Previous Knowledge Utilization
In Online and Non-Parametric
Belief Space Planning

Michael Novitsky

Previous Knowledge Utilization
In Online and Non-Parametric
Belief Space Planning

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Autonomous Systems
and Robotics

Michael Novitsky

Submitted to the Senate
of the Technion — Israel Institute of Technology
Shevat 5785 Haifa February 2025

This research was carried out under the supervision of Associate Prof. Vadim Indelman,

in the Technion Autonomous Systems and Robotics Program.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s Master’s

research period, the most up-to-date versions of which being;:

M. Novitsky, M. Barenboim, and V. Indelman. “Previous Knowledge Utilization In Online
Belief Space Planning.” In: IEEE Robotics and Automation Letters (RA-L). Submitted. 2024.
arXiv: 2412.13128.

Acknowledgements

I wish to express my gratitude to my advisor, Associate Professor Vadim Indelman,
for his invaluable guidance, support, and patience throughout my Master’s studies.
His ability to provide direction while allowing me the freedom to explore has been
instrumental. Additionally, I am profoundly thankful to my family, and especially
to my wife Anaelle, for their unwavering support and encouragement throughout this

journey.

The Technion’s funding of this research is hereby acknowledged.

https://arxiv.org/abs/2412.13128

Contents

List of Figures
Abstract
Notation and Abbreviations

1 Introduction

1.1 Planning Under Uncertainty
1.2 Related Work
1.2.1 Online Algorithms
1.2.2 Information Reuse In Online Algorithms
1.3 Contributions

2 Background

2.1 POMDPs e
2.2 Belief MDPo
2.3 Non-Parametric Setting L.
2.4 Multiple Importance Sampling
2.5 PFT-DPW Algorithm
3 Approach
3.1 Incremental Multiple Importance Sampling Update
3.2 Experience-Based Value Function Estimation
3.3 Our POMDP Planning Algorithm: IR-PFT
3.3.1 Algorithm Description,
4 Results
4.1 Setup e
4.1.1 IR-PFT Evaluation.,
4.1.2 Continuous Light-Dark 2D
4.2 Runtime Analysis

4.3 Accumulated Reward Analysis

o o I

5 Conclusions and Future Work
5.1 Conclusions e
5.2 Future Worko

A Appendix
A.1 Proof of Theorem 3.1.
A.2 Proof of Theorem 3.2. o e

Bibliography

Hebrew Abstract

29
29
29

31
31
31

33

List of Figures

1.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

Tlustration of a belief tree.

Ilustration of trajectory reuse.
Tllustration of reuse of three trajectories.

Ilustration of horizon gap.

Illustration of Continuous Light-Dark 2D problem.

Runtime comparison.
Speedup. .

Accumulated Reward Comparison.

17
19
20

26
27
28
28

Abstract

Online planning under uncertainty remains a critical challenge in robotics and au-
tonomous systems. In real-world scenarios, autonomous agents often lack direct access
to the true state of the environment and instead maintain a belief (distribution over
possible states). Uncertainty in such systems arises from various sources, including
imperfect perception due to sensor noise and limited information. Partially Observ-
able Markov Decision Processes (POMDPs) provide a well-established mathematical
framework for such problems.

Tree search techniques are widely used to create partial future trajectories within
computational limits. However, a significant limitation of most existing methods is
their tendency to discard information from previous planning sessions and start plan-
ning from scratch each time. This study introduces a novel, computationally efficient
approach that incorporates historical planning data into the current decision-making
process. We address a broad category of problems with continuous state, action,
and observation spaces, where rewards are general functions of belief. Our theoret-
ical framework for information reuse is based on Multiple Importance Sampling (MIS)
and demonstrates how it can be applied to estimate action-value functions using expert
demonstrations without planning. We build upon this approach by developing our al-
gorithm, IR-PFT, which leverages Monte Carlo Tree Search (MCTS) and incorporates
trajectory reuse from previous planning sessions into the ongoing planning process. Ex-
perimental results reveal that our method not only significantly reduces computation
time but also maintains high performance levels. Our findings suggest that the integra-
tion of historical planning information can substantially enhance the efficiency of online
decision-making in uncertain environments, ultimately leading to more responsive and

adaptive autonomous systems.

