Structure Aware Probabilistic Inference and Belief Space Planning with Performance Guarantees

Moshe Shienman

Supervisor: Associate Professor Vadim Indelman

Technion - Israel Institute of Technology, Israel

$$
\text { April } 2024
$$

Introduction

- A new era: Intelligent autonomous agents and robots

Robotic Surgery

Autonomous Vehicles

Drones

Introduction

- Required to operate reliably and efficiently under different sources of uncertainty

Imprecise actions

Dynamic environments

Introduction

- Reason over high dimensional probabilistic states known as beliefs for both:

Inference

Decision making under uncertainty aka Belief Space Planning (BSP)

Introduction

- In each discrete time step k, the autonomous agent:

Takes action u_{k}

Notations

- $x_{k}:$ state at time k (e.g., position and orientation) $\quad X_{k}=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}:$ the joint state
- $x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right), z_{k}=h\left(x_{k}, v_{k}\right)$ motion and observation models with known noise terms, e.g., Gaussian
- $b\left[X_{k}\right] \doteq \mathbb{P}\left(X_{k} \mid z_{0: k}, u_{0: k-1}\right):$ posterior probability density function over the joint state - the belief

Probabilistic Inference

- Maximum a Posteriori (MAP) estimate $X_{k}^{*}=\underset{X_{k}}{\operatorname{argmax}} b\left[X_{k}\right] \doteq \underset{X_{k}}{\operatorname{argmax}} \mathbb{P}\left(X_{k} \mid z_{0: k}, u_{0: k-1}\right)$ $X_{k} \quad X_{k}$
- Gaussian case - a nonlinear least squares problem $\underset{X_{k}}{\operatorname{argmin}}-\log \left(b\left[X_{k}\right]\right)=\underset{X_{k}}{\operatorname{argmin}} \frac{1}{2} \sum_{i}\left\|h_{i}\left(x_{i}\right)-z_{i}\right\|_{\Sigma}^{2}$
- Solved with nonlinear optimization methods such as Gauss-Newton, where each iteration solves a linear least squares problen $\|\mathcal{A} \Delta X-b\|^{2}$

Measurement Jacobian matrix

$$
\Lambda=\mathcal{A}^{T} \mathcal{A}=\Sigma^{-1}
$$

Belief Space Planning

- Determine optimal actions with respect to a given objective $\mathcal{U}^{*}=\underset{\mathcal{U}}{\operatorname{argmin}} J\left(b_{k}, \mathcal{U}\right)$
- $c(\cdot) \rightarrow \mathbb{R}:$ a cost (reward) function
- A general objective function

$$
J\left(b_{k}, \mathcal{U}\right)=\underset{Z_{k+1: k+L}}{\mathbb{E}}\left[\sum_{l=0}^{L-1} c_{l}\left(b\left[X_{k+l}\right], u_{k+l}\right)+c_{L}\left(b\left[X_{k+L}\right]\right)\right]
$$

Computational Challenge

- Both inference and BSP are computationally very hard in high dimensional state spaces!
- A challenge in real-world autonomous systems where the agent is required to operate in real time, often using inexpensive hardware

Research Goal

- Leverage structures and solve simplified problems while providing performance guarantees

Topological Structures

Posterior Beliefs Structures

Belief Space Planning - Simplification

- Solve an alternative problem with respect to the same set of candidate actions
(1) Be less expensive to compute
(2) Should discriminate between candidate actions
(3) Would ideally yield a solution which is consistent with the optimal solution of the original problem

$\mathcal{L B}\left[J\left(b_{k}, u_{k}\right)\right] \leq J\left(b_{k}, u_{k}\right) \leq \mathcal{U B}\left[J\left(b_{k}, u_{k}\right)\right]$
- M. Shienman, A. Kitanov and V. Indelman [2021 IEEE RA-L]
"Focused Topological Belief Space Planning"
- M. Shienman and V. Indelman [2022 ICRA] *Outstanding Paper Award Finalist* "Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints
- M. Shienman and V. Indelman [2022 ISRR]
"Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints"
- M. Shienman, O. Levy Or, M. Kaess and V. Indelman [2024 IROS - Submitted] "A Slices Perspective for Incremental Nonparametric Inference in High Dimensional State Spaces

