbers enumerate the 
light beacons, the yellow circle is the goal, the black dots are the spots there the observations are taken by the robot, the purple circle is the initial belief 
bk .

model for βk+� being Pβ(βk+�(i) = 1|xk+�) = 1{‖xk+� − xb
i ‖ ≤ r}, where the index i goes from 1 until the number of beacons 

in the map. According to this model, given the state and the map, each beacon is deterministically seen or not. Once we 
obtained the configuration of the seen beacons βk+�; we sample the observation from the following model as follows. We 
define subsequence βk+�(i j) such that the index j pull in ascending order the indexes of i where βk+�(i j) equal 1.

PZ (zk+�|xk+�, M) =
nk+�(xk+�)∏

j=1

P (z j
k+�

|xk+�, M) =
nk+�(xk+�)∏

j=1

P (z j
k+�

|xk+�, xb
i j
), (106)

where nk+�(xk+�) is the number of beacons seen from the state xk+� . If no beacon is seen there is no observation received 
(nk+�(xk+�) = 0).

For belief update, however, we do not assume that we know this configuration βk+� . The belief in each time instant 
is a Gaussian Mixture. To update the belief, we propagate each gaussian with an action using standard Kalman filter [42]. 
To update propagated Gaussian with an observation, we do not assume we know from which beacons this observation is 
received. This result to Gaussian mixture obtained from each propagated Gaussian, where each Gaussian in the mixture 
corresponds to the beacons configuration, which can render such an observation. We utilize unscented Kalman filter [42] to 
update each propagated Gaussian with the observation and a realization of the βk+� . The weight of Gaussian corresponds to 
the probability that such beacons configuration resulted in the obtained observation. The above requires to model visibility 
of the beacon given the state from propagated Gaussian. Since βk+� is a discrete random variable, we normalize when all 
the above probabilities are computed. For an in-depth discussion, please refer to [25].

We sample 500 samples from propagated belief and set the parameter visibility radius as follows r = 3.
Let us recall that in this setting the original return is the theoretical differential entropy over the belief surface which is 

out of the reach. We want to set the number of samples from the belief surface n as small as possible to decide which path 
out of two brings less uncertainty. We aim to choose the path maximizing uncertainty criterion, which we define as follows

ϕ

(
P
(
ρ̆k+1:k+L |bk,πk:k+L−1, ν

)
, ğk

)
= VaRβ(ğ I

k|bk,π,ν), (107)

where

ğ I
k = I(bk+1:k+L |bk,π) = 1

L

k+L∑
�=k+1

(
1

n

n∑
i=1

ln(b�(xi
�))

)
. (108)

We set α = 0.05 such that zα/2 = 1.96, and β = 0.3, overall number of observations in the belief tree is 500. Note that the 
condition α · (2 − α) ≤ β ≤ 1 − α is fulfilled. We start from initial n = 5 and add one sample for each immediate reward 
in the belief tree until there is no overlap between the intervals. In this simulation the adaptation yielded not overlapping 
deterministic bounds on VaR when n = 28 and the second path was chosen as optimal. The interval for the first action 
sequence was [−3.77, −2.76] and for the second sequence was [−2.74, −1.52].
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Fig. 10. Diverse short paths. The current robot position denoted yellow arrow-head and the goal marked by yellow circle. Candidate paths are enumerated. 
Transparent silver spheres are the light beacons.

Table 2
Running times for each of the three action se-
quences for N = 2000 and n = 100.

a1 a2 a3

gk time [sec] 30178 23858 20664

ğk time [sec] 85 64 57

l, u time [sec] 4084 3255 2805

speedup 7.24 7.18 7.22

7.1.2. Not accessible belief surface in the setting of nonparametric belief
In this section we consider non parametric beliefs represented by particles. The belief surface in this setting is out of the 

reach. We remain in recursive formulation of the two dimensional continuous state space. For updating the belief we use 
particle filter with low variance resampler [42]. We begin by building the Probabilistic Road Map (PRM) using OMPL library. 
After the map is built we apply the Diverse Short Path algorithm [43]. The resulting paths from robot to goal are visualized 
at Fig. 10. These paths constitute our action space. We normalize by path length L to obtain fair comparison. To accelerate 
the calculations we apply Algorithm 1.

We use same motion model as in the previous section. However, the observation model varies. In this scenario there are 
four beacons, but each beacon is always seen and produces the observation according to the following observation model 
O . zi

k+�
∼ N (xk+�, �v(xk+�)) for i = 1, . . . 4, where the spatially-varying covariance matrix is

�v(x) = v(x) · I, v(x) = w · ‖x − xb
i ‖2

2, (109)

where xb
i is the location of the light beacon number i. The noise parameter w is taken from the motion model. In contrast 

to the previous section, we assume that the data association is solved. Overall observation received from all the beacons 
has the following probability density function

PZ (z|x) =
4∏

i=1

P (zi
k+�|xk+�, xb

i ). (110)

Without losing generality, we assume bk at planning time is uniformly distributed in a unit square, such that the differential 
entropy is zero. In the naive approach to evaluate motion and observation models PT and PZ we need to inverse covariance 
matrix. Of course we can speedup this calculation by caching values of distribution of parameters or even value of evaluated 
motion model. However, this is out of scope of current discussion. We utilize an off-the-shelf Julia language implementation 
of Gaussian distribution. In general evaluation of the model can be extremely costly as described in [14].

We present results in Fig. 11b. Note that we chose N = 2000 guided by the works such as [4] and [11]. In this setting 
we obtain 8 times speedup according to (104), corroborated by Table 2, while the same optimal action is chosen as without 
simplification.
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Fig. 11. Simplified risk aware decision making using VaR. (a) Three candidate paths and four light beacons. (b) Results of simplified planning under 
uncertainty with β = 0.3. The first path is true optimal path due to its proximity to the beacons. In this scenario w = 0.01 and v = 0.001. The optimal path 
selected by solving the simplified problem is first and the relative error is zero whereas the online bound on the relative error is 0.07. In this simulation 
N = 2000 and n = 100. For calculation of the standard error for the bounds we recalculate the simplified reward m = 50 times.

Fig. 12. Comparison of the hypotheses for action sequence one and two. The total number of samples is 500.

7.2. Joint distribution of the rewards corresponding to two candidate policies

In this section we exemplify simplified hypothesis based decision making outlined in section 5.2. We utilize the concept 
of PLoss to provide guarantees considering the specific objective from (48). Further we delve into PLoss to show the 
complete characterization of the simplification for any objective operator ϕ .

7.2.1. Simplified hypothesis based decision making
Let us focus on the previous scenario shown in Fig. 10. Our setting is as in previous section N = 2000, n = 100, m = 50. 

We start by comparing the first path to the second and show the results in Fig. 12. The first hypothesis is that the first 
action sequence is better and the second hypothesis is that the second action sequence is better. Remarkably, we observe 
that the simplification actually improves the decision making since more samples fall into the first hypothesis, and as we 
below show the first hypothesis is indeed optimal. We now utilize PbLoss at � = 0 to provide deterministic guarantees. 
Continuing the discussion on Fig. 12 we obtain �̆P = 480. The sample approximation P (L > 0|bk, π, π ′, ν) = 0.166, such 
that the offline condition (72) is met 44 < 480. The online bound on PLoss TDF at � = 0 is θα(0) = 0.47 such that the 
online condition (74) is also met as 472 < 480. Therefore, we can guarantee deterministically that the actions trend is 
preserved as a result of the simplification.

According to Algorithm 2 we shall also compare the first and the third paths. We present the comparison in Fig. 13. In 
this experiment we obtain �̆P = 408, P (L > 0|bk, π, π ′, ν) = 0.166, θα(0) = 0.83, such that the offline condition is fulfilled 
while the online condition is violated. To conclude, we were able to provide online guarantees that the simplification was 
action consistent when we compared the first and the second path. In some cases, as the comparison of the first and the 
third path, we cannot guarantee action consistency. Meaning, in this case, there is room to take more samples. It is even 
more interesting to utilize an incremental approach and develop adaptive stochastic bounds in the setting of nonparametric 
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Fig. 13. Comparison of the hypotheses for action sequence one and three. The total number of samples is 500.

beliefs. This is, however, out of the scope of this paper, and we leave it to further research. Alternatively, the analytical 
adaptive bounds from [39] can be used.

7.2.2. Probabilistic loss
We believe that the concept of PLoss and PbLoss can provide much more than showed in the previous section. PLoss

characterizes the simplification in a complete manner such that it is possible that one can define probabilistic more lenient 
action consistency on top of PLoss. Thus, we devote this section to experiments with PLoss and PbLoss. In addition we 
show time acceleration speedup of the calculation of belief dependent rewards in the belief tree as a result of simplification. 
Further we discuss empirical action consistency for any objective operator ϕ .

We exemplify our method on the problem of autonomous navigation to a goal with light beacons, which can be used 
for localization. In all our simulations in this section, the return gk is a cumulative reward. In this study, the simplification 
conforms to (17). As the action space we take the space of motion primitives. Moreover, let us emphasize we do not 
average the simplified rewards taken for the approximation of standard error since we aim to examine general behavior and 
standard error possibly can be estimated without resampling of the returns. The bounds are calculated according to (97).

For simplicity, assume we have a linear motion model T , where x ∈R2 as well as a ∈R2

xk+1 = xk + ak + wk wk ∼ N (0,�w), (111)

where �w = w · I (w is a given parameter) and action ak ∈ A, and where the action space A is the space of motion 
primitives of unit length.

We consider next probabilistic and absolute action consistency description using PLoss offline and PbLoss online. We 
say that the action consistency is probabilistic if the probability that a pair of samples of the return will not preserve the 
trend with respect to a pair of actions due to simplification is larger than zero. Remarkably, the analysis below is valid for 
any objective operator ϕ .

Characterizing probabilistic action consistency The observation model O is as follows, z ∼ N (x, �v(x)), where the spatially-
varying covariance matrix is

�v(x) = v(x) · I, v(x) = w · min{1,‖x − x∗‖2
2}, (112)

where x∗ is the location of the light beacon closest to x. The noise has a constant variance w . Without losing generality, 
we assume bk at planning time is uniformly distributed in a unit square. We set L = 12 and compare two action sequences: 
ak+1:k+12 is six times (1, 0)T and after that six times (0, 1)T . In the action sequence a′

k+1:k+12 we switched the order of 
actions such that the robot performs six times (0, 1)T and after that six times (1, 0)T .

One realization of a possible future in terms of measurements and corresponding posterior beliefs is illustrated in Fig. 14. 
It is clearly seen that proximity to a beacon improves localization. Note, the robot is always able to avoid a dead reckoning 
scenario as it always gets an observation from the closest beacon. We hope that this setting conveys a real world scenario 
where an ambulating robot is equipped with long and short range sensors. The close range sensors are activated when the 
robot is inside a unit circle around the beacon. When the robot is outside a unit circle from the closest beacon, the beacon 
is detectable only by the long range sensors, which are less sensitive. We present results of the simplification for w = 0.1, 
N = 1500, m = 50, α = 0.01, zα/2 = 2.56, and the total number of observations is 500. For each sample of zk+1:k+L , we 
sampled bk+1:k+L once. As we see in the left part of Fig. 15 we gained speedup as expected (104) for n = 175. We show 
measurements of all running times in our simulations in Table 4.
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Fig. 14. Results for scenario 1 - probabilistic action consistency: Illustration of one realization of the future in a simulated scenario considering two possible 
action sequences. We start from bk represented by samples uniformly distributed on a unit square. We demonstrated two sequences of observations 
alongside ground truth state samples, and the closest beacons produced these observations from the left. From the right, we plotted two sequences of the 
beliefs produced by these two histories. We show 100 most probable samples of each belief.

Fig. 15. Results for scenario 1 - probabilistic action consistency: (left) Demonstration of runtimes of the total number of the returns for a given extended 
belief tree where N = 1500 and n = 175. Note that this illustration agrees with (104); (right) action consistency of the samples of the return.

From these samples of the returns and bounds, we build PLoss and PbLoss in Fig. 19. In the right part of Fig. 15
quadrants II and IV, we observe samples that are not action consistent. To assess performance we need to choose some 
representative �. Since online we have access exclusively to the simplified problem, let us choose �̆∗ = |E[ğk|bk, π, ν] −
E[ğ′

k|bk, π ′, ν]| and � = 0.5�̆∗ . Note that under our model in average the sample mean is not influenced by the lowering 
the number of samples of the reward. Only the variance of sample mean is increased. Moreover we assume that the 
distributions are without gaps such that the expected value of the return is some sample with probability density function 
larger than zero. Table 3 quantifies online characterization against offline PLoss TDF.

We showed an illustration of this scenario in Fig. 14. In Fig. 16, we demonstrated scatter plots that show samples of the 
simplified and original returns’ differences. We identify that with decreasing n, more samples are not action consistent. This 
phenomenon is corroborated by the histograms of L in Fig. 17.

Let us focus on n = 175 in Fig. 18; online we can conclude that probability that loss incurred by this simplification 
will be greater than �̆∗ is at most 0.11, while actual P (L > �̆∗|·) is 0.0. Similarly, the probability for loss incurred by this 
simplification to be greater than 0.5�̆∗ is at most 0.33, while actual P (L > 0.5�̆∗|·) is 0.0. In this scenario, the simplification 
is not absolute action consistent; it means variability described by (87) is sufficient to switch the order of the returns and 
incur loss � at some sampled realization.

Furthermore, our bounds depend on variance (se2(n)) of the sample approximation of the reward (97), which, according 
to (87) does not depend on �. Hence, as � decreases towards zero, the contribution of variance versus the difference 
between simplified returns grows for any realization of L̄. Therefore, PbLoss departs from PLoss as � decreases. We 
observe this behavior in Fig. 18. Moreover, with the diminishing number of samples, this effect is amplified, as demonstrated 
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Table 3
Results for scenario 1 - probabilistic action consistency: Online characterization 
for N = 1500, α = 0.01, zα/2 = 2.56.

n P (L > 0.5�̆∗|·) θα(0.5�̆∗) �̆∗ P (L > �̆∗|·) θα(�̆∗)

175 0.0 0.33 4.14 0.0 0.11

150 0.01 0.43 4.04 0.0 0.17

125 0.01 0.43 4.21 0.0 0.2

100 0.0 0.56 4.08 0.0 0.29

75 0.01 0.64 4.01 0.0 0.39

50 0.02 0.83 3.72 0.01 0.63

25 0.07 1.0 3.34 0.03 0.94

Table 4
Results for scenario 1 - probabilistic action consistency: run times for N = 1500.

n = 175 n = 150 n = 125 n = 100 n = 75 n = 50 n = 25

gk time [sec] 104957 69658 95651 69713 68584 96354 66513

ğk and l, u time [sec] 72694 34842 33759 15498 8293 5589 969

ğk time [sec] 1454 661 669 298 172 119 14

l, u time [sec] 71240 34181 33090 15200 8121 5469 955

Fig. 16. Results for scenario 1 - probabilistic action consistency: We demonstrate from the left to the right action consistency of the samples of the returns 
for n = 175, n = 125, n = 75, n = 25, whereas N = 1500. As we see, samples violating action consistency are present at all graphs.

in Fig. 18, due to growing variance (87). Remarkably, when samples of original returns are more distinct, the effect of 
variance is nullified. In such a setting, our characterization is incredibly precise, see Fig. 24.

Thus, the behavior of the PbLoss is more conservative in more delicate scenarios, where two candidate policies are 
close to each other in terms of returns. Importantly, for significantly different policies, PbLoss becomes tighter to PLoss. 
This brings us to the next section.

Revealing empirical absolute action consistency In this scenario we modified the noise in the observation model as such 
v(x) = w ·‖x −x∗‖2

2. In addition we removed one beacon on the way of the second action sequence. We remain with w = 0.1, 
m = 50, α = 0.01, zα/2 = 2.56 and set N = 1000. In this scenario the returns of two action sequences are much more distant. 
The samples in the right segment of Fig. 21 are more distant from the origin than in Fig. 15. The characterization is shown 
in Table 5. Therefore, the simplification is empirically absolute action consistent. As we see from the Table 5, observing 
θα(� = 0.0) we are able to identify online that for n = 100 and n = 75, probability to receive samples of the returns 
violating action consistency is at most 0.03, while P (L > 0.0|·) is 0.0.

Here the covariance matrix of the observation model is

�v(x) = v(x) · I, v(x) = w · ‖x − x∗‖2
2. (113)

We demonstrated this scenario in Fig. 20. As we can see in Fig. 22, the clouds of samples are farther from the origin than 
in the previous scenario. Therefore, two action sequences are more distant. In this case, the simplification is empirically 
absolute action consistent, as we observe in the histograms of L in Fig. 23 and empirical characterization shown in Fig. 24. 
We report run times for two scenarios in Table 4 and Table 6, respectively.
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Fig. 17. Results for scenario 1 - probabilistic action consistency: Histograms of PLoss and PbLoss for N = 1500, α = 0.01, zα/2 = 2.56, bin width is 1.0; 
from the left to the right n = 175, n = 125, n = 75, n = 25.

Fig. 18. Results for scenario 1 - probabilistic action consistency: Empirical characterization for N = 1500, α = 0.01, zα/2 = 2.56, evaluated in a grid with 
intervals 0.001; from the left to the right n = 175, n = 125, n = 75, n = 25.

Table 5
Results for scenario 2 - empirical absolute action consistency: Online character-
ization for N = 1000, α = 0.01, zα/2 = 2.56.

n P (L > 0.0|·) θα(� = 0.0) �̆∗ P (L > �̆∗|·) θα(�̆∗)

100 0.0 0.03 17.54 0.0 0.02

75 0.0 0.03 17.14 0.0 0.02

50 0.0 0.06 16.65 0.0 0.02

25 0.0 0.19 15.27 0.0 0.02
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Fig. 19. Results for scenario 1 - probabilistic action consistency: Histograms of PLoss and PbLoss for N = 1500, n = 175, α = 0.01, zα/2 = 2.56 (bin width 
is 0.3, in zoom-in, bin width is 0.03).

Fig. 20. Results for scenario 2 - empirical absolute action consistency: Illustration of one realization of the future in a simulated scenario considering two 
possible action sequences. We start from bk represented by samples uniformly distributed on a unit square. We demonstrated two sequences of observations 
alongside ground truth state samples, and the closest beacons produced these observations from the left. From the right, we plotted two sequences of the 
beliefs produced by these two histories. We show 100 most probable samples of each belief.

Fig. 21. Results for scenario 2 - empirical absolute action consistency: (left) Demonstration of runtimes of the total number of the returns for a given 
extended belief tree where N = 1000 and n = 100. Note that this illustration agrees with (104); (right) action consistency of the samples of the return.
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Fig. 22. Results for scenario 2 - empirical absolute action consistency: We demonstrate from the left to the right action consistency of the samples of the 
returns for n = 100, n = 75, n = 50, n = 25, whereas N = 1000. As we see, all the samples are action consistent.

Fig. 23. Results for scenario 2 - empirical absolute action consistency: Histograms of PLoss and PbLoss for N = 1000, α = 0.01, zα/2 = 2.56, bin width is 
1.0; from the left to the right n = 100, n = 75, n = 50, n = 25.

Table 6
Results for scenario 2 - empirical absolute action consistency: run 
times for N = 1000.

n = 100 n = 75 n = 50 n = 25

gk time [sec] 36745 45187 44899 30889

ğk and l, u time [sec] 17361 12546 4388 844

ğk time [sec] 363 247 65 14

l, u time [sec] 16998 12299 4323 830

8. Conclusions

We introduced a novel simplification framework in the challenging continuous domain with possibly nonparametric be-
liefs and general belief dependent rewards. We presented a formulation of novel stochastic bounds on the return and proved 
that these bounds yield deterministic bounds on VaR. We considered simplification impact also on the joint distribution of 
a pair of returns given two candidate policies, while accounting for the correlation between these returns. In this context, 
we proposed an innovative objective operator on top of the joint distribution. In addition, we presented a mathematical tool
PLoss and its online counterpart PbLoss to characterize the simplification impact on the decision making entirely for any 
objective operator. Moreover, we utilized it to provide deterministic guarantees for our novel risk aware objective operator 
mounted on the joint distribution of a pair of returns given a pair of policies. We presented an instance of our framework 
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Fig. 24. Results for scenario 2 - empirical absolute action consistency: Empirical characterization for N = 1000, α = 0.01, zα/2 = 2.56, evaluated in a grid 
with intervals 0.001; from the left to the right n = 100, n = 75, n = 50, n = 25.

with a specific simplification method, which is reducing the number of samples of the return or the belief used for reward 
calculation. Finally, we verified the advantages of our approach through extensive simulations. For example, in section 7.1.2
we obtained approximately 8 times speedup with respect to the original problem while still identifying the optimal action.
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Appendix A. Proofs for the theorems

A.1. Proof of the Theorem 1

Using the marginalization over future observations with Probability Density Function (PDF) being P (zk+|bk, π) we have 
that

P (1{l≤gk≤u} = 1|bk,π,ν) ≥ (1 − α)

∫
zk+

P (zk+|bk,π)dzk+

︸ ︷︷ ︸
=1

= 1 − α. (114)

The following holds from property of a lower bound (usual stochastic order) ∀ξ ∈ (−∞, ∞)

P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) ≤ P (gk > ξ |bk,π,1{l≤gk≤u} = 1). (115)

Denote λ = P (1{l≤gk≤u} = 1|bk, π, ν). This notation implies that 1 −λ = P (1{l≤gk≤u} = 0|bk, π, ν). Using marginalization over 
the indicator function we have that

P (gk > ξ |bk,π) = P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 1)λ + P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 0)(1 − λ). (116)

Since each summand in the equation above is non negative and using (114) we obtain

P (gk > ξ |bk,π) ≥ P (l > ξ |bk,π,ν,1{l ≤ gk ≤ u} = 1)(1 − α). (117)

Assume α ∈ [0, 1), exist c ∈R+ such that

P (gk > ξ |bk,π,ν) = c(1 − α). (118)
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This implies

P (gk > ξ ∩ 1{l ≤ gk ≤ u} = 1|bk,π,ν) ≤ P (gk > ξ |bk,π,ν) = c(1 − α). (119)

Applying the chain rule and rearranging the terms, we have that

P (gk > ξ |1{l ≤ gk ≤ u} = 1,bk,π,ν) ≤ c
1 − α

λ︸ ︷︷ ︸
≤1

≤ c. (120)

Using again marginalization over the indicator function, we represent the P (l > ξ |bk, π, ν) as

P (l>ξ |bk,π,ν,1{l≤gk≤u} = 1)λ + P (l>ξ |bk,π,ν,1{l≤gk≤u} = 0)(1 − λ). (121)

Using that λ ≤ 1 and P (l >ξ |bk, π, ν, 1{l≤gk≤u} = 0) ≤ 1 we have that

P (l > ξ |bk,π,ν) ≤ P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + 1 − λ ≤ P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + 1 − (1 − α). (122)

Using (115) and (118), we arrive at the desired result

P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + α ≤
P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 1) + α ≤ c + α = P (gk > ξ |bk,π)

1 − α
+ α. (123)

Rearranging the terms bears(
P (l > ξ |bk,π,ν) − α

)
(1 − α) ≤ P (gk > ξ |bk,π). (124)

Switching the roles of gk to u and l to gk , we obtain the upper bound

P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν)

1 − α
+ α. (125)

This completes the proof. �

A.2. Proof of the Theorem 2

Let us start from upper bound. From Theorem 1{
ξ s.t P (gk >ξ |bk,π,ν)≥1−β

}
⊆
{
ξ s.t

P (u>ξ |bk,π,ν)

1 − α
+α≥1−β

}
. (126)

Equivalently{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
⊆
{
ξ s.t P (u > ξ |bk,π,ν) ≥ (1 − β − α)(1 − α)

}
. (127)

Rearranging the terms, we have that

sup

{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
≤ sup

{
ξ s.t P (u > ξ |bk,π,ν) ≥ 1 − (β + α(2 − β − α)

}
. (128)

It is left to show that

0 ≤ β + α(2 − β − α) ≤ 1. (129)

Since α + β ≤ 2 and α ≥ 0, we have

0 ≤ β ≤ β + α(2 − β − α). (130)

To prove the right inequality we show that

β + α(2 − β − α) − 1 ≤ 0. (131)

Multiplying by −1 we observe that the inequality reads

(1 − β − α) (1 − α)︸ ︷︷ ︸
≥0

≥ 0. (132)
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Requiring that 1 − β − α ≥ 0, we obtain the condition which we already assumed

(1 − α) ≥ β. (133)

We have that

VaRβ(gk|bk,π,ν) ≤ VaRβ+α(2−β−α)(u|bk,π,ν). (134)

To prove the second part of the theorem we use the following{
ξ s.t (P (l > ξ |bk,π,ν) − α)(1 − α) ≥ 1 − β

}
⊆
{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
. (135)

Equivalently,{
ξ s.t P (l > ξ |bk,π,ν) ≥ 1 −

(
1 − 1 − β

1 − α
− α

)}
⊆
{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
. (136)

It is left to show that

0 ≤ 1 − 1 − β

1 − α
− α ≤ 1. (137)

We immediately see that 1 − 1−β
1−α − α ≤ 1. Rearranging the terms, we arrive at the second condition that

α(2 − α) ≤ β. (138)

This completes the proof. �

A.3. Proof of the Theorem 3

By definition

P (1{L̄≥L} = 1|1{l≤gk≤u} = 1,1{l′≤g′
k≤u′} = 1,bk,π,π ′, zk+, z′

k+, ν) = 1. (139)

We first apply marginalization over future observations zk+≡zk+1:k+L and z′
k+ ≡ z′

k+1:k+L , and events {ω|l(ω)≤gk(ω) ≤ u(ω)}
and 

{
ω|l′(ω)≤g′

k(ω) ≤ u′(ω)
}

. We then use the fact that given two histories Hk+L � {bk, π, zk+} and H′
k+L � {bk, π ′, z′

k+}, 
the events {ω|l(ω) ≤ gk(ω) ≤ u(ω)} and 

{
ω|l′(ω) ≤ g′

k(ω) ≤ u′(ω)
}

are independent of each other. Furthermore, each such 
event depends exclusively on its own history by design. We have that P

(
1{L̄≥L} = 1|bk,π,π ′, ν

)
equals to∫

zk+
z′

k+

P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
P
(
zk+, z′

k+ | bk,π,π ′)dzk+dz′
k+. (140)

Moreover, the P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
is larger or equal to

P (1{L̄≥L} = 1 ∧ 1{l≤gk≤u} = 1 ∧ 1{l′≤g′
k≤u′} = 1 | bk,π,π ′, zk+, z′

k+, ν). (141)

Engaging the chain rule and using the constraints (59) and (60), and their statistical independence we face that

P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
≥ (1 − α)2. (142)

The above expression straightforwardly yields that P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

≥ (1 − α)2 through the marginalization over 

the future observations since 
∫

zk+
z′

k+
P
(

zk+, z′
k+ | bk,π,π ′

)
dzk+dz′

k+ = 1. This completes the proof. �

A.4. Proof of the Theorem 4

To shorten notations let us denote |bk, π, π ′, ν by |· in the proof. Let us express PLoss TDF as

P (L > �|·) =P
(
L > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

+ P
(
L > �|1{L̄<L} = 1, ·

)
P
(

1{L̄≥L} = 0|·
)

. (143)

Similarly, PbLoss TDF reads
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P
(
L̄ > �|·)=P

(
L̄ > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

+ P
(
L̄ > �|1{L̄<L} = 1, ·

)
P
(

1{L̄<L} = 1|·
)

. (144)

Since α ∈ [0, 1) it exists c ∈R>0 such that

P
(
L > � ∧ 1{L̄≥L} = 1|·

)
≤ P

(
L̄ > �|·)= c(1 − α)2. (145)

This implies

P
(
L̄ > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

≤ c(1 − α)2, (146)

P
(
L̄ > �|1{L̄≥L} = 1, ·

)
≤ c

(1 − α)2

P
(

1{L̄≥L} = 1|·
)

︸ ︷︷ ︸
≤1

≤ c. (147)

Moreover, using that P (1{L̄≥L} = 1|·) + P (1{L̄<L} = 1|·) = 1, we obtain

P (L > �|·) =P
(
L > �|L̄ ≥ L, ·) P

(
L̄ ≥ L|·)+

P
(
L > �|L̄ < L, ·) (1 − P (L̄ ≥ L)|·)≤

P
(
L > �|L̄ ≥ L, ·)+ 1 − (1 − α)2 ≤ c + 2α − α2, (148)

but c = P
(L̄>�|bk,π,π ′,ν

)
(1−α)2 . We showed that

P (L > �|·) ≤ P
(
L̄ > �|bk,π,π ′, ν

)
(1 − α)2

+ 2α − α2. (149)

Furthermore, by definition of TDF

P (L > �|·) ≤ 1. (150)

We write the above two relations compactly as

P (L > �|·) ≤ θα(�), (151)

where θα(�) = min

{
1,

P
(L̄>�|bk,π,π ′,ν

)
(1−α)2 + 2α − α2

}
. Clearly

P
(
L ≤ �|bk,π,π ′, ν

)= 1 − P
(
L > �|bk,π,π ′, ν

)≥ 1 − θα(�). (152)

This concludes the proof. �

Appendix B. Technical characteristics of computers used in simulations

Our simulations are written in Julia language with a multi-threaded calculation of immediate reward. We used 4 com-
puters with the following characteristics:

1. 40 cores Intel(R) Xeon(R) E5-2670 v2 with 256 GB of RAM working at 2.50 GHz;
2. 24 cores Intel(R) Core(TM) i9-7920X with 64 GB of RAM working at 2.90 GHz;
3. 20 cores Intel(R) Xeon(R) E5-2630 v4 with 64 GB of RAM working at 2.20 GHz;
4. 20 cores Intel(R) Core(TM) i9-9820X with 64 GB of RAM working at 3.30 GHz.
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Simplified Continuous High-Dimensional Belief
Space Planning With Adaptive Probabilistic

Belief-Dependent Constraints
Andrey Zhitnikov and Vadim Indelman

Abstract—Online decision making under uncertainty in partially
observable domains, also known as Belief Space Planning, is a
fundamental problem in Robotics and Artificial Intelligence. Due
to an abundance of plausible future unravelings, calculating an
optimal course of action inflicts an enormous computational bur-
den on the agent. Moreover, in many scenarios, e.g., Information
gathering, it is required to introduce a belief-dependent constraint.
Prompted by this demand, in this article, we consider a recently
introduced probabilistic belief-dependent constrained partially ob-
servable Markov decision process (POMDP). We present a tech-
nique to adaptively accept or discard a candidate action sequence
with respect to a probabilistic belief-dependent constraint, before
expanding a complete set of sampled future observations episodes
and without any loss in accuracy. Moreover, using our proposed
framework, we contribute an adaptive method to find a maximal
feasible return (e.g., Information Gain) in terms of Value at Risk
and a corresponding action sequence, given a set of candidate
action sequences, with substantial acceleration. On top of that, we
introduce an adaptive simplification technique for a probabilisti-
cally constrained setting. Such an approach provably returns an
identical-quality solution while dramatically accelerating the on-
line decision making. Our universal framework applies to any
belief-dependent constrained continuous POMDP with parame-
teric beliefs, as well as nonparameteric beliefs represented by
particles. In the context of an information-theoretic constraint,
our presented framework stochastically quantifies if a cumula-
tive Information Gain along the planning horizon is sufficiently
significant (for e.g., Information Gathering, active simultaneous
localization and mapping (SLAM)). As a case study, we apply our
method to two challenging problems of high dimensional belief
space planning: active SLAM and sensor deployment. Extensive
realistic simulations corroborate the superiority of our proposed
ideas.

Index Terms—Active simultaneous localization and mapping
(SLAM), autonomous robotic exploration, belief space planning
(BSP), belief-dependent probabilistic constraints, belief-dependent
rewards, constrained belief-dependent partially observable
Markov decision process (POMDP).
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I. INTRODUCTION

A COMPREHENSIVE approach to craft many online
decision-making problems, characterized by the agent

situated in an environment and acting under uncertainty, is
the partially observable Markov decision process (POMDP).
For most such problems, it is sufficient to assume that the
belief-dependent reward is merely the expectation of a state-
dependent reward with respect to belief. This assumption
is the case in classical POMDP formulations. In contrast,
numerous problems in robotics, such as informative plan-
ning tasks [1], active simultaneous localization and mapping
(SLAM) [2], and sensor deployment (SD) problem [3] are
explicitly concerned with decreasing uncertainty, thereby raising
the need for planning with general belief-dependent reward
functionals.

General belief-dependent operators were examined in the
context of reward but hardly so in the context of the constraint.
In the robotics community, continuous POMDP with belief-
dependent information-theoretic rewards is known as belief
space planning (BSP) [4], [5]. Oftentimes the belief in BSP is
over a high-dimensional state. In this article we focus on such a
setting.

One of the embodiments of high-dimensional BSP, and
also the subject of our interest, is active SLAM. Further we
sometimes omit word “active.” In SLAM, the environment
where the robot operates is unknown and shall be revealed by
the robot. Such a map can be represented, for instance, as a
discrete occupancy grid [6] or continuous landmarks [5]. In the
latter setting, typically the robot’s state comprises the robot’s
pose trajectory and the map to be estimated. In the landmark-
based SLAM the previous robot poses are not marginalized out
but kept to preserve the sparse structure of the belief. Another
related problem is SD. In this problem, a robot shall decide where
to deploy sensors to measure some spatially dispersed continu-
ous phenomenon, e.g., temperature. The map is represented by
a grid, such that the number of grid cells is the dimension of the
quantity of interest.

Both of these problems have a high-dimensional state. In the
SD problem, the state is of the dimension of the grid alongside
the robot pose. The number of grid cells can be arbitrarily
large. In the SLAM problem, in the case of a binary grid map,
the dimension is large since, typically, a satisfactory resolution
is desired. In the case of continuous landmarks representation,
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the robot gradually reveals more and more landmarks making
the state increasingly large.

Since the belief is to be maintained over a high-dimensional
state, it is not an easy task for an online operating robot. This
computational challenge in the context of planning is known as
curse of dimensionality. Moreover, with an increasing planning
horizon, the number of possible measurements and candidate
action sequences grows exponentially, assembling the computa-
tionally intractable decision making problem. This phenomenon
is usually regarded as the curse of history. Many research efforts
have targeted both curses.

Since typical high-dimensional BSP problems hold an enor-
mous computational burden, many methods exist to reduce
computational complexity and find an approximately optimal
solution. Let us mention a few. In robotics, the abundance of
possible future observations within the planning phase is often
resolved by the maximum likelihood (ML) assumption. Origi-
nally suggested for low-dimensional BSP by Platt et al.[7], it was
adopted to active SLAM [8], [9]. Yet, while widely used, taking
into account merely the most likely measurements episode is
highly unrealistic, particularly in the presence of significant
uncertainty. It is possible that the largest available reward is
not the most likely one, resulting in a substantial error in the
objective estimate and, consequently, a suboptimal autonomous
behavior. Stachniss et al. [10] sampled a single episode of
possible future observations. One standing-out approach to use
a number of sampled observations builds upon the reuse of
calculations between successive planning sessions, alleviating
the computational burden [11], [12]. Another approximation
in a high-dimensional BSP setting done by [11] and [12] is to
consider predefined static action sequences instead of policies.
Interestingly, this approximation is also implicitly done by all
methods utilizing ML observations or a single sample of the
future observations episode. This is because under a single future
observations episode assumption the candidate policy and prede-
fined static action sequence are the same. One more method [3]
along these lines leverages the structure of the belief over a high-
dimensional state to speedup BSP and does not compromise
performance at all. Notably, while the authors of [3] used ML
assumption, it is not an inherent limitation of the approach. An
additional example [13] is finding approximate POMDP solu-
tions through belief compression. This approach was designed to
reduce computational complexity for high-dimensional beliefs
and policies, but works with expected state-dependent rewards
and the extension to general belief-dependent rewards requires
clarification.

The artificial intelligence (AI) community is also engaged
in augmenting the classical POMDP formulation with belief-
dependent rewards. The journey started from ρ-POMDP [14]
and significantly advanced through time [15], [16], [17]. Com-
monly, these approaches seek to find an optimal policy instead
of predefined static action sequence.

Recent methods, merging both worlds, build upon the sim-
plification paradigm [18], [19], [20]. These simplification-based
methods finally relax limiting assumptions, e.g., Gaussian belief,
piecewise linearity, or Lipschitz continuity of the reward, and

permitted universal belief-dependent rewards, such as differen-
tial entropy of general beliefs. Since the differential entropy
operator acts over the belief, which can be parameterized in
various ways, e.g., Gaussian or set of particles, questions of
piecewise linearity, or Lipschitz continuity are vague and well
defined only when the state is discrete and the number of
possible state realizations is finite. In a continuous setting, they
shall be approached individually for each belief parameteriza-
tion. This fact discards many early approaches [14], [15] to
include belief-dependent rewards within POMDP. Another line
of simplification works alleviate the curse of dimensionality
in the setting of multivariate Gaussian distributions utilizing
sparsification [21], [22] and topological [23], [24] aspects. The
simplification paradigm was also applied with Gaussian-mixture
distributed beliefs [25], [26], [27].

Adaptivity is another important mechanism to identify re-
dundancies in the decision making problem and reduce the
computational effort [28].

All decision-making methods discussed above are concerned
with selecting the best action and disregarding the actual amount
of profit or risk entirely. However, the latter is essential, since
preventing the robot from performing unnecessary or self-
destructive operations is highly important. This gap can be filled
by introducing constraints into the decision-making formula-
tion. Some attempts to do so in the context of safe POMDPs
include chance constraints [29].

A general belief-dependent constraint, however, has not re-
ceived proper attention so far except in our previous work [30],
where we focused on safety and comparison to chance con-
straints, and not on the Information gathering tasks. Note
that chance constraints do not accommodate general belief-
dependent operators such as Information Gain (IG).

In this article, we continue to investigate the facets of
our proposed earlier framework [30] of belief-dependent
probabilistically constrained continuous POMDP. Motivated by
Information gathering, also called informative planning tasks,
we focus on the cumulative form of the constraint in the realm of
high-dimensional BSP. This is in contrast to the multiplicative
form as in our previous article. One of the specific applications
of our framework is stopping exploration. Moreover we
provably extend the simplification framework to both forms of
the constraints in our novel probabilistically constrained setting.
The first form is cumulative and the second is multiplicative.

There are attempts to use differential entropy gain as a
constraint to halt exploration in the problem of active SLAM [9],
[31]. However, it was only partially investigated since
algorithms solving BSP typically assume single observations
episode [1], [3], [9], [10] to alleviate the computational
burden. Stopping exploration is still regarded as an open
problem [31]. Importantly, we did not find any works relaxing
single observations episode assumption in the context of SD
problem [3], [22], [32] and informative planning [1].

Our probabilistic belief-dependent constraint of cumulative
form, which will become apparent later, generalizes previous
approaches. The naive way to threshold a belief-dependent
operator under partial observability is to do expectation with
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respect to observations. However, even this has gained less
attention so far and has not been done to the best of the
authors’ knowledge, due to the reason discussed above, single
observations episode assumption. In contrast to expectation
with respect to future observations, we propose a probabilistic
condition. Our proposed variant is sensitive to the distribution of
the belief-dependent constraint, which we call inner constraint,
while averaging with respect to future observations is not.

As opposed to a threshold on expectation with respect to
observations, we propose two conditions. Interior condition
thresholds using δ the belief-dependent operator (return) for
given sequence of possible future observations. The exterior
condition verifies that the interior one is satisfied with confidence
level of at least 1−ε. To rephrase it, we require that the frac-
tion of the observation sequences samples fulfilling the interior
condition will be at least 1−ε. In due course, we consider two
different problem formulations. In the first problem, δ is speci-
fied externally by the user. We coin this problem as optimality
under a probabilistic constraint. In the second problem, that
we name maximal feasible return, δ is a free parameter to be
maximized. In turn, our formulation and approach enable fast
adaptive maximization of value at risk (VaR) on top of a general
belief-dependent return. This problem is highly challenging due
to the fact that VaR is not a coherent functional [33].

Our contributions are fourfold. Below we list them down in
the same order as they are presented in the manuscript.

1) First, we utilize our probabilistically constrained belief-
dependent POMDP in the context of an information-
theoretic constraint. We focus on the IG, however, our
theory supports any other belief-dependent operator, e.g.,
difference between traces of covariance matrices of two
consecutive-in-time beliefs. We analyze the mutual infor-
mation (MI) constraint and ML observation approach ver-
sus our novel probabilistic constraint. Notably, we did not
find any works shifting the MI from the reward operator
to the constraint.

2) Second, we rigorously derive a theory of simplifica-
tion in the constrained setting. We emphasize that the
simplification paradigm has not been considered in this
setting before. Given a monotonically converging to
the belief-dependent constraint or/and reward bounds,
depending on context, our approach can be simplified,
gaining substantial speedup without any loss in perfor-
mance quality.

3) Third, we present an algorithm to maximize VaR adap-
tively utilizing the suggested theory. As we unveil in
this article, this enables the decision maker to save time
by adaptively expanding the lowest required number of
observation episodes without compromising the quality
of the solution.

4) Fourth, we apply our technique to a high-dimensional BSP.
In particular, our case studies are active SLAM and SD
problems.

The rest of this article is structured as follows. We start from
background and notations in Section II. Section III presents
our next step, that is, the in-depth discussion of the problem
formulation and our approach. In Section IV, we then present an

application of our methods. Section V presents the simulations
and results. Finally, Section VI concludes this article.

II. BACKGROUND AND NOTATIONS

By the bold symbols, we denote time vector quantities; by
�a:b, we mark series annotated by the time discrete indices run-
ning froma to b inclusive. The letter P symbolizes the probability
density function (PDF) and P the probability. By lowercase letter
we denote the random quantities or the realizations depending
on the context. For brevity, we sometimes replace E�[·|·] by
E�|·[·].

A. High-Dimensional BSP

Let us introduce the POMDP with belief-dependent rewards
named ρ-POMDP alias to BSP. The ρ-POMDP is a tuple
〈X,A,Z, T, O, ρ, γ, b0〉 where X,A, and Z denote state, ac-
tion, and observation spaces with x ∈ X, a ∈ A, and z ∈ Z
the momentary state, action, and observation, respectively.
T (x′, a, x)=PT (x′|x, a) is a stochastic transition model from
the past state x to the subsequent x′ through action a. Further,
γ ∈ (0, 1] is the discount factor, b0 is the belief over the initial
state (prior), and ρ(b, b′) is a general belief-dependent reward
depending on two consecutive in time beliefs. For conciseness,
let us denote interchangeably �k+ and �k:k+L−1, as well as
�(k+1)+ and �k+1:k+L. This article deals with static action
sequences of variable horizon L. Namely, our action space
is A � {ai

k:k+Li−1}
|A|
i=1. Our actions along a particular action

sequence are of different lengths. We also can think about such an
action sequence as a path P comprising motion primitives. Yet,
the action sequence is a much more general notion. So far, we
have described the classical components of POMDP. However,
in BSP, the observation model O(·) undergoes a customization
that will be apparent later. For now, we leave it undefined.

An autonomous robot deployed in an environment (possibly
unknown) repeatedly performs acting, sensing, and planning
sessions, up until it reaches the required goal or fails to do so as
we further formulate. In the planning phase, the robot relies on
the entire action-observation history. Let ht � {b0, a0:t−1, z1:t}
be the history, i.e, the set comprising the performed by the agent
actions a0:t−1 and obtained observations z1:t in an interleaving
manner up to time instant t, and the prior belief b0. To clarify,
we denote by t an arbitrary time instant and by k the time instant
of the current planning session. Such that if t ≥ k, the subscript
t regards to future time. Another representation of history is the
posterior belief. We define the posterior belief bt as a shorthand
for the PDF of the POMDP state, given all information up to
time instant t. The state is denoted by xt and the belief is
bt(xt) � P(xt|ht). In this article the belief converts the history
to a more convenient form, bt and can be used interchangeably
with ht, as opposed to our previous work [19].

Frequently, in BSP problems, the robot’s map is unknown
and therefore regarded as a random quantity. This allows the
robot to operate in unfamiliar environments. For the SLAM
problem we opt for landmarks map representation, so the robot’s
state is xt � (x0:t, {�j}M(k)

j=1 ), where x0:t are the robot poses,
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(a) (b) (c)

Fig. 1. Possible belief trees in continuous setting given βk+1:k+2. By purple and teal colors, we denote possibly different dimensionality of the observation as
explained in Section II-B. Thick yellow lace illustrates the observation sequence zk+1:k+2 (Section III-E). (a) Visualization of the belief tree given the realization
of βk+1:k+2 for action sequence ak+. Here, we show two samples of observations per propagated belief. Superscript designates the child number. This belief
tree supports policies and Bellman update. (b) In this belief tree the observation superscript designates the lace. (c) One possible realization of configuration is
β = (01011)T .

{�j}M(k)
j=1 are the landmarks and M(k) is the number of land-

marks the robot has observed until time instant k inclusive.
These landmarks represent the unknown robot’s environment,
specifically the map, to be estimated. To emphasize that j is not
a time index, we denote it by a superscript instead of a subscript.
Commonly, in SD problem the map is known. The robot moves
over the known map divided into cells. Many works assume
a deterministic transition model [1], [3], [22]. In contrast we
do not make this assumption and formulate the SD problem as
a complete POMDP with state comprising the robot position
xt ∈ R2 and the phenomenon of interest, vector ξ ∈ RN . Over-
all, the POMDP state is xt � (xt, ξ) = (xt, ξ

1:N ). Note that for
clear notation, cells in state are linearly indexed. The conversion
from a Cartesian index to linear does not pose a problem. Let
LinInd(·) be the function doing that.

B. Observation Configuration Random Vector and Model

In this section, we rigorously define a customized observation
model in BSP. The dimension of the observation in BSP planning
can vary in time. A typical reason for this variability is the
finite visibility radius or sensing range of the robot. In a SLAM
problem, the robot observes a subset of landmarks, whereas in
a SD problem, the robot’s position defines the observed cells,
a subset of sensors yielding the reading of the phenomenon of
interest. We denote by vector β the configuration of observed
landmarks or cells. Let us start from SLAM.

1) β for Active SLAM: Let βt ∈ {0, 1}M(k) be a random
vector of Bernoulli variables, statistically independent given
robot’s pose xt and a landmark, as will be shortly displayed
by (1) and (2). Its dimensionality is the number of landmarks
present in the belief. Each realization of βt defines a subset of
visible landmarks. Such a realization has ones at the indexes
of visible landmarks and zeros else, such that [β]j = 1∀j ∈
{jν}n(β)

ν=1 , where n(β) =
∑

j [β]j . (By [·]j we indicate the co-
ordinate j of a vector.) The superscript ν defines a subsequence
of indices jν of visible landmarks [Fig. 1(c)]. Let us clarify,
j1, j2, . . . represent, strictly increasing with ν, values of indexes
of enumerated landmarks resulting in a random set {jν}n(β)

ν=1 ,
such that jν = j(ν).

The mapping from the Boolean vector β to the random finite
set of indices {j1, j2 . . .} is invertible. Therefore, one can define
a probability over the random finite sets [34] instead of Boolean
vectors.

One way to define a probabilistic model for visible landmarks
configuration is as follows:

Pβ

(
[βt]

j = 1|xt, �
j
)

= 1{‖xt−�j‖≤r}
(
xt, �

j
)

Pβ

(
[βt]

j = 0|xt, �
j
)

= 1− 1{‖xt−�j‖≤r}
(
xt, �

j
)

(1)

where r is a visibility radius. Our approach is not limited to
this specific model and supports any other model; for instance,
in more complex scenarios (1) would imitate a camera field of
view. Equation (1) portrays that each landmark deterministically
has a visibility radius. If the robot is close enough, it receives a
signal from the landmark. Overall we arrive at the following:

Pβ

(
βt

∣∣xt, {�j}M(k)
j=1

)
=

M(k)∏

j=1

Pβ

(
[βt]

j |xt, �
j
)
. (2)

Here, we assumed that t ≥ k and the planner does not reveal
new landmarks in a planning session, that is, M(k) depends on
the present time k but not the future time t. We define now a
customized observation model for n(β) > 0 as

O(z,x,β) � P(z|x, {�j}M(k)
j=1 ,β) =

n(β)∏

ν=1

PZ

(
zν |x, �jν)

.

(3)

where x is the last robot pose in x.
2) β for SD: As we mentioned above, in SD problem the

variability of the dimension of observation stems from another
source. The dimension of β is the number of cells. Vector β
has one at the coordinates corresponding to the linear indexes
(converted from Cartesian index) of the grid where active sensors
yield an observation. The simplest model for β is as follows:

Pβ([βt]
j = 1|xt) = 1{LinInd(Cell(xt))==j}(xt)

Pβ([βt]
j = 0|xt) = 1− 1{LinInd(Cell(xt))==j}(xt) (4)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 16,2024 at 17:23:42 UTC from IEEE Xplore.  Restrictions apply. 



1688 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

describing that the observation is received from a single sensor
at the cell of the robot location. The Cell(xt) function returns
Cartesian indices of the cell there the robot is located. Overall
we have that

Pβ

(
βt

∣∣xt

)
=

N∏

j=1

Pβ([βt]
j |xt). (5)

The observation model for n(β) > 0 materializes as

O(z,x,β) � P(z|x, ξ,β) = PZ(zx|x)

n(β)∏

ν=1

PZ(zν |x, [ξ]j
ν

).

(6)

Now, we turn to the BSP objective to be maximized.

C. Objective

A common BSP objective is given by the following:

U(bk, ak+; ρ) = Eβ(k+1)+

[
U β(k+1)+(bk, ak+; ρ)

∣∣bk, ak+

]

(7)

where U β(k+1)+(bk, ak+; ρ) is

Ez(k+1)+

[
k+L−1∑

t=k

ρ(bt, bt+1)
∣∣bk, ak+,β(k+1)+

]
(8)

and where t is the running time index and k is the present
time instant. The inner expectation U β(k+1)+(bk, ak+; ρ) [see
possible belief trees in Fig. 1(a) and (b)] corresponds to the utility
given a static set of visible landmarks (SLAM problem) or active
sensors (SD problem), or another constellation of parameters
depending on the considered problem. Therefore, conditioned
on a sequence β(k+1)+, per time index, the dimension of the
observation is fixed (It can be different, however, for different
time indices). Thus, the expectation operator is well defined. The
outer expectation performs an average of such values, weighted
in terms of β(k+1)+ [Fig. 1(c)]. Note that while it is appealing
to fold the conditional expectations in (8) using the law of
total expectation, we cannot do that since the dimension of the
observation zt depends on each specific realization of βt.

To summarize this section, BSP accommodates continuous
spaces and varying dimension of observation conditioned on
state. To verify our algorithms in different scenarios we will
simulate both trees depicted in Fig. 1(a) and (b).

III. PROBLEM FORMULATION AND APPROACH

In this work, we define and tackle two novel problems. Both
problems are explicitly aware of the distribution stemming from
future observations and, therefore, are risk-aware.

A. Introducing Distribution Awareness into BSP

Our first problem formulation is the optimality under a prob-
abilistic constraint

a∗ ∈ arg max
ak+∈A

U(bk, ak+; ρ) subject to

P(c(bk:k+L; φ, δ) = 1|bk, ak+) ≥ 1− ε (9)

where c is the indicator variable over inner condition, as we will
shortly see, φ is the general belief-dependent operator, and δ and
0 ≤ ε<1 are scalars. The utility U in (9) conforms to (7). The
parameters δ and ε are supplied by the user.

The inner expression c(bk:k+L; φ, δ) in (9) can be of two
forms. The first (cumulative) form is as follows:

c(bk:k+L; φ, δ) � 1{(k+L−1∑
t=k

φ(bt,bt+1)

)
> δ

}(bk:k+L) (10)

and the second (multiplicative) is

c(bk:k+L; φ, δ) �
k+L∏

t=k

1{φ(bt)≥δ}(bt). (11)

Note, the strict inequality marked by the red color
in (10). Further, let us refer to the inner inequality
as the inner constraint and correspondingly the outer
inequality (9) as the probabilistic (outer) constraint. From
now on, let us denote constraining return and the actual
return operators as s(bk:k+L; φ)�

∑k+L−1
t=k φ(bt, bt+1) and

s(bk:k+L; ρ)�
∑k+L−1

t=k ρ(bt, bt+1), respectively. To encapsu-
late both cases ρ and φ we will denote s(bk:k+L; ·).

Now, we contemplate what will happen, if δ is a free parameter
and not predetermined as before. In this case we would like to
select action sequence corresponding to largest maximal feasible
return [actual or constraining s(bk:k+L; ·)] with probability of
at least 1−ε. That is, maximal δ yielding that, at most, a single
action sequence is feasible. With this insight in mind, we arrive
at our second problem formulation, which we named maximal
feasible return defined as follows:

a∗ ∈ arg max
ak+∈A

V(bk, ak+; ε) (12)

where the VaR expressed byV(bk, ak+; ε) = VaRε(s(bk:k+L; ·)|
bk, ak+) defined by

sup{δ : P(s(bk:k+L; ·) ≥ δ|bk, ak+) ≥ 1− ε}. (13)

It is noteworthy that in (13), we have nonstrict inner inequality
≥ δ (marked by the red color). We will need it further in our
approach. In contrast, in (10) the inequality involving δ is strict.
This aspect will be clear in the sequel. Moreover, inclusion
to or exclusion from the set in (13) of the δ that satisfies
P(s(bk:k+L; ·) = δ|bk, ak+) ≥ 1−ε does not impact the out-
come of supremum operator in (13).

Due to noncompliance to Bellman form of (13) computing
(12) is notoriously challenging.

B. Averaging With Respect to Observations

Another way to introduce a belief-dependent constraint to
POMDP would be by averaging with respect to observations.
Namely, the probabilistic constraint in (9) is replaced by the
condition C(bk, ak+; φ) > δ (Note also here that the inequality
is strict) given by

C(bk, ak+; φ)=Eβ(k+1)+

[
Cβ(k+1)+(bk, ak+; φ)

∣∣bk, ak+

]
>δ

(14)
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where Cβ(k+1)+(bk, ak+; φ) equals to

Ez(k+1)+

[
k+L−1∑

t=k

φ(bt, bt+1)
∣∣bk, ak+,β(k+1)+

]
. (15)

However, if one transfers the utility (7) to the constraint, in
other words, when ρ(·)≡φ(·) such a constraint appears to be
problematic. If U(·)≡C(·), we can always maximize the utility
and ask if the optimal utility is larger than δ (i.e.,U∗ > δ). In case
that maxak+∈A U(bk, ak+; ρ) ≤ δ, no feasible action sequence
exists in A. In general, this is the question of what one verifies
first, optimality or feasibility. As we shall further see, in some
cases the order does matter and we can save time by a fast
feasibility check and cancellation of action sequences.

One important operator related to the averaging with
respect to observations is MI. Assume that we can de-
duce β from the corresponding observation z. In this
case bt(xt) = P(xt|ht,β1:t). We shed light on this fact in
Section IV-A. Using this assumption, we can write (15)
as
∑k+L−1

t=k E
zk+1:t

[ E
zt+1|bt,at,βt+1

[φ(bt, bt+1)]
∣∣bk, ak+,βk+1:t].

Assume also that the belief is over the last robot pose and some
static-in-time random term, e.g., map in SLAM or phenomenon
of interest in SD. Let’s call this static-in-time random term χ.
Recall, that in our formulation of SLAM the robot does not reveal
new landmarks in a planning session, so the map is static-in-time
within planning. In SD the map is known and, therefore, is not
part of the state. Suppose a myopic setting and define

E
zk+1|bk,ak+,βk+1

[φ(bk, bk+1)] � MI(xk+1, χ; zk+1|bk, ak+,

βk+1) = E
zk+1|bk,ak+,βk+1

[−h(bk+1)]

+ h(P(xk+1, χ|bk, ak+,βk+1))
(16)

where the differential entropy of the belief h(b) is given by

h(b) � −
∫

x

b(x) log b(x)dx. (17)

We see that (16) is always nonnegative due to MI(·) ≥ 0. In
addition, differential entropy does not have units. At this point,
we arrive to the question of selecting a meaningful δ. Thanks
to the strict inequality in (14), we can set δ = 0 and catch
and discard the action sequences where the observations are
statistically independent from the state. This is highly unlikely,
however, that all the candidate action sequences will be not
feasible. Therefore, such a constraint hardly can serve as a
stopping exploration criterion.

If the robot is fully observable and the belief is solely over the
fixed-in-time-term χ as in SD, by defining φ as IG in the most
common sense

φ(b, b′) = IG(b, b′) = −h(b′) + h(b) (18)

we obtain a telescopic series in (15) and (15) equals to

E
z(k+1)+|bk,ak+,β(k+1)+

[−h(bk+L)+h(bk)]=MI(χ; zk+1|bk, ak+,β(k+1)+). (19)

We again observe that to define a meaningful δ besides δ = 0
and stop to explore will be problematic also here.

Let us now consider the belief is over the whole robot trajec-
tory and the fixed-in-time random term χ. If we utilize (18), we
obtain a telescopic series in (15), which becomes

Ez(k+1)+
[−h(bk+L) + h(bk)|bk, ak+,β(k+1)+]

= MI
(
x0:k+L, χ; z(k+1)+

∣∣bk, ak+,β(k+1)+

)

+ h
(
P(x0:k+L, χ|bk, ak+,β(k+1)+

)
. (20)

Here, with δ = 0 the robot can stop to explore if all candidate ac-
tions yield E

z(k+1)+|bk,ak+,β(k+1)+

[−h(bk+L)+h(bk)] ≤ 0. This

is because of the additional to MI(·) term in (20).
Now, we see the purpose of the strict inequality in (10).

This is to allow the robot to explore only if the cumulative
IG is nonnegative (δ = 0). We continue to debate the matter
of selecting δ in Section IV-C.

C. Single Observation Sample Approximation

Another option would be to use a ML episode of observations
zML

k+1:k+L and check (
∑k+L−1

t=k φ(bt, at, z
ML
t+1, bt+1))>δ, where

the ML observation zML
t+1 is obtained as follows. We start from

a ML state xML
t+1∈arg maxxt+1

P(xt+1|bt, at), and then find

βML∈arg maxβt+1
Pβ(βt+1|xML

t+1) (see Appendix A). This, in

turn, results in zML
t+1 ∈ arg maxzt+1

P(zt+1|xML
t+1,β

ML
t+1). The

ML assumption approximates the observations episode likeli-
hood as

P
(
z(k+1)+|bk, ak+

)
= δ

(
z(k+1)+ − zML

(k+1)+

)
(21)

where δ(·) is Dirac delta function. Note that the probability in
(13) can be written as
∫

z(k+1)+

P
(
{s(bk:k+L; ·) ≥ δ}|bk, z(k+1)+, ak+

)
·

P(z(k+1)+|bk, ak+)dz(k+1)+ =

∫

z(k+1)+

1{s(bk:k+L;·)≥δ}(bk+)

P(z(k+1)+|bk, ak+)dz(k+1)+. (22)

Plugging (21), this in turn yields the degeneration of the
probability in (13) to 1{s(bk:k+L;·)≥δ}(b

ML
k:k+L). In this case,

the set in (13) is {δ : 1{s(bk:k+L;·)≥δ}(b
ML
k:k+L) ≥ 1−ε}, so if

0 ≤ ε<1 the set above is {δ:δ ≥ s(bML
k:k+L; ·)} and sup{δ:δ ≤

s(bML
k:k+L; ·)} = s(bML

k:k+L, ·). We conclude that under the ML
assumption the expected return is equivalent to VaR with any
confidence level ε ∈ [0, 1). In fact, this applies for any single
sample approximation. We can conclude that using single sam-
ple approximation prevents the application of distribution aware
operators, such that VaR or conditional VaR (CVaR).

D. Comparison

Now we are back to our distribution aware setting. We can
interpret the difference between expected constraint (15) and
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our probabilistic risk-aware constraint (9) as follows. The con-
ventional constraint is unaware of the distribution of the cumu-
lative values of operator φ. It decides whether the constraint is
fulfilled or not solely using the expected value. The constraint’s
expected value may fail to represent the underlying distribution
adequately. In contrast, our formulation is distribution aware.
We explicitly regard the distribution of future laces of the beliefs
using parameters ε and δ.

In the following sections, we develop a universal theory to
evaluate the sample approximation of our proposed probabilis-
tic inequality (9) adaptively. On top of that, we expedite the
evaluation process even more by extending the simplification
paradigm to our setting, enjoying the substantially improved
celerity versus baseline approaches.

E. Adaptive Belief Tree

In reality to evaluate our probabilistic constraint in (9)
we shall marginalize over observation episodes, leverage that
P(c(bk:k+L; φ, δ) = 1|bk, ak+, z(k+1)+) = c(bk:k+L; φ, δ) and
solve

∫

z(k+1)+

c(bk:k+L; φ, δ)P(z(k+1)+|bk, ak+)dz(k+1)+. (23)

The integral in (23) is not accessible in a general setting. One way
to approximately evaluate the (23) is to sample from observation
likelihood P(z(k+1)+|bk, ak+). We assume that we have a fixed
budget m of samples of observation laces. Our aim is to use
the fact that we have a particular structure of the probabilistic
condition (23) and to address its evaluation while constructing
the belief tree, thereby saving valuable running time or providing
a more accurate solution.

Imagine a candidate action sequence ak:k+L−1. To approxi-
mate the utility and the probabilistic constraint (9), an online
algorithm at the root (for each candidate action sequence)
expands upon termination m laces appropriate to the drawn
observations {zl

k+1:k+L}ml=1. Through the article we label the
laces in the belief tree by the superscript l [yellow thick lace
in Fig. 1(a) and (b)]. Each lace l corresponds to a particular
realization of the sequence of the beliefs, return s(bk:k+L; ρ) or
constraining return s(bk:k+L; φ). The sample approximation of
(23) from m laces is

P̂(m)(c(bk:k+L; φ, δ) = 1|bk, ak+) =
1

m

m∑

l=1

c(bl
k:k+L; φ, δ)

(24)

and the outer constraint in (9) becomes

1

m

m∑

l=1

c(bl
k:k+L; φ, δ) ≥ 1− ε. (25)

We employ an already expanded part of the belief tree with m̃
laces to bound the expression of the probabilistic constraint (24)

from each end using the following adaptive lower bound

1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ)

︸ ︷︷ ︸
lb(1)

≤ 1

m

m∑

l=1

c(bl
k:k+L; φ, δ) (26)

and the upper bound

1

m

m∑

l=1

c(bl
k:k+L; φ, δ) ≤

ub(1)

︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ)

(27)

where, the algorithm already expanded m̃ ≤ m laces. By adap-
tivity, we mean the expanding lowest number of laces m̃ to
accept or discard the candidate action sequence.

F. Adaptive Simplified Constraint Evaluation

As introduced in [18], [19], [21], and [25], the simplification
paradigm seeks to ease the computational burden in the decision
making problem, while providing performance guarantees. The
latter is achieved by applying bounds over various quantities in
the decision making problem (e.g., bounds over a reward func-
tion). In this section, we extend this concept to our probabilistic
belief-dependent constrained POMDP setting (9) and (12).

Suppose we have adaptive deterministic bounds over φ,
i.e., these bounds hold for any realization of the beliefs. Further,
evaluating these bounds is computationally cheaper than the
operator φ. One example of such bounds can be found in [18]
and [20]. Let us present the main theorem of this section, which
will shed light on how these bounds can be utilized, propagating
their adaptivity further to the adaptive probabilistic constraint
evaluation.

Theorem 1 (Simplification machinery): Imagine a sampled
set of the observations laces {zl

k+1:k+L}ml=1. Assume that ∀l

φ
(
bl
�+1, b

l
�

)
≤ φ

(
bl
�+1, b

l
�

)
≤ φ

(
bl
�+1, b

l
�

)
. (28)

Let two forms of sampled inner constraint bounds variants be

c
(
bl
k:k+L; φ, δ

)
� 1{(k+L−1∑

t=k

φ(bt+1,bt)

)
> δ

} (bl
k:k+L

)
(29)

c
(
bl
k:k+L; φ, δ

)
� 1{(k+L−1∑

t=k

φ(bt+1,bt)

)
> δ

} (bl
k:k+L

)
(30)

for cumulative form (10) and

c(bl
k:k+L; φ, δ) �

k+L∏

t=k

1{φ(bt)≥δ}(b
l
t) (31)

c(bl
k:k+L; φ, δ) �

k+L∏

t=k

1{φ(bt)≥δ}(b
l
t) (32)

for multiplicative (11). Equation (28), in turn, implies that the
following inequalities are satisfied without dependency on the
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(a) (b)

Fig. 2. (a) Conceptual visualization of our simplification approach
(Section III-F). For clarity we show a myopic setting. Gradient displays the
PDF, i.e., a larger number of samples lands in the area of greater intensity. Using
the bounds, we want to assess whether the fraction of the sampled observation
laces above δ is at least 1−ε. As we see, we can invalidate the bottom sample φ
using solely the upper bound φ. In a similar manner, we can validate the upper
sample φ using solely the lower bound φ. Note that the width of the vertical
strip has no role in this visualization. (b) Simplification approach in this article
delegates the bounds over φ to the second layer bounds lb(2) and ub(2).

form and for any m:
m∑

l=1

c
(
blk:k+L;φ, δ

)
≤

m∑

l=1

c
(
blk:k+L;φ, δ

)
≤

m∑

l=1

c
(
blk:k+L;φ, δ

)
.

(33)

Importantly, this result holds with strict inequality in (10), (29),
and (30) denoted by the red color and nonstrict.

We provide a detailed proof of Theorem 1 in Appendix B.
Let us now show how to speed up the process of evaluation of

the probabilistic constraint from (9). The key component of the
acceleration is that the adaptivity of the bounds (28) is delegated
to adaptivity of the probabilistic constraint bounds (33). Assume
the bounds from (28) are adaptive, using insights provided by
Theorem 1, we first check if

1

m

m∑

l=1

c
(
bl
k:k+L; φ, δ

) ?︷︸︸︷
≥ 1− ε. (34)

If the above relation holds (marked by ?), we declare that the
outer constraint is fulfilled. Else, we probe if

1

m

m∑

l=1

c
(
bl
k:k+L; φ, δ

) ?︷︸︸︷
< 1− ε. (35)

If yes, we declare that the outer constraint is violated. In case
we are not able to say anything (both relations do not hold), we
tighten the bounds. In other words, we make the bounds closer to
the actual value of φ (e.g., by utilizing more particles [19], [20]
or mixture belief components [25]). We presented a visualization
of our simplification approach in Fig. 2.

Now our goal is to merge the insights gained in Section III-E
with the simplification. Clearly, from (26) and by substituting
m by m̃ in the left-hand side (LHS) of (33) we have that

1− ε

?︷︸︸︷
≤ 1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ)

︸ ︷︷ ︸
lb(2)

≤ 1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ)

︸ ︷︷ ︸
lb(1)

.

(36)

Similarly from (27) and right-hand side (RHS) of (33) the
following holds:

ub(1)

︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ) ≤

ub(2)

︷ ︸︸ ︷
m− m̃

m
+

1

m

m̃∑

l=1

c(bl
k:k+L; φ, δ)

?︷︸︸︷
< 1− ε. (37)

By a question mark, we denote the inequalities that shall be
fulfilled online to check whether the outer constraint is met
(36) or violated (37). If we cannot incur the status of the
outer constraint we shall add more laces (adapt the first layer
bounds lb(1), ub(1)) or/and tighten the bounds from (28) (adapt
the second layer bound lb(2), ub(2)). Such an approach permits
adaptive evaluation of the sample approximation of probabilistic
constraint in (9) manifested by (24) before expanding the m
laces of the belief sequences bk:k+L. After a finite number of
adaptation steps and smaller than or equal to m we guaranteed
to evaluate (25) in the exact way. Specifically, only one of the
inequalities (36) and (37) will be satisfied with some m̃. We
validate (25) using the lower bound (36) or invalidate it using
the upper bound (37). Using lb(1), ub(1), we save time that would
be spent on the m− m̃ laces that would be expanded if one
continues to sample the observation episodes (laces) up until
the budget of samples is reached, namely, m laces. In addition,
using lb(2), ub(2), we save time required to calculate the actual
operator φ instead of the bounds (28) for the expanded m̃ laces.

G. Adaptation

It occurs that the proposed bounds have riveting properties. To
describe a pair of lower (lb(1), lb(2)) and a pair of upper bounds
(ub(1), ub(2)) simultaneously, we omit the superscript. The lower
bound is bounded by zero 0 ≤ lb from below and the upper
bound is bounded by one ub ≤ 1 from above. When we adapt
the bounds, we add at most a single lace to the appropriate sum.
Therefore, the step of adaptation of the bounds is at most 1/m.
When we expand a single lace m̃← m̃+1, the lower bound
makes a step if c(bl

k:k+L; φ, δ) = 1, otherwise, the upper bound
makes a step if c(bl

k:k+L; φ, δ) = 0. Alternatively, when we
increase the simplification level, some already expanded laces
possibly switch from 0 to 1 (c(bl

k:k+L; φ, δ) for some l), con-
tracting the lower bound, and some from 1 to 0 (c(bl

k:k+L; φ, δ)
for some l), tightening the upper bound.