Notation and Abbreviations

‘kik+d
Th:k+d—1

EYS(f(x)]

xi,m

State Space

Action Space

Observation Space

State Transition Model

Observation Model

Reward function over state or belief

Reward function over belief

Initial belief at time index 0

Posterior Belief at time index k

Propagated belief at time index k

State at time k

Action at time k

Observation at time k

History of prior belief actions and observations up to time &
History of prior belief actions and observations up to time
kE—1

Policy function which maps belief to action

Sequence from time index k to time index k + d

Sequence of policy functions for horizon d which map belief
to action

Value function given policy m

Action value function given policy 7 and action a

Return following time &

Belief space

Posterior belief based on state samples at time index k
Propagated belief based on state samples at time index k
The i-th state particle in belief b

Importance sampling estimator of E[f(x)]

i-th sample in the importance sampling estimator of E[f(x)]
i-th weight in the importance sampling estimator of E[f(x)]
Multiple Importance Sampling estimator of E[f(x)]

The i-th sample in m-th importance sampling distribution

Wirs

dm

Nm

Navg

Gpr(m) (b, a)

N (br)
N(bk, ak)

—l,m

C(bk’m) akm)
Gy

m-th weight in the multiple importance sampling estimator
of E[f(x)

m-th distribution in the multiple importance sampling esti-
mator of E[f(x)]

Number of samples from m-th importance sampling distri-
bution

Average number of samples in importance sampling distri-
butions

Particle filter belief update performed with m particles and
a simulated observation

Number of times belief b, was visited in the MCTS tree
Number of Executions of action aj from belief b in the
MCTS tree

Number of times propagated belief b, was visited in the
MCTS tree

Action value function in MCTS algorithm

Sample-based action value function estimator given policy 7
and action a

Importance sampling action value function estimator given
policy 7 and action a

Multiple Importance Sampling action value function estima-
tor given policy 7 and action a

Dataset of trajectories and returns

i-th trajectory in dataset D

i-th trajectory suffix

i-th reused trajectory

i-th return in dataset D following time k;

Adjusted i-th return following time k;

Posterior belief at time index k,, marking the beginning of
trajectory 7

Action at time index k,,, of 7™

[-th trajectory from m-th distribution

I-th return from m-th distribution

Adjusted [-th return from m-th distribution following time
k

[-th Propagated belief from m-th distribution at time index
km,

Set of propagated belief children of belief by, and action ay,,

m

Extended y-th return from [-th propagated belief child from

m-th distribution following time k

~m,ly
Gk

dyrt,

Ty

Tt

Trollout
byie

fD ())
AI-FSSS
BSP
DAG
DESPOT
DPW
IPFT
IR-PFT
IS
iX-BSP
KDE
LABECOP

MCTS

MDP

MIS

PFT
PFT-DPW
POMCP
POMCPOW

POMDP
SITH
UCB
UCD
UcCT

Adjusted y-th return from [-th propagated belief child from
m-th distribution following time k

Horizon of propagated belief b,;i’Tl before reuse
Behavioral policy in off-policy evaluation

Target policy in off-policy evaluation

Rollout policy in MCTS

Maximum likelihood propagated belief

Distance function between propagated beliefs

Adaptive Information Forward Search Sparse Sampling
Belief Space Planning

Directed Acyclic Graph

Determinized Sparse Partially Observable Tree

Double Progressive Widening

Information Particle Filter Tree

Incremental Reuse Particle Filter Tree

Importance Sampling

Incremental Belief Space Planning

Kernel Density Estimation
Lazy Belief Extraction for Continuous Observation
POMDPs

Monte Carlo Tree Search

Markov Decision Process

Multiple Importance Sampling

Particle Filter Tree

Particle Filter Tree - Double Progressive Widening
Partially Observable Monte Carlo Planning