Factor Graph

- [Kschischang et al. 2001] probabilistic graphical model

- Represents a factorization of the joint belief

$$
b\left[X_{3}\right]=\eta \cdot \mathbb{P}\left(x_{1}\right) \cdot \mathbb{P}\left(x_{2} \mid x_{1}, u_{1}\right) \cdot \mathbb{P}\left(x_{3} \mid x_{2}, u_{2}\right) \propto f\left(x_{1}\right) \cdot f\left(x_{1}, x_{2}\right) \cdot f\left(x_{2}, x_{3}\right)
$$

Motivation

- Leverage probabilistic graphical models of the underlying problem
- Use topological aspects (signatures) induced from the connectivity of variables

Belief Topology

Belief Topology

- [Khosoussi et al. 2015 RSS] identified Laplacian structures in $\Lambda=\left[\begin{array}{ccc}L_{w_{p}} \otimes \cdots & \cdots \\ \vdots & L_{w_{\theta}}+\cdots\end{array}\right]$
- Used the topological signature to bound the determinant of the information matrix

$$
\tau_{w}(\mathcal{G}) \leq \log |\Lambda| \leq \tau_{w}(\mathcal{G})+n \cdot \log \left(1+\delta / \lambda_{1}\right)
$$

$a_{1}:$ uncertainty

a2: topology a_{2} : uncertainty

- [Kitanov and Indelman 2018 ICRA] first to extend to BSP problems

The Focused Case

- unfocused BSP - the objective function considers all variables
- focused BSP - the objective function prioritizes or only considers a predefined subset of focused variables

collision avoidance

focused reconstruction task

focused vs unfocused
- $X_{k}^{F} \subseteq X_{k}$ a focused subset of states $\left(X_{k}^{F} \bigcup X_{k}^{U}=X_{k}\right)$

Our Contributions

- The first to consider utilizing topological aspects in a focused BSP problem
- Derive two topological signatures to approximate a focused cost function
- Prove asymptotic convergence and develop bounds for one of the signatures

The Focused Objective Function

- Information theoretic cost - Differential entropy
- Objective function for the focused case, considering only the terminal marginal belief

$$
J_{\mathcal{H}}^{F}(\mathcal{U})=\mathcal{H}\left(b\left[X_{k+L}^{F}\right]\right)=\frac{n^{F}}{2} \log (2 \pi e)-\frac{1}{2} \log \left|\Lambda_{k+L}^{M, F}\right|
$$

- Problem : the set of focused can be very small with respect to the entire problem calculating the marginal information matrix via expensive Schur complement operation

$$
J_{\mathcal{H}}^{F}(\mathcal{U})=\frac{n^{F}}{2} \log (2 \pi e)-\frac{1}{2} \log \left|\Lambda_{k+L}\right|+\frac{1}{2} \log \left|\Lambda_{k+L}^{U}\right|
$$

The Unfocused Augmented Graph

focused topological signatures

- Weighted Tree Connectivity Difference (WTCD)

$$
S_{W T C D}=\frac{n^{F}}{2} \log (2 \pi e)-\frac{1}{2}\left[\tau_{w}-\tau_{w}^{U, A}\right]
$$

- The approximation error $\epsilon\left(J_{\mathcal{H}}^{F}\right) \doteq J_{\mathcal{H}}^{F}-S_{W_{T C D}}$ is bounded by $-\frac{n}{2} \log \left(1+\frac{\delta}{\lambda_{1}}\right) \leq \epsilon\left(J_{\mathcal{H}}^{F}\right) \leq \frac{n^{U}}{2} \log \left(1+\frac{\delta^{U}}{\lambda_{1}^{U}}\right)$
- Requires calculating the determinants of the associated Laplacian matrices Can we do better (computationally)?
- The Von Neumann Difference signature $S_{V N D}=\frac{n^{F}}{2} \log (2 \pi e)-\frac{1}{2}\left[h_{w}-h_{w}^{U, A}\right]$

Measurement Selection

Active 2D Pose SLAM

signature	measurement selection	active SLAM
$S_{W T C D}$	18.88	1.21
$S_{V N D}$	$\mathbf{1 2 . 0 2}$	$\mathbf{0 . 1 4}$
$J_{\mathcal{H}}^{F}$	146.24	6.34