Importantly, when we expand a single observation lace and
calculate c(bl

k:k+L; φ, δ) we will obtain one with probability at
most P(c(bk:k+L; φ, δ) = 1|bk, ak+). Similarly, we will obtain
c(bl

k:k+L; φ, δ) = 0 at the new expanded lace with probability
at most P(c(bk:k+L; φ, δ) = 0|bk, ak+). Both these probabilities
are not accessible.

Further, we have four scenarios illustrated in Fig. 3. By
analyzing these scenarios, we can speculate about anticipated
speedup. In Fig. 3 we show by the red vertical line several
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(a)

(b)

(c)

(d)

Fig. 3. Visualization of adaptation from Section III-G. Note, in all scenarios
the value of dashed line is unknown. Red line represents the confidence level
1− ε to be satisfied with probabilistic constraint. (a) Conceptual illustration of
a challenging scenario. To accept such an action the lower bound shall go a long
way. (b) Conceptual illustration of an easy scenario, with a few contractions of
the upper bound, the action is discarded. (c) Another interesting situation, here
the upper bound shall go a long way to discard the action sequence. (d) With a
few shrinkage iterations the lower bound accepts the action sequence.

positions of the outer threshold 1−ε from (9). The first scenario,
shown in Fig. 3(a), is challenging. The value of (24) [shown
by green dashed vertical line in Fig. 3(a)] is unavailable to us
before the expansion of the m laces; therefore, no matter how
many iterations we perform, invalidation using the calculated
ub and (37) is not possible before reaching the budget of the
m laces; only validation using lb and (36) will eventually be
possible. As we observe, many contractions of the lb would
be required, as we see in Fig. 3(a) up until lb becomes larger
than 1−ε according to (36). Conversely, if with a large margin
the outer constraint is violated, as we see in Fig. 3(b), we discard
the action sequence with a few tightening iterations using ub
and (37). Note, the P(c(bk:k+L; φ, δ) = 0|bk, ak+) is large in
this case. We contemplate a similar behavior in reciprocal cases
[Fig. 3(c) and (d)]. To conclude the adaptation can be challenging
in cases described in Fig. 3(a) and (c).

The fact that we have a pair of lower (lb(1), lb(2)) and a pair
of upper bounds (ub(1), ub(2)) raises the question, which bound
from a pair shall we adapt if a pair is inconclusive. When we
cannot incur whether the outer constraint from (25) is fulfilled,
we shall decide to refine the bounds (lb(2), ub(2)) or add more
laces of observation episodes (refine lb(1), ub(1)). Luckily for

us, these two operations are parallelizable via multithreading.
We simultaneously refine the simplification levels, as in [18] of
the bounds, and add more laces up until the decision is possible.
Note that it will be problematic to parallelize (25) with respect
to m laces. Due to the high dimensionality of the belief it
will require an enormous memory capacity to hold all the m
laces of the beliefs simultaneously. In fact, even taking into
account sparsity aspects in SLAM, the number of variables is
extremely large in real world applications. In the SD problem,
the Information matrix is not anticipated to be sparse due to prior
belief. Let us also mention that m shall be as large as possible
due to the fact that larger m will increase the quality of sample
approximation pictured by (24).

To conclude this section, we proposed a two-layered approach
to ease the computational burden. The first layer expresses
adaptivity in terms of the number of observation laces. The
second layer permits utilization of the adaptive deterministic
bounds on realizations of φ.

One example of using our technique is to save time in open
loop planning or spend more time on the action sequences which
fulfill the probabilistic constraint. With such an approach, we are
able to cut down on the cost of exhaustively validating candidate
action sequences without any sacrifice in performance. Another
example is the closed loop setting, where we deal with policies.
This is, however, out of the scope of this article.

Thus far, we presented general theory, and now we specifically
address the second formulated problem (12).

H. Maximal Feasible Return

In this section, we develop an adaptive approach to identify an
action sequence and δ maximizing (25) for both flavors of the
inner constraint, i.e., cumulative (10) and multiplicative (10).
Yet, in this article we focus on maximizing the cumulative
form, which is motivated by IG along the planning horizon.
Our goal is to solve the sample approximation from m laces of
the formulated problem we named maximal feasible return (12).
Picture in your mind that you guess the δ and the step size Δ.
For clarity we drop the dependence of s on bk:k+L. However,
we shall remember that a single realization of s corresponds to
a single lace in the belief tree [Fig. 1(a) and (b)]. Observe the
following pair of relations:

P̂(m) (s ≥ δ|bk, ak+) ≥ P̂(m) (s ≥ δ + Δ|bk, ak+) (38)

P̂(m) (s ≥ δ|bk, ak+) ≤ P̂(m) (s ≥ δ −Δ|bk, ak+) (39)

where P̂(m)(s ≥ δ|bk, ak+) = 1
m

∑m
i=1 1{s>δ}(s

i). These re-
lations hold several interesting properties. Suppose, we ful-
fill the probabilistic inequality with δ0 for a subset of can-
didate action sequences, that is, P̂(m)(s ≥ δ0|bk, ak+) ≥ 1−ε
for {a2, a3} in Fig. 4(a). We shall increase δ0 to invalidate
more candidate action sequences up until a single candidate
action sequence is left. Before δ0 is increased to δ1, currently
invalidated candidate action sequences can be discarded for
eternity [{a1} in Fig. 4(a)], they will never fulfill the outer
constraint with δ2 > δ0 due to the never increasing step size
in our approach of alternating increases and decreases of δ.
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(a)

(b)

(c)

Fig. 4. Visualization of Algorithm 3. We never increase the step size. There-
fore, as we see, each candidate action sequence in the bottom visualization (c)
is shifted to the left relative to the situation displayed in the top (a). The action
sequence a1 can be safely discarded in the top illustration (a) (Section III-H).
The middle visualization marked by (b) portray the situation when Δ1 was too
large.

Now, suppose all action sequences violate the probabilistic
inequality with δ1, that is, 1−ε > P̂(m)(s ≥ δ1|bk, ak+) for all
the candidate action sequences [{a1, a2, a3} in Fig. 4(b)]. We
shall decrease the δ1 (but in a smaller amount) to render more
candidate action sequences feasible. If we will obtain δ2, such
that all the candidate action sequences besides the single one
are invalidated, we know that this candidate action sequence
maximizes (13). This happens in Fig. 4(b) with δ2. Crucially, all
the evaluations of the probabilities above we do using our adap-
tive simplification from Section III-F before actually expanding
the m laces.

This is the underlying principle of Algorithm 3. See visu-
alization in Fig. 4. As we see in Fig. 4, δ2 > δ0 so P̂(m)(s ≥
δ0|bk, ak+) ≥ P̂(m)(s ≥ δ2|bk, ak+). To the step size, we em-
ploy the bisection principle. To rephrase it, we adaptively solve

a∗k+, δ∗ = arg max
{ak+}

max
δ

δ

s.t. ∃ak+ ∈ A : P̂(m)(c(bk:k+L; φ, δ) = 1|bk, ak+)≥1−ε

s.t. δmin < δ ≤ δmax(bk) (40)

actually evaluating m laces of observations only in worst case
scenario. The δmin and δmax shall be supplied externally. Further,
we extensively debate how to set these parameters for informa-
tion gathering tasks. Crucially, in (40) we recognize why we need
nonstrict inequality for δ in (13). The candidate action sequences
satisfying the outer constraint with δmax must be accepted. Let us

highlight that δ∗�V̂aR
(m)

ε (bk, a∗k+), the sample approximation

Algorithm 1: Optimality Under Probabilistic Constraint (9)
ρ(·) ≡ φ(·).

of (13) for the optimal action sequence a∗k+ in (12) utilizing (24).
The formulation (40) is generalization of solving the maximal
feasible return problem portrayed by (12) for two forms of inner
constraints (10) and (11).

Note that depending on the scenario, it is possible that for

many candidate actions, but not all, the V̂aR
(m)

ε (bk, ak+) is close
to one of the edges of the bounds over δ. If it is a lower bound
δmin, we will be able to easily discard a candidate action ak+

(with appropriate ε regime) using Algorithm 3 as visualized in
Fig. 3(b). Conversely, if it is the upper bound δmax, it will be
easy to accept a candidate action as in Fig. 3(d).

Before we continue, to algorithms let us emphasize the impor-
tant points. In Appendix C, we discuss sample approximations
used in our proposed algorithms. To remove unnecessary clutter,
we formulate our algorithms for the first level bounds (26)
and (27). However, given the monotonically converging to φ
bounds as in (28), adjusting the algorithms does not pose a
problem. In addition, the approach described in this section
works also for solving (40) for a multiplicative form of the inner
constraint (10). This, however, is outside the scope of this article,
since in this article we focus on cumulative flavor (11). We are
ready for the next section, where we formulate algorithms to
tackle both of our formulated problems.

I. Algorithms

In this section, we present four algorithms. All the algorithms
receive as input the set of candidate action sequences. For both
our formulated problems, we propose our technique and describe
the baseline.
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Algorithm 2: Optimality of (7) Under Averaged Constraint
(14) (Baseline) ρ(·) ≡ φ(·), U(·) ≡ C(·).

1) Optimality Under Probabilistic Constraint: For the first
formulated problem (9), we adaptively check the feasibility of
all the action sequences and select the optimal one from the set of
feasible action sequences in Algorithm 1. If the condition in line
7 or 10 is not satisfied, it means that the Algorithm 1 will jump
to the next iteration of the loop in line 4 and expand one more
lace. This is in agreement with the explanation in Section II-
I-F. Sooner or later, for m̃(ak+) ≤ m, one of these conditions
will be met and Algorithm 1 will move to the next candidate
action. The competing approach is finding the optimal action
sequence and verifying feasibility afterward, see Algorithm 2.
Since Algorithm 2 uses expectation for constraint as in (15) and
Algorithm 1 uses our probabilistic constraint the selected best
action sequence can differ for two algorithms.

2) Maximal Feasible Return: Here, we propose our adaptive
method described in Section III-H and summarized in Algo-
rithm 3 and evaluate/compare it versus the brute force maxi-

mization of V̂aR
(m)

ε by Algorithm 4. Importantly, Algorithm 3
is formulated for both flavors of the inner constraint, i.e., cu-
mulative (10) and multiplicative (11). Algorithm 3 requires two
parameters δmin and δmax. The former, δmin, is a requirement.
The latter, δmax, has to be supplied externally for a particular
operator φ. In subsequent sections we extensively debate on
how to do that. If no candidate action sequence ak+ fulfills the
constraint with δmin we declare that no feasible solution exists.
For exploration purposes (in SLAM and SD problems) we only
care to select an optimal candidate action sequence maximizing
(40) and that δ∗ ≥ δmin. To save valuable time we will not
engage the optional hibiscus colored part of the Algorithm 3. In
this case the Algorithm 3 selects a∗k+ as in (40), but returned

δ∗ ≤ V̂aR
(m)

ε (bk, a∗k+). Note also that we need to expand a
single lace in line 3 of Algorithm 3 in order to try to verify
the (25) with a new value of δ before adding a lace in line 31.

Having introduced the algorithms we shall discuss possible
drawbacks and overhead.

Algorithm 3: Maximal Feasible Return (Bisection method).

J. Adaptation Overhead

In Algorithm 3 we shall evaluate the inner constraint and
sum up

∑m̃(ak+)
l=1 cl(bk:k+L; φ, δ) for multiple values of δ. This

necessitates to store
∑k+L−1

t=k φ(bl
t, b

l
t+1), in case of (10), and

{φ(bl
t)}k+L

t=k , in case of (11), for every expanded l. Accordingly,
the memory consumption is elevated, however, it does not re-
quire much memory, since these are one dimensional values.
Nevertheless, as we believed and verified by the experiments,
this overhead is neglectable compared with the time saved on
skipped laces due to loop closures in SLAM or determinant
calculation of a large matrix in SD, as we will further witness.
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Algorithm 4: Baseline Maximizing V̂aR
(m)

ε .

1: Input: A
2: a∗k+ ← undef, V̂∗(m) ← −∞
3: for each ak+ ∈ A do

4: Expand m laces and approximate V̂aR
(m)

ε

5: if V̂∗(m) < V̂aR
(m)

ε then

6: a∗k+ ← ak+, V̂∗(m) ← V̂aR
(m)

ε

7: end if
8: end for
9: Return a∗k+, V̂∗(m)

Furthermore, these additional operations can be easily paral-
lelized via multithreading.

We can, however, encounter a worst-case scenario. Imagine
the ε is close to 1 from the left. Many action sequences will
satisfy the probabilistic constraint. In general, we can say that
a more accurate precision of δ will be required to differentiate
between the action sequences since the working area is closer
to zero and the interval [0, 1−ε) is shorter. Therefore, more
iterations in Algorithm 3 will be required. Moreover, a pair
of action sequences may be extremely close to each other in

terms of V̂aR
(m)

ε , requiring a tremendous amount of iterations
of the Algorithm 3. To solve this issue, we shall introduce a final
precision.

In addition, adaptation of the bounds (28) can take some toll
in terms of time. This is out of the scope of this article.

K. Limitations and Drawbacks

Besides the drawbacks due to the adaptation and bookkeeping,
our approach requires knowledge of the number of laces to
be expanded m. We can fix that if ε = 0 (see [30]). Further,
the second layer bounds lb(2), ub(2) require externally supplied
adaptive bounds for the operator φ as in (28).

IV. APPLICATION TO BELIEF SPACE PLANNING

In this section, we apply our suggested theory to informative
planning. We focus on SLAM and SD, two problems with a
high-dimensional state under the umbrella of BSP. We express
the exploration problem with our framework (9) as well as
distributional aware high-dimensional BSP with (12).

A. Belief Structure

Let us delve into the mechanics of maintaining and up-
dating high-dimensional belief on top of a stochastic pro-
cess, sequential decision making. In this work we assume that
the data association is solved. Namely, in general, the belief
P(xk|b0, a0:k−1, z1:k) would be (see, e.g., [35] and [36])

∑

β1:k

P(xk|b0, a0:k−1,z1:k,β1:k)
P(β1:k|b0, a0:k−1,z1:k)∑

β1:k
P(β1:k|b0, a0:k−1,z1:k)

(41)

where the summation is over β1:k appropriate to dimension
of the corresponding observation z1:k. The dimension of ob-
servation always conveys the knowledge of number of visible
landmarks resulted to such an observation in SLAM or num-
ber of sensors producing an observation in SD. For example,
suppose the dimension of zk is 2. We shall only cover βk with
two ones in the summation. Moreover, as we will further see the
conditional PDF P(xk|b0, a0:k−1,x1:k,β1:k) is not defined well
if z1:k and β1:k disparate in terms of dimensions and number of
ones reciprocally.

In this work we, however, (as done in many works) assume
that the realization of the corresponding β is inferred exactly
from the given observation (emphasized by the red color in the
next equation). This simplifies the belief structure as such

P(xk|b0, a0:k−1, z1:k) = P(xk|b0, a0:k−1, z1:k,β1:k). (42)

With this insight in mind we define the belief as, bk(xk) �
P(xk|b0, a0:k−1, z1:k,β1:k). A standard and widely used tool
to maintain a high-dimensional belief in case of (42) is a factor
graph [37]. Its building blocks are the probabilistic motion and
observation models. These models induce probabilistic depen-
dencies over the state variables. The models are the factors that
comprise the factor graph. Below we separately elaborate on
specific aspects of belief structure for each considered problem.

1) Active SLAM: Applying Bayes rule to the belief, we get

bk(xk) ∝ b0(x0)
k∏

i=1

(
PT

(
xi

∣∣xi−1, ai−1

)
·

Pβ

(
βi

∣∣xi, {�j}M(i)
j=1

) n(βi)∏

νi=1

PZ

(
zνi
i

∣∣xi, �
jνi
)
)

. (43)

In this article, the stochastic motion and observation models for
SLAM are described by the following dependencies involving
Gaussian-distributed sources of stochasticity

xt+1 = f(xt, at; wt), wt ∼ N(0, Wt) (44)

zνt
t = g(xt, �

jνt
; vt), vt ∼ N(0, Vt) (45)

where Wt and Vt are covariance matrices. The landmarks con-
figuration model is as in (1) and (2). The prior belief b0(x0)
is assumed to be Gaussian. Similar to many other works [38],
to model the belief as a multivariate Gaussian we omit the∏k

i=1 Pβ(βi

∣∣xi, {�j}M(i)
j=1 ) terms and remain with

bk(xk) ∝ b0(x0)
k∏

i=1

⎛
⎝PT

(
xi

∣∣xi−1, ai−1
) n(βi)∏

νi=1

PZ

(
zνi
i

∣∣xi, �
jνi

)
⎞
⎠ .

(46)

Equation (46) can be illustrated as a factor graph [39]. All in all,
the overall belief (46) is modeled as a multivariate Gaussian and
such a representation is exact for linear models since we have a
quadratic function inside the exponent.

2) Sensor Deployment: In the SD problem the overall state
xk is a mix of a robot state xk and a state of the phenomenon of
interest ξ. The belief (givenβ1:k) in this case takes the following
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form:

bk(xk)∝
(∏n(βk)

νk=1 PZ(zνk

k |xk,[ξ]j
νk )
)
Pβ(βk|xk)PZ(zx

k |xk)·
∫

xk−1

(
(∏n(βk−1)

νk−1=1 PZ(zνk−1
k−1 |xk−1,[ξ]

jνk−1 )
)
· (47)

Pβ(βk−1|xk−1)PZ(zx
k−1|xk−1)PT (xk|xk−1, ak−1)·

(∫

xk−2

. . .
(∫

x0

b0(ξ, x0)PT

(
x1

∣∣x0, a0

)
dx0

)
. . . dxk−2

))
dxk−1.

Suppose that individual sensor observation model does not
depend on the robot state. Moreover, typically there is no reason
to assume that the prior of the quantity of interest ξ will be
statistically dependent on the initial robot position x0. In this
case b0(ξ, x0) = b0(ξ)b0(x0). This fact allows us to decompose
also (47) as bk(ξ, xk) = bk(ξ)bk(xk). Both beliefs bk(ξ) and
bk(xk) are given β1:k. Note that in general, if the belief is as in
(41), such a decomposition does not hold. Equation (47) splits
into two multiplicands bk(ξ) and bk(xk) as follows:

bk(ξ) ∝∏k
i=1

(∏n(βi)
νi=1 PZ(zνi

i |[ξ]j
νi )
)
b0(ξ) (48)

bk(xk)∝ Pβ(βk|xk)PZ(zx
k |xk)· (49)

∫
xk−1

(
Pβ(βk−1|xk−1)PZ(zx

k−1|xk−1)PT (xk|xk−1, ak−1)·

(
∫

xk−2
. . .
∫

x0
b0(x0)PT (x1|x0, a0)dx0. . . dxk−2)

)
dxk−1.

Importantly, the decomposition of bk(ξ, xk) into bk(ξ) and
bk(xk) and the dependence of each on different observations
from independent models (6) allows us to update the belief
separately for the quantity of interest ξ and robot pose xk. In
this work, the probabilistic models for SD problem adhere to

xt+1 = f(xt, at; wt) (50)

zνt
t = g(ξjνt

; vt), vt ∼ N(0, Vt) (51)

zx
t = xt. (52)

The noise of observation model (51) remains Gaussian as in
SLAM problem. If, in addition, b0(ξ) is a Gaussian, this enables
us to use standard well-researched solvers [38] to maintain the
belief displayed by (48).

Further, for clarity of the explanation and in order to focus on
the uncertainty of the quantity of the interest ξ, we will assume
that the robot state is discrete xt ∈ N2. In due course, the noise
wt in motion model (50) is also discrete. We will describe it
in depth in simulations section. In addition, for simplicity we
assume that the robot state is fully observable (52). This is not
an inherent limitation but only the choice to simplify simula-
tions. Another representation of (52) is PZ(zx|x)�δ(zx−x).
The sensors configuration model is as in (4) and (5). The initial
robot position is also known, namely, b0(x0) = δ(xgt

0−x0). This
fact, alongside the deterministic model for β (4) significantly
simplifies (49). Specifically, we have that bk(xk) = δ(zx

k−xk).
We model the prior belief for quantity of interest b0(ξ) as
Gaussian. This fact and the Gaussian noise in (51) yield that (48)

Fig. 5. New Information measure.

has another representation as a Gaussian since after linearization
inside the exponent we have a quadratic function [and this
representation is exact with linear g(·) in (51)]. We will need
this fact in the following section.

B. Information Measures

The forming point of informative planning is an information
measure. We first delve into well-known such measures for
Gaussian beliefs and, then, define our novel information measure
for general beliefs.

1) Gaussian Beliefs: One possibility to define such a mea-
sure is to utilize trace of the covariance matrix of the marginal
belief over the variables of interest. In such a case, commonly
the information is defined (known as minus T-criterion [9]) as
minus arithmetic mean of appropriate eigenvalues

I(b) = −1

d

d∑

i=1

λi(b) (53)

where d is the dimension of corresponding subset of the variables
of interest. Another possibility is to utilize differential entropy
h(b) given by (17). Differential entropy (17) was widely re-
searched by robotics community [40] in the context of mul-
tivariate Gaussian beliefs and led to the formulation of the
D-optimality criterion being the geometric mean of relevant
eigenvalues of the covariance matrix of the belief (the volume
of d-dimensional parallelepiped proportional to the volume of
a hyperellipse manifested by the covariance matrix). The infor-
mation becomes

I(b) = − d

√√√√
d∏

i

λi(b) (54)

where d is the dimension of the subset of the variables selected
from the Gaussian belief. Observe that when Information is
defined as in (53) or (54) it holds that I(b) ≤ 0 due to nonnegativ-
ity of eigenvalues of covariance matrices. Whereas differential
entropy (17) is unbounded. As we will further see to define
δmax for Algorithm 3 we will need that Information is bounded
from above. Motivated by this requirement we define a novel
Information measure for general beliefs.

2) General Beliefs: For general beliefs one possibility that is
common in AI community [41], [42] is to define the Information
as I(b) = −h(b). Let us restate that multivariate Gaussian beliefs
are not genuine limitation of our approach. The true requirement
is upper bound on the Information measure. We can easily
generalize for differential entropies on top of general beliefs by
defining the Information measure as I(b) = −eh(b). This way we
again obtain I(b) ≤ 0. Observe a visualization in Fig. 5. Further,
we assume that I(b) ≤ 0.
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C. Information Gain

Having defined above the Information we are ready to define
IG. Similar to [9], we define the operator φ as follows:

φ(b, b′) � IG(b, b′). (55)

There are various ways to define the IG over a pair of the
successive beliefs. One option is

IG(b, b′) � I′(b′)︸︷︷︸
≤0

−I(b) ≤ −I(b). (56)

Another possibility is to define relative IG as such

IG(b, b′) � I′(b′)− I(b)

−I(b)
≤ 1. (57)

Let us elaborate on subsets of variables of interest for the
calculation of (55). In a SLAM problem, since our focus is on
the uncertainty of the environment surrounding the robot, we
select all the landmarks as such a subset alongside the current
robot pose, {xt, {�j}M(k)

j=1 }. Since we do not add landmarks in
the planning session, the same dimensionality is preserved. With
Gaussian beliefs and (53) and (54) this is not necessary, however.
In the SD problem, we should take the belief over robot pose
and the quantity of interest {xt, ξ} (complete state). However,
since we assumed perfect observability for the xt, we take {ξ}.

D. Deciding δ, δmin, δmax, and ε

In this section, we elucidate the sense of parameters of
our approach separately for two of our problem formulations
(9) and (12). We start from optimality under a probabilistic
constraint (9).

1) Optimality Under a Probabilistic Constraint (Information
Gathering Tasks): This problem formulation requires that the
values of δ and ε are externally supplied. The ε, for example,
can be close to one from the left. In this regime the practitioner
enforces fulfilling the inner constraint with very high probability.
Another case is ε very close to zero from the right. In this regime
if there is a small chance of fulfilling the inner constraint, the
robot will take it. For instance, if there is a small chance of
decreasing uncertainty the robot will explore and will not stop.
We now turn to an in-depth explanation of a meaningful δ in
Information gathering tasks. For both problems under consid-
eration, SLAM and SD, the one meaningful inner threshold is
δ=0 since it is not profitable to continue exploration or deploy
the robot to operate online at all if it actually loses Information
(with probability of at least 1−ε). Then, the robot has already
deployed the candidate actions, with probability of at least 1−ε,
leading to negative cumulative IG are redundant. Using our
formulation (9) and (10) with δ = 0 the robot can recognize
to stop to explore the terrain (SLAM problem) or stop to deploy
and make the readings from the sensors (SD problem). Recall the
importance of the strict inequality in (10). The cumulative IG
(55) can be nonpositive due to following reason. When the robot
is active, at each time step, it increases the uncertainty due
to a stochastic robot motion and decreases it by obtaining an
observation. Note, however, that perfect robot observability in
the SD problem makes (55) always positive. It will be clearly
seen from the belief update discussed in Section V-C. If we

use (57) we can set δ to be the desired fraction of the initial
Information.

2) Maximal Feasible Return: The problem formulation (12)
requires only manually set ε. Here, the value 1−ε is a confidence
level of VaR for each candidate action sequence ak+. In other
words, the fraction of sampled laces that yield return larger than
VaR shall be at least 1−ε. To employ Algorithm 3 we require
to supply minimal (δmin) and maximal (δmax) threshold. Let us
unveil how we do that for the cumulative flavor of the inner
constraint (10) and the formulation of the problem of maximal
feasible return (12). In light of the previous discussion, we set
δmin = 0. Further, assume for the moment a myopic setting (L =
1). If (55) is in accord with (56), we elicit that the maximal
feasible δ is δmax(b) � −I(b). This means the uncertainty has
been reduced to zero in the resulting belief. To rephrase that, the
maximal Information has been reached. In this case robot can
cease to operate. Whenever (55) is in accord with (57), δmax�1.

In practice our approach (Algorithm 3) requires δmin and δmax

for the whole return s(bk:k+L; ·) for any L. With our definition
(56) this is not a problem since we obtain telescopic series. If
one uses (57) or deals with infinite horizons approximated by L
steps ahead, where IG(b, b′) = γI(b′)−I(b) [41], [42], δmax has
to be adjusted accordingly. Alternatively, we can define relative
IG for the terminal belief

IG(bk, ak+, z(k+1)+, bk+L) � I(bk+L)− I(bk)

−I(bk)
≤ 1 = δmax.

(58)

Having untangled these aspects, we are keen to demonstrate the
superiority of the proposed approach in the following section.

V. SIMULATIONS AND RESULTS

The previous discussion leads us to the actual implementation
and simulations of the proposed in Section III-I methods. It shall
be noted that in this article we simulate only the first layer prob-
abilistic constraint bounds (lb(1), ub(1)). Moreover, we address
in simulations only the cumulative form of the inner constraint
(10). To demonstrate the advantages of the approach, we applied
it on two incarnations of BSP. The first problem, we tackle, is
the active SLAM while navigating in unknown environments
to the goal. The simulation of this problem involves a highly
realistic SLAM scenario using the GTSAM library [43]. On
top of GTSAM wrapped for Python we use Julia language. Our
second problem under consideration is SD. We implemented the
simulations for SD purely in Julia language. In both problems
under consideration the belief is multivariate Gaussian and the
Information conforms to (54). Importantly, in our approach
(Algorithms 1 and 3) and the baselines (Algorithms 2 and
4), we use an identical sampling method (see Appendix C).
We also use the same seed per candidate action sequence in
the comparisons with the baselines. This is needed to simulate
identical sampling operations in baselines versus our methods
according to our theory presented in Sections III-E and III-F.
Before we proceed to simulations and results, let us present our
measures of acceleration.
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(a) (b)

Fig. 6. SLAM problem. (b) Separate, algorithmically selected paths to the goal
on top of (a) PRM. We show the path number on the vertex, which is removed
for finding the subsequent diverse paths. The last’s path number is shown at its
final vertex (the goal). Paths start from the vertex closest to the mean value of
the belief in the end of the preliminary mapping session. (a) PRM. (b) Obtained
diverse paths.

A. Acceleration Measures

The advantage of our proposed methods is acceleration with-
out compromising the solution quality. We calculate the speedup,
that is saved time relative to baseline time, using the following
equation:

tbaseline − tour

tbaseline
. (59)

We also do the same calculation in terms of laces. Namely,
number of skipped laces relative to the number of laces expanded
by the baseline

ntotal − nexpanded

ntotal
. (60)

Note that maximal values of (59) and (60) are 1. This means
that our approach skipped all the laces [nexpanded = 0 in (60)]
and run in zero time [tour = 0 in (59)]. Moreover, the toll due
to adaptation and added operations (added time divided by the
baseline running time) will be the difference of (60) and (59).

B. Active SLAM While Navigating to the Goal

The generation of candidate paths is not the focus of this
article. Therefore, we create candidate paths following a similar
procedure to [44]. First, we employ a well-studied probabilistic
road MAP (PRM) method [45]. Then, on top of PRM, to obtain
diverse shortest paths, we remove a single vertex from the
previous path and utilize breadth-first search on the reduced
PRM. The path generation requires only the boundaries of an
unknown map. In such a way, we obtain |A| diverse paths to
the goal of various lengths. These paths constitute the space of
action sequences A (Fig. 6b). To avoid confusion, we recite
that any other method for generating candidate paths would
be applicable to evaluate our proposed techniques. We illustrated
the described above in Fig. 6. Let us emphasize that the paths
generation depends on the starting vertex of PRM. For such a
vertex we select the closest in terms of �2 norm vertex to the
mean value of the belief (bk) in the beginning of the planning
session.

To keep the examination clear, we do not perform replanning
sessions. Instead, we have a preliminary mapping session with
manually supplied to the robot action sequence of unit length
motion primitives. In the preliminary session, the robot starts

from b0, detects the landmarks, incorporates them into its state,
and obtains the belief bk. This belief serves as input to the
planning session. After a single planning session, the robot
follows the chosen best path.

As mentioned in Section IV-A, we assume Gaussian sources
of stochasticity. The robot is described by a 2-D pose (posi-
tion and bearing angle), and the landmark is a 2-D point. Our
motion model (44) is a standard GTSAM odometry factor with
f(xt, at; wt) = xt ⊕ at+wt (where⊕ is a pose composition op-
erator) withWt = ‖a‖2 · diag(0.015, 0.015, 0.015). Our actions
are desired pose displacement, such that at = x̂t+1 � xt, where
x̂t+1 is a nominal subsequent robot pose and� is the difference
on manifold. Note that we need to multiply the motion model
covariance matrix by the action length since our actions are of
variable length. The observation (45) model is the bearing range
GTSAM factor with Vt = diag(0.001, 0.001). The boundaries
of our map are [0, 5]× [0, 5].

We utilize the popular incremental solver ISAM2 [38] to
maintain the belief. Noticeably, loop closures impose a com-
putational challenge even with such a sophisticated incremental
solver. Especially, since we need to perform inference for each
posterior node in the constructed belief tree. This fact makes
early eliminating or accepting actions highly important for effi-
cient robot’s operation.

The robot constructs a belief tree of the form presented in
Fig. 1(a) for each candidate path within planning session. With
each promotion of the depth of the belief tree, we reduce the
number of observations at each belief node by factor two, up to
a possible single observation at the lowest levels. Once the max-
imal number of observations of the belief node is expanded, we
maintain a circular slider that selects the subsequent observation
with the following arrival at this belief node. The IG in SLAM
problem is of the form of (56).

1) Optimality Under a Probabilistic Constraint: Following
the previous discussion, we continue with the experiments.
We start from our first problem (9) (optimality under a prob-
abilistic constraint) and study Algorithm 1 versus Algorithm 2.
In Algorithm 2 as opposed to Algorithm 1 we do not have
a mechanism for early action dismissing until we expand
all the observation laces per action sequence. In both Al-
gorithms ρ(·)≡φ(·). We examine a scenario with four land-
marks (Fig. 7). Our prior belief is Gaussain over the robot’s
pose b0∼N(μ0, Σ0) with the parameters μ0 = (5.0, 5.0, 0.0)T ,
Σ0 = diag(0.001, 0.001, 0.001). We show the preliminary map-
ping session with goal at (0.0, 0.0, 0.0)T in Fig. 7(a). We elicit
that, as anticipated, the uncertainty over the belief grows until the
robot makes a full square and starts to experience loop closures.
The path number 14 is highly likely to be optimal from an infor-
mation perspective since this path lies closest to the landmarks.
We employ Algorithm 1 with m = 300 laces per path from
Fig. 6(b), δ = 0.0 and various values of ε. We show a rigorous
comparison versus Algorithm 2 with same parameters besides ε
in Table I. Our resolution in terms of ε is Δε = 1/m. Empirically
we found that for ε ∈ [0, 0.023], without dependency on m
as expected, all the paths were discarded as unfeasible (seven
from 300 laces given path 14 violated the inner constraint).
Meaning, no path is present with the fraction of the sampled laces
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TABLE I
OPTIMALITY UNDER PROBABILISTIC CONSTRAINT

(a) (b)

Fig. 7. (a) Robot’s first preliminary mapping session, by transparent gray
circles, we depict landmarks’ visibility radius. The robot starts at the top right
corner and moves toward the bottom left corner making two full squares. As we
can see, the robot passed inside the visibility radius of the landmarks, detected
them and incorporated them to its state. We show covariance ellipses for current
robot poses. The landmarks visibility radius is 0.8. By the dashed line we connect
estimated robot pose with ground truth. (b) Algorithm 2 and Algorithm 1 both
selected path number 14 from Fig. 6(b) as optimal. We recognize that a pair of
landmarks nearest to starting position (5, 5) of preliminary mapping session in
Fig. 7(a) greatly contribute to uncertainty diminishment since the robot twice
made a loopclosure there.

larger than1−0.023 fulfilling inner constraint. For ε ≤ 0.023our
probabilistic constraint discards all candidate action sequences,
but expected IG is larger than 0. This means that the expected
IG is positive, whereas not all the laces yield positive IG. Our
formulation is able to catch that. In Fig. 7(b), we display the robot
following the identified best path. Note that with Algorithm 1,
we do not accelerate decision making when we cannot discard
action sequences. We shall note that due to internal GTSAM
multithreading, measuring the time speedup is a challenging
task. To alleviate that we repeat each run in Table I five times
with identical set of seeds for candidate action sequences and
report averaged running time and the speedup obtained from it.
Remarkably, from the bottom line of Table I we observe that
with extremely loose probabilistic constraint (ε = 0.9) we do
not eliminate any action sequence but the running time is not
larger than the baseline. This fact indicates that the overhead
from adaptation is so small that it was consumed by differences
in running time along the trials. For more experiments with
Algorithm 2, please refer to the Appendix E.

2) Maximal Feasible Return: We continue to our second
problem (maximal feasible return (12)). As explained in Sec-

tion IV-D, we set δmin = 0 and δmax(bk)= d

√∏d
i λi(bk). We set

the final precision of Algorithm 3 to δmax(bk) · 10−6. Let us
increase the number of landmarks to obtain more informative
candidate paths for Information gathering. We show our second

(a) (b)

Fig. 8. (a) Robot second preliminary mapping session, by transparent gray
circles encapsulated in dashed lines we depict landmarks’ visibility radius. As
we can see that robot detected the landmarks and incorporated to its state. The
landmarks visibility radius is 0.8. We also show ellipses of the beliefs over
corresponding to the time robot pose and the final landmarks uncertainty. The
shaded ellipses correspond to one standard deviation. Note that if the ellipse
for the landmark is not shown, this means that the robot has not seen this
landmark, and such a landmark is not a part of the state. (b) Illustration of
the third preliminary mapping session with randomly drawn landmarks. At each
trial we draw randomly the landmarks positions.

preliminary mapping session, with the same parameters as the
previous one, in Fig. 8(a). Here we need many paths with
nonegative IG to examine using Algorithm 3 early acceptance
as well and not only early invalidation as was done in previous
section. With a second preliminary mapping session [Fig. 8(a)],
the starting vertex for path generation did not change. Thus, we
received the candidate paths identical as in Fig. 6(b). Impor-

tantly, the paths with V̂aR
(m)

ε ≤ δmin are discarded for eternity

(if exist at least single path with V̂aR
(m)

ε > δmin) with the first
arrival of Algorithm 3 to line 7. So, more demanding for the
Algorithm 3 simulation in terms of acceleration would be to

come up with as many candidate paths with V̂aR
(m)

ε > δmin as
possible. Our baseline is Algorithm 4, which calculates VaR in
a straightforward way. We report results in Table II, again using
same set of seeds for candidate action sequences per trial. In
Fig. 9(a) we visualize the execution of the optimal path and in
Fig. 9(b) we display the robot trajectories sampled in planning
session. Both these figures correspond to the configuration of
ε = 0.3 in Table II. In addition, note in Table II that δ∗ returned
with Algorithm 3 is slightly less than one returned with Al-
gorithm 4, except when ε=0.5. This is an expected result as
we explained in Section III-I. We did not engage customary
part of Algorithm 3. The fact that when ε = 0.3, our approach
(Algorithm 3) returned larger δ∗ we think is a result of the
accuracy of Julia language library sample approximation of

V̂aR
(m)

ε used in baseline method (Algorithm 4).
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TABLE II
SOLVING MAXIMUM FEASIBLE RETURN PROBLEM (12) FOR SLAM ON TOP OF 30 CANDIDATE PATHS [FIG. 6(b)] WITH SCENARIO PRESENTED IN FIG. 8(A)

TABLE III
ANALYSIS OF THE BEHAVIOR WITH RANDOMLY DRAWN LANDMARKS

(a) (b)

Fig. 9. This figure corresponds to the first row of the Table II, namely, ε = 0.3.
(a) Algorithm 4 and Algorithm 3 both selected path number 8 from Fig. 6(b) as
optimal. (b) Here by the thick green line we show the candidate path sequence.
Note that here we show actual candidate path from Fig. 6(b). This path is
converted to candidate action sequence of increments. By the thin lines of various
colors we visualize the robot trajectories in planning session.

We also have an additional simulation with randomly drawing
landmarks. In this simulation each trial has different set of
seeds for candidate actions. For GTSAM stability purposes we
add random landmarks uniformly on the square [2, 5]× [2, 5].
We also slightly changed the preliminary action sequence
[Fig. 8(b)]. Results are presented in Table III. As we witness
from Tables II and III, we mostly obtain a significant speedup.
Yet, early action elimination appears to be more prominent than
early accept. The reader can find the explanation why this is
happening at the end of Section III-H.

Fig. 10. Visualization of the scenario for verifying that ML observation
assumption can be destructive. Robot starts to plan from b0. Each landmark
has prior shown by light green circle and the visibility radius shown by gray
circle with dashed line.

3) Maximum Likelihood Observation: Successively, we
shall verify that m observation laces are needed and we indeed
loose quality of decision making using a single ML observation.
Note that this was already shown by [12]. Toward this end,
we simulate the scenario presented in Fig. 10. The robot does
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TABLE IV
SOLVING MAXIMUM FEASIBLE RETURN PROBLEM (12) FOR SENSOR DEPLOYMENT WITH SCENARIO PRESENTED IN FIG. 13

(a) (b)

Fig. 11. (a) Execution of the optimal action sequence number 30 selected by
Algorithm 4 with ε = 0.5 and m = 728. (b) Execution of the optimal action
sequence number 14 selected by Algorithm 4 with ε = 0.5 and ML assumption.

not do any preliminary actions, but each landmark has a prior.
The belief for planning bk is prior belief b0 with parameters
μ0 = (0.0, 0.0, 0.0)T , Σ0 = diag(0.001, 0.001, 0.001). The
starting vertex for paths generation was identical as in Fig. 6(b),
so the obtained candidate paths are also as in Fig. 6(b).

We apply Algorithm 4 for planning with ε = 0.5 and compare
m = 728 with an ML assumption. As we recognize in Fig. 11(a)
and (b), the two settings result in different optimal paths. With
an ML assumption, Algorithm 4 identified the path number 14

as the best with V̂aR
ml

0.5 = 0.036, whereas for path number 30

the objective was V̂aR
ml

0.5 = 0.032. In contrast, using m = 728
observation laces, Algorithm 4 selected the path number 30 as

the best, with V̂aR
(728)

0.5 = 0.032, whereas for path number 14 the

objective was V̂aR
(728)

0.5 = −0.014. We witness that for path 14
the ML observation fails to adequately represent the underlying
distribution.

C. Sensor Deployment

There are up to L sensors that should be scattered in a larger
area. For the sake of simplicity, we discretize the area into an
n×n grid. The robot takes a path of length of L cells. In each cell,
it can deploy the sensor and make a reading or just make a reading
if there is already a sensor there, or do nothing if the sensor
can not be deployed in this cell. We still want to measure the
quantity of interest in this cell leveraging statistical dependence
between the cells. Using linear indices, all random variables of
interest from an n×n field are combined to a random vector of
size N . Our prior belief b0(ξ) has covariance Σ0 ∈ RN×N with
N�n2. For simplicity, we assume that a single sensor at the
robot sighting contributes to the observations. Meaning, β has

(a) (b)

Fig. 12. (a) Conceptual illustration of our scenario and the transition model
structure for SD problem. In time index t− 1 the robot take an action ↑ and
by time t, the robot can be in one of the purple cells. The intensity designate
the chance to be there. The red cells are not suitable for deploying the sensors.
(b) Example of candidate paths for SD problem. By red opaque color we mark
cells which are nonsuitable for deploying a sensor. However, we still desire to
measure the quantity of interest in these cells using statistical dependence of the
cells.

(a) (b)

Fig. 13. ξ ∈ R1600 (a) Covariance of b0(ξ); (b) Zoom in.

single 1 in the cell of the robot’s current location if there is a
sensor in this cell and all the rest zeros. Our observation model is

PZ(z|ξ,β) � N(z;βT · ξ, σ2). (61)

If no sensor is located in a cell, the β is all zeros, such a cell
will not produce an observation and the robot will perform next
action. With the observation model (61), the belief update is
exact, as we describe in Appendix D. We implemented the belief
update by ourselves and not used GTSAM library [43]. As we
witness in (70) of Appendix D, the Information (covariance)
matrix does not depend on the actual observation but only
depends on the robot pose, which yielded the corresponding
observation through dependence of the observation model on
β, so that the IG in this case also depends only on the robot
pose. This is happening since our observation model (61) is
linear and noise variance σ2 does not depend on the state (ξ).

In this problem solely for simplicity we utilize the relative
IG and select (58) as a return. Our action space of motion

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 16,2024 at 17:23:42 UTC from IEEE Xplore.  Restrictions apply. 



1702 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

primitives consists of nine possible actions A = {a1, . . . , a9},
such that a1 = (1, 0)T , a2 = (−1, 0)T , a3 = (0, 1)T , a4 =
(0,−1)T , a5 = (1, 1)T , a6 = (−1, 1)T , a7 = (1,−1)T , a8 =
(−1,−1)T , and a9 = (0, 0)T . The agent is fully observable
with the following motion model xt+1 = xt+at+wt. At the
places far enough from the fringes of the map the wt follows
P(wt) =

∑9
i=1 Piδ(wt−ai), where Pi can be any probabilities

[see Fig. 12(a)]. Close to the fringes of the map we leave only
allowed actions and renormalize the above PDF accordingly.
One possibility is to take a weight as a value of Gaussian
with covariance matrix Σt, and the mean μt = 0. We have that
P(wt) =

∑9
i=1

N(ai;0,Σ)∑9
i=1N(ai;0,Σ)

δ(wt−ai), where by N(�; μ,Σ)

we denote Gaussian distribution evaluated at the point �. For the
candidate path creation we sample uniformly actions from our
action space [see an example in Fig. 12(b)]. The belief tree in
this problem is as in Fig. 1(b). In Fig. 13, we show the covariance
of the prior belief b0(ξ). We select n = 40, thereby our grid is of
the dimension 40×40, resulting in ξ ∈ R1600. We present results
for the maximal feasible return problem (12).

1) Maximal Feasible Return: We set δmin = 0, δmax = 1 and
compare Algorithm 3 versus Algorithm 4. With perfect robot
observabiltiy in SD the uncertainty can only decrease as we
observe from the belief update (70). Therefore, the IG is always
nonnegative. We present results in Table IV. We observe sub-
stantial speedup in all configurations. The best speedup of 0.81
was obtained with ε = 0.9 since many candidate paths yielded

V̂aR
(100)

0.9 = 1.0 due to very low noise in observation model. In
baseline approach Algorithm 4 it is impossible to catch such a
situation. Note that since we simulate a new covariance matrix
each trial, we obtain a different best path and δ∗. We do not
show these values in Table IV, however, as in SLAM, typically δ∗

returned by Algorithm 3 is slightly smaller than the one returned
by Algorithm 4. This is a direct result of not engaging customary
part of our approach (Line 11 in Algorithm 3) as explained in
Section III-I-2.

D. Technical Details

We used four computers with the following characteristics:
1) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50 GHz with 80 GB of RAM;
2) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50 GHz with 64 GB of RAM;
3) 16 cores 11th Gen Intel(R) Core(TM) i9-11900 K working

3.50 GHz with 64 GB of RAM; and
4) 32 hardware threads AMD Ryzen 9 7945HX with 32 GB

of RAM.

VI. CONCLUSION

We presented a novel adaptive technique for two problems,
BSP with probabilistic belief-dependent constraints and BSP
with VaR as an objective. Both problems are relevant in the
context of Information gathering tasks. On top of that, we prov-
ably extended the simplification paradigm of decision making
problems to our setting. Our rigorous theory is summarized
by two novel adaptive algorithms, solving optimality under a

probabilistic constraint problem and the maximal feasible return
problem where we adaptively maximize VaR. Our algorithms are
guaranteed to return an identical-quality solution in a fraction of
the baseline running time. In addition, our framework provides
a mechanism for stopping exploration, which would happen
either when all candidate action sequences do not satisfy the
constraint (25) in Algorithm 1, or, in the second considered
problem (Algorithm 3), when the upper bound of a maximum
feasible return is achieved (δmax). Extensive simulations show
the superiority of our methods. In the exceptionally challenging
problems of active SLAM and SD, both with a high-dimensional
state, we obtained a typical speedup of 30%. In the SD prob-
lem we obtained maximal speedup of 81% when the noise of
observation model is very small. Our acceleration is entirely
harmless regarding the quality of the decision making. The same
action is always calculated as the corresponding, not accelerated,
approach. Future work includes applying our approach to finding
a maximal feasible multiplicative inner constraint.

APPENDIX A
THEORETICAL OBSERVATION LIKELIHOOD

To express the observation in terms of probabilistic models
available to our disposal we marginalize over the xt+1

P(zt+1|bt, at,βt+1)P(βt+1|bt, at)

=

∫

xt+1

P(zt+1|bt, at,βt+1,xt+1)· (62)

P(xt+1|bt, at,βt+1)P(βt+1|bt, at)dxt+1

=

∫

xt+1

P(zt+1|bt, at,βt+1,xt+1)·

P(xt+1|bt, at)Pβ(βt+1|xt+1)dxt+1. (63)

All quantities in (63) are available. Such a representation enables
us to draw the observations in look-ahead step t + 1.

APPENDIX B
PROOF OF THEOREM 1 (SIMPLIFICATION MACHINERY)

We first provide the proof for the strict inequality in (10)
and then explain changes that need to be done for the nonstrict
inequality (10) to support our adaptive approach for problem
(12) as stated after (40). It is sufficient to show that the following
holds for every sample zl

k+1:k+L:

c(bl
k:k+L; φ, δ) ≤ c(bl

k:k+L; φ, δ) ≤ c(bl
k:k+L; φ, δ). (64)

Let us start from the left inequality of (64). We shall prove that
c(bl

k:k+L; φ, δ)−c(bl
k:k+L; φ, δ) ≤ 0. Assume in contradiction

that ∃bl
k:k+L, φ(·), φ(·), δ, such that

c(bl
k:k+L; φ, δ)− c(bl

k:k+L; φ, δ) > 0. (65)

The fact that c, c ∈ {0, 1} implies that this is equivalent to
c(bl

k:k+L; φ, δ) = 1 and c(bl
k:k+L; φ, δ) = 0. For the inner con-

straint of the form (10), this can happen if and only if
(
∑k+L−1

t=k φ(bl
t+1, b

l
t)) > δ and (

∑k+L−1
t=k φ(bl

t+1, b
l
t)) ≤ δ. We
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behold a contradiction to the LHS part of (28), namely, the
contradiction to the fact that φ(·) ≤ φ(·).

Subsequently, for the multiplicative flavor (11), inequality
(65) is equivalent to the existence of t, such that φ(bl

t) < δ (to
render c = 0). In the same time ∀t it must hold that φ(bl

t) ≥ δ
(to render c = 1) producing again a contradiction to the LHS
part of (28).

To prove the right inequality of (64), we shall prove that
c(bl

k:k+L; φ, δ)−c(bl
k:k+L; φ, δ)≤ 0. We can bear out the desired

result by switching the roles of c(bl
k:k+L; φ, δ) to c(bl

k:k+L; φ, δ)

and c(bl
k:k+L; φ, δ) to c(bl

k:k+L; φ, δ) in (65) and arguing in
a similar manner using φ and the RHS part of (28). To fix
the proof for the nonstrict inequality as in (13), one needs to
change the inequalities marked by the red color from strict to
nonstrict and vice versa. This concludes the proof. Note that
we also land at an identical result (convergence almost surely)
for theoretical counterparts of following probabilities and not
sample approximations by taking the limits:

lim
m→∞

1

m

m∑

l=1

c(bl
k:k+L; φ, δ) ≤ lim

m→∞
1

m

m∑

l=1

c(bl
k:k+L; φ, δ)

(66)

lim
m→∞

1

m

m∑

l=1

c(bl
k:k+L; φ, δ) ≤ lim

m→∞
1

m

m∑

l=1

c(bl
k:k+L; φ, δ).

(67)

�

APPENDIX C
SAMPLE APPROXIMATIONS

The core of our sample approximations is sequential sam-
pling the observations from P(zt+1|bt, at,βt+1) using previ-
ously sampled βt+1∼P(βt+1|bt, at). Following the theoretical
derivation presented in Appendix A, we leverage the structure
verified by (63) in the following way.

1) SLAM: First, we sample the last pose and the landmarks
from the corresponding marginal of the belief. Our belief is
Gaussian, thus, we just pull the appropriate portion of the
covariance matrix and the mean value followed by sampling
from (xt+1, {�j}M(k)

j=1 )o∼P(xt+1, {�j}M(k)
j=1 |bt, at). Afterward,

we sample βt+1 using (2) and draw samples of the observation
lace from the observation model (3).

2) Sensor Deployment: In SD problem we have that

P(xt+1|bt, at) =

∫

xt

P(xt+1|xt, bt, at)P(xt|bt)dxt

=

∫

xt

PT (xt+1|xt, at)δ(xt − zx
t )dxt = PT (xt+1|zx

t , at).

(68)

Having sampled the state from (68), we can sample βt+1 from
(5) and the observation from (6).

Finally, the sample approximation of U and C are denoted by

Û(m)
and Ĉ(m)

, respectively, and calculated by sample means of

{s(bl
k:k+L)}ml=1; V̂aR

(m)

ε is obtained by sample quantile.

(a) (b)

Fig. 14. SLAM problem. (b) Algorithmically selected paths to the goal on top
of denser (a) PRM. We show the path number on the vertex, which is removed
for finding the subsequent diverse path. The last’s path number is shown at its
final vertex (the goal). (a) PRM (b) Obtained diverse paths.

APPENDIX D
SENSOR DEPLOYMENT BELIEF UPDATE

For completeness of this article, in this section, we develop
an exact belief update for SD problem with observation model

as in (61), namely, PZ(z|β · ξ) =
exp(− 1

2 ‖σ−1(βT ·ξ−z)‖22)
σ
√

(2π)
, where

vector β has one at the linear index of coordinate of the cell that
resulted in this observation. Now, we need to update the belief
with an action a and the observation z. Without loosing general-
ity, suppose we have Gaussian bk−1(ξk−1) with mean μk−1 and
covariance Σk−1. Our goal is to update it with observation. We
have that bk(ξk) ∝ PZ(z|βT · ξ)bk−1(ξk−1). As we explained
in Section IV-A-2, the above expression will be an another
Gaussian with mean ξ∗, which is a unique solution to ξ∗ =

arg minξ ‖σ−1(βT ξ − z)‖22+‖Σ−1/2
k−1 (ξ − μk−1)‖22. Rearrang-

ing the terms, the previous equation becomes

ξ∗ = arg min
ξ
‖Ăξ − b̆‖22 (69)

where Ă =
(

σ−1βT

Σ
−1/2
k−1

)
, b̆ =

(
σ−1z

Σ
−1/2
k−1 μk−1

)
and Ă has a full col-

umn rank with number of rows larger than number of
columns. Solving the least squares problem (69), we have that
ξ∗ = (ĂT Ă)−1Ăb̆ and

Λk = ĂT Ă = Λk−1 + βσ−2βT (70)

where Λk = Σ−1
k is the unique Information matrix of the desired

Gaussian. From (70), we see that at each time, we increase the
diagonal value of Λk−1 corresponding to the active sensor.

APPENDIX E
ADDITIONAL SIMULATIONS

In this section, we show additional simulations of Algorithm
2 applied to the problem of active SLAM. The prelimiary robot
mapping section is as in Fig. 7(a).

We first experiment with Algorithm 2 on top of the PRM as in
Fig. 6(a) and paths from Fig. 6(b). From Table V, we infer that,
indeed, the sensitivity to the number of samples is low. Using
only ten observation laces, Algorithm 2 identified path 14 as
optimal. Note that we can not recognize such a behavior before
planning with m = 200 observation laces. The reason for such
good decision making using a tiny amount of the samples of
the observation episodes is that the best candidate path is far in
terms of the objective from other paths. To verify this claim, we
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TABLE V
IN THIS SIMULATION THE δ = 0 AND NUMBER OF CANDIDATE PATHS IS 30

TABLE VI
IN THIS SIMULATION THE δ = 0 AND NUMBER OF CANDIDATE PATHS IS 50

make PRM denser, as shown in Fig 14(a), and find 50 candidate
diverse paths (Fig. 14(b)). We present results in Table VI. As
we see in Table VI, increasing the number of sampled laces m
changes the selected optimal path.
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No Compromise in Solution Quality: Speeding Up
Belief-dependent Continuous POMDPs via Adaptive
Multilevel Simplification

Andrey Zhitnikov1, Ori Sztyglic2, and Vadim Indelman3

Abstract
Continuous POMDPs with general belief-dependent rewards are notoriously difficult to solve online. In this paper, we
present a complete provable theory of adaptive multilevel simplification for the setting of a given externally constructed
belief tree and MCTS that constructs the belief tree on the fly using an exploration technique. Our theory allows to
accelerate POMDP planning with belief-dependent rewards without any sacrifice in the quality of the obtained solution.
We rigorously prove each theoretical claim in the proposed unified theory. Using the general theoretical results, we
present three algorithms to accelerate continuous POMDP online planning with belief-dependent rewards. Our two
algorithms, SITH-BSP and LAZY-SITH-BSP, can be utilized on top of any method that constructs a belief tree externally.
The third algorithm, SITH-PFT, is an anytime MCTS method that permits to plug-in any exploration technique. All our
methods are guaranteed to return exactly the same optimal action as their unsimplified equivalents. We replace the
costly computation of information-theoretic rewards with novel adaptive upper and lower bounds which we derive in this
paper, and are of independent interest. We show that they are easy to calculate and can be tightened by the demand of
our algorithms. Our approach is general; namely, any bounds that monotonically converge to the reward can be utilized
to achieve significant speedup without any loss in performance. Our theory and algorithms support the challenging
setting of continuous states, actions, and observations. The beliefs can be parametric or general and represented by
weighted particles. We demonstrate in simulations a significant speedup in planning compared to baseline approaches
with guaranteed identical performance.

Keywords
Decision-making under Uncertainty, Belief Space Planning, POMDP, Belief-dependent Rewards, Planning with
Imperfect Information

1 Introduction

E FFICIENTLY solving Partially Observable Markov
Decision Processes (POMDPs) implies enabling

autonomous agents and robots to plan under uncertainty
(Smith and Simmons 2004; Kurniawati et al. 2008; Silver
and Veness 2010; Ye et al. 2017; Sunberg and Kochenderfer
2018; Garg et al. 2019). Typical sources of uncertainty are
the imprecise actions, sensor type, sensor noise, imprecise
models, and unknown agent surroundings. However, solving
a POMDP is notoriously hard. Specifically, it was proven to
be PSPACE-complete (Papadimitriou and Tsitsiklis 1987).

The actual POMDP state is hidden. Instead, at each time
step, the robot shall decide which action to take based on the
distribution over the state, given the corresponding history
of performed actions and observations received so far. Such
a distribution received the name “belief”. In a planning
session, the robot has to take into account all possible
future actions interleaved with possible observations. Each
such future history of the length of predefined horizon
defines a lace of the future beliefs (blue lace in Fig. 1) and
corresponding cumulative rewards named return. Solving
POMDP in the most common sense means finding a mapping
from belief to action called policy, which maximizes the
expected return.

Earlier offline solvers such as (Smith and Simmons 2004;
Kurniawati et al. 2008) are applicable to small or moderately

sized discrete POMDP. These methods require passage over
all possible states and observations (Kochenderfer et al.
2022) since they are built on value iteration of α-vectors,
so called full-width methods (Silver and Veness 2010).
More recent online solvers are suitable for POMDPs with
large but discrete action, state, and observation spaces (Ye
et al. 2017; Silver and Veness 2010). Still, continuous state,
action, and observation spaces remain to be an open problem
(Sunberg and Kochenderfer 2018). Another challenging
aspect of solving POMDP and the subject of interest in
this paper is general belief distributions represented by
weighted particles. Further in the manuscript we will regard
the combination of both, nonparametric beliefs and a fully
continuous POMDP as a nonparametric fully continuous
setting.
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Figure 1. Schematic visualization of the belief tree and the
inplace simplification. The superscript in this visualization
denotes the index in the belief tree. By bs we denote the
simplified version of the belief b.

In a fully continuous setting with parametric or general
beliefs one shall resort to sampling of future possible actions
and observations. In a sampled form, this abundance of
possible realizations of action-observation pairs constitutes
a belief tree. Building the full belief tree is intractable since
each node in the tree repeatedly branches with all possible
actions and all possible observations as illustrated in Fig. 1.
The number of nodes grows exponentially with the horizon.
This problem is known as the curse of history.

The reward function in a classical POMDP is assumed to
have a specific structure, namely, to be the expectation with
respect to the belief of the state-dependent reward function.
While alleviating the solution, this formulation does not
support more general, belief-dependent reward functions,
such as information-theoretic rewards.

However, POMDP planning with belief-dependent
rewards is essential for various problems in robotics and
Artificial Intelligence (AI), such as informative planning
(Hollinger and Sukhatme 2014), active localization (Burgard
et al. 1997), active Simultaneous Localization and Mapping
(SLAM) (Stachniss et al. 2005), Belief Space Planning
(BSP) (Indelman et al. 2015; Van Den Berg et al. 2012;
Platt et al. 2010). The authors of (Araya et al. 2010)
provide an extensive motivation for general belief-dependent
rewards. One of the widely used such rewards is Information
Gain, which involves the difference between differential
entropies of two consecutive in time beliefs. Such a reward
is crucial in exploration tasks because, in these tasks, the
robot’s goal is to decrease uncertainty over the belief. For
instance, uncertainty measures such as differential entropy
and determinant of the covariance matrix of the belief
cannot be represented as expectation over a state-dependent
reward with respect to the belief. Another example of a
belief-dependent reward is entropy over discrete variables
that correspond to data association hypotheses (Pathak
et al. 2018). Computationally-efficient information-theoretic
BSP approaches have been investigated in recent years,
considering Gaussian distributions (Kopitkov and Indelman
2017, 2019; Elimelech and Indelman 2022; Kitanov and
Indelman 2024).

Yet, POMDP planning with general belief-dependent
rewards in particular, when the beliefs are represented by

particles exacerbate the computational challenge of the
solution even more. For example information theoretic
rewards such as differential entropy, are computationally
expensive.

Let us focus for the moment on differential entropy. Even
if the belief is parametric but not Gaussian, calculating
the exact value of differential entropy involves intractable
integrals. This fact also motivates to use a weighted particles
representation for the belief. In this case differential entropy
can be estimated, for instance by Kernel Density Estimation
(KDE) (Fischer and Tas 2020) or a model-based estimator
(Boers et al. 2010). However, these estimators have quadratic
cost in the number of samples and are usually the bottleneck
of planning algorithms. The reason is that this increased
computational burden is incurred for all nodes in the belief
tree. Importantly, the estimation errors of these estimators
with respect to differential entropy over theoretical belief
are out of the reach due to the unavailability of both, the
theoretical belief and the entropy on top of it. Yet, due to
the convergence of the belief represented by particles to
the theoretical belief (almost sure convergence (Crisan and
Doucet 2002)), the mentioned above estimators converge
to the exact differential entropy. This prompts us to use
as many belief particles as possible to get closer to the
theoretical belief. Nevertheless, increasing the number of
belief particles severely impacts planning time.

In this paper we accelerate online decision making in
the setting of nonparametric fully continuous POMDPs
with general belief dependent rewards. Crucially, planning
performance of our accelerated approach is the same as that
of the baseline approaches without our acceleration. Before
stating our contributions, we review the most relevant works
in this context.

1.1 Related Work
Allowing general belief-dependent rewards in POMDP while
solving such a problem efficiently is a long standing effort.
Some previous seminal works such as ρ-POMDP (Araya
et al. 2010; Fehr et al. 2018) as well as (Dressel and
Kochenderfer 2017) have focused on discrete domains,
small sized spaces and have tackled the offline solvers.
Furthermore, these approaches are limited to piecewise
linear and convex or Lipschitz-continuous rewards. Another
work named POMDP-IR (Spaan et al. 2015) suggest an
interesting framework for specific form of information
rewards involving manipulations on the action space. Still,
in (Araya et al. 2010; Fehr et al. 2018; Dressel and
Kochenderfer 2017) the state, action and observation spaces
are discrete and small sized. Another line of works is Belief
Space Planning (BSP) (Platt et al. 2010; Van Den Berg
et al. 2012; Indelman et al. 2015). These approaches
are designed for fully continuous POMDPs, but limited
to Gaussian beliefs. In striking contrast, our approach is
centered in the more challenging fully continuous domain
and nonparametric general beliefs represented by particles
while at the same time our framework is general and supports
also exact parametric beliefs.

One way to tackle a nonparametric fully continuous
setting with belief dependent rewards is to reformulate
POMDP as a Belief-MDP (BMDP). On top of this
reformulation one can utilize MDP sampling based methods
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such as Sparse Sampling (SS) proposed by Kearns et al.
(2002). However, this algorithm still suffers from the curse
of history and such that increasing the horizon is still
problematic.

Monte Carlo Tree Search (MCTS) made a significant
breakthrough in overcoming the course of history by
building the belief tree incrementally and exploring only
the “promising” parts of the tree using the exploration
strategy. An inherent part of MCTS based algorithms is
the exploration strategy designed to balance exploration and
exploitation while building the belief tree. Most widely used
exploration technique is Upper Confidence Bound (UCB)
(Kocsis and Szepesvári 2006).

MCTS algorithms assume that calculating the reward over
the belief node does not pose any computational difficulty.
Information-theoretic rewards violate this assumption. When
the reward is a general function of the belief, the origin
of the computational burden is shifted towards the reward
calculation. Moreover, in a non-parametric setting, belief-
dependent rewards require a complete set of belief particles
at each node in the belief tree. Therefore, algorithms such
as POMCP (Silver and Veness 2010), and its numerous
predecessors are inapplicable since they simulate each time
a single particle down the tree when expanding it. DESPOT
based algorithms behave similarly (Ye et al. 2017), with the
DESPOT-α as an exception (Garg et al. 2019). DESPOT-α
simulates a complete set of particles. However, the DESPOT-
α tree is built using α-vectors, such that they are an
indispensable part of the algorithm. The standard α-vectors
technique requires that the reward is state dependent, and the
reward over the belief is merely expectation over the state
reward. In other words, DESPOT-α does not support belief-
dependent rewards since it contradicts the application of the
α-vectors.

The only approach posing no restrictions on the
structure of belief-dependent reward and not suffering from
limiting assumptions is Particle Filter Tree (PFT). The
idea behind PFT is to apply MCTS over Belief-MDP
(BMDP). The authors of (Sunberg and Kochenderfer 2018)
augmented PFT with Double Progressive Widening (DPW)
to support continuous spaces in terms of actions, states
and observations, and coined the name PFT-DPW. PFT-
DPW utilizes the UCB strategy and maintains a complete
belief particle set at each belief tree node. Recently,
Fischer and Tas (2020) presented Information Particle Filter
Tree (IPFT), a method to incorporate information-theoretic
rewards into PFT. The IPFT simulates small subsets of
particles sampled from the root of the belief tree and
averages entropies calculated over these subsets, enjoying a
fast runtime. However, differential entropy estimated from a
small-sized particle set can be significantly biased. This bias
is unpredictable and unbounded, therefore, severely impairs
the performance of the algorithm. In other words, celerity
comes at the expense of quality. Oftentimes, the policy
defined by this algorithm is very far from optimal given
a time budget. Fischer and Tas (2020) provides guarantees
solely for the asymptotic case, i.e, the number of subsampled
from the root belief state samples (particles) tends to infinity.
Asymptotically their algorithm behaves precisely as the PFT-
DPW in terms of running speed and performance. Yet, in
practice the performance of IPFT in terms of optimality can

degrade severely compared to PFT-DPW. Moreover, Fischer
and Tas (2020) does not provide any study of comparison
of IPFT against PFT-DPW with an information-theoretic
reward. Another undesired characteristic of IPFT is that the
averaging of the differential entropies is done implicitly and
the number of averaged entropies per belief is the visitation
count of the corresponding belief. Therefore, to properly
compare IPFT with PFT-DPW one shall increase the number
of simulations inside IPFT algorithm. We explain this
aspect more thoroughly in Section 8.3.5. Prompted by these
insights, we chose the PFT-DPW as our baseline approach,
which we aim to accelerate. In contrast to IPFT designed
specifically for differential entropy, our approach is suitable
for any belief dependent reward and explicitly guarantees an
identical solution to PFT-DPW with an information-theoretic
reward, for any size of particle set representing the belief and
serving as input to PFT-DPW.

The computational burden incurred by the complexity
of POMDP planning inspired many research works to
focus on approximations of the problem on top of existing
solvers, e.g., multilevel successive approximation of a
motion model (Hoerger et al. 2019), lazy belief extraction
on top of a particle based representation (Hoerger and
Kurniawati 2021), linearity based solvers (Hoerger et al.
2020), and averaging differential entropy estimated from
tiny subsets of particles (Fischer and Tas 2020). Typically,
these works provide only asymptotical guarantees (Hoerger
et al. 2019; Fischer and Tas 2020), or no guarantees at
all. In addition many of these approximations leverage the
assumption that the belief-dependent reward is an averaged
state-dependent reward, e.g, (Hoerger et al. 2019; Hoerger
and Kurniawati 2021), and therefore cannot accommodate
belief dependent-rewards with general structure (e.g. do not
support information-theoretic rewards such as differential
entropy).

Recently, the novel paradigm of simplification has
appeared in literature (Zhitnikov and Indelman 2022b;
Barenboim and Indelman 2022, 2023; Zhitnikov and
Indelman 2024; Sztyglic and Indelman 2022; Elimelech and
Indelman 2022; Shienman and Indelman 2022; Kitanov and
Indelman 2024; Lev-Yehudi et al. 2024). The simplification
is concerned with carefully replacing the nonessential
elements of the decision making problem and quantifying
the impact of this relaxation. Specifically, simplification
methods are accompanied by stringent guarantees. A
prominent aspect of a simplification paradigm is the usage
of the bounds over the reward or the objective function.
As opposed to approximations, the simplification framework
always keeps some sort of connection to the original
unsimplified problem and by that provides deterministic
guarantees relative to the given solver. Despite that various
objective function bounds have been practiced in (Ye
et al. 2017; Smith and Simmons 2004; Walsh et al.
2010; Kochenderfer et al. 2022), these techniques are not
applicable in the realm of belief-dependent rewards and
a fully continuous setting. In addition commonly these
approaches assume that the state dependent reward is
trivially bounded from below and above by some constant.
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1.2 Contributions

This work is about accelerating online decision making
while obtaining exactly the same solution as without
acceleration. Specifically, we contribute an adaptive multi-
level simplification framework that accounts for belief-
dependent rewards, possibly nonparametric beliefs, and
continuous state, observation and action spaces.