Partially Observable Monte Carlo Planning With Observa-
tion Widening

Partially Observable Markov Decision Process
Simplified Information Theoretic

Upper Confidence Bound

Upper Confidence Bound For Directed Acyclic Graphs
Upper Confidence Tree

10

14

13

12

14

10

Chapter 1

Introduction

1.1 Planning Under Uncertainty

Autonomous robots and systems heavily rely on effective planning and decision-making
processes. In real-world scenarios, these agents often lack direct access to the true state
of the environment and instead maintain a belief (distribution over possible states).
Uncertainty in such systems arises from various sources, including imperfect percep-
tion due to sensor noise and limited information. To tackle this challenge, Partially
Observable Markov Decision Process (POMDP) provides a well-established mathemat-
ical framework. Solving POMDPs exactly is computationally demanding, as it falls into
the PSPACE-complete complexity class [18]. This computational hardness primarily
stems from two main factors: the curse of history and the curse of dimensionality. Fur-
thermore, many real-world problems involve continuous state and observation spaces,
further exacerbating the computational challenge. Recent advancements have led to
the proposal of online algorithms [19] [20] [12] for solving POMDPs. These algorithms
operate within limited budget constraints, such as restricted time or number of iter-
ations, and employ a sampling-based approach to construct partial trees and search
for the optimal action that maximizes the expected cumulative reward. By sampling a
subset of the belief space, these algorithms effectively address both the curse of history
and the curse of dimensionality, which are key obstacles in solving POMDPs.

In POMDPs, the reward function of a belief node is typically formulated as the
expected reward over states. However, this formulation may be insufficient for certain
problems, such as information gathering and active sensing. In such cases, the problem
is commonly addressed as Belief Space Planning (BSP) or p-POMDP [1], where the
reward is defined over the belief itself.

Information-theoretic measures, such as information gain and differential entropy,
are commonly used to quantify uncertainty in the decision-making process [10]. How-
ever, exact calculation of information-theoretic rewards becomes intractable for general
distributions, as it requires integrating over all possible states. To address this chal-

lenge, approximation methods such as Kernel Density Estimation (KDE) and particle

filter estimation [3] have been proposed in the literature. Nonetheless, these methods
still incur significant computational expenses, with computation complexity scaling
quadratically with the number of samples. As reward calculation is performed for each
node in the tree, it becomes the primary source of computational complexity in online

planning algorithms.

1 2 3 4 5 6 7 8 9
bryo Diyo briobiio Diyo bpio bpis bitro bigo

Figure 1.1: Tllustration of a belief tree.

The main objective of this paper is to improve planning efficiency within a non-
parametric setting, continuous state, action and observation spaces, and general reward
functions. To address these challenges, we propose a novel approach that leverages the
Multiple Importance Sampling (MIS) framework [27] to tackle the problem of reusing
information from previous planning sessions. Figure 1.1 illustrates a depth-2 belief
tree generated at time step k. The circles represent beliefs, while the squares denote
propagated beliefs. In the proposed approach, this tree will be utilized in subsequent
planning sessions to accelerate the estimation of the action-value function at a future
time k' > k.

Our approach introduces a new algorithm specifically designed to utilize knowledge
gathered during prior planning sessions. We demonstrate how our method can be
integrated with Monte Carlo Tree Search (MCTS) to create a novel online algorithm
called Incremental Reuse Particle Filter Tree (IR-PFT).

To assess the effectiveness of our algorithm, we conduct experiments in an online
planning setting and evaluate its performance. Our results show a substantial decrease
in planning time without compromising overall performance, underscoring the effec-

tiveness of our proposed approach.

1.2 Related Work

1.2.1 Online Algorithms

The problem of solving POMDPs is notoriously challenging. Nevertheless, recent years

have seen remarkable progress in this field. One notable development is the introduc-

tion of the POMCP algorithm [19], which extends the Upper Confidence Tree (UCT)
algorithm [14] to handle partially observable settings. In the POMCP algorithm, dur-
ing each simulation, a state particle is randomly sampled from the current belief. This
particle is then propagated through the search tree, and at each belief node, information
such as visitation count and average accumulated reward statistics is recorded. The
action selection process employs a Upper Confidence Bound (UCB) formulation [17].
The authors assume discrete state, action and observation spaces, and a state-based
reward function. The number of samples in each belief node in POMCP is determined
by the number of simulations in which it participated and makes less visited nodes to
be composed of fewer samples.