Average running time experiments in $m s$

- M. Shienman and V. Indelman [2022 ICRA] *Outstanding Paper Award Finalist* "Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints"
- M. Shienman and V. Indelman [2022 ISRR]

Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints

- M. Shienman, O. Levy Or, M. Kaess and V. Indelman [2024 IROS - Submitted] 'A Slices Perspective for Incremental Nonparametric Inference in High Dimensional
State Spaces

Motivation

- Ambiguity - when a certain observation has more than one possible interpretation

Slip and Grip

unresolved data associations

Multi-modal distributions

Motivation

- Number of hypotheses grows exponentially (in both inference and planning)

Motivation

t_{0}
$t_{1} \quad \ldots \ldots . \quad t_{k}$

Problem Formulation

- The belief at time k is over both discrete and continues random variables, expressed as a linear combination

$$
b_{k}=\sum_{j=1}^{M_{k}} \underbrace{\mathbb{P}\left(x_{k} \mid \beta_{1: k}^{j}, H_{k}\right)}_{b_{k}^{j}} \underbrace{\mathbb{P}\left(\beta_{1: k}^{j} \mid H_{k}\right)}_{w_{k}^{j}}
$$

- $\quad \beta_{k} \in \mathbb{N}^{n_{k}}$ data association realization vector at time k

Our Contributions

- Utilize a distilled subset of hypotheses in planning to reduce computational complexity
- Develop a connection between our approach and the true analytical solution, owing to every possible data association, for the myopic case
- Derive bounds over the true analytical solution and prove they convergence
- Address the challenging setting of hard budget constraints, and show, for the first time, how these bounds provide performance guarantees

A Simplified Belief

- Use only a distilled subset of hypotheses $M_{k}^{s} \subseteq M_{k}$ from time k based on weights w_{k}^{j}

- A simplified belief is formally defined as $b_{k}^{s} \triangleq \sum_{j=1}^{M_{k}^{s}} w_{k}^{s, j} b_{k}^{j}, w_{k}^{s, j} \triangleq \frac{w_{k}^{j}}{w_{k}^{m, s}}$,

Cost Function

- Information theoretic cost function
$\mathcal{H}(x, \beta)=-\int \sum \mathbb{P}(x, \beta) \log \mathbb{P}(x, \beta)=$

Entropy over posterior weights (hypotheses disambiguation)

Conditional entropy over x (uncertainty of each hypothesis)

Objective Function

- A myopic setting $J\left(b_{k}, u_{k}\right)=\int_{Z_{k+1}} \eta_{k+1} c\left(b_{k+1}\right) d Z_{k+1}, \quad \eta_{k+1} \triangleq \mathbb{P}\left(Z_{k+1} \mid H_{k+1}\right)$
- For performance guarantees, we bound the objective function for each candidate action

$$
\int_{Z_{k+1}} \mathcal{L B}[\eta] \mathcal{L B}\left[c\left(b_{k+1}\right)\right] d Z_{k+1} \leq J\left(b_{k}, u_{k}\right) \leq \int_{Z_{k+1}} \mathcal{U} \mathcal{B}[\eta] \mathcal{U B}\left[c\left(b_{k+1}\right)\right] d Z_{k+1}
$$

$\mathcal{L B}\left[J\left(b_{k}, u_{k}\right)\right] \leq J\left(b_{k}, u_{k}\right) \leq \mathcal{U B}\left[J\left(b_{k}, u_{k}\right)\right]$

Budget Free Scenario

- Goal : fully disambiguate between all prior hypotheses

Budget Constrained Scenario

- Goal : disambiguate between hypotheses (weighted equally) under budget constraints
- Budget constraint : agent can only use one hypothesis in planning

(a) BSP with 2 prior hypotheses

(b) Planning using component \#1

(c) Planning using component \#2

Our Contributions - Recap

D2A-BSP
A novel planning approach that utilizes only a distilled subset of hypotheses in a myopic setting