Our framework accepts as input adaptive monotonical
and computationally inexpensive bounds over the exact or
estimated reward. Given such reward bounds, it accelerates
online decision-making. Specifically, given such adaptive
monotonical reward bounds, it is possible to adaptively
bound the value function for any given policy and expedite
decision-making. If the value function bounds for different
candidate policies do not overlap, we do not pay in terms of
quality, namely, we obtain the same solution as the equivalent
unsimplified method. In the case these bounds do overlap,
then we can progressively tighten them by invoking a process
that we shall call simplification adaptation or resimplification
until they no longer overlap.

Our techniques return exactly the same solution as
the unsimplified equivalent. Such an unsimplified baseline
can correspond to decision-making problems where the
reward can be exactly calculated (analytically), or where
the reward is estimated. In either case, if the bounds
over the corresponding reward are provided and satisfy
the assumptions stated in Section 3.3, one can apply
our framework to speedup the decision making process
while obtaining the same best action as with the original
rewards instead of the bounds. Such a capability is therefore
particularly appealing in light of the information-theoretic
rewards that are essential in numerous problems in robotics,
but are often the computational bottleneck.

Further, there are two settings that we separately and
explicitly discuss in this paper. We start from a given belief
tree, that can be constructed by a POMDP solver that is not
coupled with the solution, e.g., SS. In this setting we can
prune branches of the belief tree whenever the mentioned
objective bounds for different candidate policies or actions
do not overlap.

We then discuss an anytime setting of MCTS, where the
belief tree construction is coupled with the solution due to
an exploration strategy (e.g. UCB). The exploration strategy
builds upon an exploratory objective. Since the exploratory
objective typically requires access to the objective estimates
to select an action at each arrival to a belief node, we cannot
prune suboptimal candidate actions. Instead, we can only
dismiss them until the next arrival to this belief node. The
simplification and reward bounds are used here to bound the
exploratory objective and the value function at the root of the
belief tree.

Finally, we focus on a specific simplification of
nonparametric beliefs represented by particles and a
differential entropy estimator as the reward function. Our
simplification is subsampling of the original belief to a
smaller sample size. We contribute novel computationally
cheaper bounds over the differential entropy estimator on top
of such a simplified belief and incorporate these bounds into
our framework. By that we produce a specific embodiment
of the general framework presented earlier.

To summarize, we list down the contributions of this work,
in the order they are presented in the manuscript.

1. Building on any adaptive monotonically convergent
bounds over belief-dependent reward, we present in
this paper a provable general theory of adaptive mul-
tilevel simplification with deterministic performance
guarantees.

2. For the case of a given belief tree as in Sparse
Sampling, we develop two algorithms, Simplified
Information Theoretic Belief Space Planning (SITH-
BSP) and a faster variant, LAZY-SITH-BSP. Both
are complementary to any POMDP solver that
does not couple belief tree construction with an
objective estimation while exhibiting a significant
speedup in planning with a guaranteed same planning
performance.

3. In the context of MCTS, we embed the theory
of simplification into the PFT-DPW algorithm and
introduce SITH-PFT. We provide stringent guarantees
that exactly the same belief tree is constructed by
SITH-PFT and PFT-DPW. We focus on a UCB
exportation technique, but with minor adjustments, an
MCTS with any exploration method will be suitable
for acceleration.

4. We derive novel lightweight adaptive bounds on
the differential entropy estimator of (Boers et al.
2010) and prove the bounds presented are monotonic
and convergent. Moreover, these bounds can be
incrementally tightened. We believe these bounds are
of interest on their own. The bounds are calculated
using the simplified belief (See Fig. 1). We emphasize
that any other bounds fulfilling assumptions declared
in Section 3.3 can be utilized within our framework.

5. We present extensive simulations that exhibit a
significant improvement in planning time without any
sacrifice in planning performance.

This paper is an extension of the work presented in (Sztyglic
and Indelman 2022), which proposed novel adaptive bounds
on the differential entropy estimator of (Boers et al. 2010)
and introduced the simplification paradigm in the context of
a given belief tree. To be precise we explicitly clarify how
this work differs from the conference version of this paper
(Sztyglic and Indelman 2022). In this version, we extend
the simplification framework to the rewards depending on a
pair of consecutive-in-time beliefs, e.g., Information Gain as
opposed to the conference version where such an extension
was only mentioned. In this version, we provide alternative
proof of these bounds and prove that these reward bounds are
monotonic. In the setting of a given belief tree we present an
additional algorithm, that we call LAZY-BSP. This algorithm
is faster than SITH-BSP suggested in (Sztyglic and Indelman
2022). Importantly, we extend our simplification framework
to support also anytime MCTS planners. Additionally, we
provide extensive performance evaluation of our methods in
simulations.

1.3 Paper Organization
The remainder of this paper is structured as follows. Section
2 provides background in terms of POMDPs, theoretical
objective and commonly used objective estimators. We
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devote Section 3 to our general adaptive multi-level
simplification framework. In Section 4 we consider a given
belief tree setting in which the belief tree construction
is not coupled with the solution. In Section 5 we
delve into the MCTS approach in the context of our
multilevel simplification. In Section 6 we consider a specific
simplification and develop novel bounds on an information-
theoretic reward function. Section 7 assesses the general
adaptation overhead of our methodology. Finally, Section 8
presents simulations and results corroborating our ideas. In
order not to disrupt the flow of the presentation, proofs are
presented in appropriate Appendices.

2 Background
In this section we present the background. To elaborate, we
present a POMDP with belief dependent rewards followed
by theoretical and estimated objectives that correspond to
different online POMDP solvers. Our techniques work with
estimated objectives.

2.1 POMDPs with Belief-dependent Rewards
A POMDP is a tuple

〈X ,A,Z, T,O, ρ, γ, b0〉 (1)

where X ,A,Z are state, action, and observation spaces,
respectively. In this paper we consider continuous state,
observation and action spaces. T (x, a, x′) = PT (x′|x, a) is
the stochastic transition model from the past state x to
the subsequent x′ through action a, O(z, x) = PO(z|x) is
the stochastic observation model, γ ∈ (0, 1] is the discount
factor, b0 is the belief over the initial state (prior), and ρ is the
reward function. Let hk = {b0, a0, z1, . . . , ak−1, zk} denote
history of actions and observations obtained by the agent up
to time instance k and the prior belief. The posterior belief at
time instant k is given by bk(xk) = P(xk|hk).

In our generalized formulation, the reward is a function of
two subsequent in time beliefs, an action and an observation:

ρ(bk, ak, zk+1, bk+1)= (1− λ)ρx(bk, ak, bk+1)+ (2)

+λρI(bk, ak, zk+1, bk+1), (3)

where λ ≥ 0. The first reward component ρx(bk, ak, bk+1)
is the expectation over the state and action dependent
reward r(xk, ak) or r(ak, xk+1). Correspondingly, these two
possibilities yield

ρx(bk, ak, bk+1)= E
xk∼bk

[r(xk, ak)]≈ 1

nx

nx∑

ξ=1

r(xξk, ak), (4)

or

ρx(bk, ak, bk+1)=E
xk+1∼bk+1

[r(ak, xk+1)]≈ 1

nx

nx∑

ξ=1

r(ak, x
ξ
k+1).(5)

which is commonly approximated by sample mean using
nx samples of the belief. The second reward component
ρI(bk, ak, zk+1, bk+1) is an information-theoretic reward
weighted by λ, which in general can be dependent
on consecutive beliefs and the elements relating them,
e.g. information gain or specific estimators as (Boers et al.

2010) for nonparametric beliefs represented by particles. For
instance, in Section 6.1 we consider the entropy estimator
introduced by Boers et al. (2010). As will be seen in the
sequel, although the theoretical entropy is only a function
of a single belief bk+1, the mentioned estimator utilizes bk,
ak, zk+1 and bk+1; hence the second reward component,
ρI(bk, ak, zk+1, bk+1), depends on these quantities.

The policy is a mapping from belief to action spaces ak =
πk(bk). Let π`+ be a shorthand for policy for `− k + L
consecutive steps ahead starting at index `, namely π`:k+L−1
for ` ≥ k.

2.2 Theoretical Objective
The decision making goal is to find an optimal policy πk+
maximizing the value function as such:

V (bk, πk+) s.t. b`+1 = ψ(b`, π`(b`), z`+1), (6)

where V (bk, πk) is defined by

E
zk+1:k+L

[ k+L−1∑

`=k

γ`−kρ(b`,π`(b`),z`+1,b`+1)|bk,πk+
]

(7)

and ψ is the Bayesian belief update method. Utilizing the
Bellman formulation (7) takes the form of

V (bk, πk+) = E
zk+1

[
ρ(bk, πk(bk), zk+1, bk+1)|bk, πk

]
+

+γ E
zk+1

[
V (ψ(bk, ak, zk+1), π(k+1)+)|bk, πk

]
.

(8)

The action-value function under arbitrary policy is given by

Q(bk,{ak,π(k+1)+})=E
zk+1

[
ρ(bk, ak,zk+1,bk+1)|bk,ak

]
+

+γ E
zk+1

[
V (ψ(bk, ak, zk+1), π(k+1)+)|bk, ak

]
.

(9)

The relation between (8) and (9) is V (bk, πk+) =
Q(bk, {πk(bk), π(k+1)+}). If π is the optimal policy we
denote it by π∗. For clarity, let us designate for action-value
function under optimal future policy Q(bk, {ak, π∗(k+1)+}) a
short notation Q(bk, ak). If Q(bk, ak) can be calculated, the
online POMDP solution for the current belief bk will be

π∗k(bk) ∈ arg max
ak

Q(bk, ak). (10)

Linearity of the expectation and the structure displayed by
equations (2) and (3) lead to a similar decomposition of
action-value function (9) as such

Q(·) = (1− λ)Qx(·) + λQI(·), (11)

where Qx is induced by state dependent rewards and QI by
the information-theoretic rewards.

From here on, for the sake of clarity, we will use the
notation of history hk and the belief bk interchangeably for
any time k. In a similar manner, we shall use the notations
bk, ak and hkak interchangeably.

2.3 Estimated Objective
The continuous observation space makes the theoretical
expectations in (7) and (9) attainable in very limited cases.
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Generally we shall resort to estimators. Similar to theoretical
counterparts, the relation between the estimated optimal
value and action-value function reads

V̂ (bk, π
∗
k+) = max

ak
Q̂(bk, ak). (12)

Also in Eq. (10), the theoretical Q(bk, ak) is substituted
by the estimator Q̂(bk, ak). Naturally, we expect from the
estimator to admit the decomposition

Q̂(bk, ak) = (1− λ)Q̂x(bk, ak) + λQ̂I(bk, ak). (13)

Typically the Q̂x element is easy to calculate, thus it is out
of our focus, whereas Q̂I is computationally expensive to
compute.

Below we present two common sample based estimators
that will be used in this paper.

2.3.1 Objective Estimator in Case of a Given Belief Tree
We turn to the setting of a given externally-constructed belief
tree, e.g. by a SS algorithm. For the sake of clarity and to ease
the explanation, we assume that the number of child posterior
beliefs is constant at each nonterminal belief and denoted
by nz . Relaxing this assumption is straightforward. The
Bellman form representation of (7) using such an estimator
is

V̂ (bk, πk+)=
1

nz

nz∑

i=1

ρ(bk, πk(bk), zik+1, b
i
k+1)+

+γ
1

nz

nz∑

i=1

V̂ (ψ(bk, πk(bk), zik+1), π(k+1)+),

(14)

and the corresponding estimator for (9) under an optimal
future policy reads

Q̂(bk, ak) =
1

nz

nz∑

i=1

ρ(bk, ak, z
i
k+1, b

i
k+1)+

+γ
1

nz

nz∑

i=1

V̂ (ψ(bk, ak, z
i
k+1), π∗(k+1)+),

(15)

where nz is the number of children of b` under the execution
policy π`+ and i is the child index.

2.3.2 Interchangeability Between the history and Belief
The purpose of this section is to clarify why further we
will use interchangeably belief and the history. The belief
is merely a reinterpretation of the knowledge about the
POMDP state stored in history in the form of a PDF. The
belief bk is a function of the history hk. Therefore different
histories may yield the same belief. To avoid ambiguity and
relate the objectives and their position in the belief tree with
some abuse of notation we sometimes switch the dependence
on the belief to dependence on corresponding history. In
general we can write b`(h`).

2.3.3 Coupled Action-Value Function Estimation and
Belief Tree Construction The estimator presented above
leverages symmetric, in terms of observations, Bellman
form. However in MCTS methods due to exploration driven
by, for example, UCB (16), the estimators are assembled
from laces of the returns. In each simulation a single
lace is added to the estimator at each posterior belief.

Whenever a new posterior belief node is expanded, a rollout
is commenced such that the lace is complemented to the
whole horizon.

MCTS repetitively descends down the tree, adding a
lace of cumulative rewards (or updates visitation counts of
an existing lace) and ascends back to root. On the way
down it selects actions according to an exploration strategy
e.g., (16). This results in a policy tree, that represents a
stochastic policy represented by visitation counts N(ha)

N(h) .
Further we will focus on UCB exploration strategy, however
all derivations of our approach are general and are valid for
any exploration strategy, e.g, P-UCT (Auger et al. 2013) or
ε-greedy exploration (Sutton and Barto 2018).

A UCB-based MCTS over a Belief-MDP (BMDP) (Auer
et al. 2002; Sunberg and Kochenderfer 2018) constructs
a policy tree by executing multiple simulations. Each
simulation adds a single belief node to the belief tree or
terminates by terminal state or action. To steer towards more
deeper and more beneficial simulations, MCTS selects an
action a∗ at each belief node according to the following rule
a∗ = arg max

a∈A
UCB(ha) where

UCB(ha) = Q̂(ha) + c ·
√

log(N(h))/N(ha), (16)

where N(h) is the visitation count of the belief node defined
by history h, N(ha) is the visitation count of the belief-
action node, c is the exploration parameter and, Q̂(ha) is
the estimator of the action-value function Q for node ha
obtained by simulations. The rule described by (16) is a result
of modelling exploration as Multi Armed Bandit (MAB)
problem (Kocsis and Szepesvári 2006; Munos 2014; Auger
et al. 2013). When the action is selected, a question arises
either to open a new branch in terms of observation and
posterior belief or to continue through one of the existing
branches. In continuous action, and observation spaces, this
can be resolved by the Double Progressive Widening (DPW)
technique (Sunberg and Kochenderfer 2018; Auger et al.
2013). If a new branch is expanded, an observation z′ is
created from state x′ drawn from the belief b propagated with
an action a.

Let the return, corresponding to lace i starting from some
belief bi` at depth `− k, be g(bi`, a`, z

i
`+1:k+L) for ` ∈ [k :

k + L− 1]. More specifically, suppose the new posterior
belief was expanded at depth di of the belief tree such that
di > `. We have that g(bi`, a`, z

i
`+1:k+L) is composed from

two parts, the already expanded tree part and the rollout
added part such that

g(bi`, a`, z
i
`+1:k+L)=

ρ(bi`, a`, z
i
`+1, b

i
`+1)+

k+di−1∑

l=`+1

γl−`ρ(bil, π
∗,i
l (bil), z

i
`+1, b

i
l+1)

︸ ︷︷ ︸
belief tree

+

(17)

+
k+L−1∑

l=k+di

γl−`ρ(bil, µ(bil), z
i
l+1b

i
l+1)

︸ ︷︷ ︸
rollout

, (18)

where L is the horizon (tree depth), π∗,i is an optimal tree
policy depending on the number of the simulation i through
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Q̂ and visitation counts in (16) and µ is the rollout policy.
Importantly, in rollout the observations are drawn randomly
and since we are in continuous spaces the beliefs in the
rollouts are unique. A new belief node is added for l =
k + di. If due to DPW no new belief node was added to the
belief tree, no rollout depicted by (18) is commenced and the
return sample takes the form of

g(bi`, a`, z
i
`+1:k+L)=

ρ(bi`, a`, z
i
`+1, b

i
`+1)+

k+L−1∑

l=`+1

γl−`ρ(bil, π
∗,i
l (bil), z

i
l+1, b

i
l+1).(19)

The estimate for (9) under optimal future policy is assembled
from laces in accordance to

Q̂(h`a`) =
1

N(h`a`)

N(h`a`)∑

i=1

g(bi`, a`, z
i
`+1:k+L), (20)

where each reward ρ(b, a, z′, b′) in the belief tree appears the
number of times according to the visitation count of the node
b′, namely N(h′). We note that for both estimators (15) and
(20), the formulation in (13) holds.

Now we move to the details of our general approach.

3 Our Approach
This section is the core of our general approach. We first
describe bounds over the theoretical and the estimated
objectives. We then endow the rewards bounds with discrete
simplification levels. Finally, instead of calculating rewards,
we calculate the bounds over them and if they are not tight
enough we tighten them so we can make faster decisions with
bounds over the objectives instead of objectives themselves.

3.1 Theoretical Simplification Formulation
Simplification is any kind of relaxation of POMDP tuple
(1) elements, accompanied by guarantees that quantify the
(worst-case or potential) impact of a particular simplification
technique on planning performance. In this section, we
present a general simplification framework that is applicable
to any reward bounds that satisfy the assumptions stated in
Section 3.3.

Our framework applies without any change to paramet-
ric and non-parametric beliefs, and to closed-form belief-
dependent rewards (that can be calculated exactly, i.e. ana-
lytically), as well as to estimated rewards. Therefore, in this
paper we do not differentiate between these cases and denote
the belief-dependent reward by ρ(b`, a`, z`+1, b`+1), without
using the notation �̂ for estimators. In other words, depend-
ing on the setting, ρ() and b` can represent, respectively,
an analytical reward and a parametric belief, or a reward
estimator and a nonparametric belief. In all cases, if one can
provide monotonically adaptive bounds on the reward, our
framework will return an identical solution as if the decision
making was performed with original reward calculations
(i.e. depending on the setting, either an analytical reward
calculation or reward estimator calculation). In Section 6 we
provide a specific incarnation of the framework considering
non-parametric beliefs represented by a set of weighted
samples and a reward estimator, and where the simplification
corresponds to utilizing only a subset of the samples.

As mentioned, we aim to simplify the belief-dependent
reward ρ(b`, a`, z`+1, b`+1) calculations. Namely, the origi-
nal reward ρ is bounded using the simplified belief bs instead
of original belief b. This operation materializes in the form
of following inequality

ρ(bs` , b`, a`, z`+1, b`+1, b
s
`+1) ≤

≤ ρ(b`, a`, z`+1, b`+1) ≤
≤ ρ(bs` , b`, a`, z`+1, b`+1, b

s
`+1),

(21)

where ρ and ρ are the corresponding lower and upper bounds,
respectively. The superscript s denotes the fact that the
corresponding belief was simplified as we depict in Fig. 1.
Notice that in (21) the pair of consecutive beliefs, b` and
b`+1, can be simplified differently.

Henceforth, in order to avoid unnecessary clutter we will
omit the dependence on the observation and denote the
bounds over the reward using simplified beliefs as follows

ρs(b, a, b′) ≤ ρ(b, a, b′) ≤ ρs(b, a, b′). (22)

It should be stressed that since in the belief tree b′ always has
a single parent b, the reader should think about such a reward
as one corresponding to b′.

A key requirement is reduced computational complexity
of these bounds compared to the complexity of the
original reward. Instead of calculating the expensive reward
ρ(b, a, b′) for each pair of beliefs b, b′, we first obtain the
corresponding simplified beliefs bs and b′s, as illustrated in
Fig. 1, and then formulate the bounds ρs and ρs from (22).
However, we note that the form (22) is actually more general
and not limited to belief simplification.

Further we formulate bounds over the value function (8)
and action-value function (9), both under the optimal policy.
In fact, our bounds hold under an arbitrary policy. We narrow
the discussion to optimal polices solely for the clarity of the
explanation and this is not a limitation of our approach.

Suppose inequality (22) holds for any possible pair of
consecutive beliefs, e.g. these are analytical bounds, as
opposed to (Zhitnikov and Indelman 2022b). A direct
consequence of this fact, alongside the structure of (7), is
that

V (b`, π
∗
`+) ≤ V (b`, π

∗
`+) ≤ V (b`, π

∗
`+), (23)

holds for any belief b` and ` ∈ [k, k + L− 1]. Using the
Bellman representation as in (8) the bounds (23) take the
form of

V(b`, π
∗
`+)=E

z`+1

[
ρs(b`,π

∗
` (b`), b

i
`+1)+V (bi`+1, π

∗
(`+1)+)

]

V(b`, π
∗
`+)=E

z`+1

[
ρs(b`,π

∗
` (b`), b

i
`+1)+V (bi`+1, π

∗
(`+1)+)

]
.
(24)

The bounds over the value function (8) in (24) are
initialized at the Lth time step in the planning horizon as
V (bk+L, πk+L) = 0 and V (bk+L, πk+L) = 0. Similarly the
bounds over the action-value function (9) under an optimal
future policy are

Q
(
b`,{a`, π∗(`+1)+}

)
≤Q
(
b`, a`

)
≤Q
(
b`,{a`, π∗(`+1)+}

)
,(25)

where the policy π∗(`+1)+ is optimal. Note, as we observe in
(24), the simplification assumed herein does not affect the
distribution of future observations with respect to which the
expectation is taken.
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Bounding the Belief Dependent Element of the Reward
At this point, we want to recall that commonly, the state-
dependent element (2) is much easier to calculate than the
belief dependent one. Leveraging the structure manifested
by (11) the immediate bounds over (3) induce bounds over
QI(·) as such

QI(bk, ak) ≤ QI(bk, ak) ≤ QI(bk, ak), (26)

and utilizing (11) we arrive at

Q(bk, ak) = (1− λ)Qx(bk, ak) + λQ
I
(bk, ak) (27)

Q(bk, ak) = (1− λ)Qx(bk, ak) + λQI(bk, ak). (28)

Importantly, the belief dependent element (3) does not have
to be information-theoretic. The simplification paradigm is
general and works for any belief-dependent operator given
appropriate bounds.

3.2 Bounds over the Estimated Objective
As we explained in section 2.3 in practice the value and
action-value function are estimated. Instead of using (23) and
(25) we have

V̂
(
b`,π

∗
`+

)
≤ V̂

(
b`, π

∗
`+

)
≤ V̂

(
b`,π

∗
`+

)
, (29)

and

Q̂
(
b`,{a`, π∗(`+1)+}

)
≤Q̂
(
b`, a`

)
≤Q̂
(
b`,{a`, π∗(`+1)+}

)
,(30)

respectively.
The bounds, in case of symmetric estimators from section

2.3.1, are

V̂ (b`, π
∗
`+)=

1

nz

nz∑

i=1

ρs(b`,π
∗(b`), b

i
`+1)+

+γ
1

nz

nz∑

i=1

V̂ (bi`+1,π
∗
(`+1)+)

V̂ (b`, π
∗
`+)=

1

nz

nz∑

i=1

ρs(b`,π
∗(b`), b

i
`+1)+

+γ
1

nz

nz∑

i=1

V̂ (bi`+1,π
∗
(`+1)+),

(31)

where, to clarify we repeat that nz is the number of children
of b` under the execution policy π`+ and i is the child index.
The bounds over the estimated value function in (31) are
initialized at the Lth time step in the planning horizon as
V̂ (bk+L, πk+L) = 0 and V̂ (bk+L, πk+L) = 0.

In a similar manner we define also bounds over (15) as
such

Q̂(b`, {a`,π∗(`+1)+})=
1

nz

nz∑

i=1

ρs(b`,a`, b
i
`+1)+

+γ
1

nz

nz∑

i=1

V̂ (bi`+1,π
∗
(`+1)+)

Q̂(b`, {a`,π∗(`+1)+})=
1

nz

nz∑

i=1

ρs(b`,a`, b
i
`+1)+

+γ
1

nz

nz∑

i=1

V̂ (bi`+1,π
∗
(`+1)+),

(32)

Figure 2. Reward bounds and different levels of the
simplification. Here nmax = 5. Warmer colors visualize tighter
bounds. Whereas colder colors (blue) indicate looser bounds
and cheaper to calculate.

We emphasize that the superscript i in (31) and (32) denotes
the child posterior nodes of b`.

The bounds over MCTS estimator (20) are

Q̂(ha)=
1

N(ha)

N(ha)∑

i=1

(
ρs(bi`, a`, b

i
`+1)+

+
k+di−1∑

l=`+1

γl−`ρs(bil, π
∗,i
l (bil), b

i
l+1)+

k+L−1∑

l=k+di

γl−`ρs(bil, µ(bil), b
i
l+1)
)

Q̂(ha)=
1

N(ha)

N(ha)∑

i=1

(
ρs(bi`, a`, b

i
`+1)+

+
k+di−1∑

l=`+1

γl−`ρs(bil, π
∗,i
l (bil), b

i
l+1)+

k+L−1∑

l=k+di

γl−`ρs(bil, µ(bil), b
i
l+1)
)
.

(33)
Let us clarify again that in (33) the superscript i denotes
the number of the simulation. Moreover, the reward bounds
within the tree repeat in more than a single simulation
according to the visitation count of the corresponding
posterior belief. Clearly, the decomposition displayed by Eq.
(27) and (28) is valid for both bounds (32) and (33). We have
that

Q̂(bk, ak) = (1− λ)Q̂x(bk, ak) + λQ̂
I

(bk, ak) (34)

Q̂(bk, ak) = (1− λ)Q̂x(bk, ak) + λQ̂
I
(bk, ak). (35)

Impact of the Information Weight λ Allow us to linger on
the λ from eq. 11 and 13. It is hard to predict how the
objective will behave with various values of λ. Nevertheless,
if the bounds are over the belief-dependent element of the
reward, by subtracting (35) from (34), we arrive at

Q̂(bk, ak)−Q̂(bk, ak)=λ
(
Q̂
I

(bk, ak)−Q̂I(bk, ak)
)
. (36)

The width of the bounds is monotonically increasing with λ.
Of course, it will also happen to a theoretical analog of such
a bounds displayed by eq. (27) and (28). We can envision
more speedup from applying the simplification paradigm
with lower values of λ and will see it in the simulations.
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(a) (b) (c)

Figure 3. In this illustration we have three candidate actions {a1, a2, a3} that can possibly be taken by the robot from the belief

node b`.(a) We observe that Q̂(b`, a
1
`) > Q̂(b`, a

3
`) and prune action a2. (b) After the resimplification no overlap an we can safely

decide that a3` is optimal. Moreover we prune the withered interval corresponding to the a2` . (c) Another situation where we are not
concerned about optimal action, we solely want to send up to the tree the bounds over optimal value function.

Further we will consider the estimated action-value or
value functions and therefore omit the word “estimated”.
We will also omit mentioning each time that our bounds are
under the optimal policy.

3.3 Multi-Level Simplification
We now extend the definition of simplification as we
envision it to be an adaptive paradigm. We denote
level of simplification as how “aggressive” the suggested
simplification is. Observe an illustration in Fig. 2.

With this setting, we can naturally define many
discrete levels such that s ∈ {1, 2, . . . , nmax} represents the
simplification level, where 1 and nmax correspond to the
coarsest and finest simplification levels, respectively. For
instance, suppose the belief is represented by a set of samples
(particles), as in Section 6. Taking a small subset of particles
to represent the simplified belief corresponds to a coarse
simplification. If one takes many particles, this corresponds
to a fine simplification.

Remark: From now on the superscript s denotes the
discrete simplification level. Importantly we always have a
finite number, denoted by nmax, of simplification levels.

Further, we assume bounds monotonically become
tighter as the simplification level is increased and that
the bounds for the finest simplification level nmax

converge to the original reward without simplification. More
formally, denote ∆

s
(b, a, b′) , ρs(b, a, b′)− ρ(b, a, b′) and

∆s(b, a, b′) , ρ(b, a, b′)− ρs(b, a, b′).

Assumption 1. Monotonicity. Let nmax ≥ 2, ∀s ∈
[1, nmax − 1] we get: ∆

s
(b, a, b′) ≥ ∆

s+1
(b, a, b′) and

∆s(b, a, b′) ≥ ∆s+1(b, a, b′).

Assumption 2. Convergence. ∀b, a, b′ we get:
ρs=nmax(b, a, b′) = ρs=nmax(b, a, b′) = ρ(b, a, b′).

In Section 6, we derive novel bounds on top of a particular
simplification that takes a subset of belief samples instead

of a complete set. We prove that these bounds indeed satisfy
both assumptions.

The simplification levels of the reward bounds for different
posterior belief nodes in the belief tree determine how tight
the bounds over the value or action-value function are. To
tighten the bounds over the objective, we have the freedom
to select any rewards the belief tree and tighten the bounds
over these selected rewards by increasing their simplification
levels; this, in turn, would contract the bounds over the
objective.

We call a particular algorithmic scheme to select the
rewards a resimplification strategy. A general valid
resimplificaiton strategy is defined as follows.

Definition 1. Resimplification strategy. Given a pair
of lower V̂ (b`, π`+) (Q̂(b`,{a`, π∗(`+1)+})) and upper

bounds V̂ (b`, π`+) (Q̂(b`,{a`, π∗(`+1)+})) over the estimated
objective, the resimplification strategy is a rule to promote
one or more simplification levels of the rewards in the
the subtree rooted at b` and defined by the mentioned
above estimated objective. If the resimplification does
not promote the simplification level for any reward, so
Q̂(b`,{a`, π∗(`+1)+})− Q̂(b`,{a`, π∗(`+1)+}) = 0.

Note that, all the rewards within a subtree defined by
Q̂(b`,{a`, π∗(`+1)+}), Q̂(b`,{a`, π∗(`+1)+}) are being at the

maximal simplification level implies Q̂(b`,{a`, π∗(`+1)+})−
Q̂(b`,{a`, π∗(`+1)+}) = 0, but the inverse implication is
not necessarily true. Once initiated, a valid strategy can
select no reward for simplification level promotion only if
Q̂(b`,{a`, π∗(`+1)+})− Q̂(b`,{a`, π∗(`+1)+}) = 0.

Theorem 1. Monotonicity and Convergence of Estimated
Objective Function Bounds. If the bounds over the reward
are monotonic (assumption 1) and convergent (assumption
2), for both estimators (32) and (33), the bounds on the
sample approximation (30) are monotonic as a function of
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the number of resimplifications and convergent after at most
nmax ·M resimplifications for any resimplification strategy.
Here M is the number of posterior beliefs in (32) or (33) .
Namely, if all the rewards are at the maximal simplifciation
level nmax we have to reach

Q̂(·) = Q̂(·) = Q̂(·). (37)

Similarly for Optimal value function the equality V̂ (·) =

V̂ (·) = V̂ (·) holds.

The reader can find the proof in the Appendix 11.1.
Theorem 1 ensures that if the resimplification strategy is
valid (Definition 1), we do not get stuck in an infinite loop
of resimplifications if instead of Q̂(·) we use its bounds. In
particular, if (37) is reached, there is no reason to activate the
resimplification routine.

Importantly, as we discuss next and corroborate by
simulations in many cases we can identify the optimal action
before reaching the maximal number of resimplificaitons.

3.4 Adaptive Simplification Mechanics
Our adaptive simplification approach is based on two key
observations. The first key observation is that we can
compare bounds over (30) constituted by rewards at different
levels of simplification. Our second key observation is that
we can reuse calculations between different simplification
levels avoiding recalculation of the simplification from
scratch.

Naturally we do not want to reach (37). Let us begin by
explaining how we determine an optimal action by using
bounds over the action-value function instead of its explicit
calculation and obtain a significant speedup in planning time.
If there is no overlap between the intervals originated from
the upper and lower bounds (30) of each candidate action,
we can determine the optimal action and therefore there is
no reason to call the resimplification routine.

Contemplate about some belief b` in the belief tree. We
annotate by superscript j candidate actions emanating from
b`, such that the index j corresponds to the jth candidate
action. We first select a candidate action using the lower
bound (30) over Q̂

(
b`, a

j
`

)
as

j†(b`(h`))= arg max
j

{
Q̂(b`(h`),{aj` , π∗(`+1)+})+cj(h`aj)

}
,

(38)

where cj is an action dependent constant. In case of a given
belief tree cj = 0 ∀j, whereas in case of MCTS, it is a
constant originated from UCB as in (16).

We then ask the question whether or not an overlap with
another candidate action exists,

Q̂(b`,{aj
†

` , π
∗
(`+1)+})+ cj

†
?︷︸︸︷
≥

≥ max
j∈{1... }\{j†}

{
Q̂(b`,{aj` ,π∗(`+1)+}) + cj

} (39)

See a visualization in Fig. 3a.
If the condition displayed by equation (39) is not fulfilled,

as depicted in Fig. 3a, we shall tighten the bounds (30) by
calling a resimplification strategy . Importantly, in case of

on the way down 
the tree, 
cannot prune, 
can only dismiss 

Figure 4. Demonstration of our approach in the setting of
MCTS. In contrast to Fig. 3b, we cannot prune action a2 and
can only dismiss it to not participate in resimplifications. This is
because, in the next tree queries, a2 may be the best action for
the robot to take.

a given belief tree, even if an overlap is present similar to
branch-and-bound technique (Kochenderfer et al. 2022) we
can prune any subtree obtained with action j satisfying

Q̂(b`,{aj
†

` ,π
∗
(`+1)+})+cj

†≥Q̂(b`,{aj` ,π∗(`+1)+})+cj . (40)

We illustrated this aspect in Fig. 3b. If the belief tree
is constructed gradually as in MCTS based methods and
anytime setting, instead of pruning, we still can use (40) to
dismiss suboptimal, at current simulation of MCTS, actions
(See Fig. 4).

Once no overlap is present (the condition (39) is fulfilled)
we can declare that the selected action is optimal (π∗` (b`) =

a
j†(b`)
` ). Utilizing the optimal action we can bound the

optimal value function V̂ (b`, π
∗
`+) as such

V̂ (b`, {π∗` , π∗(`+1)+}) , Q̂(b`, {aj
†(b`)
` , π∗(`+1)+}), (41)

V̂ (b`, {π∗` , π∗(`+1)+)}) , Q̂(b`, {aj
†(b`)
` , π∗(`+1)+}). (42)

Let us recite that the bounds (41) and (42) are conditioned
on the fact that there is no overlap of the bounds intervals
that correspond to different candidate actions, namely the
condition (39) is met for each belief b` in the belief tree. This
situation is visualized in Fig. 3b.

On the other hand, to identify the optimal immediate
action a∗k, we require no overlap between bounds of different
actions only at the root of the belief tree (where the belief is
bk). This means that at each belief node b` in the tree, besides
the root, we only want to bound the value function for the
optimal action (and under optimal future policy). While it is
possible to do so by first determining the optimal action, as
in (41) and (42), we can bypass this step and directly bound
the value function over the optimal action as follows,

V̂ (b`, {π∗` , π∗(`+1)+}) , max
j
Q̂(b`, {aj , π∗(`+1)+}), (43)

V̂ (b`, {π∗` , π∗(`+1)+)}) , max
j
Q̂(b`, {aj , π∗(`+1)+}), (44)
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i.e. relaxing the requirement of no overlap between bounds
for different actions at any node b` besides bk. See illustration
of (43) and (44) in Fig. 3c. In turn, eliminating a single
overlap at the root results in lower rewards simplification
levels in the tree, although such a value bounds may be
looser. As we shall see, this approach would typically yield
more speedup.

Nevertheless, when we need a policy tree we still have
to obtain an optimal action at each belief node within the
tree. This requires no bounds overlap at each node, as in
the former setting. This situation arises for example when
the action and observation spaces are large but discrete. In
this case the robot sometimes does not do re-planning at
each time step. Instead the robot uses the policy tree as a
representation of the policy and selects an optimal action that
corresponds to the received observation. In addition, such a
strategy accommodates possible reuse calculations in such a
solved belief tree (Farhi and Indelman 2019, 2021).

To conclude this section let us summarize. As discussed,
we have the following two variants:

• The resimplification is initiated at each nonterminal
posterior belief node b` up until no overlap between
candidate actions is present and the optimal action
π∗` (b`) is selected. This way we bound the optimal
value function of the descendant to bk nodes using an
optimal action according to (41) and (42). We named
this approach Policy Tree (PT).

• The resimplification is commenced solely at the root
bk of the whole belief tree. We eliminate the overlap
and obtain an optimal action only at bk. This way we
use (43) and (44) to bound the optimal value function
of the descendant to bk nodes. We shall refer to this
variant of our approach as LAZY.

3.5 Specific Resimplification Strategies
In this paper we consider two specific resimplifica-
tion strategies that are elaborated in the next sections:
Simplification Level (SL) and Gap. We note that
additional valid resimplification strategies exist and can be
plugged-in into the above-proposed general theory.

Simplification level: The resimplification strategy can be
directly tied to the simplification level. In this situation the
resimplifcation strategy promotes simplification level of the
rewards inside the belief tree corresponding to bounds in (29)
or (30) based on the simplification level itself. We provide
further details in the setting of a given belief tree, considering
a PT variant in Section 4.

Gap: Another possibility is that the resimplification
is tied to the gap ρs − ρs. Such a resimplification
promotes the simplification level if the reward bounds gap
satisfies a certain condition. We describe thoroughly this
resimplification flavor in the setting of a given belief tree,
considering LAZY variant in Section 4.2, and in MCTS
setting, considering a PT variant in Section 5.4.

Each of these strategies can be used in conjunction
with any of the variants PT and LAZY. In the sequel,
we shall denote these combinations explicitly, e.g. PT-SL,
LAZY-Gap and PT-Gap.

The preceding discussion raises the question of how do
we actually incorporate the proposed bounds into online

Figure 5. Pruning the subtrees by adaptively promoting the
simplification levels of the rewards inside. Here the
simplification levels of a subtrees are not equal. It is possible
that si 6= si+1. Note that here the superscripts are relative to b`
as opposed to Fig. 1 and Fig. 6.

decision making. This brings us to the next section. We
first consider a given belief tree and then coupled belief
tree construction and solution as in MCTS methods. It shall
be noted that further presented resimplification strategies
are also suitable for static candidate action sequences, with
minor modifications.

4 Adaptive Simplification in the Setting of
a Given Belief Tree

We start with the assumption that the belief tree was
generated in some way and that it is given, e.g, Sparse
Sampling (SS) algorithm introduced by Kearns et al. (2002).
In other words the belief tree construction is not coupled with
rewards calculation and estimation of the objective.

In this setting, we contribute two resimplification
strategies. The first strategy is described in Section 4.1. The
general idea is to break down recursively a given belief tree
T into its sub-problems (subtrees), denoted as {Tj}|A|j=1 (each
subtree j at the root belief has a single action j), and solve
each sub-problem with its own simplification level of the
corresponding belief subtree. Ultimately this would lead to
the solution of the entire problem via action-value function
bounds (32). This strategy is based on Simplification
Level and it is a PT strategy. The action-value bounds
should not overlap at each node in the given belief tree.

The second strategy is described in Section 4.2. This
resimplification strategy is based on Gap and it is a LAZY
strategy. Here, the general idea is to first substitute all
the rewards in a given belief tree by bounds with the
coarsest simplification level. We then eliminate an overlap
between candidate actions only at the root belief node bk
by a repetitive descending to the belief tree, promoting the
simplification levels along a single lace chosen according to
largest gap and ascending back. We emphasize that in this
setting, the action-value bounds should not overlap only at
the root node in the given belief tree.

As mentioned in the beginning of Section 2.3.1, only
for simplicity we consider a symmetric setting in terms of
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sampled actions and the observations, but the approach is
applicable without any limitations to any given belief tree.

4.1 Resimplification strategy: PT-SL
This section presents our first resimplification strategy. We
now turn to thorough description.

Not to be confused with policy tree represented by the
(14) or (15) the given belief tree (T) has more than a single
action emanating from each belief node besides the leafs.

We now assign a simplification level to the bounds
on the value and action value functions. Consider again
some belief node b` in the belief tree, and assume
recursively for each of its children belief nodes b`+1 we
already calculated the optimal policy π∗(`+1)+(b`+1) and the

corresponding upper and lower bounds V̂
s(
b`+1, π

∗
(`+1)+

)

and V̂
s(
b`+1, π

∗
(`+1)+

)
. In general, these bounds for each

child sub-policy tree of b` can correspond to different
simplification levels.

From now on let the superscript s over the action-value
function bounds from (32) and (31) denote the simplification
level stemmed from pertaining reward bounds. The bounds
previously described by Eqs. (32) for belief node b`,
incorporating simplification level, are now modified to

Q̂
sj

(b`, {aj` , π∗(`+1)+}) =
1

nz

nz∑

i=1

ρs(b`,a
j
` , b

i
`+1)+

+γ
1

nz

nz∑

i=1

V̂
si

(bi`+1, π
∗
(`+1)+)

Q̂
sj

(b`, {aj` , π∗(`+1)+}) =
1

nz

nz∑

i=1

ρs(b`, a
j
` , b

i
`+1)+

+γ
1

nz

nz∑

i=1

V̂
si

(bi`+1, π
∗
(`+1)+),

(45)

as illustrated in Fig. 5. We shall pinpoint the abuse of
notation here. In contrast to (32) the superscript s over the
immediate reward bounds denotes a specific simplification
level instead of indicating a general simplification.

Note equation (45) applies for each aj` ∈ A, and as
mentioned, each belief node bi`+1 (one for each obser-
vation zi`+1) has, in general, its own simplification level
si. In other words, for each bi`+1, si is the simplifica-
tion level that was sufficient for calculating the bounds{
V̂
si

(bi`+1,π
∗
(`+1)+), V̂

si

(bi`+1,π
∗
(`+1)+)

}
and the correspond-

ing optimal policy π∗(`+1)+. Thus, when addressing belief
node b` in (45), for each belief node bi`+1 and its corre-
sponding simplification level si, these bounds are already
available.

Further, as seen in (45), the immediate reward and
the corresponding bounds ρ and ρ, in general, can be
calculated with their own simplification level s. In particular,
when starting calculations, s could correspond to a default
coarse simplification level, e.g. coarsest level s = 1. Another
possibility is to set s = si for corresponding simplification
level of value function bounds of the i-th child belief.

To define simplification level sj of the bounds (45) we
leverage the recursive nature of the Bellman update and

Figure 6. An example of the simplification paradigm. The
superscript here denotes global number of the belief,
observation or action in the belief tree as opposed to equation
(45) and Fig 5.

define

sj , min{ s︸︷︷︸
ρs

ρs

, si=1, si=2 . . . si=nz

︸ ︷︷ ︸
V̂

si

(bi`+1,π
∗
(`+1)+)

V̂
si

(bi`+1,π
∗
(`+1)+)

}, (46)

where {si=1, si=2, . . . , si=nz} represent the (generally
different) simplification levels of optimal value functions
of belief nodes bi`+1 considered in the expectation
approximation in (45).

We now wish to decide which action a
j†(b`)
` ∈ A is

optimal from belief node b`; the corresponding optimal
policy would then be π∗`+ = {a∗` , π∗(`+1)+}, where π∗(`+1)+

is the already-calculated optimal policy for belief nodes
{bi`+1}nz

i=1 that a∗` leads to. See illustration in Fig. 5.
Let us utilize now a general simplification approach

described in section 3.4. Overall in each belief node we have
na candidate actions indexed by superscript j in (45).

At each belief node we first select an optimal action
candidate according to (38) with a nullified action dependent
constant (∀j cj = 0). Further, in any PT resimplification
strategy there are three possible scenarios.

• No overlap is present ((39) is satisfied) and we are at
the root i.e. b` = bk. In this case the optimal action
shall be returned.

• No overlap is present ((39) is satisfied) and we not at
the root bk. In this case, using the optimal action we
bound optimal value function using the (41) and (42).

• Eq. (39) is not satisfied, meaning an overlap is present.
In the presence of overlap we shall prune actions



Zhitnikov, Sztyglic, and Indelman 13

according to (40) and commence resimplification
routine based on resimplification strategy.

We now discuss how the simplification level is updated
recursively from the simplification level of pertaining reward
bounds, and revisit the process to calculate the optimal policy
and the corresponding bounds. For some belief node b` in the

belief tree, consider the bounds Q̂
sj

(b`, {aj` , π∗(`+1)+}) and

Q̂
sj

(b`, {aj` , π∗(`+1)+}) from (45) for different actions aj` ∈
A, that partially overlap and therefore could not be pruned.
Each policy tree corresponding to action aj` can generally
have its own simplification level sj . We now iteratively
increase the simplification level by 1. This can be done for
each of the branches, if sj is identical for all branches, or
only for the branch with the coarsest simplification level.

Consider now any such branch whose simplification
level needs to be adapted from sj to sj + 1.
Recall, that at this point, the mentioned bounds
were already calculated, thus their ingredients, in
terms of {ρs(b`, aj` , bi`+1), ρs(b`, a

j
` , b

i
`+1)}nz

i=1 and

{V̂
si

(bi`+1, π
∗
(`+1)+), V̂

si

(bi`+1, π
∗
(`+1)+)}nz

i=1, involved in
approximating the expectation in (45), are available. Recall
also (46), i.e. each element in {s, si=1, si=2, . . . , si=nz} is
either equal or larger than sj . We now discuss both cases,
starting from the latter.

As we assumed bounds to improve monotonically as
simplification level increases, see Assump. 1, for any
si > sj + 1 we already have readily available bounds

V̂
si

(bi`+1, π
∗
(`+1)+), V̂

si

(bi`+1, π
∗
(`+1)+) which are tighter

than those that would be obtained for simplification level
sj + 1. Thus, we can safely skip the calculation of the latter
and use the existing bounds from level si as is.

For the former case, i.e. si = sj , we now have to adapt the
simplification level of a child tree i to sj + 1 by calculating

the bounds V̂
si+1

(bi`+1, π
∗
(`+1)+), V̂

si+1
(bi`+1, π

∗
(`+1)+).

Here, our key insight is that, instead of calculating these
bounds from scratch, we can re-use calculations between
different simplification levels, in this case, from level si. As
the bounds from that level are available, we can identify
only the incremental part that is “missing” to get from
simplification level si to si + 1, and update the existing

bounds V̂
si

(bi`+1, π
∗
(`+1)+), V̂

si

(bi`+1, π
∗
(`+1)+) to recover

V̂
si+1

(bi`+1, π
∗
(`+1)+), V̂

si+1
(bi`+1, π

∗
(`+1)+) exactly. The

same argument applies also for bounds over momentary
rewards. In Section 6.2.3 we apply this approach to a specific
simplification and reward function.

We can repeat iteratively the above process of increasing
the simplification level until we can prune all branches but
one. This means each subtree will be solved maximum
once, per simplification level. Since we assumed the reward
bounds converge monotonically to the original reward for the
finest level s = nmax (See Fig. 2), from Theorem 1, we are
guaranteed to eventually disqualify all sub-optimal branches.
Our described approach is summarized in Algs. 1 and 2.

4.1.1 Illustrative Example We now illustrate the described
above resimplification strategy in a toy example. Before
we start this section, let us clarify that in the example the

superscripts are global over the belief tree in contrast to
previous section. Consider Fig. 6 and assume the subtrees
to b1` were solved using simplification levels that hold s2 =
s1 + 1, s2 < s3, s4. Further assume the immediate reward
simplification is s = s1. According to definitions above this
means that for subtree starting at b1` and action a1` the
simplification level is min{s1, s2} and for action a2` the
simplification level is min{s3, s4}. Now, we consider the
case the existing bounds of the subtrees were not tight
enough to prune, we adapt simplification level starting
from b1` and promote s← s1 + 1. Since s1 < s1 + 1 we re-
simplify the subtree corresponding to simplification level of
s1 to simplification level s1 + 1, i.e. to a finer simplification.

However we do not need to re-simplify subtrees
corresponding to s2, s3, s4: The tree corresponding to s2 is
already simplified to the currently desired level; thus we can
use its existing bounds. For the two other trees, their current
simplification levels, s3 and s4, are higher (finer) than the
desired s1 + 1 level, and since the bounds are tighter as
simplification level increases we can use their existing tighter
bounds without the need to “go-back” to a coarser level of
simplification. If we can now prune one of the actions, we
keep pruning up the tree. If pruning is still not possible, we
need to adapt simplification again with simplification level
s1 + 2.

4.1.2 A Detailed Algorithm Description Let us thoroughly
describe Alg. 1. We are given a belief tree T. First at the line
10 Alg. 1 recursively descend to the leafs. When the line 11 is
hit for the first time the corresponding rewards are set to the
initial simplification level or also possible that minimal level
of child optimal value bounds is used. In our simulations we
used minimal reward level. Further the algorithm calculates
bounds over action-value function represented by (45). This
happens in line 15 of Alg. 1. The next step is to try to prune
all subtrees but one utilizing the Alg. 1. Note, at this point
all the subtrees Tj are already policy trees, namely only a
single action emanating from each posterior belief. In there
is more that single action left after pruning, at the line 20
the Algorithm 1 calls routine ResimplifyTree to initiate
resimplification for selected subtree corresponding to action
aj . The simplification level of a single step ahead reward is
always have to be promoted as we do in line 27. Further,
Alg. 1 treats similarly subtrees, if they are present.

4.2 Resimplification strategy: LAZY-Gap
The PT resimplification strategy from previous section
assure that no overlap is present (Fig. 3b) at each non-
leaf posterior belief and we know the optimal action to
take. However, it can inflict a redundant computational
burden. We can handle the overlap only at the root of the
belief tree and use the bounds over optimal value function
according to (43) and (44). Since we already presented the
resimplification strategy based on the simplification levels,
our second resimplification strategy will be based on the
distance between reward bounds. However, the bounds (43)
and (44) can be utilized directly also with the resimplifcation
strategy based on simplification levels. Yet, this is out of the
scope of this paper.

In this section we present a lazy variant of the
resimplifcation strategy. In a LAZY variant, the overlap is
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Algorithm 1 Simplified Information Theoretic Belief Space
Planning (SITH-BSP)

1: procedure SOLVEBELIEFTREE(belief-tree: T)
2: if T is a leaf then
3: //Corresponds to a single belief node.
4: return 0, 0
5: end if
6: for all subtrees Tj ∈ {Tj}|A|j=1 do // Actions
7: //Observations
8: for all subtrees Tj,i ∈ {Tj,i}nz

i=1 do
9: //Returns Optimal Value bounds and prune

suboptimal branches of Tj,i.
10: SOLVEBELIEFTREE(Tj,i)
11: Set the simplification level of ρs(b, aj , b′i)

and ρs(b, aj , b′i) as in (46)
12: end for

13: Calculate Q̂
sj

, Q̂
sj

according to (45)
14: end for

15: PRUNE({Q̂s
j

, Q̂
sj

}|A|j=1) // Alg. 2

16: while not all subtrees Tj ∈ {Tj}|A|j=1 but 1 pruned do
17: Find minimal simplification level smin between

all Q̂
sj

, Q̂
sj

corresponding to not pruned Tj
18: // Can be more than single subtree
19: select subtree sj == smin

20: RESIMPLIFYTREE(Tj)

21: PRUNE({Q̂s
j

, Q̂
sj

}|A|j=1) // Alg. 2
22: end while
23: return optimal action branch that left a∗ and

Q̂
sj

, Q̂
sj

.
24: end procedure
25: procedure RESIMPLIFYTREE(Tj)
26: for all subtrees Tj,i ∈ {Tj,i}nz

i=1 do
27: RESIMPLIFYREWARD(Tj , b, aj , bi) // Alg. 3
28: if bi has children then
29: // si is a simplification level of corresponding

optimal value function (policy tree)
30: if si ≤ smin then
31: // Alg. 4
32: RESIMPLIFYSUBTREE(Tj,i, b, bi)
33: si ← si + 1
34: end if
35: end if
36: end for
37: sj ← sj + 1
38: end procedure

checked solely at the root bk of the whole belief tree. In this
approach three scenarios can be encountered at each belief
node.

• The belief node is not root. We bound optimal value
according to (43) and (44).

• At the root bk we shall check for overlap. If no overlap
is present ((39) is satisfied) we prune all suboptimal
actions according to Alg. 2 and return an optimal
action as described in Section 3.4.

Algorithm 2 Pruning of trees

1: procedure PRUNE
2: Input: (belief-tree root, b; bounds of root’s children,

{Q̂j , Q̂
j

}na
j=1) // na is the number of child branches

(candidate actions) going out of b.
3: Q̂

∗ ← max
j
{Q̂j}na

j=1

4: for j ∈ 1 : na do

5: if Q̂
∗
> Q̂

j

then
6: prune child j from the belief tree
7: end if
8: end for
9: end procedure

Algorithm 3 ResimplifyReward

1: procedure RESIMPLIFYREWAD(Tj , b, a, b′)
2: Obtain corresponding to the Tj bounds V̂ , V̂
3: V̂ ← V̂ − ρs(bab′)

nz

4: V̂ ← V̂ − ρs(bab′)
nz

5: Advance level of simplification of b′

6: V̂ ← V̂ + ρs(bab′)
nz

7: V̂ ← V̂ +
ρs(bab′)
nz

8: end procedure

Algorithm 4 ResimplifySubtree

1: procedure RESIMPLIFYSUBTREE(Tj,i,b b′)
2: V̂ (b)← V̂ (b)− γ V̂ (b′)

nz

3: V̂ (b)← V̂ (b)− γ V̂ (b′)
nz

4: RESIMPLIFYTREE(Tj,i)
5: V̂ ← V̂ (b) + γ V̂ (b′)

nz

6: V̂ ← V̂ (b) + γ V̂ (b′)
nz

7: end procedure

• In the presence of an overlap at the root bk (Eq. (39)
is not satisfied), we shall prune actions according
to (40) and Alg. 2 and commence a resimplification
routine for the non pruned actions based on the
resimplification strategy.

Having presented general steps of any LAZY variant of
resimplification strategy, we are ready to delve into specific
gap driven resimplfication strategy. Let us introduce the
following notation

G(ha) , Q̂(ha)− Q̂(ha). (47)

We remind the reader that sometimes, for simplicity of
explanation, we will make the gap dependent on belief
and an action, and denote G(ba). We use this gap to
steer the resimplification procedure towards more promising
lace. The lace with actions inducing largest gap (47) at
each belief action node along the lace will be selected to
resimplification. In fact we use similar gap for value function
to select observations along the lace. Now let us proceed to
the detailed algorithm description.
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Algorithm 5 Lazy Simplified Information Theoretic Belief
Space Planning (LAZY-BSP)

1: procedure PLAN(belief: b, belief-tree: T)
2: BOUNDOPTIMALVALUE(belief: b, belief-tree: T)
3: a∗ ← ACTIONSELECTION(b, L) // Alg. 6
4: return a∗
5: end procedure
6: procedure BOUNDOPTIMALVALUE(belief-tree: T)
7: if T is a leaf then
8: //Corresponds to a single belief node.
9: return 0, 0

10: end if
11: for all subtrees Tj ∈ {Tj}|A|j=1 do
12: for all subtrees Tj,i ∈ {Tj,i}nz

i=1 do
13: V̂ (b′), V̂ (b′)← BOUNDOPTIMALVALUE(b,

Tj,i)
14: Set the simplification level of ρs(b, aj , b′i)

and ρs(b, aj , b′i) to coarsest possible
15: end for
16: Calculate Q̂

j
, Q̂

j

17: end for
18: V̂ (b)← max

j
{Q̂j}

19: V̂ (b)← max
j
{Q̂

j

}

20: return V̂ (b), V̂ (b)
21: end procedure

4.2.1 A Detailed Algorithm Description This approach is
summarized in Alg. 5 When we apply this resimplification
strategy, we first use the lowest simplification level for each
pair of consecutive beliefs in the given belief tree. In other
words, the Alg. 5 first descends to the leaves of the given
belief tree. Then it bounds each optimal value function
using the initial simplification level using (43) and (44).
This initial passage over the given belief tree is enclosed
by routine BoundOptimalValue. In the procedure
ActionSelection we increase the simplification level
of the reward bounds in the given tree until there is no
overlap at the root, as in Fig. 3b. In this way, we can prune
entire given subtrees at the root, corresponding to candidate
actions. The procedure LazyResimplify descends back
to some leaf through the lace with largest gaps on the way.
It select action in line 15. It then select observation/belief
according to largest gap of a single step ahead rewards if
these rewards are leafs (line 17) or the largest gap of the
optimal value function bounds (line 19).

5 Adaptive Simplification in the Setting of
MCTS

In the previous sections, we described the application of
the adaptive simplification paradigm when the belief tree is
given or its construction is not coupled with the solution. We
now turn to an anytime setting where the belief tree is not
given. Instead, the belief tree construction is coupled with
the estimation of the action-value function (20) at each belief
action node. Such an approach is commonly used in Monte
Carlo tree search (MCTS) methods based on an exploration

Algorithm 6 Action Selection for Lazy Simplified Informa-
tion Theoretic Belief Space Planning

1: procedure ACTIONSELECTION(belief: b, horizon: L)

2: PRUNE({Q̂j , Q̂
j

}|A|j=1) // Alg. 2

3: a† ← arg max
a

Q̂
(
b, {a, π∗(k+1+)}

)

4: ã← arg max
a∈A\a†

Q̂
(
b, {a, π∗(k+1+)}

)

5: ∆←
(
Q̂
(
b, {ã, π∗(k+1+)}

)
−Q̂(b, {a†, π∗(k+1+)})

)+

6: while ∆ > 0 do
7: a∗ ← LAZYRESIMPLIFY(b, L)
8: end while
9: return a∗

10: end procedure
11: procedure LAZYRESIMPLIFY(belief: b(h), depth: d)
12: if b is leaf then
13: return 0, 0
14: end if
15: ã←arg max

a∈C(h)

Q̂(b, {a, π∗(k+1+)}−Q̂(b, {a, π∗(k+1+)})

// Gap as in (47)
16: if d == 1 then
17: b′ ← arg max

b′∈C(hã)

ρs(bãb′)− ρs(bãb′)
18: else
19: b′ ← arg max

b′∈C(hã)

V̂ (b′)− V̂ (b′)

20: end if
21: RESIMPLIFYREWARD(T, b, ã, b′) // Alg. 3
22: Q̂(b, {ã, π∗(k+1+)} ← Q̂(b, {ã, π∗(k+1+)} − γV̂ (b′)

23: Q̂(b, {ã, π∗(k+1+)} ← Q̂(b, {ã, π∗(k+1+)} − γV̂ (b′)

24: V̂ (b′), V̂ (b′)← LAZYRESIMPLIFY(b′, d− 1)
25: Q̂(b, {ã, π∗(k+1+)} ← Q̂(b, {ã, π∗(k+1+)}+ γV̂ (b′)

26: Q̂(b, {ã, π∗(k+1+)} ← Q̂(b, {ã, π∗(k+1+)}+ γV̂ (b′)

27: V̂ (b)← max
a
{Q̂(b, {a, π∗(k+1+)}}

28: V̂ (b)← max
a
{Q̂(b, {a, π∗(k+1+)}}

29: return V̂ (b), V̂ (b)
30: end procedure

strategy, e.g. Upper Confidence Bound (UCB) as in (16).
Our goal is to suggest a resimplifcation strategy so that
exactly the same belief tree as without simplification would
be constructed. Also the same optimal action is identified
with and without simplification. To support general belief-
dependent rewards we select PFT-DPW as the baseline, as
mentioned in Section 1.1.

Common exploration strategies conform to the structure
presented in (38). Without loosing generality we focus on
the most advanced, to our knowledge, exploration strategy,
named UCB and portrayed by (16).
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Figure 7. Illustration of our approach. The circles denote the belief nodes, and the rectangles represent the belief-action nodes.
Rollouts, emanating from each belief node, are indicated by dashed lines finalized with triangles. (a) The simulation starts from the
root of the tree, but at node b31 it can not continue due to an overlap of the child nodes (colored red) bounds. (b) One of the red
colored belief-action nodes is chosen, and resimplification is triggered from it down the tree to the leaves (shaded green area in the
tree). The beliefs and rollouts inside the green area (colored by light brown) undergo resimplification if decided so. This procedure
results in tighter bounds. (c) After the bounds got tighter, nothing prevents the SITH-PFT from continuing down from node b31
guaranteeing the Tree Consistency. If needed, additional resimplifications can be commenced.

5.1 UCB bounds
With this perspicuity in mind, we now introduce bounds over
(16)

UCB(ha) , Q̂(ha) + c·
√

log(N(h))/N(ha), (48)

UCB(ha) , Q̂(ha) + c·
√

log(N(h))/N(ha). (49)

Similar to the given belief tree setting we now proceed to the
explanation how the reward bounds (22) yield (48) and (49).

5.2 Guaranteed Belief Tree Consistency
Since the simplification paradigm substituted UCB (16) by
the bounds (48) and (49), the belief tree construction is
coupled with these quantities, as opposed to the situation
with the given belief tree. If there is an overlap between
bounds on UCB for different actions, we can no longer
guarantee the same belief tree will be constructed with and
without simplification.

In this and the following sections we address this key
issue. Specifically, we define the notion of Tree Consistency
and prove the equivalence of our algorithm to our baseline
PFT-DPW.

Definition 2. Tree consistent algorithms. Imagine two
algorithms, constructing a belief tree. Assume every
common sampling operation for the two algorithms uses the
same seed. The two algorithms are tree consistent if two
belief trees constructed by the algorithms are identical in
terms of actions, observations, and visitation counts.

Our approach relies on a specific procedure for selecting
actions within the tree. Since in each simulation the MCTS
descends down the tree with a single return lace as in (20),
on the way down it requires the action maximizing UCB (16)
we shall eliminate overlap at each belief node as described in
section 3.4. Further we restate the action selection procedure
described in section 3.4 with particular action dependent
constant from eq. (38) and (39) rendering the UCB bounds
from (48) and (49).

Our action selection is encapsulated by Alg. 8, which
is different from the procedure used in PFT-DPW. On
top of DPW as in Sunberg and Kochenderfer (2018)
with parameters ka and αa, instead of selecting an action
maximizing the UCB (16), at every belief node we mark as
a candidate action the one that maximizes the lower bound
UCB as such

ã = arg max
a∈C(h)

UCB(ha). (50)

If ∀a 6= ã, UCB(hã) ≥ UCB(ha), there is no overlap (Fig. 7
(c)) and we can declare that ã is identical to a∗, i.e., the
action that would be returned by PFT using (16) and
the tree consistency has not been affected. Otherwise, the
bounds must be tightened, so ensure the tree consistency.
We examine the ha siblings of hã, which satisfy a 6= ã :
UCB(hã) < UCB(ha) (Fig. 7 (a)). Our next step is to
tighten the bounds by resimplification (Fig. 7 (b)) until
there is no overlap using the valid resimplification strategy
according to Definition 1.
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Algorithm 7 SITH-PFT

1: procedure PLAN(belief: b)
2: for i ∈ 1 : n or timeout do
3: h← ∅
4: SIMULATE(b, dmax, h)
5: end for
6: return ACTIONSELECTION(b, h) // called with

nullified exploration constant c
7: end procedure
8: procedure SIMULATE(belief: b, depth: d, history: h)
9: if d = 0 then

10: return 0
11: end if
12: a← ACTIONSELECTION(b, h)
13: if |C(ha)| ≤ koN(ha)αo then
14: o← sample x from b, generate o from (x, a)
15: b′ ← GPF(m)(bao)
16: Calculate initial ρs, ρs for b, b′ based on s← 1 //

minimal simp. level
17: C(ha)← C(ha) ∪ {(ρs, ρs, b′, o)}
18: L,U ← ρs, ρs + γ ROLLOUT(b′, hao, d− 1)
19: else
20: (ρs, ρs, b′, o)← sample uniformly from C(ha)
21: L,U ← ρs, ρs + γ SIMULATE(b′, hao, d− 1)
22: end if
23: if deepest resimplification depth < d then //

accounting for updated deeper in the tree bounds. See
section 5.3

24: reconstruct Q̂(ha), Q̂(ha)
25: end if
26: N(h)← N(h) + 1
27: N(ha)← N(ha) + 1

28: Q̂(ha)← Q̂(ha) + U−Q̂(ha)
N(ha)

29: Q̂(ha)← Q̂(ha) +
L−Q̂(ha)

N(ha)

30: return L,U
31: end procedure

Remark: Note that here we cannot use the “lazy variant”
from Section 4.2 due to the fact that the MCTS requires
selecting an action going down to the tree, see line 12 of
Algorithm 7. Therefore, if the UCB bounds do still overlap,
we cannot assure that the same acton will be selected as in
case of UCB itself.

5.3 A Detailed Algorithm Description
Now we introduce our efficient variant of the Particle
Filter Tree (PFT) presented in Sunberg and Kochenderfer
(2018). We call our approach Simplified Information-
Theoretic Particle Filter Tree (SITH-PFT). SITH-PFT
(Alg. 7) incorporates the adaptive simplification into PFT-
DPW. We adhere to the conventional notations as in Sunberg
and Kochenderfer (2018) and denote by GPF(m)(bao) a
generative model receiving as input the belief b, an action
a and an observation o (For clarity we substituted z′ by o.),
and producing the posterior belief b′. For belief update, we
use a particle filter based on nx state samples. A remarkable
property of our efficient variant is the consistency of the
belief tree. In other words, PFT and SITH-PFT have the

Algorithm 8 Action Selection for SITH-PFT

1: procedure ACTIONSELECTION(b, h)
2: if |C(h)| ≤ kaN(h)αa then // action Prog.

Widening
3: a← NEXTACTION(h)
4: C(h)← C(h) ∪ {a}
5: end if
6: while true do
7: Status, a← SELECTBEST(b, h)
8: if Status then
9: break

10: else
11: for all b′, o ∈ C(ha) do
12: RESIMPLIFY(b′, hao)
13: end for
14: reconstruct Q̂(ha), Q̂(ha)
15: end if
16: end while
17: return a
18: end procedure
19: procedure SELECTBEST(b, h)
20: Status← true
21: ã← arg max

a
{UCB(ha)}

22: gap← 0
23: child-to-resimplify← ã
24: for all ha children of b do
25: if UCB(hã) < UCB(ha) ∧ a 6= ã then
26: Status← false
27: if Q̂(ha)− Q̂(ha) > gap then

28: gap← Q̂(ha)− Q̂(ha)
29: child-to-resimplify← a
30: end if
31: end if
32: end for
33: return Status, child-to-resimplify
34: end procedure

same belief tree constructed with (16), while SITH-PFT
enjoys substantial acceleration. By C(ha) we denote the
set of the children (posterior beliefs corresponding to the
myopic observations) of the belief action node uniquely
indexed by the history h with concatenated action a. Line
13 in Alg. 7 is the DPW technique from Sunberg and
Kochenderfer (2018) with parameters ko and αo. The N(·)
is the visitation count of belief or belief action nodes.
In MCTS, the Q estimate is assembled by averaging
the laces of the returns over simulations see Eq. 20.
Each simulation yields a sum of discounted cumulative
rewards. Therefore, by replacing the reward with adaptive
lightweights bounds (22), we get corresponding discounted
cumulative upper and lower bounds over the returns.
Averaging the simulations (Alg. 7 lines 28-29), yields the
bounds over the action-value function and the UCB bounds
used in the routine ActionSelection() to be explained
in the next paragraph.

Consider a belief-action node ha at level d with
Q̂(ha), Q̂(ha). Suppose the algorithm selects it for bounds
narrowing, as described in section 5.2 and Alg. 8 line 7.
All tree nodes of which ha is an ancestor, contribute their
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immediate ρs, ρs bounds to Q̂(ha), Q̂(ha) computation.

Thus, to tighten Q̂(ha), Q̂(ha), we can potentially choose
any candidate node(s) in the subtree of ha. Each child
belief node of ha is sent to the resimplification routine
(Alg. 8 lines 11− 13), which performs the following
tasks. First, it selects the action (Alg. 9 line 7) that will
participate in the subsequent resimplification call and sends
all its children beliefs nodes to the recursive call further
down the tree (Alg. 9 line 8-10). Secondly, It refines the
belief node ρ, ρ according to the specific resimplification
strategy (Alg. 9 lines 3, 4, 12, 18). Thirdly, it reconstructs
Q̂(ha), Q̂(ha) once all the child belief nodes of ha have
returned from the resimplification routine (Alg. 9 line 11)
as we thoroughly explain in the next section. Fourthly,
it engages the rollout resimplification routine according
to the specific resimplification strategy (Alg. 9 lines 4,
13). Upon completion of this resimplification call initiated
at ha, we obtain tighter immediate bounds of some of
ha descendant belief nodes (including rollouts nodes).
Accordingly, appropriate descendant of ha belief-action
nodes bounds (Q̂, Q̂) shall be updated.

Many resimplification strategies are possible, below we
present our approach. In Section 4.2 we presented a
resimplicifation strategy based on gap. Now we adapt it to
the MCTS setting.