POMCPOW [21] extends POMCP to continuous state, action and observation
spaces by incorporating progressive widening and representing beliefs as sets of weighted
particles. An access to observation likelihood model is assumed to be given and at each
step the simulated state is inserted into the weighted belief and then a new state is
sampled from that belief according to its weight (observation likelihood).

In PFT-DPW [21] the authors adopt particle filter formulation for belief update and
each belief is represented with a constant number of samples and enables calculation
of information-theoretic rewards.

[24] introduce p—POMCP which propagates a set particles in each simulation using
particle filter and adds it to existing particles in visited nodes. Nodes that are visited
more often will have an increasingly better representation and the authors provide an
asymptotical proof of convergence when p is continuous and bounded.

[10] introduce IPFT algorithm that extends PFT [21]. They consider reward that
is a linear combination of differential entropy and expected state reward. At each
simulation paticle set is sampled from root belief and propagated through the tree.
Entropy estimates are then averaged over different particle sets in each belief node and
the average value is used to estimate differential entropy.

[12] propose LABECOP - an algorithm that deals with continuous observations
space. At each visit to new belief node b, state particle s is sampled, action a is
chosen according to modified UCB formulation and new observation o is sampled from
s. Previously generated states from b, a are rewieghted according to o and their values
are used to get better estimation of the current value function Q(b, a).

SITH-BSP[23, 30] and AI-FSSS[2] make use of simplification of reward function
calculation and observation space sampling accordingly, while preserving action con-
sistency.

[29] quantify the effect of applying simplification and extend p-POMDP to
Pp—POMDP, while providing stochastic bounds on the return.

Despot [20] and the follow up works [28], [11], [5] propose a different family of algo-
rithms that utilize determinized random sampling to build the search tree incrementally
and recent works also tackle large observation spaces [11]. The usage of a—vectors in
[28], [11], [5] limits the application to POMDPs with state dependent reward functions.

All of the aforementioned methods start each planning session from scratch without

utilizing information from previous planning sessions.

1.2.2 Information Reuse In Online Algorithms

In iX-BSP [9], [8]the authors propose reuse algorithm, however they assume an open
loop setting and do not address non-parametric beliefs.

In [6], the authors investigate transpositions in MCTS by representing states as
a Directed Acyclic Graph (DAG) to improve state reuse through modified backprop-
agation strategies. They propose the Upper Confidence Bound For Directed Acyclic
Graphs (UCD) framework, which enables the aggregation of information across shared
states (transpositions). This approach assumes a fully observable state and aggregates

information only when a state is revisited exactly during the current planning session.

1.3 Contributions

In our work, we consider a partially observable setting where the exact state is un-
known, and information is reused even when the belief is not reached exactly during
planning. We address continuous state, action, and observation spaces, incorporat-
ing general belief-dependent rewards, a non-parametric framework, and a closed-loop

control setting. Our work makes three key contributions.

Incremental Multiple Importance Sampling Update

We present an efficient method for updating the MIS estimator incrementally upon the
receipt of new samples by utilizing additional memory.

Experience-Based Value Function Estimation

We demonstrate the application of the MIS estimator for estimating the action-value
function. By leveraging trajectories generated by an expert agent, we show that the
action-value function can be estimated directly from pre-existing data, without addi-

tional planning.

IR-PFT Algorithm

We build upon the efficient MIS update and experience-based value function estimation
to introduce IR-PFT, an online algorithm based on MCTS. This approach accelerates

computations by reusing data from prior planning sessions.

10

Chapter 2

Background

2.1 POMDPs

POMDP is a 7-tuple (S, A,O,T, Z,r,by), where S, A and O correspond to state, action

and observation spaces.
T = P(sgp11|5k, ax) (2.1)
is the state transition density function,

Z = P(ok41/sk+1) (2.2)

is the observation density function, r(b,a,b’) represents the reward function based
on the current belief b, the action a, and the subsequent belief o/, while by denotes
the current belief over states. We denote by Hp = (bg, ag,01,a1,09,...,a5_1,0) =
{bo, 01., a1.—1} the history up to time k, which consists of a series of actions made and
observations received. Similarly, we define H, = (bg, ag, 01, a1, 02, ..., ax—1) = Hy\{o}.
Since the exact state of the world is not known and we only receive observations, a prob-
ability distribution (belief) over states is maintained by = P(si|Hy). It is assumed that
the belief is sufficient statistics for the decision making and a Bayesian update is used

to update the belief recursively:
bk+1 = nP(Ok+1|Sk+1)/ P(Sk+1|sk,ak)bkdsk. (2.3)
Sk

where 7 is a normalization term.