Over the true analytical solution considering all possible hypotheses

Use bounds to reduce computational complexity while preserving action selection

Budget
Constraints
Use bounds to provide performance guarantees

- M. Shienman, A. Kitanov and V. Indelman [2021 IEEE RA-L] "Focused Topological Belief Space Planning"
- M. Shienman and V. Indelman [2022 ICRA] *Outstanding Paper Award Finalist* "Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints
- M. Shienman and V. Indelman [2022 ISRR]
"Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints"
- M. Shienman, O. Levy Or, M. Kaess and V. Indelman [2024 IROS - Submitted]
"A Slices Perspective for Incremental Nonparametric Inference in High Dimensional
State Spaces

A Non-Myopic Setting

How To Construct a Planning Tree?

- Problem: under budget constraints, simplifying a belief in a specific tree node affects all children node
- Should consider the implications of simplification in both inference and planning

Our Contributions

- Extend previous work to a non-myopic setting
- Derive bounds for the true analytical solution based on simplified beliefs and prove they convergence
- Thoroughly study, for the first time, the impacts of hard budget constraints in either planning and/or inference

A Simplified Belief

- For the nonmyopic case $b_{k+n}^{s} \triangleq \sum_{r \in M_{k+n}^{s}} w_{k+n}^{s, r} b_{k+n}^{r} \quad, \quad w_{k+n}^{s, r} \triangleq \frac{w_{k+n}^{r}}{w_{k+n}^{m, s}}$,
- Cost function : entropy over posterior weights (hypotheses disambiguation)
- For each belief tree node, representing a belief b_{k+n} with components M_{k+n} and a subset $M_{k+n}^{s} \subseteq M_{k+n}$ the cost can be expressed as

$$
\mathcal{H}_{k+n}=\frac{w_{k+n}^{m, s}}{\eta_{k+n}}\left[\mathcal{H}_{k+n}^{s}+\log \left(\frac{\eta_{k+n}}{w_{k+n}^{m, s}}\right)\right]-\sum_{r \in-M_{k+n}^{s}} \frac{w_{k+n}^{r}}{\eta_{k+n}} \log \left(\frac{w_{k+n}^{r}}{\eta_{k+n}}\right)
$$

Bounds In The Non-Myopic Case

- Cost function : entropy over posterior weights (hypotheses disambiguation)
- The cost term in each belief tree node is bounded by

$$
\begin{gathered}
\mathcal{L B}\left[\mathcal{H}_{k+n}\right]=\frac{w_{k+n}^{m, s}}{\mathcal{U B}\left[\eta_{k+n}\right]}\left[\mathcal{H}_{k+n}^{s}+\log \left(\frac{\mathcal{L B}\left[\eta_{k+n}\right]}{w_{k+n}^{m, s}}\right)\right] \\
\mathcal{U B}\left[\mathcal{H}_{k+n}\right]=\frac{w_{k+n}^{m, s}}{\mathcal{L B}\left[\eta_{k+n}\right]}\left[\mathcal{H}_{k+n}^{s}+\log \left(\frac{\mathcal{U B}\left[\eta_{k+n}\right]}{w_{k+n}^{m, s}}\right)\right]-\bar{\gamma} \log \left(\frac{\bar{\gamma}}{\left|\neg M_{k+n}\right|}\right)
\end{gathered}
$$

- Convergence $\underset{M_{k+n}^{s} \rightarrow M_{k+n}}{ } \operatorname{LiB}\left[\mathcal{H}_{k+n}\right]=\mathcal{H}_{k+n}=\mathcal{U B}\left[\mathcal{H}_{k+n}\right]$

$\mathcal{L B}\left[J\left(b_{k}, u_{k}\right)\right] \leq J\left(b_{k}, u_{k}\right) \leq \mathcal{U B}\left[J\left(b_{k}, u_{k}\right)\right]$

Kidnapped Robot Scenario - No Budget Constraints

Under Budget Constraints in Planning

(a) No overlap between bounds

(b) Bounds overlap

Autonamous Navigation and Perception Lab

- M. Shienman, A. Kitanov and V. Indelman [2021 IEEE RA-L] "Focused Topological Belief Space Planning"
- M. Shienman and V. Indelman [2022 ICRA] *Outstanding Paper Award Finalist* "Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints
- M. Shienman and V. Indelman [2022 ISRR]

Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints

- M. Shienman, O. Levy Or, M. Kaess and V. Indelman [2024 IROS - Submitted] "A Slices Perspective for Incremental Nonparametric Inference in High Dimensional State Spaces"

Motivation

- In real-world problems, the posterior distribution is often non-Gaussian, having multiple modes or a nonparametric structure
- Due to the complex, non-Gaussian nature of such posterior distributions, obtaining closedform analytical solutions is challenging and frequently impractical

- Notice : models are still assumed to be given (but not Gaussians..)