5.4 Specific Resimplification Strategy:
PT-Gap

In this section, we explain the resimplification procedure
in more detail. In particular we present a specific
resimplification strategy and further show that this strategy
is valid according to Definition 1. When some sibling belief
action nodes have overlapping bounds (Fig. 3a, Fig. 7),
we strive to avoid tightening them all at once since fewer
resimplifications lead to greater acceleration (speedup).
Thus, we choose a single ha-node that causes the largest
“gap”, denoted by G, between its bounds (see Alg. 8 lines
24-30), where G is defined by (47). Further, we tighten the
bounds down the branch of the chosen node (see Alg. 8 lines
11-13) for each member of C(ha), the set of children of ha.
Since the bounds converge to the actual reward (Assumption
2) we can guarantee that Alg. 8 will pick a single action after
a finite number of resimplifications; thus, tree consistency is
assured.

Specifically, we decide to refine ρs, ρs of a belief node
indexed by h′ at depth d′ within the subtree starting from a
belief action node indexed by ha at depth d when

γd−d
′ · (ρs − ρs) ≥ 1

d
G(ha), (51)

whereG(ha) corresponds to the gap (47) of the belief-action
node ha that initially triggered resimplification in Alg. 8 line
24.

The explanation of resimplification strategy based on (51)
is rather simple. The right hand side of (51) is the mean
gap per depth/level in the sub-tree with ha as its root and
spreading downwards to the leaves. Naturally, some of the
nodes in this subtree have ρs − ρs above or equal to the mean
gap and some below. We want to locate and refine all those
above or equal to it. For the left side of (51); the rewards are

Algorithm 9 Resimplification

1: procedure RESIMPLIFY(b, h)
2: if b is a leaf then
3: REFINEBOUNDS(b)
4: RESIMPLIFYROLLOUT(b, h)
5: return
6: end if
7: ã← arg max

a
{N(ha) · (Q̂(ha)− Q̂(ha))}

8: for all b′, o ∈ C(hã) do
9: RESIMPLIFY(b′, hão)

10: end for
11: reconstruct Q̂(hã), Q̂(hã)
12: REFINEBOUNDS(b)
13: RESIMPLIFYROLLOUT(b, h)
14: return
15: end procedure
16: procedure RESIMPLIFYROLLOUT(b, h)
17: brollout ← find weakest link in rollout
18: REFINEBOUNDS(brollout)
19: end procedure
20: procedure REFINEBOUNDS(b)
21: if (51) holds for b, refine its ρs+1, ρs+1 and promote

its simplification level
22: end procedure

accumulated and discounted according to their depth. Thus,
we must account for the relative discount factor. Note that the
depth identified with the root is the horizon dmax = L, as seen
in Alg. 7 line 4, and the leaves are distinguished by depth
d = 0. For each rollout originating from a tree belief node,
we find the rollout node with the largest ρ− ρ satisfying
(51) term locally in the rollout and resimplify it (Alg. 9
lines 4,13). To choose the action to continue resimplification
down the tree, we take the action corresponding to the belief
action node with the largest gap, weighted by its visitation
count (Alg. 9 line 7). With this strategy, we aim to keep the
belief tree at the lowest possible simplification level while
maintaining belieftree consistency.

If the action selection procedure triggers resimplification,
it modifies the bounds through the tree. Since the
resimplification works recursively, it reconstructs the belief-
action node bounds coming back from the recursion
(Alg. 9 line 11). Similarly, the action dismissal procedure
reconstructs Q̂ and Q̂ of the belief-action node at which the
action dismissal is performed (Alg. 8 line 14). Moreover,
on the way back from the simulation, we shall update the
ancestral belief-action nodes of the tree. Specifically, we
need to reconstruct each Q̂ and Q̂ that is higher than the
deepest starting point of the resimplification (Alg. 7 line
23-25). The reconstruction is essentially a double loop.
To reconstruct Q̂(ha), Q̂(ha) we first query for all belief
children nodes hao. We then query all belief-action nodes
that are children to the hao, i.e. haoa′. The possibly modified
immediate bounds ρ and ρ are taken from hao nodes and

the Q̂(·), Q̂(·) bounds are taken from the haoa′ nodes.
Importantly, each of the bounds is weighted according to the
proper visitation count.
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5.5 Guarantees
In this section we first show that the resimplification strategy
suggested in the previous section is valid.

Lemma 1. Validity of the suggested resimplification strategy.
The resimplification strategy presented in Section 5.4
promotes the simplification level of at least one reward in
the rollout or belief tree. Alternatively, all the rewards are
at the maximal simplification level nmax. In other words the
suggested resimplifcation strategy is valid.

We provide the complete proof in Appendix 11.2. Having
proved the validity of the suggested resimplification strategy,
we proceed to the monotonicity and convergence of UCB
bounds from (48) and (49).

Lemma 2. Monotonicity and convergence of UCB bounds.
The UCB bounds are monotonic as a function of the
number of resimplifications and after at most nmax ·M
resimplifications we have that

UCB(ha) = UCB(ha) = UCB(ha) (52)

We provide the proof in Appendix 11.3. Now, using
Lemma 2, we prove that SITH-PFT (Alg. 7) yields the same
belief tree and the same best action as PFT.

Theorem 2. SITH-PFT and PFT are Tree Consistent
Algorithms for any valid resimplification strategy.

Theorem 3. SITH-PFT provides the same solution as PFT
for any valid resimplification strategy.

We provide the full proofs of Theorems 2 and 3 in
Appendix 11.4 and 11.5, respectively. We showed that for
any valid resimplification strategy SITH-PFT is guaranteed
to construct the same belief tree as PFT and select the same
best action at the root. From Lemma 1, our resimplification
strategy is valid. Thus, we achieved the desired result.

6 Specific Simplification and
Information-theoretic Bounds

In this section we focus on a specific simplification in the
context of a continuous state space and nonparametric beliefs
represented by nx weighted particles,

b , {wi, xi}nx
i=1. (53)

Suggested Simplification: Given the belief representation
(53), the simplified belief is a subset of nsx particles, sampled
from the original belief, where nsx ≤ nx. More formally:

bsk,
{

(xik, w
i
k)
∣∣i ∈ Ask ⊆ {1, 2, . . . , nx},|Ask| = nsx

}
, (54)

where Ask is the set of particle indices comprising the
simplified belief bsk for time k.

Increasing the level of simplification is done incremen-
tally. Specifically, when resimplification is carried out, new
indices are drawn from the sets {1, 2, . . . , nx} \Ask and
and included to the set Ask. This operation promotes the
simplification level to s+ 1 and defines As+1

k .

6.1 Novel Bounds Over Differential Entropy
Estimator

As one of our key contributions, we now derive novel
analytical bounds for the differential entropy estimator from
Boers et al. (2010). These bounds can then be used within our
general simplification framework presented in the previous
sections. To calculate differential entropy

H(b(xk)) , −
∫
b(xk) · log (b(xk)) dxk,

one must have access to the manifold representing the belief.
In a nonparametric setting this manifold is out of reach. We
have to resort to approximations. Several approaches exist.
One of them is using Kernel Density Estimation (KDE) as
done, e.g., by Fischer and Tas (2020). Here, however, we
consider the method proposed by Boers et al. (2010). This
method builds on top of usage of motion and observation
models such that

Ĥ(bk, ak, zk+1, bk+1) , log

[
nx∑

i=1

PO(zk+1|xik+1)wik

]
−

(55)

−
nx∑

i=1

wik+1 ·log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


.

One can observe this method requires access to sam-
ples representing both bk and bk+1; thus, this corre-
sponds to an information-theoretic reward of the form
ρI(bk, ak, zk+1, bk+1). Note that as explained in Section 3
such a reward is tied to bk+1.

For the sake of clarity and to remove unnecessary clutter
we apply an identical simplification described by (54) to
both beliefs bk and bk+1. The simplification indices for
both beliefs are defined by Ask+1. However this is not
an inherent limitation. One can easily maintain two sets
of indices so as the theory presented below is developed
to this more general setting. Moreover, as mentioned in
Section 3, we have the same belief bk+1 also participating in
ρI(bk+1, ak+1, zk+2, bk+2). In this reward, the simplification
indices for bk+1 will according to Ask+2 (and not according
to Ask+1).

Utilizing the chosen simplification (54), we now introduce
the following upper and lower bounds on (55).

Theorem 4. Adaptive bounds on differential entropy
estimator. The estimator (55) can be bounded by

`(bk, ak, zk+1, bk+1;Ask, A
s
k+1) ≤

≤ −Ĥ(bk, ak, zk+1, bk+1) ≤
≤ u(bk, ak, zk+1, bk+1;Ask, A

s
k+1),

(56)
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Figure 8. Schematic visualization of calculations reuse
principle in bounds. We select columns using indexes from set
As

k and rows by As
k+1. We marked by olive color resulting

constituents of the bounds.

where

u , − log

[
nx∑

i=1

PO(zk+1|xik+1)wik

]
+ (57)

+
∑

i/∈As
k+1

wik+1 · log
[
m · PO(zk+1|xik+1)

]
+

+
∑

i∈As
k+1

wik+1 ·log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk




` , − log

[
nx∑

i=1

PO(zk+1|xik+1)wik

]
+ (58)

+

nx∑

i=1

wik+1 ·log


PO(zk+1|xik+1)

∑

j∈As
k

PT (xik+1|xjk, ak)wjk




and where superscript s is the discrete level of simplifica-
tion s ∈ {1, 2, . . . , nmax}, m , max

x′
x,a

PT (x′|x, a) and Ask,

Ask+1 ⊆ {1, 2, . . . , nx}.

See proof in Appendix 11.6. Theorem 4 accommodates
different sets Ask 6= Ask+1. These sets denote sets of particle
indices from bk and bk+1 for simplification level s. In
general, each of these sets can have its own simplification
level. However, this is out of the scope of this paper. Here,
both sets Ask, Ask+1 have the same simplification level, as
well as the number of levels. Yet, the number of particles at
each level can vary between Ask and Ask+1. Each subsequent
level (low to high) defines a larger set of indices such that
higher levels of simplification (i.e. more samples) correspond
to tighter and lower levels of simplification correspond to
looser bounds. Note that the bounds (57) and (58) actually
use the original and simplified beliefs so it settles with
Eqs. (21) and (22).

Importantly, by caching the shared calculations of both
bounds in the same time instance, we never repeat the
calculation of these values and obtain maximal speedup.
Without compromising on the solution’s quality we are
accelerating the online decision making process.

6.2 Bounds Properties and Analysis
We now turn to analysis of the bounds and investigation
of their properties. Allow us to start from computational
complexity. We then examine monotonicity and convergence
of the bounds and reuse of calculations.

6.2.1 Computational complexity Eqs. (57) and (58)
suggest that the bounds are cheaper to calculate than Ĥ
from (55), with complexity of O(nsx · nx) instead of O(n2x),
where nsx , |Ask| ≡ |Ask+1|. Altogether, time saved for all
belief nodes in the tree will result in the total speedup of our
approach.

6.2.2 Monotonicy and Convergence

Theorem 5. Monotonicity and convergence. The bounds
from (56) are monotonic (Assumption 1) and convergent
(Assumption 2) to (55).

See proof in Appendix 11.7. Finally, bounding (55) using
Theorem 4 corresponds, in our general framework from
Section 3, to (21).

6.2.3 Re-use of Calculations The bounds can be tight-
ened on demand incrementally without an overhead. Moving
from simplification level s to level s+ 1, corresponds to
adding some m additional particles to bs to get bs+1. For
bounds calculation, we store the highlighted elements of the
matrix in Fig. 8. This allows us to reuse the calculations
when promoting the simplification level and between the
lower and the upper bounds in a particular time index.
Namely, after a few bounds-contracting iterations they are
just the reward itself and the entire calculation is roughly
time-equivalent to calculating the original reward. This will
happen in a worst-case scenario.

We provide the theoretical time complexity analysis using
the specific bounds (from Section 6.1) in Appendix 11.8.
Now we are keen to present our simulations.

7 Adaptation Overhead
Whereas the bounds presented in Section 6 are incremental
repeated resimplifications may lead to actually slower
decision-making. This overhead is caused by additional
algorithmics introduced by the resimplification routine.
We can anticipate such scenarios when the actions are
symmetrical in terms of the reward. However, as we
empirically observed and will shortly present in the next
section, in the setting of given belief tree the cases where the
simplification is beneficial prevail. Especially in the LAZY
variant since there the Alg. 5 engages resimplification routine
only at the root of the belief tree.

In the setting of MCTS the situation is slightly more
complicated. In UCB we cannot prune actions for eternity
but only dismiss up until the next arrival to the belief
node. This is because when MAB (defined in Section 2.3.3)
converges it switches the current best action with arrivals
to the belief node; such a behavior necessitates our
simplification approach to tighten the bounds for many
candidate actions. As a result in a MCTS setting we
obtain less speedup than in the setting of a given belief
tree considering LAZY variant (Alg. 5). Nevertheless in
some problems the simplification approach is invaluable,
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as for example, in the problem described in Section 8.1.3
and investigated in Section 8.3.5. Importantly, we can
further accelerate resimplification routines by parallelization.
However, this is out of the scope of this paper. All our
implementations are single threaded.

8 Simulations and Results
We evaluate our proposed framework and approaches in
simulation considering the setting of nonparametric fully
continuous POMDP. Our implementation is built upon the
JuliaPOMDP package collection (Egorov et al. 2017). For
our simulations, we used a 16 cores 11th Gen Intel(R)
Core(TM) i9-11900K with 64 GB of RAM working at
3.50GHz.

First, we study empirically the specific simplification and
bounds from Section 6 and show that they become tighter
as the number of particles increases. We, then benchmark
our algorithms for planning in the setting of a given belief
tree (Section 4) and in an anytime MCTS setting (Section 5).
In the former setting, we compare SITH-BSP and LAZY-
BSP against Sparse Sampling (Kearns et al. 2002). In an
anytime MCTS setting, we compare SITH-PFT with PFT-
DPW (Sunberg and Kochenderfer 2018) and IPFT (Fischer
and Tas 2020). This performance evaluation is conducted
considering three problems, as discussed next.

8.1 Problems under Consideration
We proceed to the description of the evaluated problems. In
two first problems the immediate reward for b′ is

ρ(b, a, z′, b′) = −(1− λ)E
x′∼b′

[
r(x′)

]
−λĤ(b, a, z′, b′). (59)

8.1.1 Continuous Light Dark Our first problem is 2D
continuous Light-Dark problem. The robot starts at some
unknown point x0 ∈ R2. In this world, there are spatially
scattered beacons with known locations. Near the beacons,
the obtained observations are less “noisy”. The robot’s
mission is to get to the goal located at the upper right corner
of the world. The state dependent reward in this problem is
r(x) = −‖x− xgoal‖22. The initial belief is b0 = N (µ0, I ·
σ0), where we select x0 = µ0 for actual robot initial state.
The motion and observation models are

PT (x′|x, a) = N (x+ a, I · σT ), (60)

and

O = PO(z|x) = N (x−xb, I ·σO ·max{d(x), dmin}), (61)

respectively, where d(x) is the `2 distance from robot’s state
x to the nearest beacon with known location denoted by xb,
and dmin is a tuneable parameter.

8.1.2 Target Tracking Our second problem is 2D contin-
uous Target Tracking. In this problem we have a moving
target in addition to the agent. In this problem the belief is
maintained over both positions, the agent and the target. The
state dependent reward in this problem is r(x) = −‖xagent −
xtarget‖22. The motion model of the target and the agent
follows

PT (·|x, a) = N (xagent+ aagent,ΣT ) · N (xtarget+ atarget,ΣT ),

where by x we denote the concatenated {xagent, xtarget}. For
target actions we use a circular buffer with {↑, ↑,←} action
sequence of unit length motion primitives. For simplicity we
assume that in inference as well as in the planning session
the agent knows the target action sequence. The observation
model is also the multiplication of the observation model
from the previous section with the additional observation
model due to a moving target. Thus, the overall observation
model is

PO(·|x; {xb,i}i=1) = N (xagent,ΣO(xagent; {xb,i}i=1))·
·N (xagent − xtarget,ΣO(xagent, xtarget)),

where ΣO(xagent; {xb,i}i=1) conforms to the observation
model covariance described in Section 8.1.1 and

ΣO(xagent, xtarget) = (62)
{
σ2
T I‖xagent − xtarget‖2, if ‖xagent − xtarget‖2 ≥dmin

σ2
OI, else

.

Before the planning experiments we study of the entropy
estimators and the bounds presented in Theorem 4.

8.1.3 Safe Autonomous Localization Our third problem
is a variation of the problem presented in Section 8.1.1. Here
we change the reward to be the combination of localization
reward and safety reward (Zhitnikov and Indelman 2022a)

ρ(b, a, z′, b′) =

localization reward︷ ︸︸ ︷
−Ĥ(b, a, z′, b′) +

+ s
(

2 · 1{P({x′∈X safe,′}|b′)≥δ}(b
′)− 1

)

︸ ︷︷ ︸
safety reward

.
(63)

Such a safety reward divides the candidate actions into two
sets, the safe set and the unsafe. If the safety parameter s
is sufficiently large to assure that safe action is selected,
these two sets are detached enough in terms of safety reward
and the unsafe set is substantially inferior such that there
is no point to calculate localization reward precisely over
this set of actions. There, we can, without any harm for
decision-making outcome, substitute differential entropy by
the bounds at the low simplification levels. This aspect makes
the simplification paradigm invaluable.

8.2 Entropy Estimators and Bounds Study
In this section, we experiment with a passive case of the
continuous 2D Light Dark problem from Section 8.1.1. Our
goal is to study the various entropy estimators and our
derived bounds from Section 6 over the estimator developed
in Boers et al. (2010). In this study, we manually supply the
robot with an action sequence to conduct. This results in a
single lace of the beliefs corresponding to observations that
the robot actually obtained by executing a given externally
action sequence. We also provide some attempt in this
section to compare estimated reward with the exact analytical
counterpart.

Over this sequence of the beliefs, at each time instance
of the sequence we calculate minus differential entropy
estimator (information) in four ways. The first is the
Boers estimator (Boers et al. 2010) and our bounds from
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(a) (b)

Figure 9. The plot shows the evolution of belief in terms of sets of particles along the actual trajectory of the robot. The color of the
particles from yellow to red illustrate the evolution of the belief over time. The green ellipses represent the parametric Gaussian
belief covariances obtained from update by Kalman filter. The canvas color here is σO = σT = 0.075 as in equations (60) and (61)
respectively. (a) Our first scenario. (b) Our second scenario.

Theorem 4. The second is KDE approximation as done by
Fischer and Tas (2020). The third is the naive calculation
of discrete entropy over the the particles weights: Ĥ(b) =
−∑i w

i · logwi. The fourth estimator is analytical and it
requires additional explanation. If we make an unrealistic
assumption that robot’s ground truth state from which the
observation has been taken is known, plug it into the
covariance matrix of (61) and set prior belief to be Gaussian;
the motion and observation models met all the requirement
for the exact update by Kalman Filter (linear additive
models). For the proof see Thrun et al. (2005). In this case the
belief stays Gaussian and the differential entropy has closed
form solution.

We have two scenarios. In the first scenario, the robot
moves diagonally to the goal using a unit length action ↗
(Fig. 9a) fifteen times. Along the way, it passes close-by two
beacons. Consequentially, the robot’s information about its
state peaks twice. In our second scenario the robot moves
five times to the right → followed by ten times ↑ and again
five times to the right→ (Fig. 9b).

The prior belief in this setting follows a Gaussian distribu-

tion b0 = N
((

0.0
0.0

)
,

(
2.0 0.0
0.0 2.0

))
, the motion and obser-

vation models parameters are σO = σT = 0.075, dmin =
0.0001. The number of unsimplified belief weighted particles
is nx = 300. For creating initial weighted particles we use
the following proposal

q = 0.25 · N
((

0.0
1.0

)
,

(
2.0 0.0
0.0 0.2

))
+

+0.25 · N
((

1.0
0.0

)
,

(
2.0 0.0
0.0 0.2

))
+

+0.25 · N
((
−1.0
0.0

)
,

(
2.0 0.0
0.0 0.2

))
+

+0.25N
((

1.0
−1.0

)
,

(
2.0 0.0
0.0 0.2

))
.

The initial weights are the ratio w(x) = b0(x)
q(x) .

To examine the bounds monotonical convergence with
a growing number of simplified belief particles we plot

the bounds (57) and (58) for minus entropy estimator (55)
alongside estimators described above for the entire robot
trajectory of the beliefs.

The results for the first and second scenarios are provided
in Figs. 10 and 11, respectively. For both scenarios we
observe that the bounds become tighter as the number of
particles of simplified belief nsx increases. We also witness
that all estimators vary but the overall trend is similar, putting
aside the discrete entropy over the weights. The discrete
entropy over the weights fails to adequately represent the
uncertainty of the belief. This is an anticipated result. Let
us proceed to the planning experiments.

8.3 Planning
In this section we study and benchmark our efficient planning
algorithms. In our algorithms 1 and 5 the tree is build by SS
(Kearns et al. 2002) such that the given belief tree is obtained
when the algorithm descends to the leafs. We first compare
Alg. 1 and 5 versus SS. We then proceed to simulations in an
anytime MCTS setting.

For all further experiments, the belief is approximated by
a set of nx weighted samples as in (53). The robot does
replanning after each executed action.

8.3.1 Acceleration measures Let us begin this section by
describing our measures of acceleration. We report planning
time speedup in terms of saved accesses to particles.

The following speedup is based on the final number of
simplified beliefs particles required for planning

∑
i

(
n2i,x − nsi,xni,x

)

∑
i n

2
i,x

· 100, (64)

where the summation is over the future posterior beliefs
in all the belief trees in a number of a consecutive
planning sessions in particular scenario. Eq. (64) measures
relative speedup without time spent on resimplifications.
It is calculated at the end of several consecutive planning
sessions. To calculate speedup according to (64) one shall
pick up the final number of particles of simplified belief nsi,x
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(a)

(b)

(c)

Figure 10. Bounds convergence for our first scenario nx = 300
(a) ns

x = 30 particles (b) ns
x = 150 particles (c) ns

x = 270
particles.

used for the simplified reward for each belief node i, sum
over all the nodes of the belief trees (given or constructed on
the fly) from planning sessions, make a calculation portrayed
by (64). Importantly, acceleration measure (64) assumes that
time of evaluating the motion and observation models do not
vary from one evaluation to another. If the number of belief
particles is not not depending on the belief (ni,x = nx) we
can further simplify the (64) to

∑
i

(
nx − nsi,x

)

∑
i nx

· 100. (65)

(a)

(b)

(c)

Figure 11. Bounds convergence for our second scenario
nx = 300 (a) ns

x = 30 (b) ns
x = 150 particles (c) ns

x = 270
particles.

To calculate planning time speedup we use the following
metric

tbaseline − tour
tbaseline

· 100. (66)

If the quantities (64) and (66) are identical we can conclude
that there will be no overhead from resimplifications and
adapting the bounds. Note also that in the first place it is
not clear how many particles nx for belief representation to
take. The number of particles nx shall be as large as possible
due to fact that we do not know when the belief represented
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Figure 12. Exemplary 2D Light Dark problem planning
scenario. Here we present the first trial of configuration λ = 0.5
of Table 1.

by weighted particles will converge to the corresponding
theoretical belief.

To thoroughly study the acceleration yielded by our
simplification paradigm we calculate total speedup over a
number of the consecutive planning sessions in terms of
particles in accordance to (64) and in terms of time in
accordance to (66).

8.3.2 Results for 2D Continuous Light-Dark in the Setting
of a Given Belief Tree We start from the problem described
in Section 8.1.1. Our action space is constituted by motion
primitives of unit length A = {→,↗, ↑,↖,←,↙, ↓,↘}.
In this problem the selected parameters are σT = σO =
0.1, dmin = 0.0001, γ = 0.95. We simulate 15 trials of
20 consecutive alternating planning and action execution
sessions. Fig. 12 shows an exemplary trial of 20 executions
of the best action identified by the robot.

We investigate the influence of the parameter λ on speedup
in Table 1 and the impact of changing the number of
particles in Table 2. In both tables we see the particles
speedup (column 4) and the time speedup (column 5). As
expected with increasing values of λ (column 3) the speedup
diminishes. LAZY-BSP (Alg. 5) produces larger speedup
in terms of particles (column 4) and time (column 5) than
SITH-BSP (Alg. 1). All three algorithms always selected the
same optimal action. We observe that the return is always
identical (column 9). Significant time speedup is obtained in
the range of 35%− 70% for LAZY-BSP depending on the
values of λ. For the SITH-BSP we see less time speedup
ranging from 65% to 10% with increasing λ.

In all tables the number of motion and observation model
calls does not include belief update calls but only the calls for
reward or bounds calculation. The number of accesses to the
observation model is always the same for all three algorithms
(column 8). This agrees with the structure of the bounds (57)
and (58). For the baseline SS, up to rounding errors, the
number of motion model accesses, as we anticipated, is the
squared number of unsimplified belief particles multiplied
by number belief nodes in the tree minus one for root belief,
multiplied by number of planning sessions (column 7 in the
tables). This is in agreement with (55). Also, for all three
algorithms the number of accesses to the observation model
was the number of particles of unsimplified belief minus one

for root belief, multiplied by the number of belief nodes in
the tree, multiplied by the number of planning sessions.

We see that, while having larger particle speedup (column
3), LAZY-BSP makes more resimplification calls (column 6)
than SITH-BSP. Observing the histograms of simplification
levels in Fig. 13, we understand that LAZY variant of
resimplification strategy leads to lower simplification levels
of the rewards at the deepest level of a given belief tree.
This was expected since the rewards at the upper levels of
the belief tree participate in more laces and therefore their
simplification level is promoted more times (See Alg. 5).
In addition at the lowest levels reside more beliefs and
corresponding rewards. This fact is corroborated by Table 3
where we witness that LAZY-BSP yields more beliefs, in
the given in belief tree, with lower simplification levels than
SITH-BSP.

8.3.3 Results for 2D Continuous Target Tracking in the
Setting of a Given Belief Tree Our action space isA = {→
,↗, ↑,↖,←,↙, ↓,↘,Null}, where action Null means that
agent doesn’t take any action. In this problem we selected the
parameters to be dmin = 0.0001, ΣT = I · σT where σT =
0.1 and σO = 0.1, γ = 0.95.

We simulate 15 trials of 15 consecutive alternating
planning sessions and the executions by the robot of the
selected optimal action. Fig. 14 shows an exemplary trial. We
show the agent particles in Fig. 14a and the target particles in
Fig. 14b. Similar to the previous section, we study speedup
with growing λ in Table 4 and as function of various amounts
of belief particles in Table 5. Again we observe that speedup
diminishes with growing λ; LAZY-BSP (Alg. 5) produces
a larger speedup in terms of particles (column 4) and time
(column 5) than SITH-BSP (Alg. 1); accesses to motion and
observation models are as expected; the return is identical for
three algorithms.

In Fig. 15, which is associated with Table 6, we observe
that to select an optimal action LAZY-BSP leaves more
beliefs with lower simplification levels at the bottom of
the given belief tree and produces more beliefs with lower
simplification levels than SITH-BSP. A significant time
speedup is obtained in the range of 30%− 70% for LAZY-
BSP depending on the values of λ. For the SITH-BSP we see
less time speedup ranging from 60% to 2% with increasing
λ. The same best action was identified by SITH-BSP, LAZY-
BSP and SS in all cases. Interestingly, in configuration nx =
350 of Table. 5, for the first time we obtained that time
speedup (66) is larger than particle speedup (64). This points
to the fact that this run was so long due to large number
of unsimplified belief particles nx = 350 so that the time of
access to motion and observation models varied.

8.3.4 Experiments with MCTS In an anytime setting of
MCTS we focus on the 2D-continuous light dark problem
from Section 8.1.1. We place a single “light beacon” in the
continuous world. Here we changed the reward. The agent’s
goal is to get to location (0, 0) and execute the terminal
action - Null. Executing it within a radius of 0.5 from (0, 0)
will give the agent a reward of 200, and executing it outside
the radius will yield a negative reward of −200. For all other
actions the multi-objective reward function is ρ(b, a, z, b′) =
− E
x∼b′

[‖x‖2]− Ĥ(b, a, z, b′). The agent can move in eight

evenly spread directions A = {→,↗, ↑,↖,←,↙, ↓,↘
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Table 1. This table shows cumulative results of 20 consecutive alternating planning and execution sessions of the Continuous Light
Dark problem averaged over 15 trials. Each planning session creates a single belief tree to perform a search for optimal action. This
given belief tree has 4809 belief nodes. Overall, in 20 planning sessions, we have 96180 belief nodes. The horizon in each planning
session is L = 3. The number of observations sampled from each belief action node is n1

z = 1, n2
z = 3, n3

z = 3 at the
corresponding to superscripts depths 1, 2, 3. This table examines the influence of various values of λ.

BSP Alg. nx λ particles speedup (64) time speedup (66) resimpl. calls (recursive) motion model calls obs. model calls return (V̂ )

Alg 1 SITH
100 0.1

78.76± 0.20 64.44± 1.51 2.05 · 105 ± 0.05 · 105 3.13 · 108 ± 0.02 · 108 9.62 · 106 ± 0.0 −115.49± 16.58

Alg 5 LAZY 85.46± 1.22 71.59± 1.52 10.71 · 105 ± 4.61 · 105 2.38 · 108 ± 0.13 · 108 9.62 · 106 ± 0.0 −115.49± 16.58

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −115.49± 16.58

Alg 1 SITH
100 0.2

68.82± 0.32 53.59± 2.05 3.36 · 105 ± 0.06 · 105 4.22 · 108 ± 0.03 · 108 9.62 · 106 ± 0.0 −103.51± 14.91

Alg 5 LAZY 80.09± 1.52 65.01± 1.88 25.65 · 105 ± 6.17 · 105 3.01 · 108 ± 0.18 · 108 9.62 · 106 ± 0.0 −103.51± 14.91

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −103.51± 14.91

Alg 1 SITH
100 0.3

58.33± 0.52 42.76± 2.96 4.13 · 105 ± 0.05 · 105 5.40 · 108 ± 0.01 · 108 9.62 · 106 ± 0.0 −91.86± 13.88

Alg 5 LAZY 74.85± 2.63 58.94± 3.04 42.66 · 105 ± 9.80 · 105 3.59 · 108 ± 0.29 · 108 9.62 · 106 ± 0.0 −91.86± 13.88

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −91.86± 13.88

Alg 1 SITH
100 0.4

45.66± 0.83 29.33± 4.78 4.70 · 105 ± 0.04 · 105 6.84 · 108 ± 0.08 · 108 9.62 · 106 ± 0.0 −80.44± 11.77

Alg 5 LAZY 69.94± 1.89 53.85± 2.56 59.05 · 105 ± 8.76 · 105 4.16 · 108 ± 0.22 · 108 9.62 · 106 ± 0.0 −80.44± 11.77

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −80.44± 11.77

Alg 1 SITH
100 0.5

34.46± 0.79 18.98± 4.16 5.27 · 105 ± 0.05 · 105 7.92 · 108 ± 0.01 · 108 9.62 · 106 ± 0.0 −66.3± 8.0

Alg 5 LAZY 63.6± 2.23 46.67± 2.81 81.48 · 105 ± 8.52 · 105 4.87 · 108 ± 0.24 · 108 9.62 · 106 ± 0.0 −66.3± 8.0

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −66.3± 8.0

Alg 1 SITH
100 0.6

25.09± 0.89 12.05± 4.83 5.85 · 105 ± 0.05 · 105 8.64 · 108 ± 0.05 · 108 9.62 · 106 ± 0.0 −55.36± 6.93

Alg 5 LAZY 56.32± 2.72 38.45± 3.65 113.26 · 105 ± 11.45 · 105 5.71 · 108 ± 0.28 · 108 9.62 · 106 ± 0.0 −55.36± 6.93

SS 9.62 · 108 ± 0.0 9.62 · 106 ± 0.0 −55.36± 6.93

Table 2. This table shows cumulative results of 20 consecutive alternating planning and execution sessions averaged over 15 trials
of Continuous Light Dark problem. The given belief tree in a single planning session has 4809 belief nodes. Overall, in 20 planning
sessions, we have 96180 belief nodes. The horizon in each planning session is L = 3. The number of observations sampled from
each belief action node is n1

z = 1, n2
z = 3, n3

z = 3 at the corresponding to superscripts depths 1, 2, 3. In this table we examine
influence of various number of belief particles.

BSP Alg. nx λ particles speedup (64) time speedup (66) resimpl. calls (recursive) motion model calls obs. model calls return (V̂ )

Alg 1 SITH
200 0.5

34.1± 0.8 25.01± 5.11 5.30 · 105 ± 0.04 · 105 31.80 · 108 ± 0.25 · 108 19.24 · 106 ± 0.0 −69.36± 7.95

Alg 5 LAZY 64.0± 2.98 51.71± 4.9 83.95 · 105 ± 10.24 · 105 19.35 · 108 ± 1.29 · 108 19.24 · 106 ± 0.0 −69.36± 7.95

SS 38.47 · 108 ± 0.0 19.24 · 106 ± 0.0 −69.36± 7.95

Alg 1 SITH
300 0.5

33.84± 0.83 18.67± 2.02 5.30 · 105 ± 0.04 · 105 71.74 · 108 ± 0.58 · 108 28.85 · 106 ± 0.0 −68.29± 8.42

Alg 5 LAZY 63.39± 3.44 47.34± 3.72 84.09 · 105 ± 10.66 · 105 43.91 · 108 ± 3.09 · 108 28.85 · 106 ± 0.0 −68.29± 8.42

SS 86.56 · 108 ± 0.0 28.85 · 106 ± 0.0 −68.29± 8.42

Alg 1 SITH
400 0.5

33.97± 0.85 25.34± 3.44 6.65 · 105 ± 0.06 · 105 181.50 · 108 ± 1.41 · 108 54.51 · 106 ± 0.0 −67.92± 11.52

Alg 5 LAZY 66.06± 2.3 53.74± 3.4 106.90 · 105 ± 15.73 · 105 105.35 · 108 ± 5.75 · 108 54.51 · 106 ± 0.0 −67.92± 11.52

SS 218.05 · 108 ± 0.0 54.51 · 106 ± 0.0 −67.92± 11.52

(a) (b)

Figure 13. Simplification levels at each depth of the given belief tree of Light Dark Problem (Section 8.1.1) after determining best
action for one of the planning sessions. Here we present planning session 6 of the first trial of configuration λ = 0.5 of Table 1. The
radius of circles represents the fraction of all nodes at a particular depth that have a particular simplification level. This figure is
associated with Table 3. (a) LAZY-SITH-BSP Alg 5 (b) SITH-BSP Alg 1.

,Null}. Motion and observation models, and the initial belief
are PT (·|x,a) = N (x+ a,ΣT ), PO(z|x) = N (x,min{1, ‖

x− xb ‖22} · ΣO), b0 = N (x0,Σ0) respectively. xb is the
2D location of the beacon and all covariance matrices
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Table 3. This table displays the numbers of the beliefs at each simplification level in a given tree after the identification of optimal
action at the root bk. Here we investigate Light Dark problem and belief tree as in Fig. 13. The given belief tree has 4809 belief
nodes.

BSP Alg. nx n1z n2z n3z λ L
simpl. level, particles

s=1
ns
x=10

s=2
ns
x=20

s=3
ns
x=30

s=4
ns
x=40

s=5
ns
x=50

s=6
ns
x=60

s=7
ns
x=70

s=8
ns
x=80

s=9
ns
x=90

s=10
ns
x=100

Alg 5 LAZY
100 1 3 3 0.5 3

2103 666 91 47 14 10 15 88 1094 680

Alg 1 SITH 30 61 241 618 696 567 576 465 684 870

(a) (b)

Figure 14. In this illustration we show second trial of Table. 5, configuration nx = 250. The canvas color here is σO = σT = 0.1.
(a) Agent particles (b) Target Particles.

Table 4. This table shows cumulative results of 15 consecutive alternating planning and action execution sessions averaged over
15 trials of Continuous Target Tracking problem. The given in a single planning session belief tree has 6814 belief nodes. Overall, in
15 planning sessions, we have 102210 belief nodes. The horizon in each planning session is L = 3. The number of observations
sampled from each belief action node is n1

z = 1, n2
z = 3, n3

z = 3 at corresponding to superscripts depths 1, 2, 3. In this table we
examine influence of various values of λ.

BSP Alg. nx λ particles speedup (64) time speedup (66) resimpl. calls (recursive) motion model calls obs. model calls return (V̂ )

Alg 1 SITH
100 0.1

77.43± 0.26 60.3± 2.21 1.69 · 105 ± 0.04 · 105 3.48 · 108 ± 0.03 · 108 10.22 · 106 ± 0.0 −79.87± 9.69

Alg 5 LAZY 86.97± 1.28 71.18± 2.42 7.44 · 105 ± 3.09 · 105 2.32 · 108 ± 0.16 · 108 10.22 · 106 ± 0.0 −79.87± 9.69

SS 10.22 · 108 ± 0.0 10.22 · 106 ± 0.0 −79.87± 9.69

Alg 1 SITH
100 0.2

64.64± 0.57 46.39± 2.27 2.60 · 105 ± 0.04 · 105 5.03 · 108 ± 0.07 · 108 10.22 · 106 ± 0.0 −73.38± 9.8

Alg 5 LAZY 83.52± 1.7 67.24± 2.62 16.52 · 105 ± 5.56 · 105 2.75 · 108 ± 0.22 · 108 10.22 · 106 ± 0.0 −73.38± 9.8

SS 10.22 · 108 ± 0.0 10.22 · 106 ± 0.0 −73.38± 9.8

Alg 1 SITH
100 0.3

49.57± 0.93 29.25± 2.39 3.14 · 105 ± 0.05 · 105 6.86 · 108 ± 0.10 · 108 10.44 · 106 ± 0.0 −66.29± 9.3

Alg 5 LAZY 79.83± 2.55 63.34± 3.45 26.61 · 105 ± 8.41 · 105 3.21 · 108 ± 0.30 · 108 10.44 · 106 ± 0.0 −66.29± 9.3

SS 10.22 · 108 ± 0.0 10.44 · 106 ± 0.0 −66.29± 9.3

Alg 1 SITH
100 0.4

35.75± 1.09 14.45± 2.85 3.61 · 105 ± 0.06 · 105 8.33 · 108 ± 0.09 · 108 10.44 · 106 ± 0.0 −59.99± 8.05

Alg 5 LAZY 74.38± 3.5 55.69± 4.38 42.74 · 105 ± 12.16 · 105 3.90 · 108 ± 0.38 · 108 10.44 · 106 ± 0.0 −59.99± 8.05

SS 10.22 · 108 ± 0.0 10.44 · 106 ± 0.0 −59.99± 8.05

Alg 1 SITH
100 0.5

25.51± 1.04 6.44± 2.49 4.05 · 105 ± 0.06 · 105 9.18 · 108 ± 0.08 · 108 10.44 · 106 ± 0.0 −53.15± 7.03

Alg 5 LAZY 67.76± 3.88 47.94± 5.08 63.18 · 105 ± 15.71 · 105 4.75 · 108 ± 0.44 · 108 10.44 · 106 ± 0.0 −53.15± 7.03

SS 10.22 · 108 ± 0.0 10.44 · 106 ± 0.0 −53.15± 7.03

Alg 1 SITH
100 0.6

18.06± 1.0 2.63± 2.32 4.43 · 105 ± 0.06 · 105 9.65 · 108 ± 0.06 · 108 10.44 · 106 ± 0.0 −46.97± 7.14

Alg 5 LAZY 59.53± 3.78 38.14± 4.69 89.27 · 105 ± 15.03 · 105 5.77 · 108 ± 0.43 · 108 10.44 · 106 ± 0.0 −46.97± 7.14

SS 10.22 · 108 ± 0.0 10.44 · 106 ± 0.0 −46.97± 7.14

are diagonal (i.e. Σ = I · σ2). We selected the following

parameters x0 =

(
−5.5
0.0

)
,Σ0 =

(
0.2 0.0
0.0 0.2

)
, σT = σO =

0.075. We experiment with 10 different configurations (rows
of Table 7) that differ in nx (number of particles), L (MCTS
simulation depth), and #iter (number of MCTS simulation
iterations per planning session). Each scenario comprises 10
planning sessions, i.e. the agent performs up to 10 planning
action-executing iterations. The scenario stops if the best

action determined in planning is Null. We repeat each
experiment 25 times. In each such repetition we run PFT-
DPW and SITH-PFT with the same seed and calculate the
relative time speedup in percentage according to (66) where
tPFT−DPW and tSITH−PFT are running times of a baseline
and our methods respectively.

In all different configurations, we obtained significant time
speedup of approximately 20% while achieving the exact
same solution compared to PFT. In Table 7 we report the
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Table 5. This table shows cumulative results of 15 consecutive alternating planning and execution sessions averaged over 15 trials
of Continuous Target Tracking problem. The given belief tree has 6814 belief nodes. Overall, in 15 planning sessions, we have
102210 belief nodes. The horizon in each planning session is L = 3. The number of observations sampled from each belief action
node is n1

z = 1, n2
z = 3, n3

z = 3 at corresponding to superscripts depths 1, 2, 3. In this table we examine various numbers of belief
particles.

BSP Alg. nx λ particles speedup (64) time speedup (66) resimpl. calls (recursive) motion model calls obs. model calls return (V̂ )

Alg 1 SITH
150 0.5

25.19± 0.94 8.72± 2.4 4.03 · 105 ± 0.03 · 105 20.71 · 108 ± 0.15 · 108 15.33 · 106 ± 0.0 −54.0± 8.16

Alg 5 LAZY 68.36± 2.66 50.23± 3.2 63.14 · 105 ± 9.15 · 105 10.55 · 108 ± 0.65 · 108 15.33 · 106 ± 0.0 −54.0± 8.16

SS 22.10 · 108 ± 0.0 15.33 · 106 ± 0.0 −54.0± 8.16

Alg 1 SITH
250 0.5

23.87± 0.98 11.01± 3.93 4.11 · 105 ± 0.05 · 105 58.10 · 108 ± 0.40 · 108 25.55 · 106 ± 0.0 −55.57± 9.59

Alg 5 LAZY 66.18± 3.35 51.51± 3.83 70.02 · 105 ± 12.74 · 105 30.79 · 108 ± 2.37 · 108 25.55 · 106 ± 0.0 −55.57± 9.59

SS 63.88 · 108 ± 0.0 25.55 · 106 ± 0.0 −55.57± 9.59

Alg 1 SITH
350 0.5

23.95± 1.07 40.18± 10.29 4.11 · 105 ± 0.03 · 105 113.81 · 108 ± 0.89 · 108 35.77 · 106 ± 0.0 −55.62± 8.73

Alg 5 LAZY 66.36± 2.58 67.17± 4.86 69.40 · 105 ± 10.08 · 105 60.19 · 108 ± 3.62 · 108 35.77 · 106 ± 0.0 −55.62± 8.73

SS 125.21 · 108 ± 0.0 35.77 · 106 ± 0.0 −55.62± 8.73

(a) (b)

Figure 15. Simplification levels at each depth of the given belief tree of Target Tracking problem (Section 8.1.2) after determining
best action for one of the planning sessions.. Here we present planning session 6 of the first trial of configuration nx = 250 of
Table 5. The radius of circles represent the fraction of all nodes at particular depth that have a particular simplification level. This
figure is associated with Table 6. (a) LAZY-SITH-BSP Alg 5 (b) SITH-BSP Alg 1.

Table 6. This table displays the numbers of the beliefs at each simplification level in given tree after the identification of optimal
action at the root bk. Here we investigate Target Tracking problem and belief tree as in Fig. 15. The size of given belief tree is 6814
belief nodes.

BSP Alg. nx n1z n2z n3z λ L
simpl. level, particles

s=1
ns
x=25

s=2
ns
x=50

s=3
ns
x=75

s=4
ns
x=100

s=5
ns
x=125

s=6
ns
x=150

s=7
ns
x=175

s=8
ns
x=200

s=9
ns
x=225

s=10
ns
x=250

Alg 5 LAZY
250 1 3 3 0.5 3

3487 949 776 884 379 106 48 34 11 139

Alg 1 SITH 10 19 46 144 538 966 1266 1208 1164 1452

(a) SITH-PFT (b) PFT-DPW (c) IPFT

Figure 16. 2D Continuous Light Dark. The agent starts from an initial unknown location and is given an initial belief. The goal is to
get to location (0, 0) (circled in red) and execute the terminal action. Near the beacon (white light) the observations are less noisy.
We consider multi-objective function, accounting for the distance to the goal and the differential entropy approximation (with the
minus sign for reward notation). Executing the terminal action inside the red circle gives the agent a large positive reward but
executing it outside it, will yield a large negative reward.
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Table 7. Time speedup (66) obtained SITH-PFT versus
PFT-DPW. The rows are different configurations of the number
of belief particles nx, maximal tree depth L, and the number of
iterations per planning session. In all simulations SITH-PFT and
PFT-DPW declared identical actions as optimal and exhibited
identical belief trees in terms of connectivity and visitation
counts.

(nx, L, #iter.) mean ±std max. min.

(50, 30, 200) 19.35± 6.34 30.17 7.99
(50, 50, 500) 17.43± 5.4 33.49 10.72

(100, 30, 200) 21.97± 8.74 49.24 7.36
(100, 50, 500) 22.54± 6.33 36.09 13.65
(200, 30, 200) 26.27± 9.36 42.43 11.17
(200, 50, 500) 26.17± 7.64 44.31 14.43
(400, 30, 200) 21.88± 8.47 37.04 10.34
(400, 50, 500) 21.71± 6.01 32.69 9.67
(600, 30, 200) 20.27± 7.38 32.95 8.77
(600, 50, 500) 19.93± 6.48 31.26 6.49

Table 8. Total runtime of 25 repetitions of two algorithms.

(nx, L, #iter.) Algorithm tot. plan. time [sec]

(50, 30, 200) PFT-DPW 49.7
SITH-PFT 40.25

(50, 50, 500) PFT-DPW 125.05
SITH-PFT 103.71

(100, 30, 200) PFT-DPW 185.47
SITH-PFT 145.08

(100, 50, 500) PFT-DPW 460.29
SITH-PFT 357.57

(200, 30, 200) PFT-DPW 709.66
SITH-PFT 526.18

(200, 50, 500) PFT-DPW 1755.08
SITH-PFT 1298.86

(400, 30, 200) PFT-DPW 2672.56
SITH-PFT 2099.0

(400, 50, 500) PFT-DPW 6877.24
SITH-PFT 5403.91

(600, 30, 200) PFT-DPW 6335.09
SITH-PFT 5056.96

(600, 50, 500) PFT-DPW 15682.47
SITH-PFT 12602.09

mean and standard error of (66) as well as maximum and
minimum value. Remarkably, we observe that we never
slowdown the PFT-DPW with SITH-PFT. We also present
total running times of 25 repetitions of at most 10 (the
simulation stops if best identified action is Null) planning
sessions in Table 8. Note that we divided the total planning
time by the number of planning sessions in each repetition.

An illustration of evaluated scenario can be found in
Fig. 16. Note that SITH-PFT (Fig. 16a) yields an identical
to PFT solution (Fig. 16b) while IPFT demonstrates a
severely degraded behavior. We remind the purpose of
our work is to speedup the PFT approach when coupled
with information-theoretic reward. Since the two algorithms
produce identical belief trees and action at the end of each
planning session, there is no point reporting the algorithms
identical performances (apart from planning time).

8.3.5 Localization with Collision Avoidance Solved by
MCTS In this section, we investigate the application of
three algorithms, IPFT (Fischer and Tas 2020), PFT-DPW
(Sunberg and Kochenderfer 2018) and our SITH-PFT
encapsulated by Alg. 7. The algorithmic implementation of
IPFT boils down to making more simulations inside IPFT
with substantially less number of belief particles subsampled
from root belief.

Further, we discuss the quality and speed of IPFT.
Representation of the belief with a tiny amount of particles
induces larger error in differential entropy estimation and
other parts of the reward function such as, for example, soft
safety reward component in (63). The authors of (Fischer
and Tas 2020) claim that IPFT averages differential entropies
calculated from tiny subsets subsampled from the particle
belief. However, observing the SIMULATE routine (similar
to our in Alg. 7) in (Fischer and Tas 2020), we see that in
practice this average is obtained through more simulations,
starting from a new subsample from the root belief, with less
number of particles, thereby averaging entropies calculated
from different beliefs with less number of particles, but same
history of actions and observations. The parameter K in
(Fischer and Tas 2020) in practice is the visitation count
N(b) of each belief in the belief tree. There is no direct
control of this parameter. In other words, to make a proper
comparison we shall increase the number of SIMULATE
calls inside IPFT by a factor K = nx/m where m is the size
of the subsample from a belief represented by nx particles.
In such a way in both belief trees, built by IPFT and PFT-
DPW, there are the same number of total particles. This is in
contrast to using the same number of calls to SIMULATE in
both trees. If the number of calls to SIMULATE is the same
the number of particles in the tree built by IPFT will be much
smaller than in the tree built by PFT-DPW. Do note that we
cannot assure that the same K will be for each future history
due to the exploratory nature of MCTS.

The speed of IPFT is linked with the rollout policy
of MCTS. As we mentioned above, when the belief is
represented by particles we know that asymptotically when
the number of particles tends to infinity this representation
converges to the theoretical belief for any given belief
(Crisan and Doucet 2002). Therefore, we shall take as many
particles as possible for the belief representation. Given that
the size of subsample m in IPFT does not change, this will
increase the parameter K and therefore slowdown IPFT.
Because when the new belief node is expanded in the belief
tree there is always a rollout initiated, a more complex rollout
policy will slowdown IPFT more, yet, this is ultimately the
question of how big the parameter K is.

As we observe in Fig. 17, IPFT is less accurate compared
to PFT-DPW and SITH-PFT in spite of a much larger
number of calls to SIMULATE routine compared to PFT-
DPW and SITH-PFT. Clearly, better localization is closer to
the beacons. In Fig. 17a we see that more trajectories went
to completely different from beacons directions as opposed
to Fig. 17c and Fig. 17b displaying identical results. From
Fig. 18a we conclude that in 10 from 15 trials the information
reward obtained in execution of the optimal action returned
by IPFT was inferior to the corresponding reward obtained
by SITH-PFT and PFT-DPW. From Fig. 18b we see that
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(a) (b) (c)

Figure 17. The plot shows 15 differently colored robot trajectories. Each such trajectory comprises ten time steps. In each such
step the robot performs re-planning and executes the best action selected by an appropriate BSP algorithm. The color of each
trajectory matches planning with the same seed in each plot. The canvas color here is σO = σT = 0.03 as in equations (60) and
(61) respectively. The parameters are nx = 300, m = 20, number of calls to SIMULATE of IPFT is 4500, the number of calls to
SIMULATE of PFT-DPW and SITH-PFT is 300. In such a setting the constructed belief trees by these methods have the same
number of total samples (see Section 8.3.5 for details). (a) Safe IPFT. (b) Safe SITH-PFT (Alg 7), (c) Safe PFT-DPW.

(a) (b)

Figure 18. This plot is associated with Fig. 17. Each color matches the corresponding trajectory in Fig. 17. The parameters are
nx = 300, m = 20, K = 300

20
= 15 number of calls to SIMULATE of IPFT is 4500, the number of calls to SIMULATE of PFT-DPW

and SITH-PFT is 300. In such a setting the constructed belief trees by these methods have the same number of total samples (see
Section 8.3.5 for details). (a) Cumulative information reward as in (63) in the execution of the trajectory. Here the SITH-PFT curve
and the PFT-DPW curve overlap. This is because the rewards are identical since the same best action is calculated by SITH-PFT
and PFT-DPW; (b) Average planning times of 10 planning sessions in each trial.

IPFT is slowest from the three algorithms while SITH-PFT
(Alg. 7) is the fastest in all trials.

8.4 Discussion

Although the speedup was significant and steady for all
simulations, we did not observe growth in speed-up with
growth of number of belief particles in any simulation. This
can be explained by the fact that increasing number of
particles of the belief (nx) changes also the bounds because
the parameter nx is present in the bounds as well. The
limitation of our approach is that it leans on converging
bounds, which are not trivial to derive and specific for a
particular reward function. In addition, it requires slightly
more caching than the baseline. Our simplification approach
may still be ill-timed, since the resimplifications take an
additional toll in terms of running time.

9 Conclusions

We contributed a rigorous provable theory of adaptive
multilevel simplification that accelerates the solution of
belief-dependent fully continuous POMDP. Our theory
always identifies the same optimal action or policy as the
unsimplified analog. Our theoretical approach receives as
input adaptive bounds over the belief-dependent reward.
Using the suggested theory and any bounds satisfying stated
conditions we formulated three algorithms, considering
a given belief tree and an anytime MCTS setting. We
also contributed a specific simplification for nonparametric
beliefs represented by weighted particles and derived novel
bounds over a differential entropy estimator. These bounds
are computationally cheaper than the latter. Our experiments
demonstrate that our algorithms are paramount in terms
of computation time while guaranteed to have the same
performance as the baselines. In the setting of the given
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belief tree, we achieved a speedup up to 70%. In an anytime
MCTS setting, our algorithm enjoyed the speedup of 20%.
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11 APPENDIX

11.1 Proof for Theorem 1
To shorten the notations we prove the theorem for value
function under arbitrary policy. Note that by substituting
the policy π(`)+ by {π`(b`), π∗(`+1)+} where a` = π`(b`)
we always can obtain action-value function. Without loosing
generality assume the resimplification hits an arbitrary belief
action node. The new upper bound will be

V̂ (b`, π`+)+
1

M

(
∆
s+1

(b, a, b′)−∆
s
(b, a, b′)︸ ︷︷ ︸

≤0

)
≤ V̂ (b`, π`+)

(67)

The new lower bound will be

V̂ (b`, π`+)− 1

M

(
∆s+1(b, a, b′)−∆s(b, a, b′)︸ ︷︷ ︸

≤0

)
≥ V̂ (b`,π`+)

(68)

where M = ndz depending on the depth d of resimplified
reward bound. Moreover if the inequalities involving
increments are strict ∆

s
(b, a, b′) > ∆

s+1
(b, a, b′) and

∆s(b, a) > ∆s+1(b, a, b′) also the retracting the bounds
over Value function inequalities are strict. In case of MCTS,
we have that M = N(ha)

N(h′) where history ha corresponds to
b` and action a, and h′ corresponds to b′. �

11.2 Proof of Lemma 1
Recall that the bounds ρ, ρ of belief nodes and ”weakest
link” rollout nodes are refined when the inequality (51) is
encountered.

Assume in contradiction that the resimplification strategy
does not promote any reward level and G(ha) > 0. This
means that G(ha)/d > 0 and for all reward bounds the
inequality γd−d

′ · (ρ− ρ) < 1
dG(ha). This is not possible

since G(ha)/d is the mean gap with respect to simulations
of MCT and the depth of the belief tree, multiplied by the
appropriate discount factor, over all the nodes that are the
descendants to ha . See equation (33). �

11.3 Proof of Lemma 2
Observe that

UCB(ha)−UCB(ha) = Q̂(ha)− Q̂(ha). (69)

We already proved the desired for Q̂(ha), Q̂(ha) in

Theorem 1. Using the convergence Q̂(·) = Q̂(·) = Q̂(·) we

obtain

Q̂(·) + c·
√

log(N(h))/N(ha) =

Q̂(·) + c·
√

log(N(h))/N(ha) = (70)

Q̂(·) + c·
√

log(N(h))/N(ha).

The proof is completed. �

11.4 Proof of Theorem 2
We provide proof by induction on the belief tree structure.
Base: Consider an initial given belief node b0. No actions
have been taken and no observations have been made. Thus,
both the PFT tree and the SITH-PFT tree contain a single
identical belief node, and the claim holds.
Induction hypothesis: Assume we are given two identical
trees with n nodes, generated by PFT and SITH-PFT. The
trees uphold the terms of Definition 2.
Induction step: Assume in contradiction that different nodes
were added to the trees in the next simulation (expanding the
belief tree by one belief node by definition). Thus, we got
different trees.
Two scenarios are possible:

Case 1. The same action-observation sequence
a0, z1, a1, z2...am was chosen in both trees, but different
nodes were added.

Case 2. Different action-observation sequences were chosen
for both trees, and thus, we got different trees structure.

Since the Induction hypothesis holds, the last action am
was taken from the same node denoted h′ shared and
identical to both trees. Next, the same observation model
is sampled for a new observation, and a new belief node
is added with a rollout emanating from it. The new belief
nodes and the rollout are identical for both trees since both
algorithms use the same randomization seed and observation
and motion models. Case 2 must be true since we showed
Case 1 is false. There are two possible scenarios such that
different action-observation sequences were chosen:

Case 2.1. At some point in the actions-observations
sequence, different observations zi, z′i were chosen.

Case 2.2. At some point in the actions-observations
sequence, PFT chose action a† while SITH-PFT chose a
different action, ã, or got stuck without picking any action.

Case 2.1 is not possible since if new observations were
made, they are the same one by reasons contradicting Case 1.
If we draw existing observations (choose some observation
branch down the tree) the same observations are drawn since
they are drawn with the same random seed and from the
same observations “pool”. It is the same “pool” since the
Induction hypothesis holds. Case 2.2 must be true since we
showed Case 2.1 is false, i.e., when both algorithms are at
the identical node denoted as h PFT chooses action a†, while
SITH-PFT chooses a different action, ã, or even got stuck
without picking any action. Specifically, PFT chooses action
a† = arg max

a
UCB and SITH-PFT’s candidate action is ã =

arg max
a∈A

UCB(ha). Three different scenarios are possible:
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Case 2.2.1. the UCB,UCB bounds over hã were tight
enough and ã was chosen such that a† 6= ã.

Case 2.2.2. SITH-PFT is stuck in an infinite loop. It can
happen if the UCB,UCB bounds over hã, and at least one
of its sibling nodes ha, are not tight enough. However,
all tree nodes are at the maximal simplification level.
Hence, resimplification is triggered over and over without it
changing anything.

Case 2.2.1 is not possible as the bounds are ana-
lytical (always true) and converge to the actual reward
(UCB = UCB = UCB) for the maximal simplification
level. Case 2.2.2 is not possible. If the bounds are not close
enough to make a decision, resimplification is triggered.
Each time some ha node - sibling to hã and maybe even
hã itself is chosen in SelectBest to over-go resimplification.
According to lemmas 1 and 2, after some finite number of
iterations for all of the sibling ha nodes (including hã) it
holds UCB(ha) = UCB(ha) = UCB(ha) and some action
can be picked. If different actions have identical values we
choose one by the same rule UCB picks actions with iden-
tical values (e.g. lower index/random). Since Case 2.2.2 is
false, after some finite number of resimplification iterations,
SITH-PFT will stop with bounds sufficient enough to make
a decision; as Case 2.2.1 is false it holds that a† = ã. Thus
we get a contradiction and the proof is complete. �

11.5 Proof of Theorem 3

Since same tree is built according to Theorem 2, the only
modification is the final criteria at the end of the planning
session at the root of the tree: a∗ = arg max

a
Q(ha). Note

we can set the exploration constant of UCB to c = 0 and
we get that UCB is just the Q function. Thus if the bounds
are not tight enough at the root to decide on an action,
resimplification will be repeatedly called until SITH-PFT
can make a decision. The action will be identical to the one
chosen by UCB at PFT from similar arguments in the proof
of Theorem 2. Note that additional final criteria for action
selection could be introduced, but it would not matter as tree
consistency is kept according to Theorem 2 and the bounds
converge to the immediate rewards and Q estimations. �

11.6 Proof for Theorem 4

Let us first prove that u+ Ĥ ≥ 0. the It holds

u+ Ĥ=
∑

i/∈As
k+1

wik+1 ·log
[
m · PO(zk+1|xik+1)

]
+ (71)

∑

i∈As
k+1

wik+1 ·log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


−

nx∑

i=1

wik+1 ·log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


=

The Eq. (71) equals to
∑

i/∈As
k+1

wik+1 ·log
[
m · PO(zk+1|xik+1)

]
−

∑

i/∈As
k+1

wik+1 ·log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk




Fix arbitrary index i /∈ Ask+1. The log is monotonically
increasing function so it is left to prove that

mPO(zk+1|xik+1)≥PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk

If PO(zk+1|xik+1)=0, we finished. Assume
PO(zk+1|xik+1) 6= 0. Recalling the definition m ,
max
x′
x,a

PT (x′|x, a), it holds that

PO(zk+1|xik+1)

nx∑

j=1

max
xk+1
xk,ak

PT (xk+1|xk, ak)wjk ≥

PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk.

(72)

We reached the desired result. Now let us show the second
part `+ Ĥ ≤ 0. Observe, that

0 ≥ `+Ĥ = (73)

nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

∑

j∈As
k

PT (xik+1|xjk, ak)wjk


−

nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk




Select arbitrary index i. We shall prove that

log


PO(zk+1|xik+1)

∑

j∈As
k

PT (xik+1|xjk, ak)wjk


−

log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


 ≤ 0.

Again use that log is monotonically increasing and assume
that PO(zk+1|xik+1)6=0. We have that

∑

j∈As
k

PT (xik+1|xjk, ak)wjk −
nx∑

j=1

PT (xik+1|xjk, ak)wjk =

(74)

−
∑

j /∈As
k

PT (xik+1|xjk, ak)wjk ≤ 0

�

11.7 Proof for Theorem 5
We first prove that

∆
s
(b, a, b′) ≥ ∆

s+1
(b, a, b′) ≥ 0. (75)
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Recall that from the previous proof equation (71)

∆
s
(b, a, b′) =
∑

i/∈As
k+1

wik+1 log
[
m · PO(zk+1|xik+1)

]
− (76)

∑

i/∈As
k+1

wik+1 log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


 .

Suppose we promote the simplification level. Without loss of
generality assume thatAs+1

k+1 = Ask+1 ∪ {q}. From the above
we conclude that q /∈ Ask+1

∆
s+1

(b, a, b′) = ∆
s
(b, a, b′)−

− wqk+1

(
log
[
m · PO(zk+1|xqk+1)

]
− (77)

− log


PO(zk+1|xqk+1)

nx∑

j=1

PT (xqk+1|x
j
k, ak)wjk



)

It is left to prove that

m · PO(zk+1|xqk+1) ≥ (78)

≥ PO(zk+1|xqk+1)

nx∑

j=1

PT (xqk+1|x
j
k, ak)wjk

We already done that in previous theorem. Now we prove the
second part

∆s(b, a, b′) ≥ ∆s+1(b, a, b′) ≥ 0. (79)

The next equation is the minus equation (73)

∆s(b, a, b′) = (80)

nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk


−

nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

∑

j∈As
k

PT (xik+1|xjk, ak)wjk




Assume again without loosing generality that As+1
k = Ask ∪

{q}. In that case

∆s(b, a, b′)−∆s+1(b, a, b′) = (81)

−
nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

∑

j∈As
k

PT (xik+1|xjk, ak)wjk




(82)

+

nx∑

i=1

wik+1 log


PO(zk+1|xik+1)

∑

j∈As+1
k

PT (xik+1|xjk, ak)wjk


 .

(83)

Select arbitrary index i. We got back to end to previous
theorem. Note that by definition the bounds are convergent
since we are using all the particles. To see it explicitly
suppose that {i /∈ Ask+1} = ∅ and {i /∈ Ask} = ∅. We have
that

∆
s
(b, a, b′) = ∆s(b, a, b′) = 0. (84)

This concludes the proof. �

11.8 Bounds time complexity analysis
We turn to analyze the time complexity of our method
using the chosen bounds (57) and (58). We assume the
significant bottleneck is querying the motion PT (x′|x, a) and
observation PO(z|x) models respectively. Assume the belief
is approximated by a set of nx weighted particles,

b = {xi, wi}nx
i=1. (85)

Consider the Boers et al. (2010) differential entropy
approximation for belief at time k + 1,

Ĥ(bk, ak, zk+1, bk+1), log

[
nx∑

i=1

PO(zk+1|xik+1)wik

]

︸ ︷︷ ︸
(a)

+

(86)

nx∑

i=1

wik+1· log


PO(zk+1|xik+1)

nx∑

j=1

PT (xik+1|xjk, ak)wjk




︸ ︷︷ ︸
(b)

.

(87)

Denote the time to query the observation and motion models
a single time as tobs, tmot respectively. It is clear from (85),
(86) (term a) and, (87) (term b) that:

∀b as in (85) Θ(Ĥ(b)) = Θ(nx · tobs + n2x · tmot). (88)

Since we share calculation between the bounds, the bounds’
time complexity, for some level of simplification s, is:

Θ(`s + us) = Θ(nx · tobs + nsx · nx · tmot), (89)

where nsx is the size of the particles subset that is currently
used for the bounds calculations, e.g. nsx = |As| (As is as in
(57) and (58)) and `s, us denotes the immediate upper and
lower bound using simplification level s. Further, we remind
the simplification levels are discrete, finite, and satisfy

s ∈ {1, 2, . . . , nmax}, `s=nmax = −Ĥ = us=nmax . (90)

Now, assume we wish to tighten `s, us and move from
simplification level s to s+ 1. Since the bounds are updated
incrementally (as introduced by Sztyglic and Indelman
(2022)), when moving from simplification level s to s+ 1
the only additional data we are missing are the new values
of the observation and motion models for the newly added
particles. Thus, we get that the time complexity of moving
from one simplification level to another is:

Θ(`s + us → `s+1 + us+1) = Θ((ns+1
x − nsx) · nx · tmot),

(91)

where Θ(`s + us → `s+1 + us+1) denotes the time com-
plexity of updating the bounds from one simplification level
to the following one. Note the first term from (89), nx · tobs,
is not present in (91). This term has nothing to do with
simplification level s and it is calculated linearly over all
particles nx. Thus, it is calculated once at the beginning
(initial/lowest simplification level).
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We can now deduce using (89) and (91)

Θ(`s+1 + us+1) = (92)

Θ(`s + us) + Θ(`s + us → `s+1 + us+1).

Finally, using (88), (89), (90), (91), and (92), we come to
the conclusion that if at the end of a planning session, a
node’s b simplification level was 1 ≤ s ≤ nmax than the time
complexity saved for that node is

Θ((nx − nsx) · nx · tmot). (93)

This makes perfect sense since if we had to resimplify all the
way to the maximal level we get s = nmax ⇒ ns=nmax

x = nx
and by substituting nsx = nx in (93) we saved no time at all.

To conclude, the total speedup of the algorithm is
dependent on how many belief nodes’ bounds were not
resimplified to the maximal level. The more nodes we had
at the end of a planning session with lower simplification
levels, the more speedup we get according to (93).
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Abstract

Although safety is fundamental to an online operating agent, it has received less attention in the challeng-
ing continuous domain and under partial observability. This paper presents a novel formulation and solution
for risk-averse belief-dependent probabilistically-constrained continuous POMDP. We tackle a demanding
setting of belief-dependent reward and constraint operators. Our Probabilistic Constraint is belief-dependent
and has two conditions. The internal condition thresholds the belief-dependent operator given a future pos-
sible history of actions and observations simulated in a planning session, while the external one operates on
the level of histories and thresholds the probability that the internal condition is satisfied, stemming from the
distribution of future histories (decision epochs). We rigorously analyze our formulation versus the Chance
Constraint in the Closed and Open Loop setting. In the Closed Loop setting, we revealed that Chance Con-
straint is a special case of our Probabilistic Constraint. In the Open Loop setting, the two approaches are
essentially different since the Chance Constraint enforces the condition over the underlying MDP. In contrast,
Probabilistic Constraint do not assume complete observability in planning session. Moreover, the Chance
Constraint does not accommodate general belief-dependent operators. We uplift the chance-constrained
approach to continuous environments and belief-dependent rewards. For probabilistically-constrained plan-
ning, we contribute adaptive, in terms of observation episodes laces and beliefs within the lace, algorithms.
For chance-constrained planning, we contribute an adaptive, with respect to state trajectories and states
within the trajectory, algorithm. All our proposed algorithms can be used with parametric and nonpara-
metric beliefs represented by particles and in continuous domains in terms of states and observations. The
simulations demonstrate that in the setting of policies (Closed Loop), our Probabilistic Constraint allows
much faster evaluation compared to the chance-constrained formulation, with the same performance in terms
of collisions. In the setting of static action sequences (Open Loop), we show that the two formulations yield a
very similar number of collisions, but Chance Constraint appears to be faster than Probabilistic Constraint.