The belief update can be split into two main steps, first we make a prediction using

the transition model and calculate a propagated belief b, ;,

beyy = P(sis | HE,) = / P(sp41 |5k, ar)brdss. (2.4)
Sk

11

and then we use the observation model tocalculate a posterior belief by,

b1 = P(skr1[Hiv1) = nP(0k+1|8k+1)bg - (2.5)

A policy 7 € II is a mapping from belief space to action space w : b — a. We define

the value function V7™ for any policy m and horizon d as

Vi) = E [Gglbg, 7. (2.6)

bki1:k44d

where 7 = Tk.k+d—1 represents a sequence of policies for horizon d and

k+d—1

Gr= Y r(bi,mi(bi), bit1) (2.7)
ik

is the return. Similarly, we define the action value function Q™ as

Q" (bk, a) = Ep, ., [r(br, a, bg1) + V7 (b)) (2.8)

2.2 Belief MDP

Each POMDP problem can be viewed as and Markov Decision Process (MDP)
(B, A, 7,71,by) over the belief space assuming markovian belief state where B is the
space of all possible beliefs over states, A,r and by are same as in POMDP definition

and 7(bg+1|bk, ax) is the belief transition function [13]

7(bkt1|bk, ar) = P(bgs1|br, a) (2.9)

2.3 Non-Parametric Setting

In our work we assume a non-parametric setting, where we use collections of state parti-
cles to estimate complex belief distributions. We leverage the particle filter method [25]
to update our approximations of posterior distributions as we receive new observations
from the environment.

Since we use a finite number of samples to represent each belief, we do not have
access to the theoretical belief bg. Instead, we rely on an approximation, assuming
resampling at each step of the particle filter. m is the total number of particles, and
each state si represents the i-th particle. Since we assume resampling, the weights are

uniform and equal to %

m

> 6(s — sp)- (2.10)

i=1

~

1
b = —
m

Given resampled belief by, action ay, and propagated belief ZA)I; 41, calculating the prob-

12

ability P(B;+1|Bk,ak) involves determining all the matchings between the states in by

and those in IA),;H which is §P-complete [26]. We assume, similar to [15], that the

beliefs are not permutation invariant, meaning particle beliefs with different particle

orders are not considered identical. This assumption simplifies the derivation of the

propagated belief likelihood. Consequently, we can express by as {st, %}7;1 and lA);H
1ym

—i
as {Sk-',-l? mJi=1

I 1z P
P(by 41 lbr ax) = — [T PGsiia sk ar)- (2.11)
i=1
In the rest of the paper we assume a non-parametric case and for the ease of notation

we remove the hat sign”from all beliefs.

2.4 Multiple Importance Sampling

Importance Sampling (IS) is a statistical technique that allows estimating properties of
some target distribution p(z) by sampling from a different proposal distribution ¢(z).
In this technique, weights are assigned to the samples drawn from ¢(z) in order to

adjust the contribution of each sample according to p(z):

2 1 < i i i p(@’)
EF[f(z) = N;wls f(a"), wig = A&’ ' ~q. (2.12)
and the distribution ¢ must satisfy ¢(2') = 0 = p(z’) = 0. When there are M proposal

distributions {g,, }»_,, Multiple Importance Sampling formulation can be used [27]:

[MIS _ ul an m i,m p(‘l‘i’m) 1,m
B[f()] =) wiprs (@) ———— f (@), (2.13)

m=1""m =1 G (25)