Background - The Gaussian Case

- Solved using the forward-backward algorithm

- forward pass: in each step a single variable is eliminated from the graph

$$
f_{2_{\text {new }}}\left(x_{2}\right)=p\left(x_{2} ; f_{1}, f_{1,2}\right)=\underset{x_{1} \sim f_{1}}{\mathbb{E}}\left[f_{1,2}\right]=\int f_{1}\left(x_{1}\right) f_{1,2}\left(x_{1}, x_{2}\right) d x_{1}
$$

- Once the forward pass is completed, the joint distribution is expressed via conditionals

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{1} \mid x_{2}\right)
$$

- The marginal distributions are calculated using backsubstitution

Non-Parametric High Dimensional Settings - Previous Works

- [Fourie et al. IROS 2016]

Using intermediate reconstructions with KDE

- [Huang et al. ICRA 2021]

Using intermediate reconstruction with learned transformations

Fig. 2. A one-dimensional example of normalizing flow: histogram of sample x (left), transformation function $T(x)$ (middle), and histogram of transformed samples and reference variable $y \sim N(0,1)$ (right).

Key Observation

- Use a slices perspective and avoid intermediate reconstructinnc
joint: $\mathbb{P}(X, Y)=\mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$
marginal: $\mathbb{P}(X)=\int_{Y} \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y) d Y$
estimated marginal:

$$
\hat{\mathbb{P}}(X)=\underset{y \sim \mathbb{P}(Y)}{\hat{\mathbb{E}}}[\mathbb{P}(X \mid Y=y)]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{P}\left(X \mid Y=y^{i}\right)
$$

Our Contributions

- Leverage slices from high-dimensional surfaces to approximate joint and marginal posterior distributions without any further intermediate reconstructions
- A novel early stopping heuristic criteria (backward pass) to further speed up calculations
- Requires less samples and consistently outperforms state-of-the-art nonparametric inference algorithms in terms of accuracy and computational complexity

Slices For Non-Parametric Inference

- Follow the forward-backward approach

- Forward pass $\quad f_{\text {new }}\left(x_{2}\right)=\eta^{-1} \int_{x_{1}} f_{1}\left(x_{1}\right) f_{1,2}\left(x_{1}, x_{2}\right) d x_{1}$

$$
\hat{f}_{\text {new }}\left(x_{2}\right)=\frac{\eta^{-1}}{N} \sum_{n=1}^{N} f_{1,2}\left(x_{1}^{n}, x_{2}\right)
$$

- Backward pass $\hat{\mathbb{P}}\left(x_{2}\right)=\frac{1}{N} \sum_{n=1}^{N} \hat{\mathbb{P}}\left(x_{2} \mid x_{3}^{n}\right)$

Early stopping heuristic

- Incremental settings - perform inference whenever new data is present
- Early stopping heuristic in the Gaussian case based on variables estimate change [iSAM2, M. Kaess et al. IJRR 2012]
- For general distributions we propose Maximum Mean Discrepancy (MMD)

Results

- Plaza
a real-world dataset with range measurements

Summary

- Leverage structures in both inference and BSP problems
- Reduce computational complexity by solving simplified problems to handle real world scenarios under budget constraints
- Providing performance guarantees (in planning) by bounding the error between the original (computationally hard) problem and the simplified problem

Thank you!

Technion \ddagger TS $\left\lvert\, \begin{aligned} & \text { TECHNION AUTONOMOUS } \\ & \text { SYSTEMS PROGRAM }\end{aligned}\right.$
Israel Institute of Technology SYSTEMS PROGRAM

Autonomous Navigation