Keywords— Decision making under Uncertainty, Belief Space Planning, Belief-dependent POMDP, Planning with
Incomplete Information, Belief-dependent rewards, Belief-dependent Probabilistic Constraints

1 Introduction and Related Work

D ecision making under uncertainty in partially observable domains is a key capability for reliable autonomous
agents. Commonly, the basis of the State Of The Art (SOTA) algorithms in such a setting is the Partially

Observable Markov Decision Process (POMDP). The robot does not have access to the POMDP state. Instead, it
maintains a distribution, named the (posterior) belief, over the state given all its current information, namely, the
history of actions and the observations alongside the prior belief. The decision maker shall maintain and reason about
the evolution of the belief within the planning phase. At the same time, the robot’s online goal is to find an optimal
action for its current belief. Unfortunately, an exact solution of POMDP is unfeasible [27]. A critical limitation of the

∗This work was partially supported by the Israel Science Foundation (ISF).
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classical POMDP formulation is the assumption that the belief-dependent reward is nothing more than the expectation
of state-dependent reward with respect to the corresponding belief [20]. Another limiting assumption in many SOTA
algorithms is the discrete domain, e.g., discrete state and observation spaces [32], [37]. The main problem in continuous
and infinite or large discrete spaces is that one can not go over the entire observation space and calculate the probabilities
of the observations as in [30]. Therefore, all tabular methods are inappropriate for these domains. Instead one needs to
resort to sampling from the likelihood of observations given the previous belief and an action. Then one samples from
continuous density the same observation can be received with probability zero such that the extension of tabular methods,
e.g. [30], to continuous domains requires clarification. In this work, we aim to tackle this crucial gap. Specifically, our
theory and algorithms accommodate continuous domains in terms of state and observation spaces.

1.1 Belief-dependent Rewards

Augmenting POMDP with general belief-dependent rewards is a long-standing problem. Unraveling it would allow
information-theoretic rewards, which are extremely important in numerous problems in Artificial Intelligence (AI) and
Robotics, such as Autonomous Exploration, Informative Planning, Information Gathering [38], Belief Space Planning
(BSP) [16], and active Simultaneous Localization and Mapping (SLAM) [28]. The belief-dependent reward formulation
is known as ρ-POMDP [2], [9]. Earlier techniques focused on offline solvers and extended α-vectors approach to piecewise
linear and convex [2], [8] or Lipschitz-continuous rewards [9]. These extended solvers are also limited to discrete domains
in terms of states and observations.

Fig. 1: Illustration of a belief tree. The thick yellow
lace depicts a sequence of beliefs (b0, b

1
1, b

1
2, b

1
3) gener-

ated by a corresponding sequence of observations un-
der some policy (Section 3).

Another way to incorporate general belief-dependent rewards is to
reformulate POMDP as Belief-MDP (BMDP) and use more recent on-
line solvers designed for MDP. These algorithms build a belief tree and
are suitable for continuous domains and challenging nonparametric be-
liefs represented by particles. Seminal approaches in this category are
Sparse Sampling (SS) [18], Monte Carlo Tree Search (MCTS) [33], and
its efficient, simplified variant [39]. Such an MCTS running on BMDP
is called a Particle Filter Tree with Double Progressive Widening (PFT-
DPW) [33]. Progressive Widening handles the problem of shallow trees
in continuous setting arising due to the inability to sample twice the
same action and observation.

1.2 Constrained POMDPs

In this section, we begin by describing the Chance Constraint (CC) and
then we talk about other formulations of constraints for POMDP.

Chance-constrained Approaches The motivation to add the
CC is to introduce the notion of risk and safety into the problem.
Initially, the planning community focused on collision avoidance, for-
mulating it as a CC. For example, [6] converts the belief tree to a graph
in belief space. This conversion utilizes a stabilizing controller to shift
the expectation of the posterior belief to the nominal value. Further, it
uses a Kalman filter on top of linearized additive models with Gaussian
noise. In this case, the covariance matrix of the belief does not depend
on the actual observation but depends on the covariance of the obser-
vation model. The authors assume that the map has areas of large and low variance of measurement noise. Over the
path in the graph, [6] suggests a way to track the state estimate which is the expectation of the posterior belief. The
state estimate has variability because the stabilizing controller is imperfect and has an error. All in all, the CC in [6] is
calculated with respect to the application of the controller at each time instance. While being seminal and important
[6] suffers from many limiting assumptions. Let us mention a few. The variability of the state estimate is taken into
account only in the CC and not in the reward. The dependence of the observation model covariance matrix on the robot
state is not considered in the belief update. The approach does not apply to general beliefs represented by particles and
applies only to Gaussian beliefs and additive linear observation models with Gaussian noise not depending on the robot
state. The linearity of the models can be handled by linearization. Nevertheless, this work can be applied in continuous
domains.

The authors of [30] present another approach to CC for discrete state and observation spaces and the setting of
deterministic policies. The paper [30] introduces the algorithm RAO* which uses admissible heuristics for the action
value function (Q-function) in the belief space. This aspect is problematic with general belief-dependent rewards.
However, this is not the main point of our work. Moreover, the RAO* algorithm prunes not feasible actions using only
a necessary condition of the feasibility of CC (See Appendix E). In other words, the CC may be violated, but the action
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has not been pruned. In fact, this is one of our main points in this paper. Since the condition is only necessary, after
pruning it is still required to verify the feasibility of each kept action. This significantly complicates the solution and
inflicts unnecessary computational burden. It would be much easier if after pruning we would know that remained actions
satisfy the constraint. Another aspect of RAO* is disregarding the discrepancy in the belief definition for the CC and
the reward calculations. This claim will be clear shortly. Although this discrepancy is taken into account in observation
likelihood, with respect to beliefs themselves such a discrepancy is ignored in [30].

The CC formulation appearing in[30] was also extended to the notion of durative actions [19]. The paper [19] presents
algorithms solely for discrete domains. Although it is interesting to extend to continuous domains the Stochastic duration
with percentile risk criteria and Chance-constrained duration, we left it for future work. These formulations appear close
to our cumulative form of inner constraint, to be defined shortly.

Another recent paper [26] utilizes CC within the MCTS. They train Neural Networks (NN) for an initial estimate
of Execution Risk (ER) [30] under a stochastic future policy. Utilizing adaptive conformal inference, they have an
adaptive approach for future CC thresholds to assure feasibility at the corresponding future belief node. Their threshold
is adaptive with respect to each update of the estimator of execution risk. If the current action under consideration is not
feasible with regard to updated execution risk, they widen and, if feasible, tighten the threshold. Still, it is not ensured
that it will be a feasible action at the root due to the usage of the recursive Bellman optimality principle. Moreover,
since the planning sessions have recursive dependence, the CC not enforced from each belief in the belief tree with the
same threshold is suboptimal. When the Bellman recursive approach is used, CC requires a rule for determining future
CC thresholds to assure at least a single feasible, with respect to CC at the root, action. In contrast, our approach
handles that by design as we will further see.

Other Formulations of the Constraint Some works consider an averaged cumulative constraint [36],[21]. An-
other interesting and related work [3] suggests ε-shadows. That work assumes a fully observable deterministic robot
motion over the map populated by uncertain obstacles. The robot receives a stream of observations from the obstacles
and reasons about obstacle locations using geometric confidence intervals named ε-shadows. Unlike that paper, we op-
erate in belief space and model decision-making under uncertainty as POMDP. Moreover, similar to ε-shadows, we can
inflate obstacles, to increase robustness. Recently, the shielded POMDP formulations have appeared [1], [25]. While
appearing similar to our formulation with multiplicative form, to be defined shortly, these works are in discrete domains
in terms of states and observations. Moreover, we contribute a rigorous formulation of the problem and the constraints,
both in continuous domains, using the indicator function and relevant sets.

Analogous to the situation with belief-dependent rewards, reformulation of POMDP as BMDP can possibly allow
employing approaches designed for probabilistically-constrained MDP [12], [10]. However, the theory presented in these
papers does not apply to parametric or nonparametric BMDP due to various assumptions made by the authors. This is
one of the gaps we aim to fill in this work. Typically algorithms designed for general beliefs represent the belief as a set
of particles and use a Particle Filter (PF) [35] for nonparametric Bayesian update. In this work, we assume the setting
of nonparametric beliefs, although our formulations also support a parametric setting.

To conclude, the closest to our formulation is CC. Therefore, our comparison will be centered around Probabilistic
Constraint (PC) versus CC. In this paper, we ask the question of how the CC is different from our novel PC.

1.3 CC Accommodation to Belief-dependent Rewards and Continuous Domains

Having established that the closest to our formulation is CC, we now turn to the question of employing existing chance-
constrained methods in continuous domains and in conjunction with belief-dependent rewards. The work [6] is by
definition in continuous domains with belief-dependent reward. However, the belief shall be parametric Gaussian to
employ the Kalman Filter. The approach presented in [30] is a tabular method; therefore, it is not clear how to extend
it to continuous domains. Moreover, the belief-dependent reward will complicate the finding of the heuristics for the
objective. The work [26] can be used with belief-dependent rewards and in continuous domains. This is, however, an
MCTS based method with learned components and a stochastic future policy. Here we focus on deterministic policies,
similar to [30]. Moreover, the convergence of MCTS with unbounded rewards is under the question mark, whereas all the
algorithms presented in this paper converge as the number of simulated observation episodes and belief particles grows.

1.4 Comparison to Chance Constraint

Since one of our goals in this paper is to compare in terms of quality and celerity our suggested PC with CC, we now
outline the prominent aspects of both approaches. In this paper, we focus on safety aspects. Most works tackling
constrained online planning under uncertainty, in this context, utilize the chance-constrained formulation [6], [30]. This
formulation is regarded as SOTA. By design, the CC is defined over the future states [6] or trajectories [30] considered
in the planning session, given the belief at the beginning of the planning session and the candidate policy. In contrast,
we develop our PC on the level of posterior beliefs. This, by definition, allows the utilization of general belief-dependent
operators. As we further show in Section 2.3, the CC formulation from [6] is a particular case of the one used in [30].
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In a fully observable setting of MDP, where the action is predefined or is a function of the state as in QMDP [20], CC
motivation is clear. It thresholds the probability that future trajectories will be safe. This probability is accessible using
the motion model. However, under partial observability (POMDP), generally, the action is a function of the belief (in
case of deterministic policies). Therefore, there are two cases to consider here, Closed Loop (CL) where one deals with
policies and the Open Loop (OL) where one deals with predefined candidate action sequences.

Closed Loop CC In this setting, the likelihood of future trajectories implicitly depends on future observations/beliefs.
As we show in Section 5, transferring CC from MDP to POMDP is essentially the averaging the probabilities of the
safe event given future posterior belief, when the belief is defined in a way that accounts for the safe events in the past.
In addition, CC does not accommodate general belief-dependent operators. This, however, can be relaxed using our
reformulation, as we will further see in Section 5.

PC CC
faster

faster
slower

slower
Fig. 2: Illustration of celerity of sug-
gested approaches.

The authors of [30] enforce the CC with different threshold levels starting
from each non-terminal belief in the belief tree. In [30] only at the root, the CC
is enforced with the given in planning session threshold. Inflicting the CC (with a
shorter horizon due to the finite depth of the belief tree) from each non-terminal
belief is essential in the case of candidate policies. If the CC is imposed only at
the root of the belief tree, due to Bellman optimality down the tree, it is very hard
to obtain a feasible action at the root. We verified this in simulations. One way or
another some thresholds of CC enforced from future beliefs are required. It will be
apparent later that, if we enforce CC with the same threshold from each belief and
until the predefined horizon, then implicitly CC thresholds non-terminal posterior
beliefs with a possibly much larger threshold, but not larger than one. Last but
not least, by examining the CC on the level of posterior beliefs, we observe that
only the safe portion of the belief is pushed forward to the future time with action and observation. In other words,
chance-constrained POMDP has disparate definitions of future beliefs and different distributions of future observations
for rewards and the CC. We delve into this aspect in Section 5. This fact significantly complicates the algorithmics in
discrete and continuous spaces and renders the chance-constrained approach computationally intense. Moreover, the [30]
disregards the mismatch of the definition of beliefs in the CC belief tree and the reward belief tree. It shall be noted that
the discrepancy in the likelihood of observations is taken into account by [30] but in discrete spaces only. We extend
the treatment of the discrepancy of the likelihood of the observations to continuous spaces (See Alg. 3) and add the
treatment of the mismatch in the beliefs. We extensively debate this claim in the paper.

Closed Loop PC Instead of enforcing the CC from each belief in the belief tree and until the horizon, we apply
a general belief-dependent operator on each corresponding belief. As we will further see, in the stiffest outer threshold
case (ε=0, Alg. 1), due to its recursive nature, our constraint is automatically enforced from each belief in the search
tree exhibiting optimal substructure [13] property similar to CC. By definition, in our setting, the unsafe portion of the
belief is also updated with action and observation, such that unsafe states can be pushed forward in time if such an
action is not discarded. This way, we have an identical distribution of future observations for belief-dependent rewards
and constraints as well as the definition of the beliefs themselves. As we further see in simulations in Section 8, this is
highly beneficial in terms of time efficiency.

Open Loop CC and PC In the case of predefined static action sequences, CC thresholds the probability to be safe
of possible POMDP future trajectories of states. Due to the fact that the candidate action sequence is predefined, one
can constrain the MDP distribution of trajectories by applying a motion model on particles sampled from prior belief.
Instead of a safe trajectory of the future states in CC (Alg. 6), we in PC have a safe trajectory of future beliefs (Alg. 2).
The major difference is that in chance-constrained formulation one constrains possible MDP states assuming perfect
observability and we, in PC, constrain the beliefs without the usage of state selected for future observation creation.

To conclude this section, in Fig. 2, we pictorially summarize the celerity of PC and CC approaches in the setting of
CL (policies) and OL (static action sequences).

1.5 Contributions

In this paper, we innovate a technique to enhance continuous belief-dependent POMDP with a belief-dependent Prob-
abilistic Constraint (PC). Our constraint is two-staged. We have an internal threshold applied to the belief-dependent
operator (given a history) and an external threshold used for the probability originating from future observations episodes
(histories). Surprisingly, in Section 5.7 we unveiled that in the CL setting our PC generalizes CC. We extensively study
the interplay between PC and CC in Section 5. Moreover, a general belief-dependent PC was not studied nor proposed.
Nevertheless, such a constraint is of the highest importance. For instance, as we discuss in [38], such a formulation can
be used to determine when to stop exploration, e.g. in an active SLAM context, which is an open problem currently [7],
[28]. In the context of safety belief-dependent operators such that Value at Risk (VaR) and Conditional Value at Risk
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(CVaR) quantify what happens in case of the collision, in other words measure how bad the collision will be. Moreover,
the CC itself is a belief-dependent operator (Section 5.7).

The preceding discussion leads us to the contributions of this paper. We detail them below in the order they appear
in the article.

• Firstly, in Section 3.1, we formulate a risk-averse belief-dependent Probabilistically Constrained continuous POMDP.
Averaging the state-dependent reward/constraint to obtain the belief-dependent reward/constraint is a severe
hindrance that we relax. We are unaware of prior works addressing POMDP with risk-averse belief-dependent
constraints. In particular, our probabilistic belief-dependent constraint supports risk-averse operators, such as
CVaR, and leads to a novel safety constraint formulation.

• Secondly, on top of our probabilistic formulation, in Section 4.1.3, we contribute a novel, efficient actions-pruning
mechanism. SOTA pruning technique proposed by [30] constitutes only a necessary condition such that it is
possible that after pruning, actions violating the CC are kept in the belief tree. Therefore, the feasibility of CC
has to still be inspected for each not-pruned action. On the contrary, our pruning condition is necessary and
sufficient. No additional checks are needed after the pruning of the belief tree is complete.

• In Section 4.2, we contribute algorithms for online solutions of Probabilistically constrained belief-dependent
POMDP in continuous domains. Our algorithms are adaptive given a budget of observation episodes laces (Fig. 1)
and beliefs within the lace to expand in the belief tree. In other words, we provide a way to guide the belief tree
construction while planning. Our framework is universal for challenging continuous domains and can be applied
in nonparametric and parametric settings. We innovate algorithms for CL setting with policies as well as for OL
setting with candidate action sequences.

• Another contribution on our end is a rigorous analysis of our probabilistic formulation versus chance-constrained
in Section 5. Despite recent algorithmic developments [30], there has been relatively little effort devoted to the
theoretical aspects of Chance-constrained continuous belief-dependent POMDP. Surprisingly, in Section 5.7 we
obtained that in the CL setting, CC is a specific case of our PC when the belief-dependent operator is CC itself.
It shall be noted as a contribution that we spotted the fact that belief shall be defined differently within CC. To
the best of our knowledge, no paper addresses this discrepancy.

• We uplift a chance-constrained solver to continuous domains in terms of states and observations and general
belief-dependent rewards through Importance Sampling (IS) in Section 6.

• In an OL setting, we contribute an adaptive, in terms of trajectories and states, algorithm (Alg. 6) for chance-
constrained continuous ρ-POMDP. This algorithm can be used with exceptionally long horizons and a high dimen-
sional setting.

• We present a detailed and comprehensive study of nonparametric collision avoidance.

1.6 Paper Layout

The rest of this paper is organized as follows. We start from preliminaries in Section 2. We then define our novel
framework in Section 3, and give relevant examples of possible constraints in Section 3.3. Next, in Section 4 we adaptively
evaluate the PC while constructing the belief tree and present online algorithms (Section 4.2) for our novel formulation.
Further, we rigorously analyze the conventional CC in Section 5 and compare it to our PC. Finally, in Section 6
we introduce online solvers for chance-constrained POMDP in a continuous setting augmented with belief-dependent
rewards. Section 7 is devoted to the objective modification. Eventually, Section 8 shows simulations and results. The
conclusions and final remarks are presented in Section 9. To allow fluid reading, we placed the proofs for all theorems
and lemmas, and additional in-depth discussions in the appendix.

2 Preliminaries

We now turn to the definition of Belief-dependent POMDP known as ρ-POMDP. We then discuss existing CC formula-
tions in the setting of POMDP. Let us start with notations.

2.1 Notations

By the letter P, we denote the Probability Density Function (PDF), and by P the probability. By lowercase letters, we
denote the random quantities or the realizations depending on the context. For any set A, the 1A(·) is the indicator
function defined as 1A(�)=1 iff �∈A and 1A(�)=0 iff � /∈ A. To rephrase that, the indicator function of the set A is
the Iverson bracket of the property of belonging to A; that is, 1A(�)=[�∈A]. The values in � can be replaced by one
of the respective options. The 1A is the Bernoulli random variable such that P(A)=P(1A=1). For better readability we
will use interchangeably the notation of P(A) and P(1A=1). By �̂, we denote estimated values.
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2.2 Belief-dependent POMDP (ρ-POMDP)

The ρ-POMDP is formed by a tuple 〈X ,A,Z,T,O, ρ, γ, b0〉 where X ,A,Z denote state, action, and observation spaces
with x∈X , a∈A, z∈Z the momentary state, action, and observation, respectively. T(x′, a, x),PT(x′|x, a) is a stochastic
transition model from the past state x to the subsequent x′ through action a, O(z, x),PO(z|x) is the stochastic observation
model, γ∈(0, 1] is the discount factor, b0 is the belief over the initial state (prior), and ρ is the belief-dependent reward
operator. Let hk,{b0, a0:k−1, z1:k} be a history, of actions a0:k−1 and observations z1:k alongside the prior belief b0,
obtained by the agent up to time instance k. The posterior belief bk is a shorthand for the PDF of the state given all
information up to the current time index bk(xk),P(xk|hk). Similar to b(x), we, sometimes, will write b(h) to index the
position in the belief tree by h. Importantly, the belief can be switched with history when conditioned upon. When the
agent performs an action and receives an observation, it shall update its belief from b to b′, such that b′=ψ(b, a, z′). The
exact Bayesian belief update reads

P(x′|b, a, z′) = P(z′|b,a,x′)P(x′|b,a)
P(z′|b,a)

=
PO(z′|x′)

∫
ξ PT(x′|ξ,a)b(ξ)dξ∫

ξ′ PO(z′|ξ′)
∫
ξ PT(ξ′|ξ,a)b(ξ)dξdξ′ . (1)

In our context, it will be a PF since we focus on the setting of nonparametric beliefs. However, this is not an inherent
limitation of our approach. Any belief update method would be suitable. The policy in this paper is a deterministic
mapping, indexed by the time instances, from belief to action to be executed πk:B7→A, where B is the space of all the
beliefs taken into account in the problem. The policy for L consecutive steps ahead is denoted by πk:k+L−1 and means
the sequence of functions (π`)

k+L−1
`=k . Sometimes we will omit the time indices for clarity and write π or π(k+1)+. We

hope the time indices will be evident from the context.
When an information-theoretic reward, for instance, Information Gain (IG), is introduced to the problem, the reward

can assume the following form ρ(b, a, b′)=(1−λ)ρx(b, a, b′)+λρI(b, b′). In this case, it is a function of two subsequent in
time beliefs and an action in between. Note that in the setting of nonparametric beliefs, we shall resort to sampling
approximations using mx samples of the belief. Such a reward is comprised of the expectation over the state and action
dependent reward

ρx(b, a, b′)=Ex∼b[r(x, a)]≈1/mx
∑mx
i=1 r(x

i, a), or ρx(b, a, b′)=Ex′∼b′ [r(a, x′)]≈1/mx
∑mx
i=1 r(a, x

′,i), (2)

weighted by 1−λ and the information-theoretic reward ρI(·) weighted by λ, which in general can be dependent on
consecutive beliefs and the elements relating them (e.g. IG estimator from the particle based belief [5]). The online
decision making goal at time instance k is to find an action ak to execute, maximizing the action value function

Qπ(bk, ak; ρ)=Ezk+1

[
ρ(bk, ak, bk+1) + V π(bk+1; ρ)

∣∣bk, ak
]
, (3)

where π is the execution policy or belief tree policy and the value function

V π(bk; ρ) = Ezk+1:k+L

[∑k+L−1
`=k ρ(b`, π`(b`), b`+1)

∣∣bk, π
]
, (4)

is expected cumulative reward under the particular policy π. For better readability we explicitly denote the dependence
of (3) and (4) on belief-dependent operator ρ. In the online decision making the future belief tree policy π(k+1)+ is
calculated as part of the decision making process. We denote the best future policy by π∗(k+1)+. The online best current

time policy is given by πk(bk)= arg maxak∈AQ
π∗(bk, ak; ρ). Further, with slight abuse of notation, to properly denote

place of estimates Q̂ in belief tree we switch to dependence on history. In this paper we also consider the OL setting.
In this setting instead of policy (4) depends on static action sequence of the length L denoted by ak:k+L−1 or in short
ak+. In this case, we will denote the value as V (bk, ak+; ρ)=Ezk+1:k+L

[∑k+L−1
`=k ρ(b`, a`, b`+1)

∣∣bk, ak+

]
. The future belief

simulated in planning session is defined as

b`(x`)=P(x`|bk, ak:`−1, zk+1:`)=P(x`|h`)=P(x`|b`−1, a`−1, z`), (5)

where bk is the input to the planner. Moreover, we define a propagated belief b′− as the belief b after the robot performed
an action a and before it received and observation.

b−` (x`)=P(x`|bk, ak:`−1, zk+1:`−1)=P(x`|h`−1, a`−1)=P(x`|b`−1, a`−1). (6)

Having presented a fundamental stochastic process, we make an overview of the existing CC formulations.

2.3 Chance-constrained ρ-POMDP

The CC in [6] can be written as

(∏k+L
`=k 1{P(1{x`∈Xsafe

`
}=1|bk,πk:`−1)≥δ}(bk, π)

)
= 1, (7)
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where X safe
` is the safe part of the robot workspace. Whenever, (7) equals to one, the CC is satisfied. To avoid confusion let

us reiterate that the notation of the set {P(1{x`∈X safe
`
}=1|bk, π)≥δ} is a shorthand for {bk, π:P(1{x`∈X safe

`
}=1|bk, π)≥δ}.

To look at the indicator from a slightly different angle we also can write 1{P(1{x`∈Xsafe
`
}=1|bk,πk:`−1)≥δ}(P(1{x`∈X safe

`
} =

1|bk, πk:`−1)). For a thorough discussion about the Indicator variable please refer to Section 2.1. In each time index `,
(7) is concerned to be safe solely at the current time index. As we further show, due to the dependence of the policy
on the beliefs, each indicator in the product in Eq. (7) thresholds the averaged probability of safe event {x∈X safe}
given posterior belief at a corresponding time index. The controller used in [6] can be seen as tweaking the belief update
operator ψ. It of course improves the situation by moving the expectation of the sibling beliefs to be closer to each other.
The authors of [30] utilize the following form of CC

1{
P(1
{τk∈×

k+L
`=k

Xsafe
`
}
=1|bk,πk:k+L−1)≥δ

}(bk, π) = 1, (8)

where τk,xk:k+L is the trajectory of the current and future states. The CC represented by (8) has never been investigated,
to the best of our knowledge, in a continuous setting and in conjunction with belief-dependent rewards. Observe also that
the probability in (8) can be written as P({xk∈X safe

k }|bk)
∏k+L
`=k P({x`∈X safe

` }|bk, π,
⋂`−1
i=k{xi∈X safe

i }), using the chain
rule backward in time, leading to the conclusion that the probability in (8) is more meaningful than probabilities in (7)
because (7) discards the dependence on safe events. If

(
P({xk∈X safe

k }|bk)
∏k+L
`=k P({x`∈X safe

` }|bk, π,
⋂`−1
i=k{xi∈X safe

i })
)
≥δ,

each multiplicand is larger or equal δ and this is exactly the condition (7) without condition on safe events.
After scrutinizing into existing CC formulations in the POMDP setting, we are ready to introduce our novel two-

staged approach.

3 Introducing Probabilistic Belief-dependent Constraints

Further we formulate the problem and in due course give examples of possible belief-dependent constraints.

3.1 Problem Formulation

We add to the ρ-POMDP tuple, described in Section 2.2, an additional belief-dependent operator φ and obtain

〈 X︸︷︷︸
continuous

,A, Z︸︷︷︸
continuous

,T,O, ρ︸︷︷︸
belief

dependent

, φ︸︷︷︸
belief

dependent

, γ, b0〉.

Next, we introduce a new problem with the following objective, in the setting of policies,

a∗k ∈ arg max
ak∈A

Qπ
∗
(bk, ak; ρ) subject to (9)

P
(
c(bk:k+L;φ, δ)=1︸ ︷︷ ︸

inner
constraint

|bk, ak, π∗k+1:k+L−1

)
≥ 1− ε, PC (10)

where c∈{0, 1} is a Bernoulli random variable. By π∗ we denote the belief tree policy defined by the planning algorithm.
The operators ρ(·) and φ(·) are general and belief-dependent. Note that one can select the same operator for both.
Further, we will regard the PC (10) as the outer or external constraint operating on the level of distribution of future
histories. It requires two parameters, ε, and δ. The former, ε∈[0, 1), is the probability margin within which we permit
to the future contingencies, rendered by possible future observations episodes generating the beliefs (see Fig. 1), violate
the inner constraint, in other words, to be unprofitable or unsafe. The parameter δ is the margin for some particular
episode of the beliefs bk:k+L. With the probability of at least 1−ε, we want the received sequence of the current and
future posterior beliefs bk:k+L to fulfill the inner constraint. The inner or internal constraint c(bk:k+L;φ, δ)=1 can be of
two forms, the cumulative and the multiplicative

c(bk:k+L;φ, δ) , 1{bk:k+L:bk:k+L∈Bk:k+L,(
∑k+L−1
`=k

φ(b`,b`+1))>δ}(bk:k+L), cumulative flavor (11)

c(bk:k+L;φ, δ) ,
∏k+L
`=k 1{b`:b`∈B`,φ(b`)≥δ}(b`), multiplicative flavor (12)

where φ denotes a general belief-dependent operator and B` is a space of reachable from bk beliefs. Further, for clarity
we define

Aδ`,{b`:b`∈B`, φ(b`)≥δ}. (13)

Note that in the inner constraint, the policy is realized since the beliefs are given as input. Let us interpret the two
forms, (11) and (12), of the inner constraint in (10). The first form (11) is formulated with respect to a cumulative value
of the operator φ along a sequence of beliefs generated by a sequence of possible future observations episode. In this
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form, we permit the immediate value of the operator φ to deviate but the cumulative value shall fulfill the inequality
(11). In contrast, (12) states that every value of φ in the sequence of the beliefs shall fulfill the inequality (12), meaning
to be larger than or equal to δ. Both formulations are novel, to the best of our knowledge. Furthermore, the form of
(11) is motivated by the long-standing question of stopping exploration [7]. The form of (12) is motivated by safety, e.g.
collision avoidance, and is the subject of our interest in this paper. When the problem (9) is augmented with the PC
(10), ideally, every selection of the action following the future policy π∗(k+1)+ shall take into account the outer constraint
(10) at the root of the belief tree. Note that a particular case of candidate policy is a predefined static action sequence
πk:k+L−1 ≡ ak:k+L−1. In the OL setting our objective is

a∗k+ ∈ arg max
ak+∈Ak

V (bk, ak:k+L−1; ρ) subject to (14)

P (c(bk:k+L;φ, δ) = 1 | bk, ak:k+L−1) ≥ 1− ε, (15)

where Ak is the space of candidate action sequences returned by an external process. We explain it more thoroughly in
Simulations Section 8.4.

3.2 Dependence of the Inner Threshold on History

Fig. 3: Visualization of CVaR safety in
the setting of a given Yi (white space).
The teal particles have zero distance to
safe space. The purple particles have
distances marked by black thick lines.
For 6/18≤α≤1 the VaR will be zero and
CVaR will average all the distances from
purple particles marked by the black lines.
If α=1/18, the CVaR is equal to the dis-
tance marked by the dashed line.

Let us clarify that in our approach the δ is constant and defined per planning
session. This is equivalent to saying that δ(hk) is a function of a history given in
a planning session, namely hk corresponding to bk(hk), and the future thresholds
are set according to the following rule

δ(h`a`z`+1) , δ(h`). (16)

3.3 Possible Constraints

Subsequent to the formulation of the problem, in due course, we focus on several
possible operators φ applicable for the inner constraint in (10)(c(bk:k+L;φ, δ)=1)
of both forms (11) and (12).

One important example is a safety constraint, e.g., collision avoidance or energy
consumption. In general form, utilizing our formulation, it would be

P
(
1{bk:k+L∈Bsafe

k:k+L
} = 1|bk, πk+1:k+L−1, ak

)
≥ 1− ε, (17)

where Bsafe
k:k+L is the space of safe belief sequences (will be defined shortly) starting

at time index k and of the length L. It holds that Bsafe
k:k+L ⊆ Bk:k+L. To relate to

(10), in (17): c(bk:k+L),1{bk:k+L∈Bsafe
k:k+L

}(bk:k+L). The safeness of a sequence of

beliefs bk+1:k+L can be defined in various ways. One possibility is

φ(b`(h`)),P
(
{x`∈X safe

` }|b`(h`))=E
[
1{x`∈X safe

`
}|b`(h`)

]
=E
[
1{x`∈X safe

` }|h`
]
. (18)

Note, in (18) belief dependent operator is actually history dependent. Contingent upon (18) the random variable
distinguishing the safe and dangerous event is

1{bk:k+L∈Bsafe
k:k+L} ,

∏k+L
`=k 1{b`:b`∈B`,P(1{x`∈Xsafe

`
}=1|b`)≥δ}, (19)

where X safe
` is the safe space, which generally can be time-dependent dynamic environment, e.g., due to moving obstacles

in the context of collision avoidance.
Another possibility is to use the Value at Risk (VaR) or Conditional Value at Risk (CVaR) operator for collision

avoidance as −φ (minus sign is needed merely to maintain ≥ in (12)). We define the deviation of the robot’s position
from the safe region Yi considering the obstacle i as follows dist(x,Yi),miny∈Yi ‖x− y‖2. Note that

⋂M
i=1 Yi,X safe for

M obstacles. The following belief-dependent constraint VaRb
α[dist(x,Yi)]≤δ ensures the safety, where the belief is over

the agent pose x, such that x∼ b. Now the event to be safe is

1{bk:k+L∈Bsafe
k:k+L},

∏k+L
`=k

∏M
`=11{−VaR

b`
α [dist(x`,Yi`)]≥δ}

, (20)

where VaRα[dist(x,Yi)] at confidence level α is the 1− α quantile of dist(x,Yi), namely,

VaRb
α[dist(x,Yi)],min{ξ|P(dist(x,Yi) ≤ ξ) ≥ 1− α}. (21)
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The value VaRb
α[dist(x,Yi)] is the minimal value such that with probability at least 1−α the deviation from the safe space

considering one obstacle is smaller than or equal it. Another possibility is to use the condition CVaRb
α[dist(x,Yi)]≤δ.

In this case we have that

1{bk:k+L∈Bsafe
k:k+L},

∏k+L
`=k

∏M
`=11

{
−CVaR

b`
α [dist(x`,Yi`)]≥δ.

}. (22)

Let us explain the meaning of such a constraint. For the obstacle i, by definition

CVaRb
α[dist(x,Yi)] , E[dist(x,Yi)|{x : dist(x,Yi)>VaRα[dist(x,Yi)]}].

The CVaR is taking the average of the unsafe tail. Meaning if the unsafe tail is extremely unsafe but with low probability,
such a constraint will catch that (See Fig. 3). The CVaR operator quantifies how bad the collision will be. The inner
constraint of PC formulated with probabilities(19) as well as CC [30] are unable to distinguish such a behavior.

Note that the VaR and CVaR operators cannot be represented by the expectation operator with respect to the belief
as in (18). Therefore, these are general belief-dependent constraints operators and not supported by existing constrained
POMDP approaches. The distribution over the unsafe part of the beliefs is inaccessible. We note that such a constraint
was suggested by [29] in the MDP setting and by [11], in the setting of randomly moving obstacles. However, [11] assumes
deterministic motion and observation models, and not the general POMDP setting considered herein. In our case such
a constraint has an entirely different meaning because we constrain not the actual possible robot position but what the
robot believes about its position. One possibility to handle randomly moving obstacles is to redefine (20) and (22) as

1{bk:k+L∈Bsafe
k:k+L},

∏k+L
`=k

∏M
`=11

{
−E[VaR

b`
α [dist(x`,Yi`)]]≥δ.

}, (23)

1{bk:k+L∈Bsafe
k:k+L},

∏k+L
`=k

∏M
`=11

{
−E[CVaR

b`
α [dist(x`,Yi`)]]≥δ.

}, (24)

where the additional expectation is with respect to distribution of the safe space Yi. However this is out of the scope
of this paper. For collision avoidance, the robot desires to navigate in the intersection of safe regions regarding all the
obstacles. However, as we further show in this paper, in the POMDP setting, it is problematic to constrain possible
future robot positions as done in MDP. This fact gives place to the belief-dependent operators presented above.

Another example of a general belief-dependent constraint is Information Gain (IG), defined as follows

φ(b, a, z′, b′) = IG(b, a, z′, b′) = −H(b′) +H(b), (25)

where H(·) denotes differential entropy. Utilizing this constraint with the form of (11) allows one to reason if the
cumulative IG along a planning horizon is significant enough (above threshold δ) with the probability of at least 1−ε.
Such a capability has a number of implications. For instance, in the context of Informative Planning and active SLAM,
instead of prompting the agent to maximize its IG, we can require that it does so only if it is able to decrease uncertainty
in some tangible amount. The robot can say no. This is a new concept made possible by our general formulation, which
therefore can be used to identify, e.g., when to stop exploration [38].

Let us discuss one more important constraint, the probability of reaching a goal (see, e.g., [6]). Throughout the
manuscript, for clarity, we assumed that the operator φ is identical for all time indices. We now relax that assumption
and redefine the inner constraint of the first form as follows1

c(bk:k+L;φk:k+L, δ) , 1{bk:k+L,bk:k+L∈Bk:k+L,(
∑k+L−1
`=k

φ`+1(b`,b`+1))≥δ}(bk:k+L). (26)

Further, let φ`+1(·) ≡ 0 ∀` ∈ k : k + L− 2 and

φk+L(bk+L) = P({xk+L ∈ X goal}|bk+L), (27)

where (27) defines the task of reaching the goal.

4 Approach for Our Probabilistic Belief-Dependent Constraints

Having presented our problem formulation and the examples of possible belief-dependent operators to serve as an inner
constraint, we are keen to proceed into the adaptive approach to precisely evaluate the sample approximation of our PC.
We used the term “precisely” to emphasize that, in contrast to the only necessary pruning condition suggested in [30]
for CC, our adaptive evaluation is necessary and sufficient.

1We denote f ≡ g for two operators, if we have f(x) = g(x) ∀x.
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4.1 Coupled Outer Constraint Evaluation and Belief Tree Construction

In this section, we delve into the evaluation of our novel formulation of the PC (10). We start by presenting a lemma.

Lemma 1 (Representation of our outer constraint).

P (c(bk:k+L;φ, δ) = 1|bk, πk+1:k+L−1, ak) = Ezk+1:k+L [c(bk:k+L;φ, δ)|bk, πk+1:k+L−1, ak]. (28)

In addition, if the inner constraint conforms to (12),namely c(bk:k+L;φ, δ)=
∏k+L
`=k 1Aδ

`
(b`), we have that

Ezk+1:k+L

[∏k+L
`=k 1Aδ

`
(b`)|bk, π, ak

]
= 1Aδ

k
(bk)Ezk+1 [1Aδ

k+1
(bk+1)Ezk+2 [1Aδ

k+2
(bk+2) . . . (29)

. . .Ezk+L−1 [1Aδ
k+L−1

(bk+L−1)Ezk+L [1Aδ
k+L
|bk+L−1, π]|bk+L−2, π] . . . |bk+1, π]|bk, π] =

1Aδ
k
(bk)Ezk+1 [1Aδ

k+1
(bk+1)Ezk+2 [P(c(bk+2:k+L;φ, δ)=1|bk+2, π)]=1Aδ

k
(bk)Ezk+1 [P(c(bk+1:k+L;φ, δ)=1|bk+1, π)]. (30)

where the set Aδ` ∀` ∈ [k : k + L] is defined by (13).

The reader can find the proof in Appendix A.1. From Lemma 1 we behold how to obtain the best sample approximation
of the outer constraint, since the theoretical expectation (28) is out of the reach. In practice, we approximate expectation
in (28) with a finite number m of samples of observation episodes, {zlk+1:k+L}ml=1, which we call laces, such that

P̂(m)(c = 1|bk, π) = P̂(m)(c(bk:k+L;φ, δ) = 1|bk, π) , 1
m

∑m
l=1 c(b

l
k:k+L;φ, δ) = 1

m

∑m
l=1 c

l, (31)

where cl , c(blk:k+L;φ, δ) and cl ∼ P(c|bk, π). The outer constraint (10) becomes

1
m

∑m
l=1 c(b

l
k:k+L;φ, δ) ≥ 1− ε, (32)

where m is the number of the observation sequences zk+1:k+L expanded from action ak (9) at the root of the belief tree.
From now on, we focus on the sample approximation (32) of the outer (external) constraint (10).

Fig. 4: Illustration of the bounds. If 1−ε
is below as marked by the green line, we
are only able to early accept the policy
π using the lower bound LB(bk, π) (33).
It is only possible to discard the policy π
with the upper bound UB(bk, π) (34), in
case that 1−ε is located above, as marked
by the red line.

Importantly, our further discussed approach is valid for any sampler utilized
to obtain samples of (32). Of course with growing horizon L→∞ to adequately
represent actual distributions more samples will be needed, the m will need to be
enlarged. This aspect is an inherent property of the sampler and hence is not our
concern for now. If the belief tree is given, we can traverse it from the bottom up
and calculate the value of cl for l ∈ 1 . . .m along the way such that when we reach
the root, we have everything to evaluate (32). In general, since the parameter m
has to be known, this applies to approaches that decouple belief tree construction
from the solution, e.g., SS algorithm [18] and OL setting.

However, we would like to guide the belief tree construction such that if, e.g.,
the action does not fulfill the outer constraint we will spend on it as less effort
as possible. We shall regard another interesting aspect of (28). Because c∈{0, 1},
by definition 1≥ 1

m

∑m
l=1 c

l. This implies that, under the condition ε=0, to satisfy

(32), we shall require
∑m
l=1 c

l=m. In other words, in this setting we will not be able
to early accept an action (before expanding m future belief laces). Nevertheless,
as we will further see, we will be able to do a highly efficient pruning whenever the inner constraint conforms to (12)
(multiplicative form). Further, we describe an adaptive constraint evaluation mechanism for a general ε and after that
focus on the case of ε=0.

4.1.1 Accurate Adaptive Constraint Inquiry with 0 ≤ ε < 1

Having presented the sample approximation of PC based on m samples (32), we are now ready to address a complete
belief tree construction. We bound the expression of the sample approximation of the outer constraint (32) from each end
using the already expanded part of the belief tree. Suppose the online algorithm at the root for each action expands upon
termination m laces appropriate to the drawn samples of observation episodes of length L−1, namely {zlk+1:k+L}ml=1.
Each sampled lace l corresponds to a particular realization of the return.

Suppose the algorithm already expanded n ≤ m laces. The lower bound LB(bk, π) of (32) is

1− ε
?︷︸︸︷
≤ 1

m

∑n
l=1 c

l

︸ ︷︷ ︸
LB(bk,π)

≤ 1
m

∑m
l=1 c

l

︸ ︷︷ ︸
P̂(m)(c=1|bk,π)

. (33)
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(a)

easier to discard harder to discard

(b)

Fig. 5: (a) Fast, adaptive with respect to observation laces, pruning when ε=0. If a single descendant belief yields φ(b)<δ the whole action
branch can be safely discarded (necessary condition (36)). From the other hand if all beliefs in the sub-policy-tree satisfy φ(b)≥δ the PC
is fulfilled (sufficient condition (37)). To rephrase that, if the action was not pruned, it is guaranteed to satisfy the PC; (b) Visualization
of a faster pruning when P (c(bk:k+L;φ, δ)=1|bk, π) is lower.

Whereas the upper bound UB(bk, π) reads

1
m

∑m
l=1 c

l

︸ ︷︷ ︸
P̂(m)(c=1|bk,π)

≤ m−n
m

+ 1
m

∑n
l=1 c

l

︸ ︷︷ ︸
UB(bk,π)

?︷︸︸︷
< 1− ε. (34)

By the question mark we denote the inequalities that shall be fulfilled online to check either the sample approximation
of the outer constraint (32) is met (33) or violated (34). Only one of the inequalities denoted by the question mark will
be eventually fulfilled with some n when we progressively expand the laces. We accept a policy fulfilling (32) using the
lower bound (33) or invalidate using the upper bound (34) (See Fig. 4). These bounds allow to evaluate (32) adaptively
before expanding all the m laces of belief sequences bk:k+L and using only n laces instead. We save time that would
be spent on the additional m−n laces if one continues to sample observation episodes (laces) up until the budget of m
samples is reached.

Such a technique is a applicable for both settings: OL and CL. Note that both bounds advance towards the (31)
with the step size 1/m. Moreover, with each added observations episode lace, only one of the bounds is contracting, the
lower (33) bound LB(bk, π) or the upper (34) bound UB(bk, π). If the expanded lace results in cl=1 the lower bound (33)
makes a step towards (31). This event happens with probability P(c=1|bk, π). Conversely, if the expanded lace results
in cl=0, the upper bound (34) makes a step towards (31). This event happens with probability P(c=0|bk, π).

One example of an adaptive usage of (33) and (34) is to save time in an OL planning or alternatively spend more
time on the action sequences which fulfill the outer constraint (32), namely increase m for a given n up until evaluating
(32) is still possible with this n. Envisage a static action sequence to be checked. After each expanded lace cl of (32) we
are probing (33). If fulfilled, we know that the sample approximation of the outer constraint is satisfied, and we can stop
dealing with the constraints for this candidate action sequence. Else we are trying (34); if fulfilled, we know that the
current action sequence violates the sample approximation of the outer constraint (32). The third possibility is to add
one more lace and check again. In such a way, we adaptively expand the lowest possible number of inner constraint laces
to be evaluated and validate or invalidate the action sequence depending on whether the PC (32) is fulfilled on not.
The presented adaptivity mechanism is simple, exact and guaranteed to satisfy or discard our PC. To our knowledge no
analogs to this exists in the literature, e.g. [30]. Another example is the CL setting, where we deal with policies. Further
in this manuscript we focus attentively on the multiplicative form of the inner constraint (12).

4.1.2 Early Termination with Multiplicative Form

In this section we highlight that in case of multiplicative form for each lace cl ∈ {0, 1}, it holds that

c(bk:k+L;φ, δ) =
(∏k+L

`=k 1{b`:b`∈B`,φ(b`)≥δ}(b`)
)
≤
(∏k+j

`=k 1{b`:b`∈B`,φ(b`)≥δ}(b`)
)

= c(bk:k+j ;φ, δ). (35)

for 0 ≤ j ≤ L. Remembering that c, c ∈ {0, 1}, if cl = 0 so as cl = 0.

4.1.3 Efficient Exact Adaptive Pruning with ε = 0 and Multiplicative Form

The constraint confidence parameter ε controls the stiffness of the condition that the distribution of belief-dependent
inner constraint shall fulfill. The maximal stiffness is reached when ε=0. Leveraging again the multiplicative structure
of the inner constraint (12), we have an interesting behavior summarized in the following theorem (See Fig. 5a).
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prune on the 
way down 
the tree

Fig. 6: Illustration of the symmetric belief search tree built by Sparse Sampling algorithm with A = {a1, a2} and m = 3 sampled
observations at each belief node. We prune branches on the way down the tree.

Theorem 1 (Necessary and sufficient condition for feasibility of a Probabilistic Constraint). Fix ε=0 and δ∈R. Let the
inner constraint comply to (12), namely ∀l c(blk:k+L;φ, δ) =

∏k+L
`=k 1{b`:b`∈B`,φ(b`)≥δ}(b

l
`). The fact that

(
1
m

∑m
l=1

∏k+L
`=k 1{b`:b`∈B`,φ(b`)≥δ}(b

l
`)
)

= 1 necessary condition (36)

implies that ∀l, ` φ(bl`) ≥ δ. Moreover, if

(
1
m

∑m
l=1

∏k+L
`=k 1{b`:b`∈B`,φ(b`)≥δ}(b

l
`)
)
< 1, sufficient condition (37)

so ∃l, ` φ(bl`) < δ.

We provide a proof in Appendix A.2. Theorem 1 says that whenever ε=0 and the inner constraint is of the multi-
plicative flavor (12), then (32) is satisfied if and only if for every belief b in the belief tree it holds φ(b) ≥ δ.

An immediate result of Theorem 1 is the soundness of our pruning technique. On our way down the tree, by arriving
to a belief b`, we prune all the actions in the belief tree resulting in φ(b`+1)<δ for some future observation a single step
ahead. In such a way eventually in the belief tree will be solely the actions satisfying the PC (32) with ε=0. Importantly,
to engage such a pruning we do not need to know actual value of m.

Behold one more interesting aspect. As explained in Section 4.1.1 the upper bound (34) makes a step when the
sampled lace l equals to zero (cl=0). Recall that we discard the policy π and action sequence ak+ using the upper bound
(34). Whenever ε=0, it is sufficient to make a single step to discard such a policy. This step happens with probability
P (c=0|bk, π) =1−P (c=1|bk, π). Therefore if the Probabilistic theoretical Constraint (10) with ε=0 is violated with a
large margin, our method will prune such a policy faster, as visualized in Fig. 5b.

4.2 The Algorithms for PC

In this section, we present algorithms to tackle our novel formulation portrayed by (9), (12) and (32) applying the
theory presented in the previous section. Let us reiterate that we focus now on the multiplicative form (12) of the
inner constraint. In particular, inspired by SS [18] and adaptivity aspects in [4], we first present an adaptive algorithm
originated from SS, for ε=0. The SS based methods on top of nonparametric BMDP hardly can be applied with long
horizons. To alleviate that and use an arbitrary ε in the interval [0, 1), we assume static candidate action sequences. We
formulated all algorithms for a general belief-dependent operator φ. In all our algorithms the objective is calculated over
the symmetric belief tree (Fig. 6) and the tree future policy is deterministic.

4.2.1 Probabilistically-constrained Sparse Sampling (ε = 0)

In this section we present an algorithm to solve the sample approximation of the following problem

a∗k ∈ arg max
ak∈A

Qπ
∗
(bk, ak; ρ) subject to

P
((∏k+L

`=k 1Aδ
`
(b`)

)
= 1|bk, ak, π∗k+1:k+L−1

)
= 1,

(38)

where Aδ` is defined by (13). In this approach, since ε=0, using the recursive nature of multiplicative inner constraint
proved in Lemma 1 we ensure that our future belief tree policy π∗(k+1) is safe with respect to each belief b(h) in the belief

tree, namely P̂(m)(c=1|b(h), a, π)=1 (Note that PC itself is a belief-dependent operator under a particular execution
policy). Indeed, as we will further see, if some action in the way down the tree is not pruned, it has to hold that all the
predecessors are fulfilling the PC and the current node. SS based methods employ the Bellman optimality criterion while
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traversing the tree from the bottom up. For ε=0 we suggest Alg. 1. Leveraging Theorem 1, the Alg. 1 prunes, in line 14,
all the actions resulting in even a single future belief to be unsafe. We prune actions violating the outer constraint (32)
on the way forward (down the tree) as visualized at Fig 6. Because we actually check the inner constraint (12) on the way
forward when the algorithm hits the bottom of the tree, we are left solely with actions fulfilling the PC approximated by
(32) with ε=0, so we do not need any additional checking on the way up at all. This contrasts the chance-constrained
formulation in [30], where the pruning condition is only necessary and not sufficient as in our approach.

Algorithm 1 Prob. Constrained BMDP Sparse Sampling (ε = 0) (PCSS)

1: procedure PCSS(belief: b(h), history: h, depth: d, threshold: δ(h)) . b as in (5), δ as discussed in
Section 3.2.

2: if d = 0 then
3: return (Null, 0)
4: end if
5: (a∗, v∗) ← (Null, −∞)
6: for a ∈ A do
7: v ← 0.0, PrunedFlag ← false . Initialization of Value function and flag for pruning
8: Calculate propagated belief b′− applying action a
9: for md times do

10: Sample xo ∼ b′− followed by z′ ∼ P(z|xo) Observations are created using belief defined by (5)
and action a.

11: b′ ← ψ(b, a, z′) . Update belief
12: if φ(b′) < δ(h) then . Prune action a using Theorem 1
13: PrunedFlag ← true
14: break . Exit from observations loop and go to line 21
15: end if
16: a∗,′, v′ ← PCSS(b′, haz′,d− 1, δ(h)) . Rule for threshold as in (16). The best next action a∗,′ is

redundant.
17: v+ = (ρ(b, a, b′) + γ · v′)/md . Calculate Value fun. using regular beliefs as in (5).
18: end for
19: if PrunedFlag is false and v > v∗ then
20: (a∗, v∗) ← (a, v)
21: end if
22: end for
23: return (a∗, v∗)
24: end procedure

We now endow each belief and corresponding history by superscript denoting a global index at a particular depth of
belief tree, see Fig. 6. Similar to SS algorithm, we use Bellman optimality from the leaves up the tree and approximate
the (3) by

Q̂
π∗(`+1)+(h

i`
` , a`; ρ) = 1/|C(h

i`
`
a`)|
∑
i`+1∈C(h

i`
`
a`)

(
ρ(b

i`
` , a`, z

i`+1

`+1 , b
i`+1

`+1 ) + Q̂
π∗(`+2)+(h

i`+1

`+1 , a
∗
`+1; ρ)

)
, (39)

where |C(hi`a`|≡m and on the way up the tree we select an optimal action using a∗`+1= arg max
a`+1∈C(h`+1)

Q̂π
∗
(b`+1, a`+1; ρ).

Since we prune dangerous actions on the way down the tree, it holds that C(h`+1)⊆A and |C(h`+1)|≤|A|. Therefore,the
proof of near optimality from [18], [24], [22] [23] holds with respect to reward. However, we prune at each belief action
node using the sample approximation of PC and not theoretical. Therefore our method is only an approximate method.
Clearly, it converges to the solution of (9) and (10) as number of sampled observations grows. At the root we have
m=

∏L
i=1(md)

i laces and the approximation of PC for action ak, when the Alg. 1 returned from the recursion, reads

( 1
Aδ
k

(b1k)

|C(h1
k
ak)|

∑
ik+1∈C(h1

k
a∗
k

)

1
Aδ
k+1

(b
ik+1
k+1

)

|C(h
ik+1
k+1

a∗
k+1

)|

∑
ik+2∈C(h

ik+1
k+1

a∗
k+1

)

1
Aδ
k+2

(b
ik+2
k+2

)

|C(h
ik+2
k+2

a∗
k+2

)|
· · ·

· · ·
1
Aδ
k+L−1

(b
ik+L−1
k+L−1

)

|C(h
ik+L−1
k+L−1

a∗
k+L−1

)|

∑
ik+L∈C(h

ik+L−1
k+L−1

a∗
k+L−1

)
1Aδ

k+L
(b
ik+L
k+L )

)
= 1.

(40)

It shall be noted that the presented algorithm is heavy from the computational point of view due to the fact that it
expands all actions and predefined number of observations on the way down the tree. It is hard to apply Alg. 1 to large
horizons even with our efficient pruning technique. We alleviate this issue in the next section.
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Algorithm 2 Arbitrary 0 ≤ ε < 1

1: Input: A, bk(hk), δ(hk) . Set of the action sequences, belief and constant threshold as in explained in
Section 3.2

2: a∗k+ ← undef, V̂ ∗(m) ← −∞, S ← {} . S is the set of accepted candidate action sequences, S ⊆ A
3: for each ak+ ∈ A do
4: for n(ak+) ∈ 1 : m do

5: Draw observation sequence z
n(ak+)
k+1:k+L ∼ P(zk+1|bk, ak)

∏k+L−1
`=k+1 P(z`+1|b`, a`) . Observations are

sampled from P(z`+1|bk, ak:`, zk+1:`) ` = k : k + L− 1 using beliefs as in (5).
6: cn(ak+) ← 1Aδk (bk)

7: for z
n(ak+)
` ∈ zn(ak+)

k+1:k+L do

8: Calculate b
n(ak+)
` , φ(b

n(ak+)
` ), ρ(bn`−1, a`−1, b

n
` )

9: cn(ak+) ← cn(ak+) · 1Aδ` (b
n
` ) . For definition of Aδ` see (13).

10: if cn(ak+) == 0 then
11: break . If inner constraint as in (12) can stop to calculate φ(·) down the lace once at some

belief φ(b) < δ. See Eq. (35).
12: end if
13: end for
14: if 1− ε ≤ 1

m

∑n(ak+)
l=1 cl then . Outer constraint is fulfilled

15: S ← S ∪ {ak+} . Accept the ak+

16: break . check the next action seq.

17: else if 1
m

∑n(ak+)
l=1 cl < 1− ε− m−n(ak+)

m then . Outer constraint is violated
18: break . check the next action seq.
19: end if
20: end for
21: end for
22: for each ak+ ∈ S do . S contains all feasible ak+

23: Expand missing laces and get V̂ (m)(bk, ak+)
24: if V̂ ∗(m) < V̂ (m)(bk, ak+) then

25: a∗k+ ← a, V̂ ∗(m) ← V̂ (m)(bk, ak+)
26: end if
27: end for
28: Return a∗k+

4.2.2 Static Action Sequences and Arbitrary ε in the Interval [0, 1)

We now turn our attention to an arbitrary ε in the interval [0, 1) and solve the sample approximation of (14) and (15)
with multiplicative flavor of the inner constraint (12). Our objective is specified as

a∗k+ ∈ arg maxak+∈Ak
1
m

∑m
l=1

∑k+L−1
`=k ρ(bl`, a`, b

l
`+1) subject to

(
1
m

∑m
l=1

∏k+L
`=k 1Aδ

`
(bl`)

)
≥ 1− ε,

(41)

where observations episode lace l is sampled from zlk+1:k+L∼P(zk+1|bk, ak)
∏k+L−1
`=k+1 P(z`+1|bk, ak:`, zk+1:`). The set Aδ`

is in accord to (13). We denote the objective portrayed by (14) approximated by empirical mean of m laces of the
cumulative rewards as V̂ (m)(bk, ak+) and approximate (15) similar to (31). To relax the necessity that ε=0, we turn to
static candidate action sequences (Ak) and present Alg. 2. Let us pinpoint that we already proposed this algorithm in
our parallel paper [38] where we focus on the cumulative form of the inner constraint (11). However, this paper focuses
on multiplicative structure (12) and another operator φ being (18). In addition, since here we focus on the multiplicative
flavor of the inner constraint (12), Alg. 2 ceases to calculate the operator φ over the lace if it encountered a belief such
that φ(b)<δ (line 10 in Alg. 2). This is especially important with long horizons, see Section 4.1.2.

5 Analysis of CC and Upgrades for PC

Although our formulation is universal and belief-dependent, this paper focuses on the agent’s safety. Therefore, we shall
thoroughly regard the SOTA safety constraint under partial observability, the CC.
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(a) (b)

Fig. 7: Visualization of the conventional CC enforced from a belief bk. By shaded ovals we illustrate the posterior beliefs. The orange
rectangles and ovals stand for obstacles. (a) In this visualization the purple trajectories are unsafe, whereas the teal trajectories are safe.
(b) Visualization of sub-policy-tree resolution of CC with horizon L=2 (the blobs encapsulating the beliefs by dashed lines). Only belief
bk here taken from the belief tree is used for reward calculation as in Fig. 1 and the rest of the beliefs are defined differently (Section 5.3).

5.1 Averaging the Probability of Being Safe

We start by showing that in case of candidate policies and not predefined action sequences the CC utilized in [6] averages
the probability of to be safe given posterior belief and policy. Observe that due to dependence on the polices, to calculate
(7) one must marginalize with respect to observations, namely

P({x`∈X safe
` }|bk, π)=

∫
zk+1:`

P({x`∈X safe
` }|bk, πk:`−1, zk+1:`)P(zk+1:`|bk, π)dzk+1:`=Ezk+1:`

[
P({x`∈X safe

` }|b`)
∣∣bk, π

]
. (42)

The robot, with some likelihood, will obtain a single posterior belief in the actual inference and not in a planning
session. Thus, the condition Ezk+1:`

[
P({x`∈X safe

` }|b`)
∣∣bk, π

]
≥δ can be problematic. Let us give a specific example.

Suppose the belief bk is safe (probability to intersect with the dangerous region is zero). Assume that δ=0.7 and we have
three equiprobable observations in a myopic setting such that P(

{
xk+1∈X safe

k+1

}
|ψ(bk, ak, z

j
k+1)) equals 0.1, 1.0, 1.0 for

j=1, 2, 3 respectively. On average, we have precisely 0.7 such that the (7) is fulfilled. However, one belief is highly unsafe.
In contrast, as our formulation (10) is sensitive to the distribution of the future beliefs rendered by future observation
sequences, it is aware that only two out of the three observation sequences satisfy the constraint. For example, it will
declare (the sampling-based approximation of) (10) is not satisfied if (e.g.) we select ε=0 and δ=0.7.

Nevertheless the expectation with respect to future beliefs is also a viable possibility for the constraint. As we
explained in Section 2.3 the CC in [30] portrayed by (8) is more general than the one used in [6] and described by (7).
From now on whenever we use the notion of CC we mean the CC from [30]. Further, we show two ways to calculate the
CC. The first way is through the PDF of the future robot trajectories. The second way utilizes posterior beliefs defined
in a different than the usual way (Section 5.3).

5.2 Chance Constraining Future Trajectories

We face that in [30], the CC is imposed, with different threshold, at each non-terminal belief in the belief tree. The
non-terminal belief is the belief from which emanates an action, in other words, not a leaf in the belief tree. As we
mentioned in Section 1.4, this is necessary to ensure the feasibility of CC in the root of the belief tree. It will be more
apparent shortly. At this point let us define the rewards tree as belief tree used for the calculation of the rewards and the
objective (9) (See Fig. 1 and 5a). The beliefs in the rewards tree are defined by (5). As we mentioned, the [30] disregards
the disparity of the beliefs in the rewards tree and CC tree (to be defined in the next section) but takes into account
the disparity in observation likelihood. To shed light on this aspect, we shall analyze the CC imposed at the root of the
belief tree bk common in both belief trees. With this motivation in mind, we focus for the moment on the time index
k of the beginning of the planning session and inspect the PDF that the trajectory τk will be safe. Note that from the
properties of the indicator variable

1{τk∈×k+L`=k
X safe
` }(τk(ω))=1{⋂k+L`=k {x`∈X safe

` }}(τk(ω))=
∧k+L
`=k 1{x`∈X safe

` }(x`(ω))=
∏k+L
`=k 1{x`∈X safe

` }(x`(ω)) ∀ω ∈ Ω, (43)

where
∧

is the minimum operator and Ω is the space of the outcomes. Meaning, the safe trajectory is the trajectory
comprised of safe states. Only for better and clearer explanation, we assume further in this section that robot safe
workspace X safe

` is given for any `. Relaxing this assumption is straightforward. Another property of the indicator
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variable is P(1{τk∈×k+L`=k
X safe
` }=1|bk, π, τk)=1{τk∈×k+L`=k

X safe
` }(τk), enabling us to write (See Fig. 7a)

P(1{τk∈×k+L`=k
X safe
` } = 1|bk, π) = Eτk [1{τk∈×k+L`=k

X safe
` }|bk, π] =

∫
τk

∏k+L
`=k 1{x`∈X safe

` }(x`)P(τk|bk, π)dτk. (44)

To calculate the value of (44), one must asses P(τk|bk, π) and since this PDF depends on the policy, it is not possible
to directly constraint the robot future trajectories. The P(τk|bk, π) is by definition averaging with respect to future
observations. To show that explicitly, we present the following Lemma.

Lemma 2 (PDF of trajectory). The PDF of a future trajectory given a belief and the candidate policy P(τk|bk, πk:k+L−1)
decomposes as

PT(xk+1|xk, ak)bk(xk)
∫

zk+1:k+L−1

∏k+L−1
`=k+1

(
PT(x`+1|x`, π(b`(b`−1, π`−1(b`−1), z`)))PO(z`|x`)

)
dzk+1:k+L−1 = (45)

PT(xk+1|xk, ak)bk(xk)
∫

zk+1

. . .
( ∫
zk+L−2

PT(xk+L−1|xk+L−2, π(bk+L−2(bk+L−3, ak+L−3, zk+L−2)))·
( ∫
zk+L−1

PT(xk+L|xk+L−1, π(bk+L−1(bk+L−2, ak+L−2, zk+L−1)))PO(zk+L−1|xk+L−1)
)
dzk+L−1

)
· (46)

PO(zk+L−2|xk+L−2)dzk+L−2

)
. . .dzk+1.

If instead of policy it is given a predefined action sequence ak:k+L−1, we have that

P(τk|bk, ak:k+L−1) = PT(xk+1|xk, ak)bk(xk)
∏k+L−1
`=k+1 PT(x`+1|x`, a`). (47)

We provide the proof in Appendix A.3. As we see, such a formulation averages, in each time step, the motion models
corresponding to different actions due to various possible observations. We emphasized this behavior in the final time
instance with the magenta color. In particular, when we deal with static action sequences ak:k+L−1, the observations
cancel out, effectively assuming full observability. Note that this is also the case in the formulation described by (42).

From Lemma 2 we conclude the following. In the case of policies, it is not possible to assume the fully observable
setting. To evaluate Eτk [1{τk∈×k+L`=k

X safe
` }|bk, π] one must resort to the averaging with respect to observations and leverage

the fact that Eτk [1{τk∈×k+L`=k
X safe
` }|bk, π] = Ez(k+1)+

[Eτk [1{τk∈×k+L`=k
X safe
` }|bk, π, zk+1:k+L−1]|bk, π] averaging the PDF’s of

the trajectories corresponding to each sequence of possible actions dictated by the observations.

5.3 Investigating Chance Constrained BMDP

We now examine the expression P(1{τk∈×k+L`=k
X safe
` }=1|bk, π) from another angle and reformulate it in the context of

posterior beliefs as it cannot be used in belief-dependent solvers in its current form. Such an extension has not been
done previously, to the best of our knowledge.

In CC, as we will further see in Lemma 3, the safe event {x∈X safe} impacts the belief update. Therefore, the posterior
beliefs differ in the belief trees used for rewards and CC calculation. In the rewards tree, the beliefs are as in (5), whereas
in the CC tree, as we will see shortly, we have two types of beliefs. The belief obtained from safe beliefs is

b̄`(x`),P
(
x`|bk, ak:`−1, zk+1:`,

⋂`−1
i=k{xi ∈ X safe

i }
)

= P
(
x`|b̄safe

`−1, a`−1, z`
)
, (48)

and the safe belief given by

b̄safe
` (x`),P

(
x`|bk, π, zk+1:k+`,

⋂`
i=k{xi∈X safe

i }
)
=P
(
x`|h`,

⋂`
i=k{xi∈X safe

i }
)
=P
(
x`|b̄safe

`−1, a`−1, z`, {x`∈X safe
` }

)
. (49)

Please relate the (49) to (5). This aspect is ignored by [30]. Nevertheless, such a disparity is present in discrete and
continuous domains altogether. Note that also the definitions (48) and (49) we assumed that robot environment map is
given. In most general case the workspace X` is a part of the state for any `.

Let us present a lemma which will shed light on the relation between the conventional formulation of safety con-
straint, the CC, and the posterior beliefs. To improve readability let us introduce yet another Bernoulli variable
ι`(ω),1{x`∈X safe

`
}(ω). Recall that 1{τk∈×k+L`=k

X safe
`
}=
∧k+L
`=k ι`.

Lemma 3 (Average over the posteriors obtained from the safe priors).

P
(⋂k+L

`=k

{
x`∈X safe

`

}
|bk, π

)
=P
((∧k+L

`=k ι`
)
=1|bk, π

)
=P
(
ιk=1|bk

)
Ezk+1

[
P(ιk+1=1|b̄k+1)Ezk+2

[
P(ιk+2=1|b̄k+2) · · ·

P(ιk+L−1=1|b̄k+L−1)Ezk+L
[
P(ιk+L=1|b̄k+L)

∣∣ak+L−1, b̄
safe
k+L−1

]
· · ·
∣∣a`+1, b̄

safe
k+1

]∣∣ak, bsafe
k

]
.

(50)
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where b̄`=ψ(b̄safe
`−1, a`−1, z`) which is different than b`=ψ(b`−1, a`−1, z`)) used in (19). We provide the proof in Appendix

A.4. Here, ψ is a method for Bayesian belief update. Further details can be found in Appendix B. The connection
between (49) and (48) is

b̄safe(x) ,
1{x∈Xsafe}(x)b̄(x)

∫
ξ∈X 1{ξ∈Xsafe}(ξ)b̄(ξ)dξ

, (51)

i.e., we nullify the unsafe portion of the belief and re-normalize.
From Lemma 3, we elicit two facts. The first one is that the CC operates on the level of sub-policy trees (See

Fig. 7b). The second one is that each sub-policy-tree in (50) differs from a sub-policy-tree used for reward calculation.
The observations come from another distribution, and the belief definitions (48), (49) is also different from (5), resulting
in disparate from those used for reward calculation beliefs (See Fig. 1). Difference in belief definitions can also be viewed
as the difference in belief update originating from making the belief safe (51). However, the root belief bk is common to
both belief trees, the one used for the rewards as in Fig 1 and one used for CC calculation as in Fig. 7b. To the best of
our knowledge, such a difference in belief definitions is considered for the first time. Returning to our formulation (29)
for the moment and comparing to (50), we highlight that our variant (29) is truly distribution aware as it counts the
number of safe posteriors because of the indicator outside the inequality involving the probability value.

Further we will see that because we are dealing with expectations in (50) the disparity in the conditioning of PDF of
observations in (50) and (3) is fixable using Importance Sampling (IS). Therefore, we can use the observations sampled
for the rewards tree. Moreover, the reformulation (50) allows to utilize general belief-dependent operators over the beliefs
defined as in (48) if we regard only the right hand side of (50). Still it makes sense only in the context of safety, e.g,
(20) and not Information related operators as, for example, (25). This is because the definitions of the beliefs (48) and
(49) appearing in (50).

5.4 Upgrade One: Probabilistic Constraint with Safe Trajectories

From the preceding discussion, we devise that we can plug the beliefs defined as in (48) (given the safe arrival to previous
time instance event) and (49) into our PC (17) with (19) as such

1{P(ιk=1|bk)≥δ}(bk) E
zk+1

[
1{P(ιk+1=1|b̄k+1)≥δ} E

zk+2

[
1{ιk+2=1|b̄k+2)≥δ} . . . (52)

. . . E
zk+L−1

[
1{P(ιk+L−1=1|b̄k+L−1)≥δ} E

zk+L

[
1{P(ιk+L=1|b̄k+L)≥δ}

∣∣∣b̄safe
k+L−1, π

]∣∣∣b̄safe
k+L−2, π

]
. . .
∣∣∣b̄safe
k+1, π

]∣∣∣bsafe
k , π

]
≥ 1− ε.

The formulation pictured by (52) is novel to the best of our knowledge. In the setting of policies we further assume that
ε=0 and solve the

a∗k ∈ arg max
ak∈A

Qπ
∗
(bk, ak; ρ) subject to

P
((∏k+L

`=k 1Āδ
`
(b̄`)

)
= 1|bk, ak, π∗k+1:k+L−1

)
= 1,

(53)

where Āδ`,{b̄`:b̄`∈B̄`, φ(b̄`)≥δ} and φ(b̄`)=P(ι`=1|b̄`)=P(ι`=1|h`,
⋂`−1
i=k{xi∈X safe

i }). The belief-dependent operator here

is the probability to be safe given the history and the safe arrival to previous time instance event, namely
⋂`−1
i=k{xi∈X safe

i }.
The space B̄` is the space of the beliefs defined in accord to (48) and reachable at time instance ` from bk. In the OL
setting instead of constraint as in (41) we will need to approximate (52). We show how to do that in Section 6.1.