Here, n,, denotes the number of samples that originate from distribution g¢,, =™
denotes the ith sample that originates from distribution ¢, and the weights wj};q

must satisfy

gm(2"™) =0 = wijs(2) f(2)p(z) = 0. (2.14)
M
F@™) £0 = 3 whs(@ ™) = 1.
m=1

We assume that the weights wf} ;¢ are determined using the balance heuristic [27] which

bounds the variance of the estimator and in this case, the MIS estimator is

M nm p(wi,m)

EMSIf (@)= 20 Y =

1 =1 =1 1y gy (™)

fzhm). (2.15)

13

2.5 PFT-DPW Algorithm

The Particle Filter Tree - Double Progressive Widening (PFT-DPW) algorithm [21] is
based on the UCT algorithm [14] and expands its application to a continuous state,
action and observation setting. It utilizes Monte-Carlo simulations to progressively
construct a policy tree for the belief MDP. At every belief node by and action ay, it sets
up visitation counts N(by,ax) and N(by), where N(by) = >, N(bg,ax) and action-

value function is calculated incrementally

1 &,
Q(br, ar) = NZGZ; (2.16)
=1

by averaging accumulated reward upon initiating from node b, and taking action ay
within the tree. Notably, Q(bk,ar) (2.16) is not equal to Q™ (bg,ax) (2.8) as the pol-
icy varies across different simulations within the tree, causing the distribution of the
trajectories to be nonstationary, hence the absence of the 7 superscript.

Employing the particle filter method involves generating a new propagated belief
by, and posterior belief by from by and ag, during which the observation og; is

sampled and the reward r is computed
bk+17b];+170k)7‘ «— GPF(m)(bk7ak) (217)

In addressing the continuous state, action, and observation spaces, Double Progressive
Widening (DPW) is implemented, wherein the number of children of a node is con-
strained artificially to kN, where N represents the number of times the node has been

visited, and k and « serve as hyperparameters [21].

14

Chapter 3

Approach

3.1 Incremental Multiple Importance Sampling Update

We consider an MIS setting in which we estimate some target distribution p(z) by
getting samples that arrive incrementally in batches, with each batch originating from
¢ € {qn}M_,. A straightforward computation of (2.15) would necessitate a complexity
of O(M?-ngy4), where M denotes the number of different distributions and 4,4 denotes
the average sample count across all distributions. We develop an efficient way to update

the estimator (2.15) incrementally in the theorem below.

Theorem 3.1. Consider an MIS estimator (2.15) with M different distributions and
N samples for each distribution g, € {qi,...,qum}. Given a batch of L I.1.D samples
from distribution gq,,, where g, could be one of the existing distributions or a new,
previously unseen distribution, E‘éVHS[f(:B)] (2.15) can be efficiently updated with a
computational complezity of O(M -ngpg + M - L) and memory complexity O(M - ngug).

Proof. see Appendix A.1.

3.2 Experience-Based Value Function Estimation
We assume that we have access to a dataset
D2 {+,Gp 2 (3.1)

of trajectories executed by an agent that followed a policy 7. Each trajectory is defined

as the sequence

NI - i i
T = (by,, ax,) — (bki+1voki+17bki+laki+1) — .

- (bl;-i-&-d? O?cﬂrdv écier)a (3.2)

where k; represents the starting time index and is used to differentiate between different

steps in trajectory 7¢ and d is the horizon length. We assume that the agent applied a

15

particle filter with resampling at each step of the trajectory. The return G* associated

with trajectory 7% is defined as the accumulated reward,
A — . .
G, = Z 7Bkt Ol k1) (3.3)

In this section, we evaluate V™ (by) for the current belief by using only the dataset D
(3.1), without planning. Such estimation is important in data-expensive domains like
autonomous vehicles [4] and robotic manipulation tasks [16]. In the next section, we
will expand our methodology to include planning.

Reusing trajectories where the initial belief is set to by presents no challenge - we
can aggregate all trajectories that begin with belief b, and action a; and assuming we

have N such trajectories, we define a sample-based estimator

Q (b, ag) é ZGZ (3.4)

However, in continuous state, action and observation spaces, the probability of sampling
the same belief twice is zero. Consequently, each trajectory in the dataset D (3.1) will
have an initial belief that is different from by.