5.5 Recasting the CC using Execution Risk

Let us restate the definition [30] of future Execution Risk (ER), namely erk(bk(hk), π) (belief and policy dependent
operator). The CC can be recast as erk(bk(hk), π)≤∆(hk). Recall that bk common for the CC and the rewards objectives,

erk(bk(hk), π) , 1− P
(
{τk ∈ ×k+L

`=k X safe
` }|bk, ak, π(k+1)+

)
≤ ∆(hk) , 1− δ(hk), (54)

where by δ(hk) we denote threshold given in planning session and also the threshold of our approach (12). Since in
this paper we deal with deterministic polices we sometimes will write erk(bk(hk), ak, π) to emphasize that the action ak
has been determined. Moreover, please note that by definition ER (54) is time instance dependent. This is because the
trajectory is until time k+L. The risk at the k-th time step rb(bk) is defined by

P
(
{xk /∈ X safe

k }|bk
)

=
∫
xk
bk(xk)1{xk /∈X safe

k
}(xk)dxk = rb(bk). (55)

Note that P
(
{xk∈X safe

k }|bk
)

=
∫
xk
bk(xk)1{xk∈X safe

k }(xk)dxk = 1− rb(bk).

17



Lemma 4 (Recasting). The CC can be represented recursively and two threshold conditions are equivalent

P
(
{τk∈ ×k+L

`=k X safe
` }|bk, π

)
=P
(
{xk∈X safe

k }|bk
)
E

zk+1

[
P
(
{τk+1∈ ×k+L

`=k+1 X safe
` }|b̄k+1, π,

)
︸ ︷︷ ︸

≥δ(hk+1)

|bk, {xk∈X safe
k }, ak, π

]
≥δ(hk) (56)

erk(bk(hk), ak, π) =
(
rb(bk) + (1− rb(bk)) E

zk+1

[
erk+1(b̄k+1, π)︸ ︷︷ ︸
≤∆(hk+1)

|{xk∈X safe
k }, bk, π, ak

])
≤∆(hk), (57)

where ∆(h`),1−δ(h`) and er`(b̄`, π) , 1−P
(
{τ`∈ ×k+L

i=` X safe
i }|b`, π

)
∀` ∈ [k : k + L].

We provide the proof in Appendix A.5. From (57) we infer two important aspects. The first one is that execution risk
is recursive and if the CC was imposed merely from the root of the belief tree due to Bellman update each er`(b̄`, π) for
` ∈ [k+ 1 : k+L] will be large since it corresponds to an unconstrained optimal action. Therefore, it is highly likely that
at the root there will be no feasible action. Further in Section 6.2 we restate how the future thresholds are found by [30]
to ensure feasibility of CC at the root hk of the belief tree by adjustment of ∆(h`) at each future history h`. Still it is
not for sure that feasible action will be at the root. We reiterate again that the safe event in likelihood of observations
in (57) is taken into account in [30], but the difference in belief definitions (49) and (5) is not.

5.6 Implicit Access To Non-terminal Posteriors

The CC is enforced from each nonterminal belief with adapted threshold per history ∆(h`) to ensure feasibility at hk
with ∆k(hk) considered in the planning session in time instance k. We defer the discussion of how to set the threshold to
Section 6.2. For the first time in literature, to the best of our knowledge, we consider the difference in belief definitions
in the belief tree used for the rewards (belief defined by (5)) and the CC (belief defined by (49)). Hence, we shall decide
in which belief tree (pictorially Fig. 1 or Fig. 7b) to threshold each posterior. We threshold each subtree represented by
(50) (Fig. 7b). The CC for belief b̄` reads

P
(⋂k+L

i=`

{
xi ∈ X safe

i

}
|b̄`, π

)
= P

((∧k+L
i=` ιi

)
= 1|b̄`, π

)
≥ δ(h`) ∀b̄`(h`), ` ∈ k : k + L. (58)

where 0 ≤ δ ≤ 1. Due to fact that
{
x` ∈ X safe

`

}
⊇ ⋂k+L

i=`

{
xi ∈ X safe

i

}
it holds that

P
({
x` ∈ X safe

`

}∣∣b̄`
)
≥ P

(⋂k+L
i=`

{
xi ∈ X safe

i

}
|b̄`, π

)
(59)

the (58) implicitly constraints P({x`∈X safe
` }

∣∣b̄`
)

with δ(h`). In fact, we never know which actual threshold each posterior
belief shall be larger than or equal to. In contrast, in our formulation (19) we require being larger or equal to constant
δ(hk)=1−∆(hk) solely from the multiplicands of (19).Using the (59) we also can prune the policy π in CC if

P
(
{x` ∈ X safe

` }
∣∣b̄`(h`)

)
?︷︸︸︷
≤ δ(h`). (60)

This is equivalent to leveraging the relation rb(b̄`)≤er`(b̄`, π) and prune if ∆(h`)≤rb(b̄`(h`)). Importantly, this condition
means that does not exist policy π such that the condition (58) is met for b̄`.

5.7 Upgrade Two: Future Subtrees Resolution in PC

In light of the previous discussion we suggest to constrain also terminal beliefs. As a consequence, we obtain the following
reformulation the PC (17) with (19). Set ε=0 in (10) and δ instead of being constant per planning session as in (16) is
a general function of history. The chance-constrained objective materializes as

a∗k ∈ arg max
ak∈A

Qπ
∗
(bk, ak; ρ) subject to

P
((

1Āk+L(b̄k+L, hk+L)
∏k+L−1
`=k 1Ā`(π

∗, b̄`, h`)
)

= 1|bk, ak, π∗k+1:k+L−1

)
= 1,

(61)

where the B̄` is the space of reachable from bk beliefs defined as (48) corresponding to histories and the sets are

Ā`,{π, b̄`, h`:b̄`∈B̄`, ϕ`(b̄`(h`), π)≥δ(h`)}, Āk+L,{b̄k+L, hk+L:b̄k+L∈B̄k+L, φ(b̄k+L(hk+L))≥δ(hk+L)}. (62)

The relevant indicator 1Ā`(π, b̄`, h`) accepts also history h` to check if the triple (π, b̄`, h`) ∈ Ā` in the set Ā`. The
operator ϕ`(b̄`(h`), π) operating at the time instance ` also accepts the policy π as input and it is defined as a CC
enforced onto b̄`(h`) with threshold δ(h`). The operator ϕ`(b̄`(h`), π) expands a future sub-tree.

ϕ`(b̄`(h`), π)=1−er`(b̄`(h`), π) = P
(⋂k+L

i=` {xi∈X safe
i }|b̄`, π

)
= P

(⋂k+L
i=` {xi∈X safe

i }|h`,
⋂`−1
i=k{xi ∈ X safe

i }, π
)

(63)
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and at the terminal beliefs we have that

φ(b̄k+L)=P
(
{xk+L∈X safe

k+L}|b̄k+L

)
=P
(
{xk+L∈X safe

k+L}|hk+L,
⋂L−1
i=k {xi∈X safe

i }
)
. (64)

Note that in (53) we threshold all the beliefs with the same δ(hk) per planning session as described in Section 3.2. This
is in contrast to (61) where each δ(h)=1−∆(h) is a result of heuristics described in Section 6.2. Importantly, if we set
in (61) δ(h`)=0 for `>k, we will obtain CC solely at the root with δ(hk) specified outside. As we will further see, due
to the usage of Bellman optimality in future times, this option does not leave feasible actions at the root bk of the belief
tree and, thereby, is not plausible.

5.8 Conservatism of CC

In this section, we discuss the conservatives of the problem depicted by (61) relative to (53). We need to define what it
means to be conservative in the first place.

Definition 1. (Conservatism) Let a† be solution of (53) with best future tree policy π∗(k+1)+ and a? the solution of (61)
with the best future tree policy µ∗(k+1)+. We say that (61) is conservative with respect to (53) if

Qπ
∗
(bk, a

†
k; ρ) ≥ Qµ∗(bk, a?k; ρ). (65)

In (53) the δ is constant, namely δ(hk)≡δ(h`) ∀` ≥ k, h`. It is, also, holds that φ(b̄`(h`))≥ϕ`(b̄`(h`), π) for any `∈[k:k+L].
We can conclude, using the (59) that, if the δ(hk)≤δ(h`) in the (61), so the (61) is indeed conservative with respect to
(53). Recalling that ∆(h)=1−δ(h), the reciprocal condition for ER formulation is ∆(hk)≥∆(h`).

5.9 Chance-constrained Adaptive Open Loop Continuous ρ-POMDP

In some problems, as mentioned in [14], sampling from the motion model can be costly in terms of computation time.
Motivated by this key insight, we pay attention that the adaptive approach with minor adjustments applies also to the
m trajectories approximated CC in the setting of POMDP with static action sequences. To approximate the CC given a
candidate action sequence ak:k+L−1 we shall draw the laces of the trajectories τk∼bk(xk)

∏k+L−1
`=k PT(x`+1|x`, a`). This

is a direct result of Lemma 2, specifically, the equation (47). Similar to our PC sample approximation in the OL setting
and multiplicative form (41) here we have the following objective and the CC

a∗k+ ∈ arg max
ak+∈Ak

1

m

m∑

l=1

k+L−1∑

`=k

ρ(bl`, a`, b
l
`+1) subject to (66)

δ ≤ P̂(m)(1{τk∈×k+L`=k
X safe
` } = 1|bk, ak+), (67)

where P̂(m)(1{τk∈×k+L`=k
X safe
` }=1|bk, ak+), 1

m

∑m
l=1 1{τk∈×k+L`=k

X safe
` }(τ

l
k). The adaptive approach for (67) with lower and

upper bounds materializes as

δ

?︷︸︸︷
≤ 1

m

∑n
i=1 1{τk∈×k+L`=k

X safe
` }(τ

l
k) ≤ 1

m

∑m
l=1 1{τk∈×k+L`=k

X safe
` }(τ

l
k) (68)

1
m

∑m
i=11{τk∈×k+L`=k

X safe
` }(τ

l
k)≤m−n

m
+ 1

m

∑n
l=1 1{τk∈×k+L`=k

X safe
` }(τ

l
k)

?︷︸︸︷
< δ. (69)

Moreover, as in the case of the multiplicative structure of the inner constraint (35), here we use properties of the indicator
to stop the safety check over the trajectory τk if it was unsafe in some planning future time index. To specify, we define
trajectory epoch variable as el(τk),1{τk∈×k+L`=k

X safe
` }(τ

l
k)=

∏k+L
`=k 1{x`∈X safe

`
}(x

l
`). Similar to the situation with PC we

have that el(τk)≤∏k+j
`=k 1{x`∈X safe

`
}(x

l
`) for j≤L. In this approach, we again have two belief trees, similar to the situation

with policies. However, now for CC, we have an MDP tree, whereas for the rewards we have a belief tree. For the
rewards from each trajectory τk, we create the lace of the observations zk+1:k+L and corresponding beliefs bk+1:k+L for
the calculation of belief-dependent rewards. A similar trick is used in [31] but in a different context. Note that this
approach can be used in the setting of an uncertain map (or robot workspace) when the obstacles are represented as
landmarks with some volume. To conclude we visualized two approaches PC and CC in the OL setting in Fig 8. We
proceed to the summary.
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Fig. 8: Visualization of PC versus CC in OL setting with horizon L=3. In PC we constrain the beliefs. Whereas, in CC we constraint
trajectories that render the observations. Purely for clarity, the beliefs here are represented by particles.

(a) (b)

Fig. 9: (a) Visualization of the belief tree obtained by Importance Sampling (Section 6.1). For an actual belief at planning time instant k
we set bk = b̄k. Observation is sampled as such z′ ∼ P(z′|b, a). (b) No Importance Sampling. The same distribution of the observations and

belief update is used for belief dependent rewards and CC. Also here we set bk = b̄k. Observation is sampled as such z′∼P(z′|b̄, {x∈X safe}, a).

5.10 Summary

To summarize, the CC (61) has several key differences versus ours (17), (19).

1. Instead of looking into safe state trajectories in CC, we are dealing with safe posterior beliefs trajectories in PC.
Our approach uses the same distribution of the observations and the definition of the beliefs each step ahead as
for the reward. At the same time, the CC builds upon the distribution of observations conditioned also on the safe
events and different belief definition from the belief used for the rewards. These two distributions and the belief
definitions are identical only if the robot workspace is completely safe, e.g., with no obstacles at all, or the belief
has finite support lying in the safe space or ∆(h)≡0 and δ(h)=1−∆(h)=1 for any history h simulated in planning.
This way feasible belief shall be already safe.

2. In CL setting, our PC with ε=0 and the multiplicative form of inner constraint allows efficient exact pruning while
CC does not.

3. In addition, in a nonparametric setting not always the belief can be made safe. This problem is a direct result of
a particle representation. Hence, in such scenarios, one shall use our PC.

6 Approach to Chance-constrained Continuous ρ-POMDP

The investigation of CC merged with a general belief-dependent reward in continuous domains has led us to need an
algorithmic extension. As mentioned, there are two prominent online approaches for solving a continuous POMDP with
belief-dependent rewards in a nonparametric domain: SS [18], and PFT-DPW [34]. In continuous domains and belief-
dependent rewards, it is unclear how to apply a heuristics guided forward search described by [30]. Instead of using the
heuristics, we utilize the Bellman principle to resolve that issue. We aim to solve the sample approximation of (61).

In [30], the discrepancy in observation distribution P(z`+1|b`, a`) for rewards and P(z`+1|b̄`, {x`∈X safe
` }, a`) for CC

addressed by considering a discrete and finite observation space and exhaustively expanding all the observations and
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calculating appropriate likelihoods. Such an approach is not possible in a continuous setting. Additionally, [30] in
P(z`+1|b̄`, {x`∈X safe

` }, a`) instead of using b̄` sequentially updated from safe belief (48) use b defined in accord to (5). To
tackle all these issues, we resort to Importance Sampling (IS) such that only a single set of observations is maintained.
Let us emphasize that such a problem has not been addressed so far. Moreover, the disparity of the belief definitions
was not addressed at all. Note that this issue does not exist in our probabilistic approach (Alg. 1). Next, we contribute
an Importance Sampling based approach for chance-constrained continuous POMDP.

6.1 IS Approach for Chance-constrained Continuous POMDP

As we have seen in Lemma 3 and equation (3) the distributions of the observations of the CC and the action value
function are different (61), as well as the belief update.

Let us observe a single step ahead in arbitrary future time index `∈[k+1:k+L−1]. For `=k we just draw the
observations because bk≡b̄safe

k . Since we draw observations sequentially, the extension to an arbitrary horizon is straight-
forward. In case of the objective function, the desired PDF is P(z`+1|b`, a`), whereas for the CC we are dealing with
P(z`+1|b̄`, {x`∈X safe

` }, a`). Only in the time index k we have that bk is shared in the conditioning event of both distribu-
tion densities of observations (Fig. 7b). In general b̄`(x`) is defined by (48) and b`(x`) in accordance to (5). Note that
equivalent way to write these distribution densities is P(z`+1|bk, π, zk+1:k+`,

⋂`
i=k+1{xi∈X safe

i }) and P(z`+1|bk, π, zk+1:`).
With a growing horizon, these PDFs can significantly depart from each other. As a result of this discrepancy, there are
two different distributions of future observations (since conditioned on different events). With CC, we should have, thus,
sampled from each and effectively constructed two belief trees rooted at bk. Putting aside that it would be an enormous
computational burden, the question of how to apply a consistent policy in both trees requires clarification. We reiterate
that our PC formulation (see Section 3) does not exhibit this discrepancy.

To avoid construction of two belief trees, we suggest to construct a single belief tree where observations are sampled
from P(z`+1|bk, π, zk+1:`) and properly re-weighted via IS for the evaluation of the CC. Specifically, suppose we sampled
md samples {zj`+1}

md
j=1 ∼ P(z`+1|bk, π, zk+1:`). From now on, we can think about

P̂(md)(z`+1|bk, π, zk+1:`) = 1
md

∑md
j=1 δ(z`+1 − zj`+1), (70)

as the PDF of the discrete probability (Fig. 9a). Importantly, in this case P(z`+1|bk, π, zk+1:`,
⋂`
i=k{xi∈X safe

i }) is abso-
lutely continuous with respect to P(z`+1|bk, π, zk+1:`). Let us prove that.

Lemma 5 (Absolute Continuity). P(z`+1|bk, π, zk+1:`,
⋂`
i=k{xi ∈ X safe

i })� P(z`+1|bk, π, zk+1:`).

We provide the proof in Appendix A.6. Since the absolute continuity holds, we can safely use IS. Leveraging IS, we
obtain the desired PDF utilizing the same samples through the following manipulation

P̂(md)

(
z`+1|bk, π, zk+1:`,

⋂`
i=k{xi ∈ X safe

i }
)

= 1∑md
j=1 w

z,j
`+1

∑md
j=1 w

z,j
`+1δ(z`+1 − zj`+1), (71)

where the j-th weight is given by

wz,j`+1 = 1
md

P(z`+1=z
j
`+1
|bk,π,zk+1:`,

⋂`
i=k{xi∈X safe

i })
P(z`+1=z

j
`+1
|bk,π,zk+1:`)

. (72)

In Appendix C we specify expressions for the nominator and denominator.
Let us clarify again that with the proposed IS-based approach, the sampled observations are used for both the

objective and the CC (Fig. 9a). However, for the CC we re-weight the samples using Importance weight to obtain the
correct expected value according to (50). To sample sequentially the observations we use the beliefs from the rewards
tree (See Fig. 9a) defined by (5). We now present a sample approximation of ER (54), (57). Suppose we approximate
the expectation from Lemma 4 by samples from P(z`+1|bk, π, zk+1:`). We obtain, using (71)

er`(b̄`, a`, π) = rb(b̄`) + (1− rb(b̄`))
∫
z`+1

1∑md
j=1 w

z,j
`+1

∑md
j=1 w

z,j
`+1δ(z`+1 − zj`+1)er`+1(b̄`+1, π)dz`+1 = (73)

rb(b̄`) + (1− rb(b̄`)) 1∑m
j=1 w

z,j
`+1

∑m
j=1 w

z,j
`+1er`+1(b̄`+1(h`a`z

j
`+1), π) (74)

Remark: We also can utilize this approach to approximate (52) in the OL setting. We however suggest something else
in Section 7.

6.2 Necessary Condition proposed by [30] for Feasibility of Chance Constraint

In this section we extend the necessary condition for feasibility of CC proposed by [30] to continuous spaces through
IS. This is one of the building blocks of our approach to solve continuous belief-dependent chance-constrained POMDP,
see Alg. 3 and Alg. 8. We endow our IS approach with a pruning mechanism. Recall that the belief b(h) is indexed by
history h in the belief tree.
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The paper [30] utilizes the necessary condition for the feasibility of an action. For completeness let us present
the following Lemma, which is merely rewriting with our notations the pruning condition from [30], extended to the
continuous spaces with IS and considering difference in the belief definitions (5) with (48) and (49).

Lemma 6 (Necessary Condition for Feasibility of CC). Fix 0≤∆(h`)≤1 and a`∈A. Suppose that

er`(b̄`(h`), a`, π(`+1)+) ≤ ∆(h`) necessary condition. (75)

The following holds for every child ∀i ∈ 1 : md of h`a` for any ` = k : k + L− 1

er`+1(b̄`+1(h`a`z
i
`+1), π) ≤ 1

w
z,i
`+1

(∆(h`)−rb(b̄`(h`))
1−rb(b̄`(h`))

−∑m
j=1
j 6=i

wz,j`+1er`+1(b̄`+1(h`a`z
j
`+1), π)

)
, (76)

We provide the proof in Appendix E. Using the fact that 0≤rb(b̄`+1)≤er`+1(b̄`+1, π) we have the necessary pruning
condition.

rb(b̄
i
`+1) ≤ 1

w
z,i
`+1

(∆(h`)−rb(b̄`(h`))
(1−rb(b̄`(h`)))

−∑m
j=1
j 6=i

wz,j`+1rb(b̄
j
`+1)

)
, (77)

and three intuitive options to set ∆(h`a`z
i
`+1)). They are specified as

1.

∆(h`a`z
i
`+1)) = 1

w
z,i
`+1

(∆(h`)−rb(b̄`(h`))
1−rb(b̄`(h`))

−∑m
j=1
j 6=i

wz,j`+1rb(b̄`+1(h`a`z
j
`+1))

)
; (78)

2.

∆(h`a`z
i
`+1)) = 1

w
z,i
`+1

(∆(h`)−rb(b̄`(h`))
1−rb(b̄`(h`))

)
; (79)

3.

∆(h`a`z
i
`+1)) = ∆(h`); (80)

4.

∆(h`) ≡ 1 ∀` > k. (81)

We classify the condition expressed by Eq. (78) as a necessary condition for (75) to hold. The Eq. (79) we regard as a
fast necessary condition for (75) to hold. This way we hope that on the way up the tree will be feasible actions, but
this is not ensured. Another possibility is to set ∆′(haz′)=∆(h) as in (80). We consider the condition (80) as sufficient
since we know from (57) that if every z′ (for fixed ha) it holds that er′(haz′)=∆(h) and rb(b(h))=0, the a is feasible.
The condition (81) enforces CC only at the root with ∆(hk) being specified outside. Eq.(77) is used in our Alg. 3 and
further in Alg. 8, specifically in line 19 and 18 respectively. Moreover, we can conclude that with (80) the problem (61)
is conservative with respect to (53). This is because in this setting it holds ∆(h`)≤∆(hk) (See Section 5.8). With (78)
or (79) the situation shall be simulated. In this setting, we cannot conclude conservativnes of (61) with respect to (53).
The (80) is equivalent to (16)

We conclude this section by observing that it is possible that er`(b̄`(h`), π)>∆(h`) but (77) still holds (merely
necessary condition). This is in striking contrast to our PC pruning, as we proved in Theorem 1.

6.3 The Algorithms for CC

In this section, we describe in detail the algorithms for the solution of chance-constrained continuous ρ-POMDP in the
setting of policies (Closed Loop) and static candidate action sequences (Open Loop). Note, in the setting of policies,
since we are using only necessary condition for pruning described in section 6.2 and Alg 5 on the way down the tree (line
19 in Alg. 3 and line 18 Alg. 8), we still need to verify the constraint on the way up (line 28 in Alg. 3 and line 26 Alg. 8).
In both algorithms for CL, we also enforce the condition to be safe on terminal beliefs and utilize early termination using
the relation described by (60). Additionally, both algorithms can be used with CC enforced solely from the root of the
belief tree bk by using (81).

6.3.1 Chance Constrained Sparse Sampling (CL)

Our solver for the chance-constrained continuous belief-dependent POMDP (Section 6.1) is formulated as Alg. 3. This
algorithm is designed to solve the sample approximation of the objective portrayed by (61). In this algorithm we utilize
the IS as described 6.1. In line 11 we sample observation from the belief defined by (5). In line 15 we prune action a
using the condition (60). We calculate the IS approximated ER (74) at the line 27 and verify the CC at the line 28
because pruning using (77) here is only necessary condition and not sufficient. This algorithm works in accord with
the scheme illustrated by Fig. 9a. Reward is calculated over the beliefs defined by (5). Further we show more efficient
variant of chance-constrained approach (Alg. 8).
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Algorithm 3 Chance-constrained BMDP Sparse Importance Sampling (CCSS-IS)

1: procedure CCSS-IS(belief: b(h), belief: b̄ depth: d, threshold: ∆(h)) . b as in (5) whereas b̄ as in (48)
2: if d = 0 then
3: return (Null, 0, P({x /∈ X safe}|b̄)) . P({x ∈ X safe}|b̄) = 1− rb(b̄),P({x /∈ X safe}|b̄) = rb(b̄)
4: end if
5: (a∗, v∗, erk+L(b̄, π∗)) ← (Null, −∞, 1) . er`(b̄, π

∗) ≤ 1
6: b̄safe ← Make b̄ safe . obtain safe belief as in equation (49) using (51) from belief defined by (48)
7: for a ∈ A do
8: v ← 0.0 . Initialization of Value function
9: Calculate propagated belief b′− from b and b̄′− from b̄safe applying action a . Need to propagate

both beliefs for weights calculation in line 12.
10: for j ∈ 1 : md do
11: Sample xo,j ∼ b′− followed by z′,j ∼ P(z|xo,j) Observations are created using belief defined by

(5) and action a.
12: Calculate wz,′,j See Appendix C.
13: b̄′,j ← ψ(b̄safe, a, z′,j) . Calculate posterior as in (48)
14: ∆(haz′,j)← ∆prime(∆(h), rb(b̄), w

z,′,j) , δ(haz′,j)← 1−∆(haz′,j) . Call Alg. 4
15: if P({x′ ∈ X safe,′}|b̄′,j) < δ(haz′,j) then . Equivalent to P({x′ /∈ X safe,′}|b̄′,j) > ∆(haz′,j)
16: next action . Prune action a using (60). We still do not know if er(b̄′,j |π) ≤ ∆(haz′,j). The

condition (60) is only necessary but for any policy π.
17: end if
18: end for
19: if PRUNEACTIONCHANCE({b̄′,j}mdj=1, {wz,′,j}mdj=1, b̄, ∆(h)) then

20: next action . See Alg. 5. We still do not know if er(b̄|a, π∗) ≤ ∆(h). The condition (77) is only
necessary

21: end if
22: for j ∈ 1 : md do . At this point we have all the observations for not pruned action a, namely
{z′,1, . . . , z′,md}.

23: b′,j ← ψ(b, a, z′,j) . The belief defined by (5) is updated only for not pruned actions.
24: a′,∗, v′, erk+L−d+1(b̄′,j , π∗)← CCSS-IS(b′,j , b̄′,j , d− 1, ∆(haz′,j)) . π∗ is applied from time of

b̄′, a′,∗ is ignored
25: v+ = (ρ(b, a, b′,j) + γ · v′)/md . Reward is calculated over the beliefs defined by (5)
26: end for
27: erk+L−d(b̄, a, π∗)←P({x /∈ Xsafe}|b̄)+P({x ∈ X safe}|b̄) · 1∑md

j=1 w
z,′,j

∑md
j=1 w

z,′,jerk+L−d+1(b̄′,j , π∗) .

Approximation of (57) using (74).
28: if erk+L−d(b̄, a, π∗) ≤ ∆(h) and v > v∗ then . CC check
29: (a∗, v∗, erk+L−d(b̄, π∗))← (a, v, erk+L−d(b̄, a, π∗))
30: end if
31: end for
32: return (a∗, v∗, erk+L−d(b̄, π∗))
33: end procedure

Algorithm 4 Update ∆ to assure Feasibility of Chance Constraint at the root

1: procedure ∆prime(∆(h), rb(b̄) , wz,′)
2: return the result of (79) or (80)
3: end procedure

6.3.2 Chance-constrained Open Loop Continuous ρ-POMDP

We now describe, in detail, Alg. 6 outlining the adaptive approach from Section 5.9 to chance-constrained ρ-POMDP.
Here the CC is enforced only from the root of the belief tree. The Alg. 6 has two phases. In the first phase, it samples
a minimal number of trajectories for each candidate action sequence required to adaptively evaluate m samples based
approximation of the CC (67), as described in Section 5.9. In the second phase for each survived candidate action sequence
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Algorithm 5 Necessary condition for Feasibility of Chance Constraint

1: procedure PRUNEACTIONCHANCE({b̄′,j}mdj=1, {wz,′,j}mdj=1, b̄, ∆)

2: for each b̄′,i do
3: if (77) is not met then
4: return true . prune
5: end if
6: end for
7: return false
8: end procedure

ak+ we use existing n(ak+) trajectories and sample m−n(ak+) missing trajectories. We then create observations and
calculate beliefs, corresponding rewards and the objective (66).

7 Taking Safety Events to the Objective

In this section, we suggest a modification of the objective. To eliminate the discrepancy in objective and the CC (50)
and PC with safe trajectories (52) we take safe events {x∈X safe} of future states to the objective.

7.1 Objective Modification

The IS approach introduced in Section 6.1 converges to the theoretical solution when md→∞. In the planning phase,
the IS needed to resolve the discrepancy due to the separation of the CC satisfaction (falling trajectories are not pushed
forward in time) and the future return maximization (regular belief/observations PDF in the belief tree). However, the
mechanics of IS introduces a computational burden. Let us ask another question to ameliorate the situation from the
computational point of view. Can we relinquish the requirement of IS?

Specifically, say, we are using P(z`+1|bk, π, zk+1:`,
⋂`
i=k{xi∈X safe

i }) `=k:k+L−1 and corresponding beliefs b̄`+1 for
the calculation of the belief-dependent reward. In other words, we change the conventional objective as such. Instead of
using (4), we use the distribution of the observations and the belief update from the CC such that the objective takes
the form of

UL(bk, π),
∫

zk+1:k+L

P(zk+1|bk, ak)
∏k+L−1
j=k+1 P

(
zj+1|bk, π, zk+1:j ,

⋂j
i=k{xi ∈ X safe

i }
)∑k+L−1

`=k ρ(b̄`, π`, b̄`+1)dzk+1:k+L= (82)

∑k+L−1
`=k

∫
zk+1:`+1

(
P(zk+1|bk, ak)

∏`
j=k+1 P

(
zj+1|bk, π, zk+1:j ,

⋂j
i=k{xi ∈ X safe

i }
))
ρ(b̄`, π`, b̄`+1)dzk+1:`+1. (83)

The above modification can be interpreted as follows. Although we calculate the belief-dependent rewards on the entire
belief, following the belief-dependent reward calculation only the safe state particles of the posterior belief are pushed
forward in time with action and observation. This behavior is identical to that we obtained in the CC (50) and PC with
safe trajectories portrayed by (52). We face matched distribution and definition of future beliefs in (50), (52) and in the
objective (82). Note that we can not write that in (83) we have the sum of the expectations because in general

P(zk+1:`|bk, π,
⋂̀

i=k

{xi∈X safe
i })=

∏̀

j=k+1

P
(
zj+1|bk, π, zk+1:j ,

⋂̀

i=k

{xi∈X safe
i }

)
6=
∏̀

j=k+1

P
(
zj+1|bk, π, zk+1:j ,

j⋂

i=k

{xi∈X safe
i }

)
.

We marked the difference by the red color. The benefit of such a modification is significantly faster decision-making.
Further, we empirically demonstrate the substantial acceleration with good performance quality.

What will be the impact of this modification on decision-making? This question has not been addressed to the best
of our knowledge. We leave for future work the analysis of the above tempering with the objective. Our vision is that on
the small extent of the quality of the optimal solution, utilization of the objective (82) for the reward will accelerate the
performance by avoiding the need for IS in CC and the need to maintain a pair of beliefs in CC (50) and PC with safe
trajectories (52). Let us reiterate that if δ(h)≡1 for any history h simulated in the planning session such a modification
is lossless for feasible policies. This is because in this case b≡b̄≡b̄safe.

7.2 Algorithms for Modified Objective

We now present algorithms utilizing such a modified objective. Our belief dependent operator φ is as in (18) but applied
on b̄` defined by (48) instead of b` defined by (5), namely φ(b̄`)=P({x`∈X safe

` }|b̄`).
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Algorithm 6 Chance-constrained open-loop ρ-POMDP

1: Input: A, bk, hk . Set of the candidate action sequences
2: a∗k+ ← undef, V̂ ∗(m) ← −∞, S ← {}
3: for each ak+ ∈ Ak do
4: for n(ak+) ∈ 1 : m do

5: Draw x
n(ak+)
k ∼ bk(xk) . The beginning of the trajectory in accord to (47)

6: en(ak+) ← 1{xk∈X safe
k }(x

n(ak+)
k )

7: for ` ∈ k + 1 : k + L do
8: Draw x

n(ak+)
` ∼ PT (x`|xn(ak+)

`−1 , a`−1)

9: en(ak+) ← en(ak+) · 1{x`∈X safe
` }(x

n
` )

10: if en(ak+) == 0 then
11: break
12: end if
13: end for
14: if δ ≤ 1

m

∑n(ak+)
l=1 el then

15: S ← S ∪ {ak+} . Accept the ak+

16: break . check the next action seq.

17: else if 1
m

∑n(ak+)
l=1 el<δ − m−n(ak+)

m then
18: break . check the next action seq.
19: end if
20: end for
21: end for
22: for each ak+ ∈ S do . S contains all feasible ak+

23: expand all m laces using already drawn {τ lk}
n(ak+)
i=1 and get V̂ (m)(bk, ak+) . Only here we sample

observation laces
24: if V̂ ∗(m) < V̂ (m)(bk, ak+) then

25: a∗k+ ← a, V̂ ∗(m) ← Û (m)(bk, ak+)
26: end if
27: end for
28: Return a∗k+

7.2.1 Probabilistically-constrained Sparse Sampling with Safe Trajectories (ε = 0)

In Alg. 7 we only constrain each posterior belief similar to Alg. 1. No additional checks are needed since we use our
Theorem 1 for sufficient condition for feasibility. However, as can be seen in lines 11 and 18 of Alg. 7, pictorially, we utilize
the scheme from Fig. 9b. In Alg. 7 in time instance `+1 we sample observation from P(z`+1|bk, π, zk+1:`,

⋂`
i=k{xi∈X safe

i })
for `=k:k+L−1 using belief defined by (49) in time ` and action a`.

7.2.2 Matched Chance-constrained Sparse Sampling

Our efficient variant from Section 7.1 is summarized in Alg. 8. In this algorithm, we do not use IS. Therefore we maintain
only the belief defined by (49) as in Fig. 9b. The reward is calculated over the beliefs defined by (48).

7.2.3 Arbitrary ε ∈ [0, 1) for PC Open Loop Safe Trajectories Approach

Approach from Section 5.4 enables us to employ Alg. 2 with observation laces sampled sequentially from

P(z`+1|bk, ak:`, zk+1:`,
⋂`
i=k{xi ∈ X safe

i }) = P(z`+1|b̄safe
` , a`) ` = k : k + L− 1

using beliefs as in (49) in time ` and action a` instead of observations sampled from

P(z`+1|bk, ak:`, zk+1:`) = P(z`+1|b`, a`) ` = k : k + L− 1

using beliefs as in (5) and Alg. 2. Using this approach we use the PC with safe trajectories (52) instead of requiring
that (29) larger or equal than 1−ε. Note that also in modified version of Alg. 2 we can use safety related general belief
dependent operators described in Section 3.3 (Similar to reformulated CC (50)). We leave this aspect for future research.
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Algorithm 7 Matched Probabilistic BMDP Sparse Sampling with Safe Trajectories (PCSSST)

1: procedure PCSSST(belief: b̄, history: h, depth: d, threshold δ(h))
2: if d = 0 then
3: return (Null, 0)
4: end if
5: (a∗, v∗) ← (Null, −∞)
6: b̄safe ← Make b̄ safe . as in equation (51)
7: for a ∈ A do
8: v ← 0.0, PrunedFlag ← false . Value function
9: Calculate propagated belief b̄′− from b̄safe applying action a

10: for md times do
11: Sample xo ∼ b̄′− followed by z′ ∼ P(z|xo) . Matched belief, only the safe trajectories are kept
12: b̄′ ← ψ(b̄safe, a, z′)
13: if P({x′ ∈ X safe,′}|b̄′) < δ(h) then . It is possible that other operators can be used here
14: PrunedFlag ← true
15: break . Exit from observations loop and go to line 21
16: end if
17: a′,∗, v′, ← PCSSST(b′,haz′, d− 1, δ(h))
18: v+ = (ρ(b̄, a, b̄′,j) + γ · v′)/md . Reward calculated over the matched with chance constr. beliefs
19: end for
20: if PrunedFlag is false and v > v∗ then
21: (a∗, v∗) ← (a, v)
22: end if
23: end for
24: return (a∗, v∗)
25: end procedure

8 Simulations and Results

In this section, we study our proposed algorithms. Since the paper [6] presents a parametric method for Gaussian beliefs,
it is relevant for us solely from the constraint formulation perspective. Due to the fact that our comparison will be with
CC, in the setting of policies we employ CC with the future thresholds as in (80) to make (61) overconservative with
respect to (53). Note that we perform a separate study of (80) versus (79) and report results in Table 4.

We demonstrate theoretical findings on two problems in continuous domains in terms of states and observations,
navigation to the static goal and target tracking. Both problems are under the umbrella of Belief Space Planning with
a given map. Our examination of the proposed approach has two parts.

The first part is the setting of policies. There we first verify that with CC enforced merely from the root of the belief
tree in Alg. 3 and Alg. 8 by selecting the ∆(h) in accord to (81), these algorithms return no feasible solution. We then
perform an ablation study of chance-constrained approaches Alg. 3, Alg. 8 with and without IS correspondingly versus
our PC approach Alg. 1 and upgraded variant with safe trajectories Alg. 7. Our simulation is in an MPC framework,
that is re-planning after each step. We simulate the number of trials. Each trial consists of a few alternating planning
and execution sessions. We compare the cumulative over trials and number of planning sessions, running times of the
planning sessions, and cumulative rewards along the simulated execution of the selected online policy, which is, in fact,
the algorithm itself. Most importantly, we measure the quality of various safety formulations by the number of collisions
that happened when the robot executed the selected optimal actions. Our action space is the space of motion primitives
of unit vectors A = {→,↗, ↑,↖,←,↙, ↓,↘,Null}. For simplicity, in the setting of policies in both problems, our
belief-dependent reward is

ρ(b, a, b′) = 1
mx

∑mx
i=1 r(x

′,i) x′,i ∼ b′, (84)

where mx is the number of the belief particles. However, as we further prove in Appendix D, we still can account for
uncertainty even with the reward being the first moment of a state-dependent reward.

The second part is the static action sequences. Here we shall compare the chance-constrained formulation, Alg. 6,
with Alg. 2 and the variant with safe trajectories as explained in Section 7.2.3. Interestingly, the reciprocal parameters
in the PC and CC would be as follows. In Alg. 2 we shall select δ=1 and 1−ε equal to δ in Alg. 6. This is because safe
trajectory in Alg. 6 reciprocal to probability to be safe given posterior belief in Alg. 2 and probability of trajectories
to be safe thresholded by δ reciprocal to the probability of a sequence of future beliefs to be safe thresholded by 1−ε.
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Algorithm 8 Matched Chance-constrained BMDP Sparse Sampling (FastCCSS)

1: procedure FastCCSS(belief: b̄ depth: d, threshold ∆(h)) . b̄ as in (48)
2: if d = 0 then
3: return (Null, 0, P({x /∈ X safe}|b̄)) . P({x ∈ X safe}|b̄) = 1− rb(b̄),P({x /∈ X safe}|b̄) = rb(b̄)
4: end if
5: (a∗, v∗, erk+L−d(b̄, π∗)) ← (Null, −∞, 1) . er`(b̄, π

∗) ≤ 1
6: b̄safe ← Make b̄ safe . obtain safe belief as in equation (49) using (51) from belief defined by (48)
7: for a ∈ A do
8: v ← 0.0 . Value function initialization
9: Calculate propagated belief b̄′− from b̄safe applying a

10: for j ∈ 1 : md do
11: Sample xo,j ∼ b̄′− followed by z′,j ∼ P(z|xo,j) Observations are created using belief defined by

(49) and action a.
12: b̄′,j ← ψ(b̄safe, a, z′,j)
13: ∆(haz′,j)← ∆prime(∆(h), rb(b̄) , 1/md) , δ(haz′,j)← 1−∆(haz′,j) . Call Alg. 4
14: if P({x′ ∈ X safe,′}|b̄′,j) < δ(haz′) then
15: next action . Prune action a using (60)
16: end if
17: end for
18: if PRUNEACTIONCHANCE({b̄′,j}mdj=1, { 1

md
}mdj=1, b̄, ∆(h)) then

19: next action . See Alg. 5
20: end if
21: for j ∈ 1 : md do
22: a′,∗, v′, erk+L−d+1(b̄′,j , π∗)← FastCCSS(b̄′,j , d− 1, ∆(haz′,j))
23: v+ = (ρ(b̄, a, b̄′,j) + γ · v′)/md . Reward is calculated over the beliefs defined by (49) and (48).
24: end for
25: erk+L−d(b̄, a, π∗)←P({x/∈X safe}|b̄)+P({x ∈ X safe}|b̄) · 1

md

∑md
j=1 erk+L−d+1(b̄′,j , π∗)

26: if erk+L−d(b̄, a, π∗) > ∆(h) and v > v∗ then . CC check
27: (a∗, v∗, erk+L−d(b̄, π∗))← (a, v, erk+L−d(b̄, a, π∗))
28: end if
29: end for
30: return (a∗, v∗, erk+L−d(b̄, π∗))
31: end procedure

We simulate this setting on the first problem under consideration, navigation to the static goal. The space of candidate
action sequences Ak is several diverse paths to the goal on top of the Probabilistic Road Map (PRM) [17], starting from
the vertex closest to the expected value of prior belief. In the setting of static action sequences, we consider a general
belief-dependent reward.

8.1 Studied Problems

In this section we describe the problems under consideration. In both problems we have a single obstacle.

8.1.1 Navigation to static Goal

Following the previous discussion we are ready to delve into the details of our first problem. We adopt the well known
problem of navigation to the goal with collision avoidance. The belief in this problem is maintained over the robot’s
position which is a 2-dimensional vector. In the setting of policies, our state dependent reward is r(x′)=−‖x′−xg‖22. By
xg we denote the location of the goal. Hence, our theoretical reward is ρ(b, a, b′)=Ex′∼b′ [r(x′)]. Note that such ρ(b, a, b′)
accounts for belief uncertainty as we show in Appendix D. In the setting of static action sequences since all paths lead
to the goal we select such a reward only for beliefs in the final time index k+L. For intermediate time instances we set
the reward to be ρ(b, a, b′)=− Trace(Σ(b′)), where Σ(·) is a covariance matrix of the corresponding belief. Our obstacle
has a circular shape with a center at xo and radius ro. We approximate the probability of not having the collision by

P
( {
x`∈X safe

`

} ∣∣�
)

= 1− 1
mx

∑mx
i=1 1{‖x`−xo‖2≤ro}(x

i
`), (85)
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(a) (b)

Fig. 10: Visualization of a single trial from 50 of navigation to the static goal problem at our first map. The hyperparameters are
m1 = 10,m2 = 10, L = 2,mx = 100. (a) Constraints are deactivated (δ = 0). The robot solves solely the objective (9), actual belief bk is
not made safe. We show 21 execution of optimal action found by Alg. 1. (b) Here we show one trial, namely 21 times robot executes the
best action found by Alg. 1 with δ = 0.7.

(a) (b) (c) (d)

Fig. 11: Visualization of the 50 trials actual (not planning )trajectories the robot solving navigation to the static goal problem at
our first map.The hyperparameters are m1 = 10,m2 = 10, L = 2,mx = 100, δ = 0.8: (a) Alg. 1. (b) Alg. 3. (c) Alg. 8 (d) Alg. 7.

where xi` ∼ � and � can be b` defined by (5) or b̄` as in (48).
For the static action sequences we represent the map as a binary grid where one represents an obstacle and zero a

free space. We verify the probability to be safe by checking the cell of each particle, summing the Boolean values of the
cells and dividing by the overall number of the cells.

Motion and observation models, and the initial belief are PT(·|x, a)=N (x+a,ΣT), PO(·|x; {xb,i}i=1)=N (x,ΣO),
b0=N (x0,Σ0) respectively. The robot obtains an observation from the closest beacon. The covariance matrices are
diagonal ΣT = I · σ2

w and for policies

ΣO(x; {xb,i}i=1)=

{
σ2
wImin

i
di, if min

i
di ≥rmin

σ2
vI, else

(86)

where di=‖x−xb,i‖2, xb,i is the 2D location of the beacon i. We set the parameters to be rmin=0.01, σ2
w=0.1 and

σ2
v=0.01, γ=0.99.

For the static action sequences we set σ2
w=0.01 and slightly change the covariance of the observation model and have

just two areas at the binary grid map. One area has low observation noise and another high. The low observation noise
is ΣO=0.0001I and the high observation noise is ΣO = 0.1I.

The initial belief admits a Gaussian distribution N (xk;µ,Σ). For policies we selected the covariance Σ = σI = 0.1 · I
and mean µ = (0.0, 0.0)T . The initial ground truth state of the robot was set to xgt

k = (−0.5,−0.2)T . For the static
action sequences, we selected µ = xgt

k = (5.0, 0.0)T and Σ = σI = 0.01 · I.

8.1.2 Target Tracking

Now we describe the second problem. We simulate this problem only in the setting of policies. In this problem we have
a moving target in addition to the agent. In this problem the belief is maintained over both positions, the agent and
the target. The state dependent reward in this problem is r(x′)=− ‖x′,agent−x′,target‖22. It accounts for the uncertainty
of both the target and the agent in a similar manner as in the previous problem. Moreover, now we have a squared
obstacle. We check collision now according to

P(
{
xagent
` ∈X safe

`

}
|�) = 1− 1

mx

∑mx
i=1 1{‖xagent`

−xo‖∞≤ro}(x
agent,i
` ), (87)
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Table 1: 50 Trials of 21 planning sessions and executions of optimal action of four Algorithms 1, 3, 8, 7.Same seed in four algorithms. This
problem is the navigation to static goal described in Section 8.1.1 in our first map L = 2. Here we study the number of collisions and
the reward value.

Parameters num collisions mean cum. rew. ± std mean cum. rew. no coll ± std
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8, PCSSST 7 PCSS 1 CCSS-IS 3 MatchedCCSS 8, PCSSST 7 PCSS 1 CCSS-IS 3 MatchedCCSS 8, PCSSST 7
100 10 10 0.9 3/50 3/50 5/50 2/50 −155.93± 18.92−160.05± 21.77 −158.20± 16.47 −158.49± 19.73 −155.87± 18.48 −160.26± 22.40 −158.18± 16.60 −158.16± 20.0
100 10 10 0.8 5/50 6/50 4/50 4/50 −155.00± 14.88−156.66± 17.01 −154.60± 17.60 −151.72± 15.12−154.26± 15.034−155.56± 17.13 −154.87± 16.91 −150.53± 14.20
100 10 10 0.7 6/50 11/50 13/50 11/50 −147.33± 16.03−151.83± 20.40 −145.11± 13.20 −150.87± 19.22 −147.48± 16.20 −153.74± 21.41 −143.85± 11.56 −152.70± 19.80
100 10 10 0.6 19/50 20/50 13/50 14/50 −149.84± 16.29−149.78± 18.02 −147.47± 18.29 −144.78± 14.30 −151.94± 14.80 −149.32± 17.04 −150.71± 19.22 −143.43± 15.37
100 10 10 0.0 50/50 50/50 50/50 50/50 −106.14± 8.65 −107.94± 9.86 −109.88± 10.68 −106.14± 8.65

Table 2: 50 Trials of 21 planning sessions and executions of optimal action of four Algorithms 1, 3, 8, 7. Same seed in four algorithms.
This problem is the navigation to static goal described in Section 8.1.1 in our first map L = 2. In this table we study speedup (91).

Parameters cum. plan. time [sec] speedup Alg. 1 rel to 3 speedup Alg. 8 rel to 3 speedup Alg. 7 rel to 3
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8 PCSSST 7
100 10 10 0.9 1162.41 2938.63 1095.23 1149.76 0.60 0.63 0.61
100 10 10 0.8 1167.33 2976.67 1117.29 1179.46 0.61 0.62 0.60
100 10 10 0.7 1191.02 2964.89 1157.73 1182.83 0.60 0.61 0.60
100 10 10 0.6 1186.62 3043.97 1162.80 1203.82 0.61 0.62 0.60
100 10 10 0.0 1527.71 4226.43 1523.82 1547.63 0.64 0.64 0.63

where xagent,i
` ∼ � and � can be b` defined by (5) or b̄` as in (48). Here, the ‖ξ‖∞= maxi |ξi|, where ξi is the coordinate

i of vector ξi. The motion model of the target is identical to the motion model of the agent and follows

PT(·|x, a) = N (xagent + aagent,ΣT ) · N (xtarget + atarget,ΣT ), (88)

where by x we denote the concatenated {xagent, xtarget}. For the target action we use a circular buffer with {←, ↑} action
sequence. We maintain a belief over the agent and the target. For simplicity, similar to [15], we assume that in inference
as well as in planning session we know the target action sequence. The observation model is also the multiplication of the
observation model from the previous section with the additional observation model due to a moving target. Therefore,
the overall observation model is

PO(·|x; {xb,i}i=1) = N (xagent,ΣO(xagent; {xb,i}i=1)) · N (xagent − xtarget,ΣO(xagent, xtarget)), (89)

where ΣO(xagent; {xb,i}i=1) conforms to (86) and

ΣO(xagent, xtarget) =

{
σ2
wI‖xagent − xtarget‖2, if ‖xagent − xtarget‖2 ≥rmin

σ2
vI, else

(90)

Importantly, the target does not collide with obstacles, it can fly above. In this problem we selected the parameters
to be rmin=0.01, σ2

w=0.1 and σ2
v=0.01, γ=0.99. The initial belief admits Gaussian distribution N (xk;µ,Σ) with co-

variance Σ=σI=0.01 · I and mean µ=( 0, 0︸︷︷︸
agent

, 10, 0︸︷︷︸
target

)T . Initial ground truth state of the robot and the target was set to

xgt
k =(−0.5,−0.2︸ ︷︷ ︸

agent

, 10, 0︸︷︷︸
target

)T .

8.2 Measures of Acceleration

For each pair of algorithms we calculate the speedup according to

tbaseline−talgorithm
tbaseline

. (91)

Eq. (91) measures saved time relative to the baseline running time. In a similar manner the relative fraction of number
of expanded and not pruned actions N is

Nbaseline−Nalgorithm

Nbaseline . (92)

Note also that it is possible that the algorithms declare that no feasible solution exists or the actual belief cannot be
made safe, if all samples fall inside the obstacle.

8.3 Policies

In this section, we study our both problems under consideration in the context of policies. In both problems, each studied
configuration of parameters, and in each trial, we also ran the Alg. 3 and Alg. 8 enforcing CC solely from the root by
using (81). Each such run returned that no feasible solution exists. In addition, in both problems when δ=0, the agent
crashed in all 50 trials.
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Table 3: 50 Trials of 21 planning sessions and executions of optimal action of four Algorithms 1, 3, 8, 7. Same seed in four algorithms.
This problem is the navigation to static goal described in Section 8.1.1 in our first map L = 2. In this table we study the saved
actions fraction (92).

Parameters Total expanded actions actions frac. Alg. 3 rel to 1 actions frac. Alg. 8 rel to 7
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8 PCSSST 7
100 10 10 0.9 609913 596070 580005 606365 0.023 0.043
100 10 10 0.8 616117 597623 594274 622640 0.03 0.046
100 10 10 0.7 632289 602769 618113 625493 0.05 0.011
100 10 10 0.6 631216 617473 622583 639718 0.022 0.026

Table 4: 50 Trials of 21 planning sessions and executions of optimal action of Algorithm 3. This problem is the navigation to static
goal described in Section 8.1.1 in our first map L = 2. Here we study the number of collisions and the reward value as function of future
thresholds in CC.

Parameters num collisions mean cum. rew. ± std mean cum. rew. no coll ± std Cum. plan time [sec] Cum. expanded actions
mx m1 m2 ∆(hk) ∆(h`)

100 10 10 0.1
(79) 4/50 −159.02± 16.02 -157.91± 15.97 4447.47 583606
(80) 3/50 −160.05± 21.77 -160.26± 22.40 4506.64 596070

100 10 10 0.2
(79) 7/50 −151.43± 20.26 −152.33± 21.55 4568.71 606670
(80) 6/50 −156.66± 17.01 −155.56± 17.13 4495.29 597623

8.3.1 Navigation to static Goal

We present results for the first problem (see Section 8.1.1) in Tables 1, 2 and 3. We visualize a single trial of 21
alternating planning and execution sessions in Fig. 10. In Fig. 11 we show actual robot trajectories from 50 trials. As
we see from Table 1 barring some noise due to sample approximations the number of collisions consistently increases
with decreasing δ. Moreover, as explained in Section 5.6, the CC in Alg. 3 pictured by (61) is supposed to be more
conservative than the PC in Alg. 1. Indeed, we see in Table 1, the trend is that the cumulative reward of Alg. 3 is slightly
smaller than the one of Alg. 1. Due to the fact that this relation is not preserved in Alg. 8 versus Alg. 7 we conclude
that roughly the reason is that in CC only the safe trajectories are pushed forward in time with action and observation,
resulting in beliefs as in (48), (49) and not as in (5). From Table 2 we elicit that avoiding IS in Alg. 3 yields speed up
of approximately 60%. In addition we behold in Table 3 that when we use pruning suggested by [30] and explained in
Section 6.2 it prunes more actions than our pruning described in Section 4.1.3. In Table 4 we report results of running
Alg. 3 with two heuristics for future ∆.

We proceed now to the same experiments with our second problem.

8.3.2 Target Tracking

In this section, we study the Target Tracking problem defined in Section 8.1.2. Similarly to the previous section, we
show an example of the problem in Fig. 12. In Fig. 13 we show actual and not planning 50 robot trajectories. These 50
trajectories the robot has obtained by performing 50 trials of alternating 21 planning and execution sessions. We present
the number of collisions and cumulative rewards of 50 trajectories of the robot in Table 5. Interestingly, here, we mark
that the expected cumulative reward without collisions is not always smaller than the mean cumulative reward, including
collided trajectories. We explain that by the fact that in this problem, the reward also depends on the target particles,
so the behavior is more affected by sample noise. From Table 6 we again heed a stable speedup of approximately 60%
relative to Alg. 3. Surprisingly, we see in Table 7 that not always Alg. 3 expands fewer actions than Alg. 1. This can be
due to sample noise, since even with the same seed in both algorithms, the belief in line 22 in what Alg. 3 is updated after
all the observations were sampled, as opposed to Alg. 1. This is also corroborated by the fact that, as in the previous
problem, Alg. 8 constantly expands less actions than Alg. 7.

8.4 Static Action Sequences

From the previous section we gain that the number of collisions as a function of δ is roughly the same for all algorithms.
This can be because, in the setting of policies, we do replanning after each session, also known as Model Predictive
Control (MPC). In static action sequences setting, we do not do replanning. The robot just follows the identified optimal
candidate action sequence. In this setting, to obtain Ak, we simulate the problem of distance to goal on top of diverse
paths found by the Probabilistic Road Map (PRM). See Fig. 14. With such an approach, we can increase the horizon
significantly compared to the policies in the previous section. We obtained a horizon of 10 or 11, depending on the path.
We show 50 Robot trajectories in Fig. 15. The green area in Fig. 15 is the low measurement noise area as explained in
Section 8.1.1. The gray square is the obstacle. In a modified version of Alg. 2, we make belief safe if possible; if not, we
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(a) (b) (c)

Fig. 12: Visualization of a single trial from 50 of target tracking problem at our second map. The hyperparameters are m1 = 10,m2 =
10, L = 2,mx = 100 (a) Constraints are deactivated. The robot solves solely the objective (9), actual belief bk is not made safe. Here we
show only the particles of the agent. The agent executed 21 alternating planning and execution sessions; (b) Here we show 21 executions
of the best action found by Alg. 1, agent particles. (c) 21 executions of the best action found by Alg. 1, target particles.

(a) (b) (c) (d)

Fig. 13: Visualization of the 50 trials actual (not planning) trajectories the robot solving target tracking problem at our second
map.The hyperparameters are m1 = 10,m2 = 10, L = 2,mx = 100, δ = 0.8: (a) Alg. 1. (b) Alg. 3. (c) Alg. 8 (d) Alg. 7.

leave the belief as is. We set in Alg. 6 δ=0.6 and compared with two variants of Alg. 2 with δ=1 and ε=0.4. Table 8
shows a similar number of collisions by three planning algorithms. However, Alg. 6 appears to be faster.

9 Conclusions

We proposed a novel formulation of belief-dependent Probabilistically Constrained continuous POMDP. Our formulation
allows us, adaptively with respect to observation laces, to accept or reject the candidate policy/action sequence satisfying
or violating the Probabilistic Constraint. We also uplifted chance-constrained POMDP to continuous domains in terms
of states and observations and general belief-dependent rewards. Our simulations corroborate the superiority of our
efficient algorithms in terms of celerity. In all simulations with policies we obtained a typical speedup of 60% of PC
versus CC. In the settings of static action sequences our uplifted CC approach appears to be faster than PC. We intend
to continue investigating the proposed formulation towards larger horizons using anytime online approaches.

Appendix A Proofs

A.1 Proof of Lemma 1 (Representation of Our Outer Constraint).

To verify the inner constraint c(bk:k+L;φ, δ) we need to know lace of the beliefs, operator φ and δ. To rephrase that

P (c(bk:k+L;φ, δ) = 1|bk, π, ak, bk+1:k+L) = c(bk:k+L;φ, δ). (93)

In addition let us state the fact that P(bk+1:k+L|bk, π, ak, zk+1:k+L) is Dirac’s delta function. All in all, we can write

P (c(bk:k+L;φ, δ) = 1|bk, π, ak) =
∫
bk+1:k+L

P (c(bk:k+L;φ, δ) = 1|bk, π, ak, bk+1:k+L) ·
(∫

zk+1:k+L

P(bk+1:k+L, zk+1:k+L|bk, π, ak)dzk+1:k+L

)
dbk+1:k+L =

∫
bk+1:k+L
zk+1:k+L

P (c(bk:k+L;φ, δ) = 1|bk, π, ak, bk+1:k+L) ·

P(bk+1:k+L|bk, π, ak, zk+1:k+L)dbk+1:k+LP(zk+1:k+L|bk, π, ak)dzk+1:k+L = Ezk+1:k+L [c(bk:k+L;φ, δ)|bk, π, ak]. (94)
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Table 5: 50 Trials of 21 planning sessions and executions of optimal action of four Algorithms 1, 3, 8, 7.Same seed in four algorithms.
This problem is the target tracking described in Section 8.1.2 in our second map L=2. Here we study the number of collisions and the
reward value.

Parameters num collisions mean cum. rew. ± std mean cum. rew. no coll ± std
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8, PCSSST 7 PCSS 1 CCSS-IS 3 MatchedCCSS 8, PCSSST 7 PCSS 1 CCSS-IS 3 MatchedCCSS 8 PCSSST 7
100 10 10 0.9 7/50 8/50 11/50 10/50 −112.10± 19.80−105.76± 21.89 −103.68± 19.32 −103.49± 20.31−111.44± 19.77−107.07± 21.75 −108.29± 18.59 −101.11± 18.12
100 10 10 0.8 17/50 12/50 11/50 20/50 −108.07± 19.91−101.74± 18.74 −101.87± 16.95 −99.83± 18.55 −109.47± 20.66−102.74± 19.71 −104.26± 17.08 −105.63± 15.25
100 10 10 0.7 22/50 23/50 24/50 24/50 −106.61± 22.52 −98.69± 19.86 −97.63± 20.43 −102.93± 18.25−107.16± 26.05−100.33± 21.27 −103.92± 19.31 −102.72± 18.40
100 10 10 0.0 50/50 50/50 50/50 50/50 −54.15± 7.81 −53.39± 7.81 −109.88± 10.68 −52.88± 7.15

Table 6: 50 Trials of 21 planning sessions and executions of optimal action of four Algorithms 1, 3, 8, 7. Same seed in four algorithms.
This problem is the target tracking described in Section 8.1.2 in our second map L = 2. In this table we study speedup (91).

Parameters cum. plan. time [sec] speedup Alg. 1 rel to 3 speedup Alg. 8 rel to 3 speedup Alg. 7 rel to 3
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8 PCSSST 7
100 10 10 0.9 1635.96 4244.44 1630.13 1689.77 0.61 0.62 0.60
100 10 10 0.8 1662.99 4476.03 1668.59 1741.12 0.63 0.63 0.61
100 10 10 0.7 1691.39 4472.66 1666.97 1731.69 0.62 0.63 0.61
100 10 10 0.0 2530.47 7221.41 2443.94 2516.20 0.65 0.66 0.65

If in addition in case of (12), we have that

Ezk+1:k+L [c(bk:k+L;φ, δ)|bk, π, ak] =
∫
zk+1:k+L

P(zk+1:k+L|bk, π(k+1)+, ak)
(∏k+L

`=k 1{φ(b`)≥δ}(b`)
)
dzk+1:k+L = (95)

∫
zk+1:k+L

P(zk+1:k+L−1|bk, π(k+1)+, ak)P(zk+L|bk, π(k+1)+, ak, zk+1:k+L−1)
(∏k+L

`=k 1{φ(b`)≥δ}(b`)
)
dzk+1:k+L = (96)

1{φ(bk)≥δ}(bk)Ezk+1

[
1{φ(bk+1)≥δ}(bk+1)Ezk+2

[
1{φ(bk+2)≥δ}(bk+2) . . . (97)

. . .Ezk+L−1

[
1{φ(bk+L−1)≥δ}(bk+L−1)Ezk+L

[
1{φ(bk+L)≥δ}

∣∣bk+L−1, π
]∣∣bk+L−2, π

]
. . .
∣∣bk+1, π

]∣∣bk, π
]
.

�

A.2 Proof of Theorem 1 (Necessary and sufficient condition for feasibility of PC)

Before we start let us state that by definition, using c(blk:k+L;φ, δ) =
∏k+L
`=k 1{φ(b`)≥δ}(b

l
`) holds

1 ≥ 1
m

∑m
l=1 c(b

l
k:k+L;φ, δ) = 1

m

∑m
l=1

(∏k+L
`=k 1{φ(b`)≥δ}(b

l
`)
)

(98)

Suppose that 1 ≥ 1
m

∑m
l=1 c(b

l
k:k+L;φ, δ) ≥ 1, so

∑m
l=1

(∏k+L
`=k 1{φ(b`)≥δ}(b

i
`)
)

= m (99)

Suppose in contradiction that ∃l, ` such that 1{φ(b`)≥δ}(b
l
`) = 0. We have that

∑m
i=1

(∏k+L
`=k 1{φ(b`)≥δ}(b

l
`)
)
< m (100)

This proves the first statement. For the second statement we prove the reciprocal implication. Assume that ∀l, ` holds
1{φ(b`)≥δ}(b

l
`) = 1, we arrived at the fulfilling equation (99). �

A.3 Proof of Lemma 2 (PDF of the trajectory)

P(xk:k+L|bk, πk:k+L−1) =
∫

zk+1:k+L−1

P(xk:k+L, zk+1:k+L−1|bk, π)dzk+1:k+L−1 = (101)

∫
zk+1:k+L−1

P(xk+L|zk:k+L−1, xk:k+L−1, bk, π)P(zk:k+L−1, xk:k+L−1|bk, π)dzk+1:k+L−1 = (102)

∫
zk+1:k+L−1

PT(xk+L|xk+L−1, ak+L−1)P(zk+L−1|xk:k+L−1, zk+1:k+L−2, bk, π)P(xk:k+L−1, z`+1:k+L−2|bk, π)dzk+1:k+L−1 = (103)

∫
zk+1:k+L−1

PT(xk+L|xk+L−1, ak+L−1)PO(zk+L−1|xk+L−1)P(xk:k+L−1, zk+1:k+L−2|bk, π)dzk+1:k+L−1. (104)

We behold the recurrence relation. Overall we have that

P(τk|bk, πk:k+L−1) = PT(xk+1|xk, ak)bk(xk)
∫

zk+1:k+L−1

∏k+L−1
k=`+1

(
PT (x`+1|x`, π(b`(b`−1, a`−1, z`)))PO(z`|x`)

)
dzk+1:k+L−1. (105)
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Table 7: 50 Trials of 21 planning sessions and executions of optimal action of Algorithms 1, 3, 8, 7. Same seed in all four algorithms. This
problem is the target tracking described in Section 8.1.2 in our second map L=2. In this table we study the saved actions fraction
(92).

Parameters Total expanded actions actions frac. Alg. 3 rel to 1 actions frac. Alg. 8 rel to 7
mx m1 m2 δ PCSS 1 CCSS-IS 3 MatchedCCSS 8 PCSSST 7
100 10 10 0.9 512035 509027 514234 529120 0.0059 0.028
100 10 10 0.8 519206 540897 530558 546304 −0.042 0.029
100 10 10 0.7 530455 540110 526456 548712 −0.018 0.041

(a) PRM (b) Obtained diverse paths

Fig. 14: Separate, algorithmically selected paths to the goal (b) on top of PRM (a). We show the path number on the vertex, which is
removed for finding the subsequent diverse path. The last’s path number is shown at its final vertex (the goal). Paths start from the vertex
closest to the mean value of the belief bk.

In case we are given a static action sequence

P(τk|bk, ak:k+L−1) = PT(xk+1|xk, ak)bk(xk)
∏k+L−1
`=k+1 PT(x`+1|x`, a`)

���
���

���
���

���
��: 1

∫
zk+1:k+L−1

∏k+L−1
`=k+1 PO(z`|x`)dzk+1:k+L−1 (106)

This completes the proof. �

A.4 Proof of Lemma 3 (Average over the Safe Posteriors)

P
(⋂k+L

`=k

{
x`∈X safe

`

}
|bk, π

)
︸ ︷︷ ︸

(a)

= P
( {
xk∈X safe

k

}
|bk
)

P
(⋂k+L

`=k+1

{
x`∈X safe

`

} ∣∣ {xk∈X safe
k

}
, bk, π

)
︸ ︷︷ ︸

(b)

(107)

Let us focus on the expression we marked by (b). The P
(⋂k+L

`=k+1

{
x`∈X safe

`

} ∣∣ {xk∈X safe
k

}
bk, π

)
equals to

∫
b̄k+1

P
(⋂k+L

`=k+1

{
x`∈X safe

`

}
|b̄k+1,

{
xk∈X safe

k

}
, bk, π

)
P
(
b̄k+1|

{
xk∈X safe

k

}
bk, π

)
db̄k+1 = (108)

∫
b̄k+1

P
(
b̄k+1|

{
xk∈X safe

k

}
, bk, π

)
P
(⋂k+L

`=k+1

{
x`∈X safe

`

}
|b̄k+1, π

)
db̄k+1 (109)

Merging the two expressions we obtain that P
(⋂k+L

`=k

{
x` ∈ X safe

`

}
|bk, π

)
equals to

P
({
xk∈X safe

k

}
|bk
)∫
b̄k+1
P(b̄k+1

∣∣ {xk∈X safe
k

}
, bk, π) P

(⋂k+L
`=k+1

{
x`∈X safe

`

}
|b̄k+1, π

)
︸ ︷︷ ︸

(c)

db̄k+1 (110)

Table 8: Number of collisions in openloop setting. Same seed. Modified Alg. 2 is as explained in Section 7.2.3.

Alg. 2 Alg. 2 mod. Alg. 6
num cols 4 9 5

plan time [sec] 48.23± 0.61 55.09± 0.61 32.27± 0.99
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(a) (b) (c)

Fig. 15: Visualization of the 50 trials actual (not planning) trajectories the robot solving navigation to static goal at our third map.
The gray area is the obstacle and the green area is the low measurement noise area; (a) Alg. 2. (b) Alg. 2 with modifications from section
7.2.3. (c) Alg. 6.

We observe that expression (a) is very similar to (c), namely

P
(⋂k+L

`=k+1

{
x`∈X safe

`

}
|b̄k+1, π

)
=P
( {
xk+1∈X safe

k+1

}
|b̄k+1

)
·

∫
b̄k+2

P(b̄k+2|
{
xk+1∈X safe

k+1

}
, b̄k+1, π) P

(⋂k+L
`=k+2

{
x`∈X safe

`

}
|b̄k+2, π

)
︸ ︷︷ ︸

(d)

db̄k+2 (111)

Merging the two we got

P
(⋂k+L

`=k

{
x`∈X safe

`

}
|bk, π

)
= P

( {
xk∈X safe

k

} ∣∣bk
) ∫

b̄k+1
P(b̄k+1|

{
xk∈X safe

k

}
, bk, π)P

( {
xk+1∈X safe

k+1

} ∣∣b̄k+1

)
·

∫
b̄k+2

P(b̄k+2|
{
xk+1∈X safe

k+1

}
, b̄k+1, π)P

(⋂k+L
`=k+2

{
x`∈X safe

`

}
|b̄k+2, π

)
db̄k+2db̄k+1. (112)

We observe the recurrence relation.
Now we show that marginalization can be done with respect to the observations. Moreover we will see that the beliefs

are different from the belief tree build for the rewards. Let us assume that ` is the last index (` = k + L)

∫
b̄k+L

P
(
{xk+L∈X safe

k+L}|b̄k+L)P
(
b̄k+L|{xk+L−1∈X safe

k+L−1}, b̄k+L−1, π
)
db̄k+L =

∫
b̄k+L

P
(
{xk+L∈X safe

k+L}|b̄k+L)
∫

zk+L

P
(
b̄k+L|{xk+L−1∈X safe

k+L−1}, b̄k+L−1, π, zk+L

)
(113)

P(zk+L|b̄k+L−1, π, {xk+L−1∈X safe
k+L−1})dzk+Ldb̄k+L =

∫
b̄k+L

∫
zk+L

P
(
{xk+L∈X safe

k+L}|b̄k+L

)
δ
(
b̄k+L − ψ(b̄k+L−1, {xk+L−1∈X safe

k+L−1}, ak+L−1, zk+L)
)

(114)

P
(
zk+L|ak+L−1, b̄k+L−1, {xk+L−1∈X safe

k+L−1}
)
dzk+Ldb̄k+L =

∫
zk+L

∫
b̄k+L

P({xk+L∈X safe
k+L}|b̄k+L

)
δ
(
b̄k+L − ψ(b̄k+L−1, {xk+L−1∈X safe

k+L−1}, ak+L−1, zk+L))db̄k+L (115)

P
(
zk+L|ak+L−1, b̄k+L−1, {xk+L−1∈X safe

k+L−1}
)
dzk+L =

∫
zk+L

P
(
{xk+L∈X safe

k+L}|ψ(b̄k+L−1, {xk+L−1∈X safe
k+L−1}, ak+L−1, zk+L)

)
(116)

P
(
zk+L|ak+L−1, b̄k+L−1, {xk+L−1∈X safe

k+L−1}
)
dzk+L =

E
zk+L

[
P
(
{xk+L∈X safe

k+L}|ψ(b̄k+L−1, {xk+L−1∈X safe
k+L−1}, ak+L−1, zk+L)

)∣∣ak+L−1, b̄k+L−1, {xk+L−1∈X safe
k+L−1}

]
(117)

We plug this result into expression for k + L− 1 and do the same trick to b̄k+L−1 �

A.5 Proof of Lemma 4 (Recast)

Doing the same trick again as in Lemma 3 only from the beginning of time indexes instead of the end, we have that

P
(⋂k+L

`=k {x`∈X safe
` }|bk, π

)
= P

(
{xk∈X safe

k }|bk
)
· (118)

∫
b̄k+1

∫
zk+1

P
(
b̄k+1|{xk∈X safe

k }, bk, π, zk+1

)
P
(
zk+1|{xk∈X safe

k }, bk, π
)
dzk+1P

(⋂k+L
`=k+1{x`∈X safe

` }|b̄k+1, π
)
db̄k+1
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leading to the desired result. Following the notations in [30] we have that

erk(bk, π) = 1− (1− rb(bk)) ·
∫
b̄k+1

P
(
b̄k+1|{xk∈X safe

k }, bk, π
)
P
(⋂k+L

`=k+1{x`∈X safe
` }|b̄k+1, π

)
db̄k+1 = (119)

1− (1− rb(bk)) ·
∫
zk+1

P
(
zk+1|{xk∈X safe

k }, bk, π
)
(1− erk+1(b̄k+1, π))dzk+1 = (120)

1− (1− rb(bk)) ·
(
1−

∫
zk+1

P
(
zk+1|{xk∈X safe

k }, bk, π
)
erk+1(b̄k+1, π)dzk+1

)
= (121)

rb(bk) + (1− rb(bk))
∫
zk+1

P
(
zk+1|{xk∈X safe

k }, bk, π
)
erk+1(b̄k+1, π)dzk+1. (122)

Hence, we have the equivalence as asserted. �

A.6 Proof of Lemma 5 (Absolute continuity of observation likelihoods)

Assume in contradiction that absolute continuity does not hold. That is, there exists observation z`+1 = ζ such that
P(z`+1 = ζ|bk, π, zk+1:`) = 0 and P(z`+1 = ζ|bk, π, zk+1:`,

⋂`
i=k{xi ∈ X safe

i }) > 0. Applying Bayes rule we have that

P(z`+1 = ζ|bk, π, zk+1:`,
⋂`
i=k{xi ∈ X safe

i }) =
P(
⋂`
i=k{xi∈X safe

i }|bk,π,zk+1:`,z`+1=ζ)P(z`+1=ζ|bk,π,zk+1:`)

P(
⋂`
i=k
{xi∈X safe

i }|bk,π,zk+1:`)
= 0. (123)

�

Appendix B Posterior Conditioned on the Safe Prior (Section 5.3)

The safe event influence Belief-MDP motion model in the following way

P
(
b̄′|b̄, a,

{
x∈X safe

})
=
∫

z′∈Z
P
(
b̄′|b̄, a, z′,

{
x∈X safe

} )
P
(
z′|a, b̄,

{
x∈X safe

} )
dz′ =

∫
z′∈Z

δ(b̄′ − ψ(b̄safe, a, z′))P(z′|a, b̄,
{
x∈X safe

}
)dz′ (124)

We first calculate the propagated belief conditioned on the safe prior.

P
(
x′|b̄, a,

{
x∈X safe

})
=

∫
x∈X 1{x∈X safe}(x)PT(x′|x, a)b̄(x)dx

∫
ξ∈X 1{ξ∈X safe}(ξ)b̄(ξ)dξ

(125)

b and event safe, meaning that belief supposed to be zero at non safe places. Finally,

P
(
z′|a, b̄, {x∈X safe}

)
=
∫
x′∈X ′ PO(z′|x′)P

(
x′|b̄, a, {x ∈ X safe}

)
dx′. (126)

We can also look at the above from slightly different angle. We define b̄safe as in (51) such that

P
(
x′|b̄, a, {x∈X safe}

)
=
∫
x∈X PT(x′|x, a)b̄safe(x)dx. (127)

We can use the safe belief defined above in the belief update as follows

P(x′|b̄, a, z′, {x ∈ X safe}) =
P(z′|b̄, a, x′, {x ∈ X safe})P(x′|b̄, a, {x ∈ X safe})

P(z′|b̄, a, {x ∈ X safe}) =
PO(z′|x′)P(x′|b̄, a, {x ∈ X safe})∫

ξ′
PO(z′|ξ′)P(ξ′|b̄, a, {x ∈ X safe})dξ′ (128)

Now the ψ is conventional belief update operator receiving as input ψ(b̄safe, a, z′).

Appendix C Derivation of the Importance Weights (Section 6.1)

To calculate the likelihoods of the observations we shall do the following. Suppose that the belief is represented by samples.
For simplicity we show calculation for belief bk. However this is not a limitation. Conditioning on different beliefs in
two observation likelihoods is supported without any change. The only necessity is two different beliefs represented by
weighted particles.

bk(xk) ≈∑N
i=1 w

i
kδ(xk − xik), (129)
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the goal

belief particles

(a)

the goal

belief particles

(b)

the goal

belief particles

(c)

the goal

belief particles

(d)

Fig. 16: Geometrical visualization of the natural belief uncertainty measure imprinted in the mean distance to the goal. (a) Less spread
results in lowering all the distances, thereby the mean. (b) The reciprocal situation. (c) Another situation, here, to decrease the mean
distance to the goal, one has to reduce the spread and the distance between the expected value of the belief and the goal. (d) The spread
is decreased, but the distance between the expected value of the belief and the goal is large (Appendix D).

Let us introduce another notation δ(xk − xik) = δx
i
k (xk) so

P
(
xk+1|bk, ak,

{
xk∈X safe

k

} )
=

∫
xk∈X 1{xk∈X safe

k }(xk)PT(xk+1|xk, ak)bk(xk)dxk
∫
ξk∈X 1{ξk∈X safe

k }(ξk)bk(ξk)dξk
≈ (130)

∫
xk∈X 1{xk∈X safe

k }(xk)PT(xk+1|xk, ak)
(∑N

i=1 w
i
kδ
xik (xk)

)
dxk

∫
ξk∈X 1{ξk∈X safe

k }(ξk)
(∑N

i=1 w
i
kδ
xi
k (xk)

)
dξk

= (131)

∑N
i=1 w

i
k1{xk∈X safe

k }(x
i
k)PT(xk+1|xik, ak)

∑N
i=1 w

i
k1{xk∈X safe

k }(xik)
≈
∑N
i=1 w

i
k1{xk∈X safe

k }(x
i
k)δx

i
k+1(xk+1)

∑N
i=1 w

i
k1{xk∈X safe

k }(xik)
. (132)

We got that

P(zk+1 = zjk+1|bk, {xk ∈ X safe
i }, ak) ≈

∑N
i=1 w

i
k1{xk∈Xsafe

k }(xik)PO(z
j
k+1
|xik+1)

∑N
i=1 w

i
k
1{xk∈Xsafe

k }(xi
k

)
. (133)

In case of the denominator we arrive to the same expression, only without the indicator.

P(zk+1 = zjk+1|bk, ak) ≈
∑N
i=1 w

i
kPO(z

j
k+1
|xik+1)

∑N
i=1 w

i
k

. (134)

In reality, however, it is possible that after we discard all the samples of the belief which are not safe we are left with a
very small set of samples or an empty set. To alleviate this issue we resample the safe particles to a constant number of
samples N .

Appendix D Mean Distance to Goal Accountability for Uncertainty

In this section, we discuss in depth why the mean distance to goal intrinsically accounts for belief uncertainty. We show
a geometrical visualization in Fig. 16. Since the distance is no negative, the less spread of belief implies lower distances
and vise versa. Further, let us show that algebraically.

Theorem 2. Let y be an arbitrary distributed random vector with µy and Σy being the expected value and covariance
matrix of y, respectively; and let Λ be arbitrary matrix. The following relation is correct

E[yTΛy] = tr [ΛΣy] + µTy Λµy, (135)

where by tr we denote the trace operator.

Proof. Since the quadratic form is a scalar quantity, yTΛy = tr(yTΛy). Next, by the cyclic property of the trace operator,

E[tr(yTΛy)] = E[tr(ΛyyT )]. (136)

Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity
of the expectation operator that

E[tr(ΛyyT )] = tr(ΛE(yyT )). (137)
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A standard property of variances then tells us that this is

tr(Λ(Σx + µxµ
T
x )). (138)

Applying the cyclic property of the trace operator again, we get

tr(ΛΣy) + tr(Λµyµ
T
y ) = tr(ΛΣy) + tr(µTy Λµy) = tr(ΛΣy) + µTy Λµy. (139)

�

Now, we set y = x− xg, where x ∼ b with the mean µx and covariance matrix Σx; xg is the deterministic goal location.
Recall that covariance matrix is invariant to the deterministic translational shifts of a random vector, so Σx−xg = Σx.
Moreover, by setting Λ = I we obtain

E[yTΛy] = E[(x− xg)T I(x− xg)] = E[‖x− xg‖22] = tr[Σx] + ‖µx − xg‖22. (140)

We arrived at the desired result. As we observe in Fig. 16, the trace of the covariance matrix controls the spread of the
belief in the first summand; the second summand is the distance between the expected value of the belief.

Appendix E Necessary Condition for Feasibility of CC (Lemma 6)

In this section, we develop necessary condition for feasibility of CC from [30]. Through IS we extend the condition
presented in [30] to continuous spaces in terms of states and the observations.

Suppose that 0 ≤ ∆ ≤ 1 and er`(b̄`, π) ≤ ∆. From now on for clarity suppose the weights are already normalized.
We use (74).

rb(b̄`) + (1− rb(b̄`))
∑m
j=1 w

z,j
`+1er`+1(b̄`+1(h`a`z

j
`+1), π) ≤ ∆, (141)

We choose some child j = i and arrive at

er`+1(b̄`+1(h`a`z
i
`+1), π) ≤ 1

w
z,i
`+1

( ∆−rb(b̄`)
(1−rb(b̄`))

−∑m
j=1
j 6=i

wz,j`+1er`+1(b̄`+1(h`a`z
j
`+1), π)

)
, (142)

If rb(b̄`)=1, so P(
{
x`∈X safe

`

}
|b̄`)=0. Namely, at each x` or b̄`(x`) = 0 or x` /∈ X safe

k . In this case the probability density

P(z`+1 = zj`+1|bk, π, zk+1:`,
⋂`
i=k{xi ∈ X safe

i }) (143)

is undefined due to conditioning on the empty set. We will need to discard such policy before pruning due to the chance
constraint violation. Now we show the inverse relation. If rb(b̄`)<1, that is P(

{
x`∈X safe

`

}
|b̄`)>0. This implies that b̄safe

`

has support larger that empty set. Suppose that motion and observation models has infinite support. This imply that

P(z`+1=zj`+1|bk, π, zk+1:`,
⋂`
i=k{xi∈X safe

i })=
∫

x`+1

PO(z`+1=zj`+1|x`+1)
∫
x`

PT(x`+1|x`, a`)b̄safe
` (x`)dx`dx`+1 > 0. (144)

These arguments are valid if we approximate the belief by weighted samples since we approximate the probability
P(
{
x`∈X safe

`

}
|b̄`) using same samples. If the models do not posses infinite support leading to wz,i`+1=0 we just skip the

child i and not prune. Anyway this is only the necessary condition and we will need to verify the CC for not pruned
policies. To do pruning using technique from [30] we note that rb(b̄`+1) ≤ er`+1(b̄`+1, π) and got that

rb(b̄
i
`+1) ≤ 1

w
z,i
`+1

( ∆−rb(b̄`)
(1−rb(b̄`))

−∑m
j=1
j 6=i

wz,j`+1rb(b̄
j
`+1)

)
. (145)

If er`(b̄`, π) ≤ ∆ the above shall hold for every child of b̄`. �
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Abstract—Taking into account future risk is essential for an
autonomously operating robot to find online not only the best but
also a safe action to execute. In this paper, we build upon the
recently introduced formulation of probabilistic belief-dependent
constraints. We present an anytime approach employing the
Monte Carlo Tree Search (MCTS) method in continuous do-
mains. Unlike previous approaches, our method assures safety
anytime with respect to the currently expanded search tree
without relying on the convergence of the search. We prove
convergence in probability with an exponential rate of a version
of our algorithms and study proposed techniques via extensive
simulations. Even with a tiny number of tree queries, the best
action found by our approach is much safer than the baseline.
Moreover, our approach constantly finds better than the baseline
action in terms of objective. This is because we revise the values
and statistics maintained in the search tree and remove from
them the contribution of the pruned actions.

Index Terms—MCTS, BSP, Belief-dependent constraints, Any-
time Constraint Satisfaction

I. INTRODUCTION AND RELATED WORK

CASTING decision-making under uncertainty as a Par-
tially Observable Markov Decision Process (POMDP) is

considered State-Of-The-Art (SOTA). Under partial observ-
ability the decision-making agent does not have complete
information about the state of the problem, so it can only
make its decisions based on its “belief” about the state. In
a continuous domains in terms of POMDP state, the belief,
in a particular time index, is the Probability Density Function
(PDF) of the state given all concurrent information in terms of
performed actions and received observations in an alternating
manner, plus the prior belief. A POMDP is known to be
undecidable [1] in finite time.

Introducing various constraint formulations into POMDP is
essential for, e.g., ensuring safety [2], [3] and efficient Au-
tonomous Exploration [4]. Yet, the existing online approaches
in anytime setting have problems and therefore fall short of
providing reliable and safe optimal autonomy. This crucial gap
we aim to fill in this paper.

Similar to almost any online POMDP solver today such as
MCTS, our method constructs a belief tree and uses the tree
to represent the POMDP policy. We prune dangerous actions
from the belief tree and revise the values and statistics that
an MCTS tree maintains. Anytime, our search tree contains

This work was supported by the Israel Science Foundation (ISF).

only the safe actions in accord to our definition of safe action,
which will appear shortly. Our work lies in continuous domain
in terms of actions and the observations. In such a setting,
there are approaches to tackle averaged cumulative constraint
using anytime MCTS methods [5], [6]. We now linger on the
explanation of what the averaged constraint is.

Under partial observability, namely in the POMDP setting,
there are naturally two stages to consider in order to introduce
a constraint. The first stage arises from the belief itself.
Usually, at this stage, the state-dependent payoff operator is
averaged with respect to the corresponding belief to obtain
a belief-dependent one. It is then summed up to achieve
a cumulative payoff. We use the term payoff to differenti-
ate between reward operator and emphasize that a belief-
dependent payoff constraint operator shall be as large as
possible as opposed to the cost operator. The second stage
arises from the distribution of possible future observations
episodes. At this stage, commonly, the cumulative payoff is
again averaged but with respect to future observations episodes
and then thresholded, thereby forming an averaged cumulative
constraint. Such a formulation is sufficient for ensuring safety
in limited cases as we will further see in Section VI-A. This
is because it permits deviations of the individual values within
the summation.

Let us now describe the MCTS methods mentioned above
to tackle averaged cumulative constraint. The seminal paper
in this direction is [7]. It leans on the rearrangement of the
constrained objective using the occupancy measure described
in [8]. Such a reformulation is appealing since it transforms
the problem into linear programming bringing convexity to
the table and enjoying from strong duality. The authors of
[5] extend the approach from [7] to continuous spaces. Still,
both papers [7] and [5] assure constraint satisfiability only
at the limit of the convergence of the iterative procedure,
namely in infinite time. Since these are iterative methods,
to assure anytime constraint satisfiability we need to project
the obtained occupancy measure at each iteration to the space
defined by the constraint. If dual methods are involved [9] such
a projection does not make much sense, e.g., the projection
might lead to a step direction vector on the boundary of all
the constraints, making it zero vector. Employing the primal
methods in continuous spaces also appears to be problematic
since the summations in [7] are transformed into integrals.
The paper [6] provides some sort of anytime satisfiability
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by introducing high-level action primitives (options). Still,
[6] suffers from limitations, e.g. it requires crafting low-level
policies, meaning knowing how the robot shall behave a priori.
In addition, the options shall be locally feasible. Additionally,
for efficiency reasons, the duality based approaches perform
a single tree query of the MCTS, instead of running MCTS
until convergence in the maximization of the Lagrangian dual
objective function phase (See section 8.5.2 in [9]) of dual
ascend.

In all three papers [7], [5], [6] the averaged cumulative
constraint is enforced solely from the root of the belief tree.
This is suboptimal since within a planning session it is not
taken into account that the constraint will be enforced at the
future planning sessions. In other words, the contemplation
of a robot about the future differs from its actual future
behavior. This aspect has been fixed by [10]. As we will
further see in Section IV, our approach naturally handles this
problem. Moreover, [10] assures fulfillment (admission) of the
recursive averaged cumulative constraint anytime with respect
to search tree constructed partially with the reward bounds and
partially with rewards themselves. Yet, the algorithm presented
in [10] requires that the value function is bounded on the way
down the tree to assure the exploration. This is commonly
achieved by assuming that the state-dependent reward is
trivially bounded from above and below. This does not hold
for general belief-dependent reward functions. Moreover, the
exploration outlined in that paper is valid for discrete spaces
only. All in all, the extension of that work to continuous spaces
and belief-dependent rewards requires clarification.

a) Support for general belief dependent rewards and
payoff/cost operators and MCTS convergence: We now clarify
whether or not the mentioned above solvers support belief-
dependent cost/payoff operators and rewards. It was suggested
in [3],[4] that general belief-dependent payoff/cost operators
are extremely important. As mentioned in [3] Value-at-Risk
(VaR) and Conditional VaR (CVaR) over the distance to the
safe space allow for control of the depth the robot can plunge
into the obstacle. To rephrase that, these operators measure
how bad the disaster (collision) will be. See Appendix D,
for details. The Information Gain discussed in [4] is relevant
for exploration. The paper [4] discussed the general belief-
dependent averaged constraint of the form (38) in a high
dimensional setting and in the context of Information Gain.
The iterative schemes in [7], [5] lean on the convergence of
MCTS. It has been shown in [11] that even in discrete spaces
and with bounded rewards it can take a very long time for
MCTS to converge. In the case of unbounded reward or the
cost-augmented objective of [7], [5], the MCTS may converge
slowly. If such an augmented reward has a large variance, it
will be needed a huge amount of tree queries for action-value
estimate (to be defined shortly) at each belief node of the
belief tree to converge. The large variance can be the result of
an unrestrained variability of the rewards or a large Lagrange
multiplier.

There are several constraint formulations for POMDP. Be-
low we discuss the most prominent techniques one by one.

b) Shielding POMDPs: There is a growing body of
literature on shielding POMDPs. The shield is a technique to

disable the actions that can be executed by the agent and vio-
late the shield definition. There are several shield definitions.
Online methods [12], [13] in this category utilize Partially
Observable Monte-Carlo Planning (POMCP) algorithm [14].
These works have the same problems we are solving in this
paper: one way or another, the actions violating the shield
definition participate in the planning procedure, yielding a
suboptimal result. The work [13] enforces the shied outside
the POMCP planning. As we further show, not considering
safety in the future times, namely within the planning session,
can lead to a suboptimal planning result.

c) Chance Constrained (CC) Online Planning: A recent
work [15] tackles online planning with chance constraints in an
anytime setting. This paper suggests using a Neural Network
(NN) to approximate CC enforced, with an adaptive threshold,
from each belief considered in the planning session. This
work trains NN offline. Therefore the error stemming from the
discrepancy of simulated and real data is unknown. Moreover,
it is not clear how complex the NN shall be to achieve zero loss
in training to ensure no error in CC approximation, so even if
no discrepancy discussed before exists, the NN inference may
be slow. In this method, dangerous actions do not participate
in the planning session.

d) Safe control Under Partial Observability: There are
a variety of robust control approaches natively tailored for
continuous state/action/observation spaces [16],[17]. How-
ever, these methods are usually limited to very specific re-
wards/objectives and tasks, such as reaching a goal state or to
be as close as possible to a nominal trajectory. Moreover, in
both papers the system dynamics are control-affine. Without
this assumption, it is not clear how to enforce the constraint
through a derivative of the barrier function.

A. Contributions

Below we list down our contributions in the same order as
they appear in the manuscript.

• By constraining directly the problem space and not the
dual space we present an anytime MCTS based algorithm
for safe online decision making with safety governed
by a Probabilistic Constraint (PC). Our approach enjoys
anytime safety guarantees with respect to the belief-tree
expanded so far and works in continuous state, action
and observation spaces. When stopped anytime, the action
returned can be considered as the best safe action under
the safe future policy (tree policy) expanded so far. Our
search tree solely consists of safe actions. We prove
convergence in probability with an exponential rate of
our approach.

• Another contribution on our end is constraining the
beliefs with incorporated outcome uncertainty stemming
from an action performed by the robot and without
incorporating the received observation. This is alongside
the constraint over the posterior belief with included last
observation. To the best of our knowledge, no previous
works do that.

• We also spot a problem happening in duality based ap-
proaches arising from averaging unsafe actions in MCTS
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Fig. 1: Here we plot the asymmetric search tree approximating stochastic future policy.
For simplicity the action space here is A={a1, a2}. We behold that many actions
emanating from each belief node and each action has weight defined by relevant visitation
count as in (8). Thus, the MCTS approximates stochastic future policy. Note that here
the observations and beliefs has global index (superscript) while actions have local index
according to the action number in the space A.

phase. Therefore, an additional contribution of ours is an
analysis of this phenomenon.

• We simulate our finding on several continuous POMDP
problems.

B. Notation

We use the □ as a placeholder for various quantities. The
values in □ can be replaced by one of the respective options.
We also extensively use the indicator function notation, which
is 1A(□). This function equals to one if and only if □∈A.
By lowercase letters we denote the random variables of their
realizations depending on context. By the bold font we denote
vectors of operators in time of different lengths. We denote
estimated values by □̂.

C. Paper Roadmap

This paper proceeds with the following structure. Section II
presents relevant background. Section III then formulates the
problem. Section IV presents our approach. Section VI dis-
cusses our baseline. Section VII gives experimental validation
of the proposed methodology. Finally, Section VIII concludes
the paper.

II. BACKGROUND

This section gives the background required for present-
ing our approach. Specifically, we discuss belief-dependent
POMDP, its reformulation to Belief-MDP (BMDP), and the
MCTS.

A. Belief-dependent POMDP

The POMDP is a tuple ⟨X ,A,Z,T,O, ρ, γ, b0⟩ where
X ,A,Z represent continuous state, action, and observation
spaces with x∈X , a∈A, z∈Z the individual state, action,
and observation, respectively. T(x′, a, x)≜PT(x

′|x, a) is a
stochastic transition model from the past state x to the subse-
quent x′ through action a, O(z, x)≜PO(z|x) is the stochastic
observation model. ρ:B×A×Z×B7→R is a belief-dependent
reward incurred as a result of taking an action a from the

belief b, receiving and observation z′ and updating the belief
to b′. By B we denote the space of all possible beliefs. γ∈(0, 1]
is the discount factor, b0 is the prior belief. Purely for clarity
of the exposition we further assume that the reward depends
solely on a pair of consecutive-in-time beliefs and an action in
between. In addition we suppose γ=1. To remove unnecessary
clutter we assume that planning starts from b0. Extension to
the arbitrary planning time is straightforward.

Let hℓ be a history. The history is the set that comprises the
prior belief b0, the actions a0:ℓ−1 and the observations z1:ℓ that
would be obtained by the agent up to time instance ℓ such that
hℓ≜{b0, a0:ℓ−1, z1:ℓ}. We emphasize by the green color that b0
is given, but the actions a0:ℓ−1 and observations z1:ℓ can vary.
In addition due to the assumption that the planning session
starts from the prior belief b0 we can have only the future
history simulated in planning in this work. For completeness
we define h0≜{b0} The posterior belief bℓ is given by

bℓ(xℓ)≜P(xℓ|b0, a0:ℓ−1, z1:ℓ)=P(xℓ|hℓ)=P(xℓ|bℓ). (1)

The belief is a function of history such that we sometimes
write b(h) instead of b(x) and use the corresponding h notation
to point to the belief b(h). The actions within the history are
coming from the execution policy. A deterministic policy π
is a sequence of functions π=π0:ℓ−1 for ℓ∈[1. . .L−1], where
the momentary function πi:B7→A ∀i. In each time index, the
policy maps belief to action. For better readability sometimes
we will omit the time index for policy or denote π0:ℓ−1 as π0+
and π1:ℓ−1 as π1+ . The policy can also be stochastic. In this
case, it is a distribution of taking an action aℓ from a be-
lief πℓ(aℓ, bℓ)=πℓ(aℓ, hℓ)=Pπℓ (aℓ|bℓ(hℓ))=Pπℓ (aℓ|hℓ)1. Here
the action space A is the space of outcomes and the mapping
is πi:B×A7→R. We have that π0:L−1={Pπi }L−1

i=0 . Yet, in hℓ
we have a specific realization of actions of such a policy in
previous time instances. When the agent performs an action
a and receives an observation z′, it shall update its belief
from b to b′. Let us denote the update operator by ψ such
that b′=ψ(b, a, z′). In our context, it will be a Particle Filter
(PF) since we focus on the setting of nonparametric beliefs.
However, this is not an inherent limitation of our approach.
Any belief update method would be suitable. We define a
propagated belief b′− as the belief b after the robot performed
an action a and before it received and observation, namely

b−ℓ (xℓ)≜P(xℓ|hℓ−1, aℓ−1)=P(xℓ|h−ℓ )=P(xℓ|b−ℓ ). (2)

We define h−ℓ ≜hℓ\{zℓ}={b0, a0:ℓ−1, z1:ℓ−1}. The uncon-
strained, online decision making objective is the action-value
function specified as

Qπ(b0, a0;ρ1)≜ET,O
z1

[
ρ1(b0, a0, b1)+V

π(b1;ρ2)
∣∣b0, a0

]
. (3)

Here the we added the subscript to the reward ρ□+1(b□, b□+1)
to emphasize that it is a random variable and it is allowed not
to specify dependency on consecutive-in-time beliefs and the

1Here, the capability of history being switched with the belief has to be
inspected for a particular belief update. In MCTS, as we will shortly see,
the stochastic policy is history-dependent and can vary even if the belief
is the same at different history nodes. In this paper, the belief update is
a particle filter. Therefore, the probability of obtaining the same belief at
different histories is zero.
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update
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maximum
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Fig. 2: (a) Visualization of the MCTS operations when ascending up the search tree. We update Q̂(ha), visitation counts n(ha) and n(h), send up the lace q of the cumulative
reward; (b) Illustration of the MCTS operation when descending down the tree. First, upon reaching a leaf node, the current action space is unfolded to belief-action nodes. MCTS
selects each action infinitely often. At the way up the belief tree the classical MCTS takes the average of the actions tried so far (after relevant updates on the way up) to update
the estimator of (3). In this illustration, a3 still did not tried and therefore do not participate. On the way up n(ha3) stays zero.

action in between. The V π(b□;ρ□+1) is the value function
under the stochastic policy π and ρℓ is a vector of belief-
dependent operators of appropriate length. The value function
materializes as

V π(b0;ρ1)≜ET,O
[∑L−1

ℓ=0 ρℓ+1(bℓ, aℓ, bℓ+1)
∣∣b0, π

]
. (4)

Let us present the following lemma to better understand the
structure of (4) under a stochastic policy.

Lemma 1 (Representation of the Value Function): The value
function under a stochastic execution policy complies to the
following form

ET,O
[∑L−1

ℓ=0 ρℓ+1(bℓ, aℓ, bℓ+1)
∣∣b0, π

]
=

∑L−1
ℓ=0 ET,O

[
ρℓ+1(bℓ, aℓ, bℓ+1)

∣∣b0, π
]
=

∑L−1
ℓ=0 E

a0

[
E
b1

[
E
a1

[
E
b2

[
. . .

E
aℓ

[
E
[
ρℓ+1|bℓ, aℓ

]∣∣bℓ, πℓ
]
. . .
∣∣∣b1, a1

]∣∣∣b1, π1
]∣∣∣b0, a0

]∣∣∣b0, π0
]
.

(5)

We laid out the detailed proof in Appendix A.
In online decision making, the future belief tree
policy π1+ is approximated as part of the decision
process. We denote the best future policy as π∗

(k+1)+.
The best deterministic policy for the present time
is given by π0(b0)= argmaxa0∈AQπ

∗
1+(b0, a0;ρ1).

The best stochastic policy is the solution of
maxπℓ

Eaℓ∼Pπ
ℓ (aℓ|bℓ)[Q

π∗
(ℓ+1)+(bℓ, aℓ;ρℓ+1)]. The interlink be-

tween (4) and (3) is V π(bℓ;ρℓ+1)=Q
π(ℓ+1)+(bℓ, πℓ(bℓ);ρℓ+1)

in case of deterministic policies and V π(bℓ;ρℓ+1) =
Eaℓ∼Pπ

ℓ (aℓ|bℓ)[Q
π(bℓ, aℓ;ρℓ+1)] in case of the stochastic

policies.

B. Belief State MDP

To employ solvers crafted for fully observable Markov De-
cision Processes (MDP) we can cast POMDP as a Belief-MDP
(BMDP). The BMDP is a following tuple ⟨B,A,Tb, ρ, γ, b0⟩,
where B is the space of all possible beliefs defined by (1).
The belief state transition model follows

Tb(b, a, b
′)≜PTb

(b′|b, a)=
∫

z′∈Z
P(b′|b, a, z′)︸ ︷︷ ︸
δ(b′−ψ(b,a,z′))

P(z′|b, a)dz′. (6)

The next section describes SOTA approach to solve uncon-
strained continuous POMDP online, namely MCTS. There we

deal with estimators of the (3) and (4). We denote estimated
values by □̂.

Further, we shorten the notation and mark V̂ π
∗
(b;ρ′) by

V̂ ∗(h) and Q̂π
∗
(ba;ρ′) by Q̂(ha). We will use the dependence

on history h and the corresponding belief b(h) interchangeably
since the history h defines the location in the belief tree as
opposed to the belief which possibly can be identical for more
than single history. It will be clarified in the next section.
In the next section we will see why in time zero we have
deterministic policy and in future time the policy is stochastic.

C. Monte Carlo Tree Search

MCTS constructs the search tree comprised by belief nodes
(transparent circles) and belief-action nodes (black squares),
by iteratively descending down the tree and ascending back
to the root (See Fig. 1 and 2). On the way down the tree, the
exploration mechanics selects an action. The Double Progres-
sive Widening (DPW) manages the sampling of new actions
and observations. On the way back to the root MCTS updates
action value estimates at each belief action node (Fig. 2a)
and relevant visitation counts. In the case of belief-dependent
rewards, beliefs represented by particles and continuous setting
of states, actions, and observations, MCTS is applied on the
level of Belief-MDP (BMDP) and called Particle Filter Tree
with DPW (PFT-DPW) [18]. DPW solves the problem of
shallow trees in a continuous setting. This problem arises
because in this setting it is impossible to sample the same
action and observation twice. The DPW technique enables
gradually expanding new actions and observations as the
tree search progresses. With a slight abuse of notation, we
sometimes switch the dependence of various quantities on
belief and dependence on the corresponding history. This is
because same belief can correspond to different histories.
Therefore to properly mark the position at the search tree we
shall use history h instead of belief b(h). The exploration score
is defined as

sc(h, a) ≜ Q̂(h, a)︸ ︷︷ ︸
belief action node ba

indexed by ha

+k
√
f(n(h))/n(ha) (7)

governs the selection of the actions down the tree, where
n(h) is the visitation count of the belief nodes, n(ha) is the
visitation count of belief-action nodes and k is the exploration
constant (Fig. 2b). The notation ha is the history h with



5

action a appended to the end, alias to h− with action a
explicitly seen. The function f is log in the case of Upper
Confidence Bound (UCB) [19] exploration and power in the
case of Polynomial Upper Confidence Tree (PUCT) [20]. The
MCTS can be run with rollout and without. In the case of
rollout configuration from each new belief node, the rollout
is initiated to provide an initial V̂ ∗ of the newly added belief
node. This is not mandatory since if no rollout is initiated
the MCTS will continue to descend down the tree until the
deepest level with the first action from the action space A
(first sampled action in case of continuous action space). Not
in every tree query the MCTS will expand a new node.
In some queries, only visitation counts are promoted (lace
already present in the tree incorporated to pertinent Q̂). In
continuous spaces it happens because of DPW. DPW as well
as increasing the visitation counts without adding a new lace
introduces observations distribution shift. This is out of the
scope of this paper. The Q̂(b(h), a) estimates are assembled
from the laces (yellow curve in Fig. 1). Another name for
lace is decision epoch or episode or script. Imagine that at
the depth ℓ of the belief tree, each belief has a global index
iℓ per depth ℓ, say index runs from left to right over all the
belief nodes at level ℓ. Let us define the set of global indices
of posterior beliefs which are children of biℓℓ (h

iℓ
ℓ ) and action

aℓ by C(hiℓℓ aℓ). We also define the set of actions emanating
from biℓℓ by C(hiℓℓ ). Only in time zero we make these sets
and visitation counts depend on belief instead of history. In
the next equation, we omit the subscript denoting time instance
of histories, beliefs, and actions. Suppose MCTS is configured
to run without rollout. In this case Q̂(hiℓℓ , aℓ) reads

Q̂(hiℓ , a)=

single immediate action︷ ︸︸ ︷∑
iℓ+1∈C(hiℓa)

n(h′,iℓ+1 )

n(hiℓa)

(
ρℓ+1(b

iℓ , a, b′,iℓ+1)+

different actions due to eq. (7)
approximating the best exploratory future tree policy π∗
︷ ︸︸ ︷∑

a′∈C(h′,iℓ+1 )
n(h′,iℓ+1a′)
n(h′,iℓ+1 )

Q̂(h′,iℓ+1 , a′)
︸ ︷︷ ︸

V̂ π∗ (h′,iℓ+1 )

)
.

(8)

The future policy highlighted by magenta color is tree query
dependent (See Fig. 1). In the same manner, the sets C(hiℓa)
and C(h′,iℓ+1) implicitly depend on the tree query number.
One of our crucial insights in this paper is the summation
over the actions in (8) marked by the red color. This average
can also be perceived as a stochastic policy. In finite time
this summation can include unsafe actions in an unconstrained
MCTS approach.

III. PROBLEM FORMULATION AND RATIONALE

We now proceed to our theoretical problem formulation.
To reduce clutter we assume that the planning time index
is zero. This is not an inherent limitation of our approach,
every further relation can be easily modified to accommodate
general planning time index. We endow the BMDP described
in Section II-B with belief-dependent operator ϕ and obtain

⟨B,A,Tb, ρ︸︷︷︸
belief

dependent
reward

, ϕ︸︷︷︸
belief

dependent
payoff

, γ, b0⟩.

A. Problem Formulation

Our aim is to tackle the problem presented in [3] and [4]
narrowed to the multiplicative form of the inner constraint
considering a stochastic future policy. In [3] and [4] we
presented our Probabilistic Constraint (PC) defined as such
P(c=1|b0, a0, π)=1 where c is a Bernoulli random variable.
In this work c maps to one the event

⋂L
ℓ=0A

δ
ℓ such that the

problem we want to solve is

a∗0 ∈ arg max
a0∈A

Qπ
∗
(b0, a0;ρ1) subject to (9)

P
(⋂L

ℓ=0A
δ
ℓ

∣∣b0, a0, π∗
1:L−1

)
=1

︸ ︷︷ ︸
outer

constraint

(10)

In this paper, we define the following sets as said
Aδ0≜ {b0:ϕ(b0)≥δ} and for ℓ∈[1:L] the relevant set appears
as

Aδℓ≜
{
b−ℓ , bℓ:b

−
ℓ ∈B−ℓ , bℓ∈Bℓ, ϕ(b−ℓ )≥δ, ϕ(bℓ)≥δ

}
. (11)

One example of an operator ϕ is the probability to be safe
given belief, specified as:

ϕ(bℓ)=P
(
{xℓ∈X safe

ℓ }
∣∣bℓ
)
=Exℓ∼bℓ [1{xℓ∈X safe

ℓ }] (12)

ϕ(b−ℓ )=P
(
{xℓ∈X safe

ℓ }
∣∣b−ℓ
)
=P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
. (13)

Here, X safe is the safe space, e.g. the space where a robot can
move without inflicting damage on itself. Therefore, we can
think about the event

⋂L
ℓ=0A

δ
ℓ as the Safe Belief Space.

The B−ℓ and Bℓ in (11) are the reachable spaces in time ℓ
of propagated beliefs b−ℓ and posteriors bℓ respectively. The
reachable space in time ℓ is the space of all the beliefs in
time ℓ that can be reached from a belief given in planning
session, using the stochastic execution policy π and changing
the actions and the observations in (1) and (2) accordingly.
In our case, the belief given in planning session is b0. By
the green color in (11) we highlight that we constrain the
propagated beliefs in addition to the posteriors.

The probability of the event
⋂L
ℓ=0A

δ
ℓ equals to the probabil-

ity of the event
(
1Aδ

0
(b0)

∏L
ℓ=11Aδ

ℓ
(b−ℓ , bℓ)

)
=1. In this work,

although we use Particle Filter (PF) as the belief update ψ
we do not take into account the stochasticity of the belief
update operator as opposed to [21],[22] and treat ψ operator
as deterministic. Since it would significantly complicate the
paper, we leave this aspect to the future work.

One can extract the propagated belief from the belief up-
date ψ, namely ψ(b, a, z′)≜ψpost(ψprop(b, a), z′). Therefore, to
make the exposition clearer, from now on the indicator 1Aδ

ℓ
(bℓ)

depends solely on the posterior bℓ and not both the posterior
bℓ and the propagated belief b−ℓ . Note that in algorithms, for
the sake of clarity, we make the indicators dependent on both
beliefs, propagated and posterior.

The π∗
1:L−1 is the best future exploratory stochastic policy

approximated by our probabilistically-constrained MCTS as
we will further see. The approximation of the best future
tree policy improves over time as proved by [20] for an
unconstrained problem. In our problem, instead of the best
future stochastic tree policy, we have the best future stochastic
probabilistically-constrained policy. This is because our PC
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is automatically enforced in future times due to its recursive
nature, as we will see in Section IV. From the discussion above
and indicator properties, (10) equals to

P
( (

1Aδ
0
(b0)

∏L
ℓ=11Aδ

ℓ
(bℓ)

)
=1

︸ ︷︷ ︸
inner

constraint

|b0, a0, π
)
=

ET,O[1Aδ
0
(b0)

∏L
ℓ=11Aδ

ℓ
(bℓ)|b0, a0, π].

(14)

The outer condition (10) coupled with inner condition outlined
by (14) says that with probability one (almost surely) future
propagated and posterior beliefs b− and b, L steps ahead, will
satisfy ϕ(b−)≥δ and ϕ(b)≥δ correspondingly.

Constraining the propagated belief (13) means constraining
on average (theoretical expectation) the posterior as discussed
in the next section.

B. Implications of Constraining Propagated Belief

In this section we shed light on the question what does
it mean to constrain the propagated beliefs alongside with
posterior beliefs. To cancel the constraining of the propagated
beliefs one must redefine the set Aδℓ for every ℓ as follows

Aδℓ≜
{
@@b
−
ℓ , bℓ:

XXXXb−ℓ ∈B−ℓ , bℓ∈Bℓ,
XXXXϕ(b−ℓ )≥δ, ϕ(bℓ)≥δ

}
.

Further in the paper all the developments are valid for both
versions of the set Aδℓ . The probability to be safe given a
propagated belief equals to

P
(
{xℓ∈X safe

ℓ }
∣∣b−ℓ
)
=P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
=∫

zℓ∈Z P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
P(zℓ|h−ℓ )dzℓ =

Ezℓ [P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
|h−ℓ ]=

Ezℓ [P
(
{xℓ∈X safe

ℓ }
∣∣bℓ
)
|b−ℓ ].

(15)

The theoretical expectation in (15) is out of the reach. Yet we
evaluate it using the propagated belief b−(h−). Defining the
set Aδℓ as (11), with the propagated beliefs, allows to account
for all the possible posterior beliefs in (15). Additionally, we
know that ∀ϵ>0

lim
|C(h−

ℓ )|→∞
P
(
|P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
−

1
|C(h−

ℓ )|
∑
zlℓ∈C(h−

ℓ ) P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zlℓ

)
|>ϵ
∣∣h−ℓ

)
=0.

(16)

With a slight abuse of notation, C(h−ℓ ) is now a list of the
enumerated observations that are children of h−ℓ . Equation
(16) means that for any arbitrary small error ϵ, the difference
between (15) and its approximation by the children of h−ℓ
tends to zero as the number of children of h−ℓ grows.

Theorem 1 (Necessary condition for entire observation
space Z of children of h−ℓ to be safe): Fix δ∈[0, 1] and assume
that

P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
≥δ. (17)

Eq. (17) is a necessary condition for the entire observation
space Z of children of h−ℓ to be safe. To rephrase that

P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
<δ (18)

implies that ∃bℓ(hℓ) a child of h−ℓ which is not safe, namely,
P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
<δ.

See Appendix C for a detailed proof. We still need to
check the children posteriors {zlℓ}

|C(h−
ℓ )|

l=1 . This is because
the condition (17) is only necessary and not sufficient.
In other words, if for all the children ∀zℓ∈Z of h−ℓ ,
it holds that P

(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
≥δ it has to be that

P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
≥δ. Since the condition is not sufficient

we cannot say that P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ

)
<δ implies that ∀bℓ(hℓ)

that are children of h−ℓ it will hold that P
(
{xℓ∈X safe

ℓ }
∣∣hℓ
)
<δ.

Note that if for every sampled observation
P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zlℓ

)
≥δ, it implies that

(
1

|C(h−
ℓ )|
∑|C(h−

ℓ )|
l=1 P

(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zlℓ

))
≥δ. (19)

To conclude, by constraining the propagated belief, we con-
strain the theoretical expectation of the posteriors given h−ℓ ,
and by constraining each posterior we also constrain its sample
approximation portrayed by Eq. (19). Without constraining
the propagated belief, if the number of children of b−ℓ (h

−
ℓ )

is small, namely, |C(h−ℓ )| is small, we anticipate poor robot’s
safety in execution of the best action found by our planner
(e.g. number of collisions). This is because constraining the
propagated belief allows to account in expectation for all
the observations in the observation space, and not only the
sampled observations. This will happen if the number of
MCTS tree queries is small.

It is possible that other definitions of safety of the beliefs
can be utilized. While this is outside the scope of this paper,
we specified relevant operators ϕ in the Appendix, Section D.
Remark: To assure feasibility of our PC (10) at the limit of
MCTS convergence, the robot has to have a bounded support
of the belief b0 and bounded motion models. If we deal with a
particle based representation of b0 we perceive the particles as
true robot positions, so it is left only to assure that the motion
model is bounded. This is, however, natural since the robot
cannot have limitless actuators.

IV. PC-MCTS (ANYTIME APPROACH)

Our constraint depends on a stochastic policy. Similar to the
objective (5) in our PC we land at the following result.

Theorem 2 (Representation of PC, recursive form): The PC
defined by (14) conforms to the following recursive form.

1Aδ
0
(b0)E

b1

[
1Aδ

1
E
a1

[
E
b2

[
1Aδ

2
. . .

E
[
1Aδ

L
|bL−1, aL−1

]
. . .
∣∣∣b1, a1

]∣∣∣b1, π1,
∣∣∣b0, a0

]
=

1Aδ
0
(b0)E

b1

[
E

a1∼Pπ
1 (a1|b1)

[

P
(( L∏

ℓ=1

1Aδ
ℓ
(bℓ)

)
=1
∣∣∣b1, a1, π

)∣∣∣b1, π1
]∣∣∣b0, a0

]
.

(20)

We provide a detailed proof in the Appendix, Section B.
In this section, we present our anytime safety approach.

To invalidate the sample approximation of (10) it is sufficient
that a single belief (propagated or posterior) in the belief tree
fails to be safe and the corresponding indicator is zero. In
our methodology, we leverage the classical iterative MCTS
scheme of descending down the search tree of histories and
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ascending back to the root (Section II-C). Once on the way
down the tree an unsafe belief is encountered, we know that
the PC enforced from each predecessor belief node is violated.
We delete such an action from the search tree and fix the Q̂
above. Let us delve into the details.

Suppose the MCTS is configured to run without rollout.
Would we construct the estimated counterpart of (20) from
the belief tree constructed by MCTS our PC would be as such

(
1Aδ

0
(b0)

∑
i1∈C(b0a0)

1
Aδ

1
(b

i1
1 )

|C(b0a0)|

∑
a1∈C(h

i1
1 )

n(h
i1
1 a1)

n(h
i1
1 )

∑
i2∈C(h

i1
1 a1)

1
Aδ

2
(b

i2
2 )

|C(h
i1
1 a1)|

· · ·

· · ·
1
Aδ

L−1
(b

iL−1
L−1 )

|C(h
iL−2
L−2 aL−2)|

∑
aL−1∈C(h

iL−1
L−1 )

n(h
iL−1
L−1 aL−1)

n(h
iL−1
L−1 )

∑
iL∈C(h

iL−1
L−1 aL−1)

1
Aδ

L
(b

iL
L )

|C(h
iL−1
L−1 aL−1)|

)
=1.

(21)

Since our constraint is defined using an indicator, (21) trans-
lates to the fact that each lace defined by the actions and the
observations on the way down the tree shall consist of safe
beliefs.

To emphasize that each belief in the search tree has a
single parent and the corresponding parent is attainable, let
us introduce yet another notation biℓ|iℓ−1

ℓ . This means that the
belief biℓ|iℓ−1

ℓ has global index iℓ and parent belief has global
index iℓ−1. On the way down the tree we ensure that

(
1Aδ

0
(b10)1Aδ

1
(b
i1|1
1 )1Aδ

2
(b
i2|i1
2 ) · · ·

1Aδ
L−1

(b
iL−1|iL−2

L−1 )1Aδ
L
(b
iL|iL−1

L )
)
=1,

(22)

where the actions along the lace are
a1∈C(hi11 ), a2∈C(hi22 ), . . . , aL−1∈C(hiL−1

L−1 ) and the
beliefs are according to the observations indexed by
i2 ∈ C(hi11 a1), i3∈C(hi22 a2), . . . , iL∈C(h

iL−1

L−1 aL−1). In other
words we require that every propagated and posterior belief
along the lace would be safe.
Remark The equivalence of (21) and the fact that every
lace in search tree shall be safe is a property of our PC
formulation, e.g., this is no happening in case of popular
Chance Constraint [15].

Note that in (21) we do not have distributional shift due
to progressive widening of observations (and the fact that
not in every tree query a new belief node is introduced) as
opposed to the objective (8). This is because we do not take
into account the statistics dictated by the visitation counts of
the observations.

As we see from (21), the recursive form portrayed by
(20) transfers to MCTS estimator. For clarity of the ex-
position let us denote the product of the indicators in
the inner constraint (14) by c depending on the current
and future beliefs. For example, at the root of the belief
tree we have c(b0:L)=1Aδ

0
(b0)

∏L
ℓ=11Aδ

ℓ
(bℓ). By design, (20)

and (21) equals one if and only if, the PC starting from
each belief action node ha in the tree is satisfied, namely
P
(
c=1|b(h), a, π

)
=1. We now define the notion of dangerous

action in belief tree.

Remark: We call an action dangerous if it is believed to be
dangerous. Meaning our notion of dangerous or safe actions
based on beliefs and not the possible POMDP states as in
Chance Constraint [2].

Definition 1 (Dangerous action): A dangerous action is
action a in a place h in a search tree that renders an estimator
of (20) smaller than one, namely P̂

(
c=1|b0, a0, π

)
<1, where

the estimator is as in (21).
Note that best stochastic future tree policy is dependent on the
number of performed tree queries.

Corollary 1: Each action in a search tree can be dangerous
or safe. We define safe action a (or a0) to be the action that
is not dangerous, namely P̂

(
c=1|b0, a0, π

)
=1 and safe under

the safe future tree policy, namely P̂
(
c=1|b(h), a, π

)
=1 for

arbitrary future history h as a result of mentioned safe policy.
Let us reiterate that we build the search tree solely from
the safe actions. Effectively, using our pruning and fixing the
values and statistics maintained by the search, to be explained
shortly, we assure preemptively that the sample approximation
of (20) defined by (21) using the beliefs from the search
tree built by MCTS equals to one. To assure that the (21)
equals one it is required that every indicator function within
is one. This is our mechanism to assure that in any finite
time the search tree contains only safe actions as opposed
to duality based methods where the constraint is satisfied
only at the convergence limit, namely in infinite time (see
Section VI-B). When a newly sampled belief renders the
corresponding indicator equal one, we add it to the belief tree.
If the indicator is zero, we develop a mechanism to delete an
action and fix the search tree upwards.

A. Pushing Forward in Time Only the Safe Trajectories

Even if (21) equals one, meaning every indicator inside
equals one, when δ<1 and payoff operator as in (12), it is
possible that there exist samples that are unsafe, e.g., falling
inside an obstacle or a dangerous region. If the robot is
operational it means the robot was safe before it commenced
an action. Thus, we shall discard the unsafe portion of the
belief before we update the belief with action and observation
(barring the situation when δ=1 and payoff operator as in
(12) and (13)). We define b̄safe as the belief constituted only
by the safe particles, namely conditioned on the history and
the events {x∈X safe}. Such a belief is given by

b̄safeℓ (xℓ)=P(xℓ|b0, a0:ℓ−1, z1:ℓ,
⋂ℓ
i=0{xi∈X safe

i }). (23)

To convert b̄ to b̄safe we remove not safe particles and resample
with replacement the safe ones to the initial size. This means
that the beliefs and observations in (20) will be not as in
objective (9) but as follows. We define b̄ as the belief obtained
by percolating forward in time belief that has been made safe
sequentially, that is b̄′=ψ(b̄safe, a, z′) where

b̄ℓ(xℓ)=P(xℓ|b0, a0:ℓ−1, z1:ℓ,
⋂ℓ−1
i=0{xi∈X safe

i }), (24)

and the belief propagated only with action and without an
observation

b̄−ℓ (xℓ)=P
(
xℓ|b0, a0:ℓ−1, z1:ℓ−1,

⋂ℓ−1
i=0{xi∈X safe

i }
)
. (25)
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Both beliefs are generally unsafe. Our BMDP tuple is now
augmented with another space of beliefs B̄ defined by (24).
We have now

⟨B, B̄︸︷︷︸
space

of the beliefs
defined by (24)

,A,Tb, ρ︸︷︷︸
reward

, ϕ︸︷︷︸
payoff

, γ, b0⟩.

At this point we need to define another safe set

Āδℓ={b̄−ℓ , b̄ℓ:b̄−ℓ ∈B̄−ℓ , b̄ℓ∈B̄ℓ, ϕ(b̄−ℓ )≥δ, ϕ(b̄ℓ)≥δ}.

Here the B̄−ℓ and B̄ℓ are reachable by changing observations
in (24) and (25) spaces. Do note that only in time 0 the set
Aδ0=Ā

δ
0. This is because in inference we know that robot is

still operational. We always make safe the actual robot belief
b0. In planning, the belief is rendering the observation in the
next time step (Fig. 4a). Thus in both CC and PC in time
ℓ+1, the observation PDF reads P(zℓ+1|b̄safeℓ , aℓ), whereas in
objective we have P(zℓ+1|bℓ, aℓ). We sample from the latter
and the normalized ratios of these likelihoods

waℓℓ+1 ∝ P(zℓ+1|b̄safeℓ ,aℓ)/P(zℓ+1|bℓ,aℓ) (26)

are the weights in the equation (28). Using Importance Sam-
pling in such a way, we construct a single belief tree. However,
for the constraint calculation we use the b̄ corresponding to the
belief b, please see Fig. 4a. The Eq. (14) transforms into

P
((
1Aδ

0
(b0)

∏L
ℓ=11Āδ

ℓ
(b̄ℓ)

)
=1|b0, a0, π

)
. (27)

Let us reiterate, on the way down the tree, we ensure that
every belief along the lace lightens up its indicator. Similar to
(21), we ensure that under the stochastic policy approximated
by the MCTS, the PC is satisfied. We have that

(
1Āδ

0
(b0)

∑
i1∈C(b0a0)

wa0,i11 1Āδ
1
(b̄i11 )

∑
a1∈C(h

i1
1 )

n(h
i1
1 a1)

n(h
i1
1 )∑

i2∈C(h
i1
1 a1)

wa1,i22 1Āδ
2
(b̄i22 )· · ·

· · ·1Āδ
L−1

(b̄
iL−1

L−1 )
∑
aL−1∈C(h

iL−1
L−1 )

n(h
iL−1
L−1 aL−1)

n(h
iL−1
L−1 )

∑
iL∈C(h

iL−1
L−1 aL−1)

w
aL−1,iL
L 1Āδ

L
(b̄iLL )

)
=1.

(28)

Further in this paper we assume that the observa-
tion model O(z, x) has infinite support, to rephrase that
{z∈Z, x∈X :O(z, x)>0}=Z×X . This assumption ensures
that there are no nullified weights in (28). Further, since the
weights in (28) are normalized and all of them are nonzero,
even a single weight missing because the inner constraint
is violated, renders (28) smaller than one. This means that
the constraint with respect to the root b0 of the belief tree
is not satisfied. Since the weights are selfnormalized per
action, to verify that (28) equals to one we do not need to
calculate weights at all. In fact, we never check the whole PC
approximation. In contrast, as we already mentioned we only
verify that each indicator equals to one on the way down the
tree.

truncation

Fig. 3: Illustration of the effect of truncation of motion model T.

B. Bounded Support Motion Model

Suppose b̄safe is represented by the finite set of particles,
belief update ψ is a PF. If motion model has a support
encapsulating the whole space Rd, where d is a dimension, for
every possible action it will be eventually unsafe belief. This
is because eventually, at the limit of MCTS, for every tried
action it will be non safe belief. However, we know that robot
cannot teleport and truncation of motion model is, therefore,
natural. In fact it is assumed often times to be Gaussian to
bring infinite support to the table to alleviate the complexity
of the solution. Observe Fig. 3. Without truncation for every
action a it is possible that the propagated sample will be unsafe
and render next in time posterior belief also unsafe.

Using our further presented method we build a tree solely
from safe actions. Do note that all our algorithms can be run
with various belief dependent operators. It is customary to
maintain a pair of posterior beliefs b̄ and b as visualized in
Fig. 4a or just maintain a single belief b. Further we stick to
the former scheme as in Fig. 4a.

C. Constraint Violation and Efficient Tree Cleaning

Before we begin this section we must clarify that from now
on we slightly change the notations in text and the algorithms.
To recap, we use following variables: h represents a history
{b, a0, z1, . . . aℓ−1, zℓ}, and haz′ is the shorthand for history
with a and z′ appended to the end. In a similar manner, as
mentioned earlier, ha is the history h with action a appended
to the end. C(ha) is a set of the children of a belief-action
node ha. Each such a child, now, is a triple of observation,
reward, and posterior belief {z′, r′, b′}.

We now explain how we prune all dangerous actions
(Def. 1) from the search tree and thereby our search tree
always contains only the safe actions (Cor. 1). Actions at
the root and tree future policy, which is stochastic due to
exploration, are such that the PC is fulfilled starting from each
belief node in the search tree. Suppose that our Probabilstically
Constrained MCTS (Alg. 2 and 5) is currently at a belief
node b(h) in the belief tree, with a corresponding history h
defining the unique place h in the belief tree. The algorithm
selects an action according to (7) and suppose it creates a new
belief. Every time we create a new belief node to be added
to the search tree we obtain b′ for the reward calculation and
corresponding b̄′,− and b̄′ for the constraint. We then check if
ϕ(b̄′,−)≥δ and ϕ(b̄′)≥δ and if both inequalities are satisfied
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(a) (b) (c)

Fig. 4: (a) Conceptual illustration of maintaining a pair of posterior beliefs, b and b′ are used for the reward operator, while b̄, b̄′,− and b̄′ for the safety operator. We create
observation using belief b highlighted by the brown color. In the subfigures (b) and (c) we visualize the cleaning of the belief tree in case that new belief violated the inner constraint.
By blue color we mark elements related to optional rollout. By the thick red dashed circle we mark a newly expanded belief node. (b) In this scenario the belief node is a first
child expanded from the first selected action a1. The expanded belief violates the inner constraint. Thus we need to prune action a1. Because we have not updated the visitation
count of b yet, we only need to delete action a1. (c) Harder scenario for cleaning the tree. Here we need to perform appropriate fixes to the action-value-estimates after we prune
a2. Note that UCB or PUCT, tries each action from each belief infinitely many times.

we add the newly created node to belief tree. If ϕ(b̄′,−)<δ or
ϕ(b̄′)<δ, we shall prune an action leading to this belief node
from the belief tree and fix the Q̂ upwards since the laces
emanating from the cleaned action participate in Q̂ of every
ancestor belief action node. Due to the fact that we assemble
Q̂ at each belief-action node from laces, at node h it holds
that V̂ ∗(h)=

∑
a∈C(h)

n(ha)Q̂(ha)
n(h) and n(h)=

∑
a∈C(h) n(ha).

The Q̂ of the parent reads

Q̂(hpaapa)=
(n(h)+1)

(
ρ(bpa,apa,b)+V̂ ∗(h)+roll(h)

)
+...

n(hpaapa) . (29)

where the summation over all the sibling subtrees and the visi-
tation count appears as n(hpaapa)=n(h)+1+nsibling,1+1 . . . ,
where by the red red color we denote values of the current
belief node and by the blue color we denote optional values
related to the activation of the rollout. We now turn to an expla-
nation of how to clean the tree efficiently using subtraction and
adding operations instead of assembling action-value estimates
and visitation counts from scratch using updated values down
the tree. Suppose the action leading to the newly added belief
does not have sibling subtrees corresponding to another actions
and this belief is the first child of such an action, as depicted
in Fig. 4b. In this case the visitation count n(h) and V̂ ∗(h)
are not present yet within Q̂(hpaapa). This is because the
only rollout was commenced from b(h). We can just delete
the action leading to the newly created belief node.

We, now, focus on a more interesting setting depicted in
Fig. 4c. After we deleted the subtree defined by the belief
node b(h) and action a (a2 in Fig. 4c), we need to update the
visitation count n(h) as such n(h)←nintree(h)−nintree(ha),
where we denote values that are currently in the be-
lief tree by □intree. As shown in Fig. 4c, we have that

V̂ ∗,intree(h)=
∑

a∈Cintree(h) n
intree(ha)Q̂intree(ha)∑

a∈Cintree(h) n
intree(ha) . At this point

we have everything to calculate the updated value function
at belief b(h) indexed by history h. To do that we use the
relation:

V̂ ∗(h)·n(h)︸ ︷︷ ︸
S(h)

← V̂ ∗,intree(h)nintree(h)︸ ︷︷ ︸
Sintree(h)

−

Q̂intree(ha)nintree(ha).

(30)

For an efficient update by (30) we need to cache the sum of
the cumulative reward laces for each belief node. We define
such a sum as S(h)≜V̂ ∗(h)·n(h). In addition, we need to
subtract the deleted action a from the set of children of
b(h), namely C(h)←C intree(h)\{a}. If b(h) is a root node
we just update its visitation count n(h) to a new value.
We do not need to store S(h) for a root belief. Else, we
identify a parent action and node of b(h) marked apa and
bpa respectively. We need to calculate n(hpaapa) as such,
n(hpaapa)←nintree(hpaapa)−nintree(h)+n(h). We then shall
update Q̂(hpaapa) as such

Q̂(hpaapa)·n(hpaapa)←Q̂intree(hpaapa)·nintree(hpaapa)−
(
nintree(h)+1

)(
ρ(bpaapab)+V̂ ∗,intree(h)+rollintree(h)

)
+

(
n(b)+1

)(
ρ(bpaapab)+V̂ ∗(h)+rollintree(h)

)
.

(31)
Note that (31) encompasses both cases. The case when the
subtree is deleted (30) and the case then only the visitation
counts down the tree and the Q̂ are updated (upper levels of
the belief search tree). The value of V̂ ∗(h) subsumes both
cases. In the latter case its update reads as such

V̂ ∗(h)·n(h)︸ ︷︷ ︸
S(h)

← V̂ ∗,intree(h)nintree(h)︸ ︷︷ ︸
Sintree(h)

−

Q̂intree(ha)nintree(ha) + Q̂(ha)n(ha).

(32)

We now calculate a new visitation count of bpa us-
ing n(hpa)←nintree(hpa) − nintree(hpaapa)+n(hpaapa), and
S(hpa) using (32) and renaming there the history from h
to hpa and the action from a to apa. Now we can treat
bpa(hpa) similarly as we treated b(h). We outlined the tree
cleaning procedure in Alg. 4. To conclude, this way our search
tree always consists of only safe actions (not dangerous with
respect to Def. 1).

V. THE ALGORITHMS AND GUARANTEES

This section describes our algorithms followed by conver-
gence guarantees. Alg. 2 summarizes our main result. Similar
to [18], we present a provable modified variant summarized
by Alg. 5.
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Listing 1 Common procedures

1: procedure PLAN(belief: b, horizon: L)
2: for m iterations or timeout do
3: h← ∅
4: SIMULATE(b, b, h, L) ▷ A single tree query
5: end for
6: return ACTIONSELECTION(b, h, 0)
7: end procedure

A. Detailed Algorithms Description

The entry point of both these algorithms, listed in Listing
1, is a loop over trials of observation laces. The difference
between the algorithms is in the SIMULATE function. We
name a single call to SIMULATE a tree query. In each
trial, we descend with the lace of observations and actions
intermittently, calculate the beliefs and rewards along the way,
and ascend back to the root of the belief tree. Once, on the way
down the tree, the unsafe belief is encountered we clean such
action from the search tree and fix the action value estimates of
all ancestor belief action nodes. Similar to the classical MCTS
our approach can be run with rollout or without. In addition,
if we do not want to use safe beliefs for the constraint we only
need to remove parts marked by the brown color in Alg. 2 and
5 and use regular belief instead. We also present a Polynomial
variant of our approach, Alg. 5 we named PC-MCTS with
Polynomial Upper Confidence Tree (PC-MCTS-PUCT). In the
next section, we prove the convergence with an exponential
rate of Alg. 5 in probability. Note that we cache the values of
the summation of the cumulative reward for all belief nodes
for both algorithms. This happens in line 31 of Alg. 2 and line
30 of Alg. 5, where we denote S(h) = V̂ ∗(h)·n(h).

a) Safe Rollout: The rollout is not necessary for applying
MCTS. Without rollout, upon opening a new belief node the
MCTS would behave as it reached the leaf node. Nevertheless,
the rollout helps to provide better results in finite time and ap-
parently helps to accelerate convergence (We did not find any
rigorous analysis for that). With this motivation in mind, we
present the Safe Rollout routine for our approach summarized
by Alg. 3. Our safe rollout selects action randomly which
myopically fulfills the sample approximation of myopic PC
based on m samples. If no feasible action exists (which is not
possible with our method since we always have an action “do
not do anything”) we select an action maximizing the sample
approximation mentioned before.

B. Convergence Guarantees

Although we sample actions and observations and the num-
ber of samples of both is marching to infinity in discrete steps,
MCTS converges, at each belief action node in probability, to
the optimal value of the probailistically constrained problem
defined by

Qπ
∗
(b(h), a;ρ) subject to (33)

P
(
c=1|b̄(h), a, π

)
=1. (34)

In (33) we omitted the time indices. MCTS approximates the
stochastic policy π∗ by a discrete but infinite set of sampled

Algorithm 2 Probabilistically Constrained MCTS (PCMCTS)

1: procedure SIMULATE(belief: b, belief: b̄, history: h,
depth: d)

2: if d = 0 then
3: return 0
4: end if
5: b̄safe ← MAKEBELIEFSAFE(b̄)
6: SafeActionFlag ← false
7: while not(SafeActionFlag) do
8: a← ACTIONSELECTION(h, c)
9: Calculate propagated belief b′− from b and b̄′,−

from b̄safe using a
10: if |C(ha)| ≤ kon(ha)αo then ▷ observation Prog.

Widening
11: z′ ∼ PO(z|xo);xo ∼ b′−
12: b̄′ ← ψ(b̄safe, a, z′), Calculate

1{b̄′,−,b̄′:ϕ(b̄′,−)≥δ,ϕ(b̄′)≥δ}(b̄
′,−, b̄′)

13: if 1{ϕ(b̄′,−)≥δ,ϕ(b̄′)≥δ}(b̄
′,−, b̄′) == 0 then

14: CLEANTREE(h, a) ▷ Clean current belief
tree to be safe using Alg. 4.

15: Continue ▷ Jump to line 14
16: else
17: SafeActionFlag ← true
18: end if
19: b′ ← ψ(b, a, z′), r′ ← ρ(b, a, z′, b′) ▷ Regular

belief and the reward on top of it are obtained only for
not pruned actions

20: C(ha)← C(ha) ∪ {z′, r′, b′}
21: rlace ← r′ + γ SAFEROLLOUT(b′, d− 1)
22: else
23: SafeActionFlag ← true
24: {z′, r′, b′} ← sample uniformly from C(ha)
25: rlace ← r′+γ SIMULATE(b′,b̄′, haz′, d−1)
26: end if
27: end while
28: n(h)← n(h) + 1 ▷ Initialized to zero
29: n(ha)← n(ha) + 1 ▷ Initialized to zero
30: Q̂(ha)← Q̂(ha) + rlace−Q̂(ha)

n(ha) ▷ Initialized to zero
31: S(ha)← S(ha) + rlace ▷ Initialized to zero
32: return rlace

33: end procedure
34: procedure ACTIONSELECTION(b, h, c)
35: if |C(h)| ≤ kan(h)αa then ▷ action Prog. Widening
36: a← NEXTACTION(h)
37: C(h)← C(h) ∪ {a}
38: end if
39: return argmaxa∈C(h) Q̂(ha) + c

√
logn(h)/n(ha) ▷

UCB
40: end procedure



11

Algorithm 3 Myopically Safe Rollout Action selection

1: procedure SAFEROLLOUTPOLICY(b, A)
2: A ← shuffle(A). V ∗ ← −∞ ▷ by shuffle assure that

action is selected randomly
3: for a ∈ A do
4: for m iterations do
5: Calculate propagated belief b′− from b and a
6: z′ ∼ PO(z|xo);xo ∼ b′−
7: b′ ← ψ(b, a, z′)
8: Calculate 1{ϕ(b′−)≥δ,ϕ(b′)≥δ}(b

′−, b′)
9: end for

10: V̂ (m) ← 1
m

∑m
i=1 1{ϕ(b′−)≥δ,ϕ(b′)≥δ}(b

′,i,−, b′,i)
11: if V̂ (m) ≥ 1− ϵ then ▷ Note that we added ϵ here
12: return a ▷ First shuffled action satisfying

myopic PC approx. is returned
13: else if V̂ (m) > V̂

(m)
∗ then

14: V ∗ ← V , a∗ ← a
15: end if
16: end for
17: return a∗

18: end procedure

continuous actions and statistics defined by the visitation
counts. To give an intuition, the convergence in probability
is a result of the fact that we are dealing with expectations
(See Lemma 1 and Theorem 2) and the fact that every belief
action node is visited infinite amount of times due to (7) even
in continuous domains where the new nodes are endlessly
expanded. Moreover, the polynomial variant of DPW used in
Alg. 5 allows to each belief-action node be visited a sufficient
amount of times before the next new belief is introduced.
Thus, convergence in probability happens with an exponential
rate. Although the tree policy is tree query dependent and
improves over time, [20] showed the convergence is from the
leafs and upwards to the value under the optimal stochastic
policy. Further we show that if the actions are continuous and
have some natural distribution, MCTS will eventually sample
an unsafe action (line 36 in Alg. 2 and line 35 in Alg. 5).