To be able to reuse trajectories from (3.1), we discard the initial belief and action
of the trajectory, instead linking the current belief and action to the remainder of the

trajectory. Formally, given a trajectory 7 € D, 7% = (b};i, ai;i) — 7 ffiz Where

i N
Tout iz Z0p 115 Okt 1> Vb1 Q1) = -

- (bki-s-d? Oki+da bkzi—i—d)' (3.5)

and the current belief b, and action a, we construct a new trajectory 7/ (see Figure
3.1), where 7° represents a trajectory executed by an agent following policy 7, while

Tgu ffiz denotes the segment of 7 reused for the current belief b, and action ay.

= (b, ar) — r;'uffm. (3.6)

To estimate Q7 (b, aj) using the information within trajectory 7¢, two adjustments
are required. Firstly, we need to modify the initial term in the return G* to be equal
to (b, ag, b;;i +1), recognizing that by, # b};i and ag # a}'ﬂ. Consequently, we define the

return of trajectory 7/
~i} é G’]LCZ - T(i:i’ a’]i:i’ i:l+1) + T(bk7 g, b21+1) (37)

Secondly, we need to adjust the weight of G due to the disparity between the distri-
bution P(Téufﬂﬂb};i, azi,ﬁ) and the distribution P(Tsiuffm|bk, ak,), which is acheived

16

(br.
ag
Al
bkiJFd P
i suffix
Ok, +d
i
\ 0% +a_)}

Figure 3.1: Illustration of trajectory reuse.

through importance sampling. The distribution P(-]b};i,a};i,ﬂ) of partial trajectory
Téuf iz is determined by the initial belief bii and action a}'ﬂ. Given Njg partial tra-
jectories sampled from the same distribution P('|b};i,a}'€i,7r), we define an Importance

Sampling estimator
A L1 Nsoo
i=1

where w' £ P(Teup iz Ok 017)
P(T;uffiz |b§‘z ’a’]bci 777))

As a result of our approach to constructing reusable trajectories as described in

(3.6), we can efficiently calculate the weights w' utilizing the theorem presented below.

Theorem 3.2. Given belief node by, action aj, and trajectory 7° = (};Z_, azi) — Tguffm

where Tsiuffix is defined in (3.5), the following equality holds:

P(Tsiuffix‘bkvakjﬂ) P(b];aﬂ’bkzvak)

. . = — (3.9)
P(T;uff’bl’ |b’;€1’ a/’;ci’ ﬂ-)]P)(bklll ‘bl TR a;ﬁ)
Proof. see appendix A.2.
We denote by M the number of unique distributions of partial trajectories
{P("bmm7azlm77r)}n]\{:lv (3'10)

where each distribution is defined by the initial belief b}’ and action ay' . Addition-
ally, we denote the sample count from each distribution as n,,. Consequently, we can
reformulate the dataset D (3.1) as follows:

l7 M7 m
D& {7 G (3.11)
Using this formulation, we define a multiple importance sampling estimator assuming

17

the balance heuristic (2.15),

Im l
P(r suffm|bk,aka)G .

I, .
Z] 1My (sqx‘fzq;‘b]jvakjvﬂ)

M nm
Qhrrs(brar) £ >N (3.12)
m=1[=1

where Tsu F i TEDrESEnts the [th partial trajectory that was sampled from the distribu-
tion P(-|b}? ,ap ,m) and Gk is the adjusted accumulated reward (3.7).

Using Theorem 3.2, we can re-write the MIS estimator (3.12)

n

m l’
CTRUNRIES 3) iU LELD SRR AL (313
MIS k:ak i (b m . - Lo .
m=11=1 2.j=1"5" (k+1|k7k)

Since each element in the second sum of (3.13) corresponds to a propagated belief,
which might appear more than once, we can rewrite the sum in a more compact form.
Specifically, we group the terms based on unique propagated beliefs and account for

their multiplicity:

—l,m
|C bk 1@k N(bg,51)

M
Qhrrs(br,ar) 2 > Z W(bk DS Gt (3.14)
y=1

m=1

The weights W(b,;i:nl) are defined by:

P(by " b, ar)

W (b, = P
Mlnj P(by,, +1‘b]jaaij)

km+1

(3.15)