Theorem 3: Suppose, at the node h, we have an action a
sampler on top of the continuous probability space (A,F ,P)
where A is the outcomes space, F events space and P is the
probability. At the limit of convergence in infinite time (after
an infinite number of tree queries), it holds that C(h) includes
an action sampled from A that is arbitrary close to the optimal
action with respect to the theoretical action-value function at
each belief node.

To prove that we take an arbitrary set S∈A such that
P(S|h)>0. Note that the probability here depends on the
history (belief) we focus on. Time marches to infinity in
countable steps so as the samples are countable. Denote by
|C(h)| the number of i.i.d. samples (line 36 in Alg. 2 and line
35 in Alg. 5 ). The probability of sampled action a∼P(a|h)
not to be in S is P({a∈A : a̸∈S}|h)=1−P(S|h). When the

Algorithm 4 Cleaning Belief tree to be safe

1: procedure CLEANTREE(h, a)
2: Delete all children b′ of ba belief-action node and

delete ba itself C(h)←C intree(h) \ {a}
3: if nintree(h) == 0 then
4: return
5: end if
6: n(h)← nintree(h)− nintree(ha)
7: if b is root then
8: C intree(h)← C(h), nintree(h)← n(h),
9: return

10: else
11: Assemble V̂ ∗(h)
12: end if
13: while true do
14: if b is root then
15: nintree(h)← n(h),
16: return
17: end if
18: Identify apa which is parent to b
19: Identify bpa such that bpaapa is a belief action node

which is parent of b
20: n(hpaapa)←nintree(hpaapa)−nintree(h)+n(h) ▷

History hpa corresponds to belief bpa

21: Reconstruct Q̂(hpaapa) and put nintree(h)←n(h)
and Sintree(h)←S(h)

22: n(hpa)←nintree(hpa)−nintree(hpaapa)+n(hpaapa),
23: Assemble V̂ ∗(hpa) and put

Q̂intree(hpaapa)←Q̂(hpaapa) ▷ We have V ∗(hpa) and
n(hpa) for the next iteration

24: b←bpa
25: end while
26: end procedure

number of samples tends to infinity we have that

(1−P(S|h))|C(h)| →︸︷︷︸
|C(h)|→∞

0. (35)

It holds that the probability not to sample an action in S
tends to zero with number of samples tending to infinity.
Therefore, in the unconstrained MCTS approach, the action
value function estimates Q̂ will include unsafe actions if they
are exist in the action space A. On the contrary in our safe
approach we remove the actions sampled from the unsafe sets
of arbitrary small positive measure.

We now show that the cleaning tree routine is necessary due
to fact that we will sample an infinite amount of unsafe actions
and this can shift the expectations with respect to actions in
values maintained in search tree.

Without our pruning we will obtain infinitely many un-
safe actions in each unsafe set S. It can be seen using
the second Borel Cantelli Lemma. Towards this end let us
define the event Ei≜{ai∼P(a|h):ai∈S}, sampled action i is
a member of set S. The events Ei are independent since
we sample actions independently. The series

∑∞
i=1 P(E

i|h)
are divergent since P(Ei|h)=P(S|h)>0 by definition. Thus,
P
(⋂∞

j=1

⋃∞
i=j E

i
∣∣h
)
=1, namely the event sampled action is
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a member of set S occurs infinitely often times. To rephrase
that, without our pruning we would have sampled infinitely
many dangerous actions and, therefore, the expectations can
undergo a shift and even if at the root of the belief tree we
select an optimal safe action, the influence of unsafe future
actions can be substantial.

In this section, we prove convergence in probability with
an exponential rate of Polynomial Upper Confidence Tree
(PUCT) version of our approach (Alg. 5). We now list down
the changes between Alg. 2 and Alg. 5:

• In Alg. 5 we have Polynomial Double Progressive Widen-
ing with depth dependent parameters defined in [20];

• The rollout in Alg. 5 is missing;
• If Alg. 2 decided not to open a new branch it samples

the triple {z′, r′, b′} uniformly from C(ha) (line 24 high-
lighted by the blue color). In contrast Alg. 5 selects the
child with a minimal visitation count (line 23 highlighted
by the blue color).

The following theorem provides its soundness.
Theorem 4 (Convergence with Exponential Rate in Proba-

bility): Every belief h and belief action node ha of Alg. 5,
equipped with our pruning mechanism from Section IV-C and
summarized by Alg. 4 converges in probability and with an
exponential convergence rate to the optimal value function
V ∗(b(h)) and action-value function Q(b(h)a), respectively,
while satisfying the PC starting from the belief action node
ha, namely P

(
c=1|b̄(h), a, π∗)=1.

Next, we provide the proof under rather mild assumptions.
To be specific we must assume that reward lies in a bounded
interval and that sampling of actions covers the entire space
with an arbitrary precision. For more precise definition see
Def. 2. Our proof is valid for both approaches, namely with
making belief safe before pushing forward in time with action
and observation and without (in this case the constraint at each
belief-action node is P

(
c=1|b(h), a, π∗)=1). Similar to [18]

we leverage the proof by [20].
Before we proceed let us mention that DPW of Alg. 2 with

kz = ka = 1 and depth dependent αd as described in [20] are
identical to the one used in Alg. 5.

Lemma 2: Fix belief node b(h) in belief tree and belief
action node ha, ka = ko = 1 in Alg. 2 and select in Alg. 2
and Alg. 5 same αo,d and αa,d ∈ (0, 1) in both algorithms (can
be depth dependent). The condition |C(ha)| ≤ n(ha)αo,d is
equivalent to ⌊n(ha)αo,d⌋ > ⌊(n(ha) − 1)αo,d⌋. In a similar
manner |C(h)| ≤ n(h)αa,d is equivalent to ⌊n(h)αa,d⌋ >
⌊(n(h)− 1)αa,d⌋.
We provide sketch of the proof. It is sufficient to prove that
the first claim is identical since both have identical structure.
Let us focus on |C(ha)| ≤ n(ha)αo,d. The new child is added
if and only if the visitation n(ha)αo,d passes the subsequent
integer at some visitation of node ha. This is happening if and
only if ⌊n(ha)αo,d⌋ > ⌊(n(ha)− 1)αo,d⌋. ■

Now we would like to pay attention to the fact that since
we clean the belief tree from the unsafe actions, we have
n(h)≥∑a∈C(h) n(h, a). This is in contrast to the classical
MCTS, where n(h)=

∑
a∈C(h) n(h, a). Therefore, we shall fix

the visitation count of each belief node and belief action node
that have been affected by pruning. This is done by Alg. 4.

Algorithm 5 Probabilistically Constrained MCTS PUCT

1: procedure SIMULATE(belief: b, belief: b̄, history: h,
depth: d)

2: if d = 0 then
3: return 0
4: end if
5: b̄safe ← MAKEBELIEFSAFE(b̄)
6: SafeActionFlag ← false
7: while not(SafeActionFlag) do
8: a← ACTIONSELECTION(h, c)
9: Calculate propagated belief b′− from b and b̄′,−

from b̄safe using a
10: if ⌊n(ha)αo,d⌋ > ⌊(n(ha)− 1)αo,d⌋ then ▷

observation Prog. Widening
11: z′ ∼ PO(z|xo);xo ∼ b′−
12: b̄′←ψ(b̄safe, a, z′), Calculate

1{b̄′,−,b̄′:ϕ(b̄′,−)≥δ,ϕ(b̄′)≥δ}(b̄
′,−, b̄′)

13: if 1{ϕ(b̄′,−)≥δ,ϕ(b̄′)≥δ}(b̄
′,−, b̄′) == 0 then

14: CLEANTREE(h, a) ▷ Clean current belief
tree to be safe using Alg. 4.

15: Continue ▷ Jump to line 14
16: else
17: SafeActionFlag ← true
18: end if
19: b′ ← ψ(b, a, z′), r′ ← ρ(b, a, z′, b′) ▷

Regular belief and reward on top of it are obtained only
for not pruned actions

20: C(ha)← C(ha) ∪ {z′, r′, b′}
21: else
22: SafeActionFlag ← true
23: {z′, r′, b′} ← argmin

{z′,r′,b′}∈C(ha)

n(hao)
n(h)

24: end if
25: end while
26: rlace ← r′ + γ SIMULATE(b′, b̄′, haz′,d−1)
27: n(h)← n(h) + 1 ▷ Initialized to zero
28: n(ha)← n(ha) + 1 ▷ Initialized to zero
29: Q̂(ha)← Q̂(ha) + rlace−Q̂(ha)

n(ha) ▷ Initialized to zero
30: S(ha)← S(ha) + rlace ▷ Initialized to zero
31: return rlace

32: end procedure
33: procedure ACTIONSELECTION(b, h, c)
34: if ⌊n(h)αa,d⌋ > ⌊(n(h)− 1)αa,d⌋ then ▷ action Prog.

Widening
35: a← NEXTACTION(h)
36: C(h)← C(h) ∪ {a}
37: end if
38: return argmaxa∈C(h) Q̂(ha)+

√
n(h)ed/n(ha) ▷ PUCT

39: end procedure

The following claim is required to understand [20] and we
give now an informal proof missing in [20].

Lemma 3: The kth child of node ha in Alg. 5 is added on
visit n(ha) = ⌈k 1

α ⌉ ≜ nk(ha).
Observe that the left hand side of ⌊n(ha)αo,d⌋ > ⌊(n(ha)−

1)αo,d⌋ jumped ⌊n(ha)αo,d⌋ times and right hand side
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lagged exactly by single visitation. So the inequality is ful-
filled exactly ⌊n(ha)αo,d⌋ times. Moreover, the first n(ha)
such that n(ha)αo,d passes a subsequent integer assures
the jump. Meaning, we have two cases. The first case is
n(ha)αo,d=⌊n(ha)αo,d⌋=k and taking k

1
αo,d = ⌈k 1

αo,d ⌉ is
returning us back to n(ha). The second case is ⌊n(ha)αo,d⌋+
1 > n(ha)αo,d > ⌊n(ha)αo,d⌋ = k. But we know that if k

1
α

would be an integer, it would the previous case with a smaller
n(ha). The k

1
α has to be slightly larger than integer so as ceil

operator return the right natural n(ha). Similarly number of
actions expanded from node h is ⌊n(h)α⌋. ■

Our cleaning routine prunes only the actions and fixes the
affected visitation counts so the proof by [20] is not broken.
Further we establish the definitions and the assumptions from
[20] in order to assure the validity of the proof. Some of them
we take directly from [20], [18].

Definition 2 (Regularity Hypothesis): The Regularity hy-
pothesis is the assumption that for any ∆>0, there is a non
zero probability to sample an action that is optimal with
precision ∆. More precisely, there is a θ > 0 and a p > 1
(which remain the same during the whole simulation) such
that for all ∆ > 0,

Q(ha)≥V ∗(h)−∆ with probability of at least min(1, θ∆P ).
(36)

Definition 3 (Exponentially sure in n): We say that some
property depending on an integer n is exponentially sure in
n if there exist positive constants C, h, and η such that the
probability that the property holds is at least

1− C exp(−hnη). (37)

In addition we need to assume that the belief dependent reward
is bounded from below and above, namely it lies in the closed
interval [ρmin, ρmax]. Instead of ρ : B ×A× Z × B 7→ R we
require the mapping to be ρ : B ×A×Z ×B 7→ [ρmin, ρmax]
Under these assumptions the convergence result of Alg. 5
summarized by Theorem 4 holds.

VI. SOTA CONTINUOUS CONSTRAINED MCTS

We now firm up the loose ends and turn to the description
of the existing constrained POMDP considered in an anytime
setting which will serve as our baseline.

A. Expectation Constrained Belief-dependent POMDPs

The averaged constraint formulated with payoff operator
and including the propagated beliefs would be

ET,O
[∑L

ℓ=0 ϕ(b
−
ℓ , bℓ)

∣∣b0, π
]
≥ δ. (38)

One possibility is to define ϕ(b−ℓ , bℓ)=ϕ(b
−
ℓ )+ϕ(bℓ). Clearly

the cumulative averaged formulation (38) is not suitable for
safety since it permits deviations of the individual safety
operators ϕ. It can happen that with the low probability
of future observation the resulting posterior belief will be
extremely unsafe. However, sometimes the operator ϕ is natu-
rally bounded from above. It holds that P({xℓ∈X safe

ℓ }|□)≤1.
Thus, if we select an operator ϕ as in (12) and δ=2L it is
sufficient to ensure safety. If δ<2L, it permits deviations of the

individual belief dependent operators. Therefore, the averaged
with respect to observations episodes and stochastic policy
cumulative constraint is not sufficient to assure safety. The
works [7], [6] impose the averaged cumulative constraint at
the root of the belief tree as

V π(b0;θ0)≜ET,O
[∑L

ℓ=0 θ(b
−
ℓ , bℓ)

∣∣b0, π
]
≤ δθ. (39)

We introduced the optional dependence on b− of cost operator
θ (emphasized by turquoise color), e.g

θ(b−ℓ , bℓ)=θ(b
−
ℓ )+θ(bℓ) (40)

where

θ(□)=1−
ϕ(□) from (12)︷ ︸︸ ︷

P
(
{xℓ ∈ X safe

ℓ }
∣∣□
)
=

P
(
{xℓ /∈ X safe

ℓ }
∣∣□
)
=Exℓ∼□[1{xℓ /∈X safe

ℓ }]

(41)

with values in □ are substituted by b−ℓ and bℓ respectively.
Similar to the behavior of bounded payoff operator, here we
can assure safety if δθ=0. This will assure that (39) is satisfied
if and only if all θ(b−ℓ , bℓ) inside are zero. This is because
P
(
{xℓ /∈X safe

ℓ }
∣∣□
)
≥0. In the light of the discussion about

deviation of the cost values, further in this paper we assume
that δθ=0. Now, if we set δ=1−δθ=1 in our PC (10) and
payoff as in (12) two formulations are equivalent. Yet, this
will happen solely with payoff operator being as in (12), cost
as in (41) and δ=1. Another possibility is to define cost in
(39) as

θℓ(b
−
ℓ , bℓ)≜1−1Aδ

ℓ
(b−ℓ , bℓ) (42)

with δθ=0 and

Aδℓ≜
{
b−ℓ , bℓ:b

−
ℓ ∈B−ℓ , bℓ∈Bℓ, ϕ(b−ℓ )≥δ, ϕ(bℓ)≥δ

}
.

We obtain that the (39) is satisfied if and only if our PC (10)
is satisfied and in both formulations we have the freedom
to select operator ϕ and δ (we still need to assure that the
δ is the same in both formulations). Importantly, unlike the
cost from (41), the cost from (42) can not be represented as
expectation over the state dependent cost. This cost is general
belief dependent operator even if the payoff inside is as (12).
Remark: In general the transition between cost constraint and
payoff constraint is not trivial. To do that one must use the
linearity of the expectation and the relation between the cost
and payoff operators.

B. Duality Based Approach

We now turn to the discussion about duality based approach
in continuous spaces suggested in [5]. Suppose that δθ=0 in
(39); The iterative scheme of duality based approach subsumes
two steps iteratively solving the following objective

max
π

min
λ≥0

(
V π(b0;ρ1)−λ

as in (39)︷ ︸︸ ︷
V π(b0;θ0)︸ ︷︷ ︸

≥0

)
, (43)

where one step minimizes for λ and another maximizes for
execution stochastic policy π. Here, θ0 is a vector of cost
operators (starting from time 0). The Dual ascend goes towards
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Fig. 5: Autonomy loop.

V π(b0;θ0)=0. The policy is feasible only in this case. In the
λ minimization step, since V π(b0;θ0)≥0, the larger λ will
yield smaller objective. Thus, this part of the objective is
becoming increasinlgy important with the iterations of the step
of the minimization of λ. In practice, the (43) is approximated
by the MCTS estimator. Many different suboptimal actions
participate within every Q̂ in the search tree. This is a direct
result of the exploration exploitation tradeoff portrayed by the
(7) and the assembling each Q̂ from the laces (e.g. if the
search tree rooted at b0, the corresponding action value is
Q̂(b0a0)=1/n(b0a0)

∑
j q(b

j
0:L)). Another possibility would be

on the way up the tree to take the maximum of the previously
calculated Q̂(b(h), a) with respect to actions with visitation
count n(ha)>0. We need to exclude the actions with n(ha)=0
in order not to take the initial values qinit (Fig. 2b). If we do
that, on the way up the tree, instead of completing the lace with
future cumulative reward we will complete it with the result of
the maximum. Still, the problem of many actions participating
in the Q̂ remains. Because the result of the maximum is
changing as MCTS progresses, still suboptimal actions are
participating in each Q̂ besides the leaves. This aspect is
detrimental to online planning under the safety constraint. If
the safety is formulated as in eq. (39) and (41) with δθ=0
and the objective is (43), the robot will prefer to depart from
unsafe regions as far as possible to ensure that the all expanded
actions with at least single posterior are safe at as many beliefs
as possible in the search tree. The importance of the all actions
being safe increases closer to the root because closer to the
root actions participate within more laces. Our approach does
not suffer from such a problem since we prune the dangerous
actions in the first place.

VII. SIMULATIONS AND RESULTS

We are now eager to demonstrate our findings in simu-
lations. We compare our approach (Alg. 2 with CPFT-DPW
suggested in [5] with our modifications in terms of constrain-
ing propagated beliefs as described in Section VI-A. For our
approach named PC-PFT-DPW we select the payoff operator
ϕ as in (12) and simulate for δ=1. Our baseline follows the
averaged constraint formulation in the cost form as in (39)
with cost operator as in (42), payoff operator ϕ and δ inside
(42) identical to one used in PC-PFT-DPW. As described in
Section VI-A we set δθ=0. In PC-PFT-DPW we use our safe
rollout (Alg. 3) whereas in CPFT-DPW the rollout is set per
problem.

We always simulate the trials of a number of autonomy loop
cycles. A single cycle of autonomy loop is depicted at Fig. 5.
We now specify our problems under consideration.

A. Problems Composition

We present the Safe Lidar Roomba problem.
a) Safe Lidar Roomba: Roomba is a robotic vac-

uum cleaner that attempts to localize itself in a familiar
room and reach the target region. The POMDP state is
the position of the agent x, its orientation angle θ, and
the status. The status is a binary variable and it tells of
whether the robot has reached goal state or stairs. The
Roomba action space is defined as A={a1, a2, a3, a4, a5, a6}.
The action space A comprises the pairs (v, ωv). Each
Roomba action is a pair (v, ωv). It comprises a velocity
v and a corresponding angular velocity ωv=dθ/dt. We dis-
cretized the velocities and the angular velocities and se-
lected the following action space a1=(0,−π/2), a2=(0, 0),
a3=(0, π/2), a4=(5,−π/2), a5=(5, 0), a6=(5, π/2). We
also have vnoise_coeff=0.2 and ωnoise_coeff=0.05 such that
vmax=5+0.5·vnoise_coeff and ωmax=π/2+ 0.5·ωnoise_coeff . In
our simulations we selected dt=0.5 sec. We set σray=0.01,
rlmin=0.001, the stairs penalty is −10000, the goal reward is
10000, the time penalty is −1000.

The robot motion is deterministic with a predefined time
step dt, but the action is noisy. When we apply PF each
particle is propagated with a noisy action. The velocity
noise is drawn from a uniform distribution over the interval
(−0.5vnoise, 0.5vnoise). In a similar manner, the angular veloc-
ity noise is uniform over the interval (−0.5ωnoise, 0.5ωnoise).
We draw the noise for each particle and add to the action a∈A
before we apply the motion model. To do so, we first clamp
velocity v in the interval [0, vmax]. We then clamp ωv in the
interval [−ωmax, ωmax]. The next θ′=θ+ωv·dt is wrapped to
the interval (−π, π]. After the turn, next position of the agent
is x′=x+v·dt·(cos(θ), sin(θ))T . If the robot hits the wall, it
stops. The status becomes 1 if the robot hits the goal wall
(green color in Fig. 6a) and −1 if the robot hits a stairs wall
(red color in Fig. 6a). At the end of the motion step, the status
is updated and the agent takes an observation. It first deter-
mines the ray length rl using the known workspace (room)
and the position and heading direction (cos(θ), sin(θ))T of
the robot. The distribution of the observation conditioned on
the robot pose is then GaussianN (rl, σ(rl)) truncated from the
left at zero, where σ(rl)=σray max(rl, rlmin). To introduce the
safety aspect, similar to [6], we add a rectangular avoid region
(Fig. 6). The reward is the expectation over the state reward
that is a large reward for reaching the goal, large penalty for
reaching the stairs and for each time instance.

b) Dangerous Light Dark: We take inspiration from
the one dimensional problem from [5]. The agent lives
in a one dimensional space. We reach versatility of ac-
tion space by the length of actions, such that A =
{0,±0.5,±1,±1.5,±2,±2.5,±6}. The agent’s reward is the
multi-objective and subsumes the expected state-dependent
reward and the belief-dependent reward to localize itself

ρℓ+1(bℓ, aℓ, bℓ+1)=Ex∼bℓ [r(x, a)]− tr(Σ(bℓ+1)) (44)

where Σ(bℓ+1) is the covariance matrix of bℓ+1. The agent’s
state dependent goal is to get to location defined by interval
[−0.75, 0.75] as fast as possible and execute the action 0 to
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(a) (b)

Fig. 6: Plot of one of the trials of the execution of the actions from planning in Lidar Roomba problem. Illustration of departing from the unsafe region problem in Lagrangian
based methods. The yellow rectangle represents 500 particles of b0 sampled from a uniform distribution, the pink rectangle is the unsafe region to avoid. The green line is the exit
area and the red line is the stairs. On both figures we plotted the ground truth robot positions and the beliefs that transit from yellow to red as time indexes progress; (a) CPFT
departs as far as possible from the unsafe region. (b) Our method behaves as expected: the agent goes to the green area while avoiding the unsafe region.

stay there. Executing it within the interval [−0.75, 0.75] will
give the agent a reward of 100, and executing it outside the
radius will yield a negative reward of −100. For all other
actions the state dependent reward function is −abs(x). The
agent’s motion model T is specified as

xk+1=xk + ak + wk, (45)

where wk follows truncated Gaussian with σ=0.1 and trun-
cation with ∆=0.5 around nominal value xk+ak. The light
region is located at x=2 and the observation model is zk =
xk+vk where vk∼N (0, σ(xk)) and σ(x)=1{x:|x−2|≤1}(x) ·
10−10+1{x:|x−2|>1}(x)·|x−2|. At x=−0.75 there is a cliff
such that if agent falls it crashes. In addition around the light
source there is a pit. The safe space is X safe={−0.75 < x <
1} ∩ {x > 3}. The prior belief bk(xk) is Gaussian N (7, 20)
truncated such that its support is [6, 8].

c) Simultaneous Localization and Mapping with Certain
and Uncertain Obstacles (SLAM): Our action space comprises
motion primitives and zero action, A = {→,↗, ↑,↖,←,↙
, ↓,↘,0}. If robot selected zero action 0, we do not apply
motion model to each particles but do resampling to take into
account received observation. This allows to robot not move if
it is too dangerous. In this problem the agent and the uncertain
obstacles (landmarks) have circular form. The motion model
T for the agent is

xk+1 = xk + ak + wk. (46)

Our goal is to epitomize the importance of safe state trajec-
tories versus solely safe beliefs trajectory. Towards this end
we draw randomly many tiny obstacles so as one way or
another the unsafe trajectory will be encountered by the robot
if planning was done with pushing forward in time also the
unsafe particles. Our observation model is bearing range with
the noise inversely proportional to the distance to uncertain
obstacle, the landmark l. The motion model for the landmark
is

lk+1 = lk. (47)

We maintain belief over the last robot pose and the landmark.
The observation model reads zk = xk − lk + vk where vk ∼
N (0,Σk(xk, lk)). The Σk(xk, lk) is a diagonal matrix with
main diagonal σ2

k(xk, lk))=∥xk − lk∥2.

1) Pushbox 2D Problem: In this section we first describe
our variation of PushBox2D problem with soft safety. We
then transfer the soft safety to our formulation described in
Section III. Clearly soft safety is not good enough. In cases
there is no feasible solution exists we do not want robot to
do any operations. Instead, it is desirable that robot decide
that the goal is not achievable. The Pushbox2D problem is
motivated by air hockey. A disk-shaped robot (blue disk) must
push a disk-shaped puck (red disk) into a goal area (green
circle) by bumping into it while avoiding any collision of
itself and the puck with an edge area (black area). The state
space consists of the xy-locations of both the robot and the
puck, i.e., X=R4, while the action space is defined by motion
primitives of unit length . The action Null is terminal. If the
robot is not in contact with the puck during a move, the state
evolves according to

x′=(f(x, a) + w, (xp, yp))T , w∼N (0,W ),

f(x, a)=(xr + ax, yr + ay)T ,
(48)

where (xr, yr) and (xp, yp) are the xy-coordinates the robot
and the puck respectively, corresponding to state x, and
(ax, ay) is the displacement vector corresponding to action a.
If the robot bumps into the puck, the next position (x′p, y′p)
of the puck is

x

′p

y′p


 =


x

p

yp


+5rs




a

x

ay


 · n




n+


r

x

ry




 , (49)

where n is the unit directional vector from the center of the
robot to the center of the puck at the time of contact, and
rs is a random variable drawn from a truncated Gaussian
distribution N (µ, σ2, l, u), which is the Gaussian distribution
N (µ, σ2) truncated to the interval [l, u]. The variables rx and
ry are random variables drawn from a truncated Gaussian
distribution N (0.0, 0.12,−0.1, 0.1). The prior belief b0(x0)
is a Gaussian over the robot position and deterministic over
the puck position. The robot has access to a noisy bearing
sensor to localize itself observing the puck and a noise-free
collision sensor which detects contacts between the robot and
the puck. Specifically, given a state x∈X , an observation
(oc, ob) consists of a binary component oc which indicates
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(a) (b)

Fig. 7: (a) Conceptual visualization of the PushBox2D problem. The agent is the blue circle. The puck is the red circle. The goal is the green circle. (b) The observation noise
intensity map. Light green color denotes the lower noise intensity.

whether or not a contact between the robot and the puck
occurred, and a bearing range component obr calculated as

obr=h(x)+v, h(x)=(xr−xp, yr−yp)T , (50)

where xr , yr and xp , yp are the xy-coordinates of the robot
and the puck corresponding to the state x, and ro is a random
angle (expressed in radians) drawn from a truncated Gaussian
distribution with magnitude of the variance dependent on the
position on the map of the robot as in the Fig. 7b). The reward
for the MCTS baseline is the distance to goal of the puck with
boundary region and other obstacles

ρ(b)=− Ex∼b[∥xp − xg∥2]−1000 · 1{oc==1}(oc)+

P({x∈X safe}|b)−H(b). (51)

Here we have a soft chance constraints since it is not clear
how to enforce chance constraints to MCTS. In case of our
approach we shift the P({x∈X safe}|b) component to our
probabilistic constraint.

B. Experiments
We benchmarked our approach using the Lidar Roomba

problem, the famous Light Dark problem, active SLAM prob-
lem and PushBox2D problem. We have shown the issue de-
scribed in Section VI-B on Lidar Roomba and the satisfiability
of the constraint solely at the limit of MCTS convergence
situation on a Light Dark problem. Considering an active
SLAM problem, we visualized the importance of making
belief safe in planning, as described in Section IV-A. With
PushBox2D problem we verified the importance of making
the propagated belief safe and simulated for several values of
δ.

In the Lidar Roomba problem the robot performs at
most 50 cycles of autonomy loop. In the Light Dark prob-
lem, the robot performs 5 cycles of autonomy loop. We
do 70 trials of each such a scenario and approximate the
P(S|b0)≈P̂(S|b0)=

∑70
i=1

1S(τ i
0)/70 using the simulated trajec-

tories. The event S={τ0∈×Lℓ=0X safe
ℓ }, where τ0=x0:L means

each state in the actual robot trajectory starting at time 0 was
safe. V̂ ∗(b0;ρ1)=

1
70

∑70
i=1

∑L(i)
ℓ=0 ρℓ+1(b

i
ℓ, a

i
ℓ, b

i
ℓ+1), where in

Roomba L(i)≤50 since we have terminal state and in Light
Dark L(i)≡5.

In SLAM problem the robot makes 50 trials of at most 20
cycles of autonomy loop. In PushBox2D problem the robot
performs 20 trials of at most 20 cycles of autonomy loop.

In all four problems we take 500 belief particles.

C. Discussion and Results Interpretation

Before we proceed it shall be noted that the number of
collisions and approximated probability that the trajectory is
safe in relevant tables are connected as follows

P̂({τ0 ∈ ×Lℓ=0X safe
ℓ |b0) = P̂(S|b0) = 1− num. coll

num. trials . (52)

Let us interpret the results.
a) Roomba: Table I corresponds to Roomba problem.

From Table I we behold that the cumulative reward yielded
by CPFT is much lower than our method. In particular, the
Roomba never reaches the goal and not stairs. We also calcu-
late an empirical mean of the distance between the terminal
Roomba position and the middle of the goal region. As we
see, CPFT makes Roomba to depart from the obstacle as far
as possible.

b) Light Dark: Table II corresponds to Light Dark prob-
lem. In Table II we see that with a small number of MCTS
iterations, CPFT makes 16 collisions from 70 trials in contrast
to 0 collisions with our technique. We illustrate the scenario
in Fig. 8. In this problem it is dangerous to the agent to jump
to desired interval. This is because the width of the belief b0 is
larger than the desired area and robot can fall off the cliff or to
the pit (assuming the motion model as in (45) and without the
stochastic noise wk). Our approach prevent the robot to jump
to desired area since any belief particle can be the ground
truth.

c) SLAM: For the SLAM problem we study the influence
of making posterior belief safe before pushing forward in time.
Since this aspect stemmed from Chance Constraints, to differ-
entiate between two approaches, in this study we change the
name of our approach with nullifying the unsafe part of belief
to CC-PC-PFT (Alg. 2). We call our method, with pushing
forward in time with action and the observation generally
unsafe belief, PC-PFT. Let us remind that the difference in
the inner constraint as such. Instead of payoff operator as (12)
we set

ϕ(b̄ℓ)=P
(
{xℓ∈X safe

ℓ }
∣∣b̄ℓ
)
=

P
(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ,

⋂ℓ−1
i=0{xi∈X safe

i }
) (53)

ϕ(b̄−ℓ )=P
(
{xℓ∈X safe

ℓ }
∣∣b̄−ℓ
)
=

P
(
{xℓ∈X safe

ℓ }
∣∣b0, a0:ℓ−1, z1:ℓ−1,

⋂ℓ−1
i=0{xi∈X safe

i }
)
.

(54)

Table III presents the results for SLAM in our first setup
with tiny obstacles. Here our setup is as follows. We have
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(a) (b)

Fig. 8: Illustration of faulty scenario of CPFT as opposed to our approach (a) CPFT (b) Our Alg. 2.

Model tree
queries V̂ ∗(b0;ρ1) Ê[∥xt − xg∥22]±std P̂(S|b0) num. coll

CPFT-DPW 1000 −46500.0±136.31 829.78±525.88 1 0/70

PCPFT-DPW 1000 −28086±14399 56.86±215.12 1 0/70

TABLE I: The Lidar Roomba problem.

Model tree
queries V̂ ∗(b0;ρ1) P̂(S|b0) num. coll

CPFT-DPW 15 −75.67± 57.66 0.77 16/70

PCPFT-DPW 15 −115.27± 94.28 1 0/70

TABLE II: The Light Dark problem.

(a) (b) (c) (d)

Fig. 9: This simulation setup is associated with Table III. In this figure we plot one of the trials shown in Table III. Here we nullify unsafe part of the belief in planning and run
CCPC-PFT. (a) Here, we plot the goal, agent ground truth, estimated agent positions and the obstacles; (b) Belief particles, where the colors symbolize the time instance; (c) Traces
of the agent and the landmark (obstacle); (c) Visualization of the truncation. Here we move each particle of b0 with action selected by the agent and plot the truncation region of
the stochastic motion model.

(a) (b) (c) (d)

Fig. 10: This simulation setup is associated with Table IV columns related to CCPC-PFT-DPW and here we show one of the trials. In this figure we nullify unsafe part of the
belief in planning. (a) Here, we plot the goal, agent ground truth, estimated agent positions and the obstacles; (b) Belief particles, where the colors symbolize the time instance;
(c) Traces of the agent and the landmark (obstacle); (c) Visualization of the truncation. Here we move each particle of b0 with action selected by the agent and plot the truncation
region of the stochastic motion model.

a rectangular area where we randomly sow rectangular tiny
obstacles without replacement. It means if we randomly sow
the number of tiny obstacles equal to the number of cells
within the large rectangle we will obtain a complete large
rectangle. We randomly sow the tiny obstacles in each trial.
We make transition model of the agent (46) deterministic
by nullifying the noise. With drawing 80% of tiny obstacles
(Fig. 9) the PC-PFT-DPW, without making belief safe and
maintaining a pair of the beliefs, the scenario in Fig. 9 reached
the belief node where all the actions were claimed unsafe
and pruned, even the 0 action. As we have seen in the
simulation 0 action was pruned the last and this is a direct

result of the fact that unsafe belief particles were propagated
with 0 action and updated with received observation. When
we do the same operation previously making belief safe, we
obtain again the safe belief since particles were propagated
with 0 action and, therefore, stay at the same places.

In our second setup we fill the complete rectangle with tiny
obstacles in a random manner as previously debated (Fig. 11).
We show our results in Table IV. We did not obtained a
significant difference in two approaches. Interestingly, as we
see the safety is much challenging in this problem due to
challenging robot localization with simultaneous mapping of
uncertain single landmark. Our prior b0 in SLAM problem is
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(a) (b) (c) (d)

Fig. 11: This simulation setup is associated with Table IV columns related to PC-PFT-DPW and here we show one of the trials. In this figure we do not nullify unsafe part of the
belief in planning. (a) Here, we plot the goal, agent ground truth, estimated agent positions and the obstacles; (b) Belief particles, where the colors symbolize the time instance;
(c) Traces of the agent and the landmark (obstacle); (c) Visualization of the truncation. Here we move each particle of b0 with action selected by the agent and plot the truncation
region of the stochastic motion model.

TABLE III: 50 Trials of at most 20 cycles of autonomy loop Fig. 5 where planning sessions implemented by Algorithm CCPC-PFT-DPW versus PC-PFT-DPW. Same seed in
both algorithms. This problem is the SLAM described in Section VII-A0c in our first scenario shown at Fig. 9. Here we study the number of collisions and the reward value.

Parameters P̂(S|b0) num coll. mean cum. rew. ± std

Operator ϕ δ CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW

(12) 0.8 0.64 - 18/50 - −106.37± 12.37 -

TABLE IV: 50 Trials of at most 20 cycles of autonomy loop Fig. 5 where planning sessions implemented by Algorithm CCPC-PFT-DPW versus PC-PFT-DPW. Same seed in
both algorithms. This problem is the SLAM described in Section VII-A0c in our second scenario shown at Fig. 10 and Fig. 11. Here we study the number of collisions and the
reward value.

Parameters P̂(S|b0) num coll. mean cum. rew. ± std

Operator ϕ δ CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW

(12) 0.8 0.6 0.6 28/70 28/70 −109.92± 11.55 −106.68± 12.77

Gaussian with diagonal variances of 0.1.
d) PushBox2D: We constructed a challenging scenario

where evading the obstacle significantly complicates putting
the puck into the hole (the goal). Let us contemplate the results
presented in Table. V. We selected m = 10 and ϵ = 0 in rollout
summarized by Alg. 3. As we see, constraining the propagated
belief significantly improves safety while preserving reaching
the goal by the puck.

VIII. CONCLUSIONS

In this work, we introduced an anytime online approach
to perform Safe and Risk Aware Belief Space Planning in
continuous domains in terms of states, actions, and obser-
vations. We rigorously analyzed our approach in terms of
convergence. Our prominent novelty is assuring safety with
respect to the belief tree expanded so far. As opposed to SOTA
in continuous domains, we are not mixing safe and dangerous
actions in the search tree. Our belief tree is safe with respect
to our PC and consist solely of the safe actions. Moreover,
when our PC is satisfied, it is satisfied starting from each
belief action node, ensuring a match in a current planning
session and future planning sessions. We corroborated our
theoretical development by simulating four different problems
in continuous domains. Each problem exhibited a different
phenomenon caught by our methodology.
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(a) δ = 0.0 (b) δ = 0.3 (c) δ = 0.7 (d) δ = 1.0

Fig. 12: Visualization of actual PushBox2D simulation with several values of δ.

TABLE V: 20 Trials of at most 20 autonomy loop cycles of Algorithms CCPC-PFT-DPW versus PC-PFT-DPW. Same seed in both algorithms. This problem is the 2DPushBox
described in Section VII-A1. The operator ϕ conforms to (12) and (13).

Parameters P̂(S|b0) in accord to (52) Est. prob. of puck reaching the goal mean cum. rew. ± std

tree queries δ L propagated constr. rollout CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW CCPC-PFT-DPW PC-PFT-DPW

1500 0.0 20 Yes Yes 0.1 0.0 1.0 1.0 −20.39± 6.12 −20.73± 4.32

1500 0.3 20 Yes Yes 0.45 0.3 0.85 0.85 −37.33± 11.93 −32.31± 11.58

1500 0.7 20 Yes Yes 0.65 0.7 0.65 0.8 −43.04± 6.82 −41.56± 9.31

1500 0.7 20 No Yes 0.2 0.3 0.9 0.9 −38.38± 9.69 −34.07± 9.20

1500 0.7 20 Yes No 0.55 0.65 0.0 0.0 −59.82± 0.25 −59.85± 0.26

1500 1.0 20 Yes Yes - 1.0 - 0.0 - −60.18± 0.18

1500 1.0 20 No Yes - 0.2 - 0.9 - −35.81± 7.59

[15] R. J. Moss, A. Jamgochian, J. Fischer, A. Corso, and M. J. Kochenderfer,
“Constrainedzero: Chance-constrained pomdp planning using learned
probabilistic failure surrogates and adaptive safety constraints,” arXiv
preprint arXiv:2405.00644, 2024.

[16] G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion
planning from images via learned perception modules and contraction
theory,” in International Workshop on the Algorithmic Foundations of
Robotics. Springer, 2022, pp. 349–367.

[17] S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing
safety of learned perception modules via measurement-robust control
barrier functions,” in Conference on Robot Learning. PMLR, 2021,
pp. 654–670.

[18] Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with
continuous state, action, and observation spaces,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 28, no. 1, 2018.

[19] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[20] D. Auger, A. Couetoux, and O. Teytaud, “Continuous upper confidence
trees with polynomial exploration–consistency,” in Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceed-
ings, Part I 13. Springer, 2013, pp. 194–209.

[21] A. Zhitnikov and V. Indelman, “Simplified risk aware decision making
with belief dependent rewards in partially observable domains,” Artificial
Intelligence, Special Issue on “Risk-Aware Autonomous Systems: Theory
and Practice", 2022.

[22] M. H. Lim, T. J. Becker, M. J. Kochenderfer, C. J. Tomlin, and Z. N.
Sunberg, “Optimality guarantees for particle belief approximation of
pomdps,” Journal of Artificial Intelligence Research, vol. 77, pp. 1591–
1636, 2023.

APPENDIX A
PROOF OF LEMMA 1(REPRESENTATION OF THE VALUE

FUNCTION).

Before we begin, let us clarify that when we write
{Pπℓ (aℓ|bℓ)}L−1

ℓ=1 , the aℓ and bℓ inside the {Pℓ(aℓ|bℓ)}L−1
ℓ=1 can

be a random variables for all relevant ℓ or corresponding
realizations. However, {Pπℓ }L−1

ℓ=1 is the series of distributions
of length L−1 and corresponding actions and beliefs are un-

known. In addition, we remind to the reader that πℓ(aℓ, bℓ) =
Pπℓ (aℓ|bℓ) ∀ℓ ∈ 1 : L−1 and π={Pπℓ }L−1

ℓ=1 .
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We now use a chain rule from the future time back on
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APPENDIX B
PROOF OF THEOREM 2(REPRESENTATION OF OUR OUTER

CONSTRAINT).

Before we begin, let us clarify that when we write

P
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1Aδ
0
(b0)
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ℓ=1 1Aδ
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(bℓ)
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=1|b0, a0, {Pπℓ }L−1
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)
,

the actions aℓ and the beliefs bℓ inside {Pπℓ }L−1
ℓ=1 are unknown

random quantities. In addition, we remind to the reader that
πℓ(aℓ, bℓ)=Pπℓ (aℓ|bℓ) ∀ℓ∈1:L−1 and π={Pπℓ }L−1

ℓ=1 . More-
over, in this paper each posterior belief is associated with
corresponding propagated belief. Therefore we can rescind the
explicit dependence of the indicator on propagated belief.
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(58)

Now, we need to handle P(b1:L, a0:L−1|b0, a0, {Pπℓ }L−1
ℓ=1 ). It

holds that
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(59)

We now merge (58) and (59), and land at the desired result
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Fig. 13: Illustration of complex safety operators in multirobot setting.

APPENDIX C
PROOF OF THEOREM 1 (NECESSARY CONDITION FOR

THEORETICAL POSTERIORS TO BE SAFE)

For the necessary condition we prove the inverse
implication. Suppose that ∀zℓ∈Z it holds that
P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
≥δ. We arrive at

(∫

zℓ∈Z
P
(
{xℓ∈X safe

ℓ }
∣∣h−ℓ , zℓ

)
P(zℓ|h−ℓ )dzℓ

)
≥δ. (60)

■

APPENDIX D
VAR AND CVAR AS SAFETY COST OPERATORS.

Suppose we have particle represented belief and the obstacle
of the circular form Fig. 13. In addition we have two robots
teal and blue. Each particle of the belief is a concatenated
position of each robot such that if x is a particle, the x[1:2]
corresponds to the first robot and x[3 : 4] corresponds to the
second robot. We shall check such a constraint for each robot
separately. For clarity let x denote the position of the one of the
robots. Suppose the mapM is given. We first define a distance
from the safe space Y ⊆M as dist(x,Y) = miny∈Y∥x−y∥2.
We then define Value at Risk (VaR) as

θ(b)≜VaRbα[dist(x,Y)]=
min{ξ|P(dist(x,Y)≤ξ)≥1−α}.

(61)

The Conditional Value at Risk (CVaR) is specified as

θ(b)≜CVaRbα[dist(x,Y)]=
E[dist(x,Y)|{x : dist(x,Y) ≥ VaRbα[dist(x,Y)]}].

(62)

Both of these operators are cost operators.



Chapter 5

Discussion

This research has three main components: belief-dependent rewards, risk awareness, and the simplification
paradigm. This discussion elaborates on these components.

We recognize a gap in current state-of-the-art algorithms that utilize anytime planning approaches. These
approaches leverage an assumption that the belief-dependent reward is merely the expected value of state-
dependent reward with respect to a belief. This assumption is unrealistic in many real-life problems such as
autonomous localization, SLAM, and Informative Planning. An inspiring challenge is then to allow fast and
efficient POMDP planning with belief-dependent rewards while keeping optimality guarantees.

Another aspect that requires attention is risk awareness. An indispensable part of POMDP planning is
the distribution of the long-term rewards given a candidate policy. The goal of decision-making is to select
an optimal policy. Due to the fact that distributions of the rewards are not comparable, it is necessary to
apply an additional operator. Commonly, this operator is averaging (expectation). The expectation is not truly
distribution-aware nor risk-aware since many distributions can have the same expectation. In this thesis, we
aim to tackle this aspect while maintaining the mathematical soundness of the solution.

Belief-dependent rewards and risk-aware operators, instead of averaging, increase the computational burden
even more. This is because most of the algorithms extensively use the assumptions mentioned above. To
reiterate, the first assumption is that the belief-dependent reward is nothing more than the expected value
of state-dependent reward with respect to belief. The second assumption is the objective operator being the
expectation. Moreover, in many problems in robotics, the constraints naturally arise. The most renowned
constraint in robotics is collision avoidance. Another important constraint is Information Gain. The question
of when the robot should stop to explore the terrain is still considered an open problem.

Therefore, in these settings, the simplification is invaluable. Simplification is the substitution of any part
of the original decision-making problem by cheaper-to-calculate counterparts, that can be utilized in decision-
making instead of original elements, while providing guarantees on the impact of such a substitution.

The first three works are under the umbrella of simplification paradigm, the first two, the fourth, and
the fifth papers are also in the area of risk awareness. The second, fourth, and fifth works are on the subject of
Probabilistically Constrained Belief Dependent POMDPs. Each work is discussed individually below.

Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable
Domains This work started with an attempt to quantify loss incurred by the simplification of belief-dependent
POMDP. At first, we created the random variable we called PLoss [49]. This variable is accessible using only the
unsimplified problem. In this work, we assumed that only the simplified problem is online accessible. We wanted
to provide guarantees over the simplification impact without accessing the unsimplified problem and come up
with stochastic bounds over the return and online accessible random variable which we called PbLoss. In this
work, we substitute the return with simple stochastic bounds. Surprisingly these bounds induce deterministic
bounds on the specific risk-aware operator, being Value at Risk (VaR). Using such a simplification we were
able to speed up online risk-aware decision-making. In this work, we studied empirically that the information-
theoretic reward pose a significant computational difficulty as the number of belief particles grows. Notably,
while working on [50] we realized that [40] makes a decision using a single sample of observations episode. This
means that here PLoss [49] can become a usable tool. It can express the probability of sampling a pair of
observations per candidate action sequence and obtain loss from simplification larger than some value.

In addition in this work, we introduced the extended setting. In the extended setting, both, the belief
update is stochastic as well as the reward operator on top of the given belief. Note that in [31] the belief update
is also stochastic. This extension allowed us to formulate a simplification paradigm such as lowering the number
of particles in belief representation and account for the simplification impact by providing guarantees.

We now summarize our key contributions as they appear in the paper [49]:

171
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1. We extend ρ-POMDP to probabilistic ρ-POMDP (Pρ-POMDP) by relaxing the assumption that the
reward operator and the belief update are deterministic;

2. We introduce novel stochastic bounds on the return/reward and rigorously formulate the simplification
framework on top of general objective operators and returns/rewards;

3. Using our formulations we present the simplification of risk averse decision making under uncertainty;

4. We present a novel objective utilizing joint distribution of the rewards corresponding to two candidate
policies and describe a method to simplify such decision making while preserving action consistency ;

5. We introduce the general concept of PLoss and provide its online description with PbLoss and utilize it
to provide guarantees in terms of deterministic bounds;

6. Finally, we exemplify our framework on a particular simplification technique, which is reducing the number
of samples within planning.

Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-
dependent Constraints In this work, we tackle the high-dimensional setting of POMDP with an unknown
robot workspace. We were able to innovate the stopping exploration criterion and drastically speed up such
decision-making. We introduced Probabilistic Belief-dependent Constraints (PC), which is two-staged and con-
strains what the robot believes. The first stage is the inner constraint. This constraint is belief-dependent and
operates on a given history. We have two flavors of the inner constraint, namely cumulative and multiplica-
tive. In this work, we focus on Information Gain and the cumulative form of the inner constraint. The second
stage is the outer constraint, thresholding the probability that the inner constraint is satisfied, stemming from
future histories simulated in planning session. We also analyze the averaged belief-dependent constraint, which
surprisingly, due to computational burden, in the relevant literature, was approximated by Maximum Likely
(ML) observation. Here, research was also carried out in the domain of Risk Awareness because we present
an adaptive approach to maximize VaR. Additionally, in this paper, we presented a simplification mechanics
for our PC. We did not simulate the simplification since the adaptive bounds over Information Gain in high
dimensional spaces are missing.

Our contributions are fourfold. Below we list them down in the same order as they are presented in the
manuscript.

1. First, we utilize our Probabilistically Constrained Belief-dependent POMDP in the context of an information-
theoretic constraint. We focus on the IG, however, our theory supports any of the other belief-dependent
operators, e.g. the difference between traces of covariance matrices of two consecutive-in-time beliefs. We
analyze the Mutual Information (MI) constraint and ML observation approach versus our novel proba-
bilistic constraint. Notably, we did not find any works shifting the MI from the reward operator to the
constraint.

2. Second, we rigorously derive a theory of simplification in the constrained setting. We emphasize that the
simplification paradigm has not been considered in this setting before. Given a monotonically converging
to the belief-dependent constraint or/and reward bounds, depending on context, our approach can be
simplified, gaining substantial speedup without any loss in performance quality.

3. Third, we present an algorithm to maximize Value at Risk adaptively utilizing the suggested theory. As
we unveil in this paper, this enables the decision maker to save time by adaptively expanding the lowest
required number of observations episodes without compromising the quality of the solution.

4. Fourth, we apply our technique to a high-dimensional BSP. In particular, our case studies are active SLAM
and SD problems.

No Compromise in Solution Quality: Speeding Up Belief-dependent Continuous POMDPs via
Adaptive Multilevel Simplification This work is a journal extension of the conference paper [44]. In the
conference version of the paper adaptive bounds over a differential entropy estimator [5] were derived. This
estimator leverages the given models, however, it assumes a low-dimensional setting. To rephrase that, it does
not utilize the structure of a high-dimensional belief. Therefore, we did not use it in [50]. In addition in [44]
the proposed bounds were utilized within the suggested novel simplification framework in the setting of a given
belief tree. The main point of the simplification framework is that the adaptive bounds over the reward induce
simplification levels. These levels then naturally transit to the objective function. When the objective bounds
intervals corresponding to different policies overlap we need to resimplify. In [44] a single resimplification
strategy was proposed. In our journal paper, we refine the general theory of the simplification. In the setting of
a given belief tree, for instance, in the SS algorithm or when the predefined static action sequences are assumed,
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Rewards

Subtrees

Lightweight bounds

Figure 5.1: Illustration of the approach taken by [46] with a branching factor of three and the action space
constituted by two actions. The bounds are substituted by rewards as the search progresses. Here, we visualize
a full tree (action-wise) with both actions down the root.

we added an additional resimplification strategy which we call LAZY. We took inspiration from [46]. Let us
briefly describe the approach taken by [46]. We illustrated the behavior in Fig. 5.1. In Fig. 5.1 four beliefs
at the deepest level were switched from bounds to rewards. Suppose a two-steps ahead (Fig. 5.1) setting and
suppose that we are given belief b(h) with history h, reward for action a and one step ahead belief b′(h′) is
bounded from below and above as such ρ(b, a, b′) ≤ ρ(b, a, b′) ≤ ρ(b, a, b′) and suppose we know that we are
going to expand m children to belief action node ha. The objective for action a is bounded as

1

m

m∑

i=1

(
ρ(b, a, b′,i) + V̂

π
(b′,i)

)
≤ 1

m

m∑

i=1

(
ρ(b, a, b′,i)+V̂ π(b′,i(h′,i))

)
≤ 1

m

m∑

i=1

(
ρ(b, a, b′,i)+V̂

π

(b′,i(h′,i)
)

(5.1)

where the value function estimator is

V̂ π(b′,i) =
1

m

m∑

j=1

ρ(b′,i, π(h′,i), b′′,j) (5.2)

and the action-value function estimator

Q̂π(b(h)a) =
1

m

m∑

i=1

(
ρ(b(h), a, b′,i)+V̂ π(b′,i)

)
. (5.3)

The bounds over the value function estimator can be of two flavors. The first is as follows. Define

a∗ = π∗(b(h))= argmax
a∈A

Q̂π
∗
(b(h)a).

We have the policy tree flavor if

1
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Here, we need to know the best action for each b′,i.The LAZY flavor reads

max
a∈A

1
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︸ ︷︷ ︸
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ρ(b′,i, a, b′′,j) . (5.5)

Similarly we define bounds over the action value estimate

Q̂
π
(b(h)a)≤Q̂π(b(h)a)≤Q̂

π

(b(h)a). (5.6)

The works [46], [38] select the best action with the maximal upper bound of the objective, and if the overlap
of the objective bounds, corresponding to selected action and other actions, is present, they delve into the belief
tree using forward search heuristic to select an action a and observation z′ to bring the bounds of Qπ(b(h)a)
closer to each other and eventually eliminate the overlap. We, on the contrary, select the best action using the
largest lower bound and use the resimplification strategy to delve into the belief tree and promote some of
the reward bounds simplification levels. Let us go over these possibilities to select the best action:
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• a∗ = argmaxa∈AQ
π
(b(h)a) [46], [30], [38];

• a∗ = argmaxa∈AQ
π(b(h)a) [51].

In both cases above, the action consistent (same action is selected using the bounds instead of the objectives)
decision is made with a∗ if Qπ(b(h)a∗) ≥ maxa∈A\{a∗}Q

π
(b(h)a). Else, we shall resimplify and promote the

simplification level. The work [46] substitutes some reward bounds by the reward itself, thereby tightening
the objective bounds and effectively jumping to the maximal simplification level at these reward bounds. To
resimplify, we shall delve into the tree, namely, select an action and belief (observation) to go down. Let us
exemplify several possibilities to select an action leading to the subtree to resimplify

• a† = argmaxa∈AQ
π
(b(h)a) [46], [30], [38];

• a† = argmaxa∈AQ
π
(b(h)a)−Qπ(b(h)a) [51].

For the next observation/belief both papers, [46] and [51] use the same heuristics

i = argmax
i∈1...m

V
π∗
(b′,i)− V π∗

(b′,i).

In this paper we also utilize the adaptive multilevel simplification within an MCTS approach.
To summarize, we list down the contributions of this work, in the order they are presented in the manuscript:

1. Building on any adaptive monotonically convergent bounds over belief-dependent reward, in this paper
we present a provable general theory of adaptive multilevel simplification with deterministic performance
guarantees.

2. For the case of a given belief tree as in Sparse Sampling, we develop two algorithms, Simplified Information
Theoretic Belief Space Planning (SITH-BSP) and a faster variant, LAZY-SITH-BSP. Both are comple-
mentary to any POMDP solver that does not couple belief tree construction with an objective estimation
while exhibiting a significant speedup in planning with a guaranteed same planning performance.

3. In the context of MCTS, we embed the theory of simplification into the PFT-DPW algorithm and introduce
SITH-PFT. We provide stringent guarantees that exactly the same belief tree is constructed by SITH-PFT
and PFT-DPW. We focus on a UCB exportation technique, but with minor adjustments, an MCTS with
any exploration method will be suitable for acceleration.

4. We derive novel lightweight adaptive bounds on the differential entropy estimator of [5] and prove the
bounds presented are monotonic and convergent. Moreover, these bounds can be incrementally tightened.
We believe these bounds are of interest on their own. The bounds are calculated using the simplified belief
(See Fig. 1) of [51]. We emphasize that any other bounds fulfilling assumptions declared in Section 3.3 of
[51] can be utilized within our framework.

5. We present extensive simulations that exhibit a significant improvement in planning time without any
sacrifice in planning performance.

To be precise, we explicitly clarify how this work differs from the conference version of this paper [44]. In this
version, we extend the simplification framework to the rewards depending on a pair of consecutive-in-time beliefs,
e.g., Information Gain, as opposed to the conference version where such an extension was only mentioned. In
this version, we provide alternative proof of these bounds and prove that these reward bounds are monotonic.
In the setting of a given belief tree we present an additional algorithm, that we call LAZY-BSP. This algorithm
is faster than SITH-BSP suggested in [44]. Importantly, we extend our simplification framework to support
also anytime MCTS planners. Additionally, we provide extensive performance evaluation of our methods in
simulations.

Risk Aware Adaptive Belief-dependent Probabilistically Constrained and Chance Constrained
Continuous Approximate POMDP Planning In this paper, we suggested our Probabilistically Con-
strained Belief-dependent POMDP. The rationale behind the name Belief-dependent POMDP is that we make
all possible operators belief-dependent. This work researches safety and risk awareness using constraints.

In this work, we outline meaningful belief-dependent operators, not only ones related to safety, to serve as
inner constraint in our formulation. We stay in the setting of the given belief tree in this paper. Specifically, we
build upon SS and Open Loop (OL) planning. These are belief trees built with deterministic policy. Notably,
SS algorithm builds a full belief tree in terms of actions on the way down the tree.

We rigorously analyze our approach versus popular chance constraints. Interestingly, in section 5.7 of this
paper, we arrived at the conclusion that in the case of policies, the Chance Constraint can be viewed as a special
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case of Probabilistic Constraint. In this special case, the belief-dependent operator looks into the future and
calculates the Chance Constraint starting from each belief in the tree using in addition to the belief, the policy
as input and the history corresponding to the belief to calculate the threshold per future history simulated in
the planning session.

In the setting of static candidate action sequences, we compare Chance Constraint and Probabilistic Con-
straint. In the OL setting the Chance Constraint enforces the constraint on where the robot can be in the
future, effectively assuming perfect observability MDP. On the contrary, we constrain what a robot believes
about the POMDP state.

In both settings, Open Loop (OL) and Closed Loop (CL), we contribute algorithms adaptively evaluating
the constraint. All our algorithms converge in probability as the number of sampled observations episodes and
belief particles grows.

Below, we detail the contributions of this paper in the order they appear in the article.

• Firstly, in Section 3.1, we formulate a risk-averse belief-dependent Probabilistically Constrained con-
tinuous POMDP. Averaging the state-dependent reward/constraint to obtain the belief-dependent re-
ward/constraint is a severe hindrance that we relax. We are unaware of prior works addressing POMDP
with risk-averse belief-dependent constraints. In particular, our probabilistic belief-dependent constraint
supports risk-averse operators, such as CVaR, and leads to a novel safety constraint formulation.

• Secondly, on top of our probabilistic formulation, in Section 4.1.3, we contribute a novel, efficient actions-
pruning mechanism. SOTA pruning technique proposed by [36] constitutes only a necessary condition
such that it is possible that after pruning, actions violating the CC are kept in the belief tree. Therefore,
the feasibility of CC has to still be inspected for each not-pruned action. On the contrary, our pruning
condition is necessary and sufficient. No additional checks are needed after the pruning of the belief tree
is complete.

• In Section 4.2, we contribute algorithms for online solutions of Probabilistically constrained belief-dependent
POMDP in continuous domains. Our algorithms are adaptive given a budget of observation episodes laces
(Fig. 1 of the paper) and beliefs within the lace to expand in the belief tree. In other words, we provide
a way to guide the belief tree construction while planning. Our framework is universal for challenging
continuous domains and can be applied in nonparametric and parametric settings. We innovate algorithms
for CL setting with policies as well as for OL setting with candidate action sequences.

• Another contribution on our end is a rigorous analysis of our probabilistic formulation versus chance-
constrained in Section 5. Despite recent algorithmic developments [36], there has been relatively little
effort devoted to the theoretical aspects of Chance-constrained continuous belief-dependent POMDP.
Surprisingly, in Section 5.7 we obtained that in the CL setting, CC is a specific case of our PC when
the belief-dependent operator is CC itself. It shall be noted as a contribution that we spotted the fact
that belief shall be defined differently within CC. To the best of our knowledge, no paper addresses this
discrepancy.

• We uplift a chance-constrained solver to continuous domains in terms of states and observations and
general belief-dependent rewards through Importance Sampling (IS) in Section 6.

• In an OL setting, we contribute an adaptive, in terms of trajectories and states, algorithm (Alg. 6) for
chance-constrained continuous ρ-POMDP. This algorithm can be used with exceptionally long horizons
and a high dimensional setting.

Anytime Probabilistically Constrained Provably Convergent Online Belief Space Planning This
work is a continuation of the previous paper. Here we embed our Probabilistic safety into MCTS. Our con-
tributions in this work are as follows. We assure that the constraint is fulfilled not only at the convergence of
MCTS as in the case of [20] but at every moment in time. Our search tree expanded by MCTS always consists
of solely the safe actions. In addition, in this paper we constraint the propagated beliefs along the posteriors as
in our previous work. The polynomial variant of our approach is provably convergent. In particular, similar to
[41], we utilize the proof by [4]. We show that our modifications do not break the proof.

Below we list down our contributions in the same order as they appear in the manuscript.

1. By directly constraining the problem space and not the dual space we present an anytime MCTS based
algorithm for safe online decision making with safety governed by Probabilistic Constraint (PC). Our
approach enjoys anytime safety guarantees with respect to the belief-tree expanded so far and works in
continuous state, action and observation spaces. When stopped anytime, the action returned can be
considered as the best safe action under the safe future policy (tree policy) expanded so far. Our search
tree consists of solely the safe actions. We prove convergence in probability of our approach.
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2. Another one of our contributions is the constraining the beliefs with incorporated outcome uncertainty
stemming from an action performed by the robot and without incorporating the received observation.

3. We also spot a problem happening in duality based approach arising from averaging unsafe actions in
MCTS phase. Therefore, an additional contribution of ours is an analysis of this phenomenon.
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עתיד עתיד

עתידעתידעתידעתיד

החלטה עץ :1 איור

תקציר

זרוע של פעולות אוטונומי, ניווט כגון שונים תחומים במגוון דרסטי באופן גדל אוטונומיות למערכות הביקוש מוטיבציה
בלתי טיס כלי לדוגמה, אוטונומי. רכב כלי הוא ביותר הרצויים היישומים אחד מלאכותית. ובינה אנושי רובוט רובוטית,
משמעותי מקור היא ממוחשבת ראיה מקום. בכל נמצאים היישומים וכו׳. חקלאיים, רובוטים ובדיקה, לפיקוח מאויש
וגדלה. הולכת התמונה ואיכות וקטנים הולכים חישה כלי כיום פועלת. האוטונומית המערכת בו העולם על וידע למידע
ויישומים בבעיות גרעין מהווה סוכן ידי על החלטות קבלת אנוש. לבן דומה באופן זה במקור להשתמש טבעי לכן,
מאוד כבדה אופטימיזציה בעיית אמת בזמן לפתור צריך הסוכן אופטימלית פעולה לבחור מנת על לעיל. המתוארים
לדוגמה בביצועים. לפגוע מבלי חישובית יותר שקלה מקורבת בעיה לפתור מספיק מקרים בהרבה זאת עם יחד חישובית.
קרוב יותר או הכביש לקצה קרוב יותר יעבור והרובוט שבאם כך וריק רחב להיות יכול כביש חקלאי, רובוט של במקרה
ולכמת הבעיה של הפשטה ידי על ההחלטות קבלת תהליך את לייעל הינה זה מחקר מטרת משמעות. הרבה אין למרכז

קיים. אם בביצועים, הפסד

משתמש הוא רכב מפעיל נהג כאשר מידע. הוא אופטימלית החלטה קבלת לבעיית הקלט ידועה לא בסביבה פעילות
שמקרבת אופטימלית פעולה ולבחור מיקומו את להסיק מנת על שלו ושמיעה ראיה המקום, של מפה לגבי מקדים בידע
הסתברותי פילוג בצורת מספקים לרובוט פעולתו, תחילת לפני זה. תהליך את לדמות מנסה מלאכותית בינה ליעד. אותו
שהוא תצפיות של היסטוריה מקדים, מידע הרובוט בנגישות הפעולה בזמן יצטרך. שהוא פרמטרים על מקדים מידע
מיקומו כגון לו הנדרשים פרמטרים על הסתברותית הסקה לבצע צריך הוא זה קלט סמך על שעשה. ופעולות קיבל
התפלגות לו. שנתון מה כל בהינתן האלה פרמטרים של הסתברותית התפלגות להסיק משמע בעולם. חפצים של ומיקום
בצורה ונדרשת שנגישה האינפורמציה כל את שנושא הסתברותי פילוג היא אמונה אמונה. נקראת זאת הסתברותית
נותנת אמונה בפרט, שבחר. פעולה וביצוע חדשה תצפית קבלת עם אותה ומעדכן אמונה מתחזק הרובוט קומפקטית.

ודאות. לאי גישה

מצלמה כגון חישה מערכת הן הרובוט של העקרוניות המערכות האמונה במרחב - ודאות חוסר תחת החלטות קבלת
שזמינים חיישנים בעזרת עולם העולם את חש הוא בשטח, פועל הרובוט כאשר התנועה. ומערכת אור פולט מכ”ם או
ומעדכן חדשה תצפית מקבל אותה, מבצע הוא מיטבית פעולה חישוב לאחר מחזורית. בצורה תנועתו תכנון ומבצע לו
הצעדים כמות זה מוצלח תכנון של הכרחי גורם האמת. בזמן תכנון ביצוע לשלב כקלט משמשת האמונה האמונה. את
יותר נעשה התכנון גדל, שההוריזון ככל החלטות. קבלת תהליך במסגרת בו מתחשב שסוכן (הוריזון) בעתיד קדימה
להגיע מנת על ידועה. לא בסביבה ליעד ניווט בעיית ידי על אמונה במרחב התכנון בעיית את נדגים ואיכותי. מדויק
מידע לאסוף שוב אופטימלית, פעולה לבחור מנת על תכנון תהליך ולבצע סביבתו על מידע לאסוף צריך הרובוט ליעד,
מסמלץ הרובוט לתכנן, מנת על הנדרש. ליעד להגעתו עד מחזורית בצורה ממשיך הוא ככה תכנון. תהליך לבצע ושוב
אחרות במילים מסוימת. מפעולה כתוצאה בעתיד לקבל יכול שהוא תצפיות כלומר העתיד. של אפשרויות התממשויות
ביצוע בזמן לקבל יכול שהוא תצפיות התממשות מסמלץ כאופטימלית, להיבחר מועמדת פעולות סדרת על חושב הרובוט
הוא אחד כל על הוריזון, של בגודל אמונות סדרת מקבל הוא ככה העתידיות. האמונות את ומעדכן זאת פעולות סדרת
התגמול נווט, של בדוגמה העתיד. של אחת התממשות מהווה המצטבר התגמול התגמולים. את וסוכם תגמול מחשב
ליעד, מהרובוט ממוצע מרחק למזער מספיק לא הרובוט. של המצב של וודאות אי ומדד מהיעד ממוצע ממרחק מורכב
אפשרויות התצפיות לכמות שווה המצטברים התגמולים כמות נמוכה. תהייה הרובוט מצב של וודאות שאי גם צריך

לקבל. יכול שרובוט
נעשית החישובית הסיבוכיות . 1 הבא באיור שמודגם כפי ההוריזון עם אקספוננציאלית התפתחות מתקבלת משמע

ממדי. רב הינו אמונה מתחזקים שלגביו המצב כאשר כבדה יותר עוד
של החלפה כלומר הפשטה. נדרשת מדויק. באופן אמת בזמן האמונה במרחב תכנון בעיית לפתור ניתן לא כך בשל
קבלת רק בחשבון לקחת היא מקובלת הפשטה לדוגמה האמת. בזמן לפתרון הניתנת אחרת בבעיה המדויק תכנון בעיית
ותכנון בניתוח עוסק זה מחקר לאופטימלית. מועמדת פעולות סדרת מבחירת כתוצאה מסתברת הכי התצפיות סדרת
כלליות. תגמול ופונקציות מורכבת אמונה התפלגות כגון מאתגרים, בתרחישים ודאות אי תחת תכנון לבעיות הפשטות

רבה. וקלילות בזריזות רבות פעולות יבצעו מקום, בכל יהיו שרובוטים שלנו החזון



 המחקר נעשה בהנחיית פרופסור חבר ואדים אינדלמן  

יחידתית למערכות אוטונומיות - במסגרת התוכנית הבין
 ורובוטיקה 

 

מחבר חיבור זה מצהיר כי המחקר, כולל איסוף הנתונים, עיבודם 
והצגתם, התייחסות והשוואה למחקרים קודמים וכו', נעשה כולו 

בצורה ישרה, כמצופה ממחקר מדעי המבוצע לפי אמות המידה 
  האתיות של העולם האקדמי. כמו כן, הדיווח על המחקר

 ותוצאותיו בחיבור זה נעשה בצורה ישרה ומלאה, לפי אותן
 אמות מידה.

 

 קיבל מלגות הבאות:  מחבר חיבור זה

 מלגת זף •

 מלגת ג'ייקובס •

 מלגת מצויינים בממון הפקולטה •

 

 

 

 

 

 

 

 

 

 



 תודות                                             

אני רוצה להודות למנחה שלי פרופ. חבר ואדים אינדלמן על  
 סקת.  ובלתי פה  הנחייתו ותמיכתו

עבור תמיכה  זיטניקובאולגה  אמיאני רוצה להודות לבנוסף 
 .עבודתי לקראת תואר דוקטור לאורךמתמשכת 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 טכניון על התמיכה הכספית הנדיבה בהשתלמותיאני מודה ל



הפשטה לקבלת החלטות יעילה תחת 
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