C(bg,, , ar,,) denotes the set of reused propagated belief children associated with by, and
ar,,- The term N (b,;iTl) represents the visitation count of bl;fl’Tl, indicating the number
of trajectories that pass through the propagated belief b;l’Tl and Gm’l’y is the return of
the y-th trajectory passing through bk 41+ Note that bk 't1 in (3.14) represents unique
propagated beliefs, which differs from (3.13), where it denotes the propagated belief
associated with a single trajectory. Figure 3.2 illustrates the estimator from (3.14).
For the current belief by and action ag, three prior trajectories are incorporated: two
from (bk ,ak) and one from (b{C ,ak). Light green edges show the connections between
(bg, ai) and the reused nodes for estimating QMIS(bk,ak). Further in this work, we
consider a framework where the dataset D (3.11) expands over time with trajectory
samples from an agent following policy m. Theorem 3.1 is used to efficiently update the

estimator (3.13) with new samples.

To clarify, our framework differs from standard off-policy evaluation methods. Tra-
ditional importance sampling for experience-based value estimation operates within the
off-policy paradigm [22], where trajectories originate from the current belief by, using
behavioral (m,) and target (m;) policies to estimate V™ (by). In contrast, we estimate

V7(by) for the current belief and a specified policy 7, with trajectories drawn form

18

Figure 3.2: Ilustration of reuse of three trajectories.

different beliefs in the dataset D (3.1). To our knowledge, such a setting has not been

addressed before in the context of action-value function estimation in POMDPs.

3.3 Our POMDP Planning Algorithm: IR-PFT

Up to this point, we considered a specific single policy, denoted as m, and utilized
previously-generated trajectories by an agent following 7 to estimate the action-value
function Q™ (bk, ax). In this section, we present an anytime POMDP planning algorithm
that uses trajectories from the dataset D, which includes data from previous planning
sessions, to accelerate current planning.

We name our algorithm Incremental Reuse Particle Filter Tree (IR-PFT). Instead of
calculating Q (b, ax) from scratch in each planning session, we use previous experience
to speed up the calculations.

We adopt the same approach as in Section 3.2 to reuse trajectories, with three key
modifications: first, the propagated belief nodes from the previous planning session in
dataset D have a shorter planning horizon. We extend the horizon of these nodes before
reusing them; second, the policy varies across different simulations (as in standard
MCTS), resulting in a non-stationary distribution of reused trajectories in D; and
third, we integrate the planning and generation of new trajectories with the reuse of

previous trajectories within an anytime MCTS setting.
Figure 3.3 visually illustrates the horizon alignment process, where a propagated

belief node b,;_ with horizon d,., must be extended by Ad to match the current horizon
d. We analyze the complexity of the correction of belief nodes from previous planning

sessions in case of using the MCTS [7] algorithm in Corollary 3.3.

Corollary 3.3. Given an MCTS tree T with horizon dpre,, number of simulations m
and N nodes, extending its horizon by Ad will require adding at most m - Ad nodes and
reward calculations.

The proof is straightforward: after m simulations, the MCTS tree contains at most m
leaves and we need to extend each leaf by Ad and for each new node we calculate a

reward.

19

Figure 3.3: Illustration of horizon gap.

We now define the estimator

1,
|C (bkyy, sCkery)| N(by, ')

M
Qs (brax) £ Wb Y G, (3.16)
m=1 =1 s=1

where the weights W(b,;ifl) are defined in (3.15). G is the extended return defined

as

k+dbrm, +Ad—1

~m,l ~m,l
GZL Y — GZ% Yo Z T(bi, Wrollout(bi)v bi+1). (317)
dkm, is the horizon of propagated belief b,;i’Tl, C_}Zn’l’y shares the same values in the

summation as the return é;”’l’y (3.7), but it also includes additional terms from the ex-

tended trajectory due to the horizion extension using the rollout policy my0ut- There-
fore, only the rewards for these additional terms need to be computed when extending

the horizon, while all shared terms (G;”’Ly)

can be reused.

Since the tree policy varies between simulations, the update represented by (3.16)
operates in a heuristic manner, with its convergence yet to be established. We intend
to explore this aspect in a future work.

After extending the horizon of a reused propagated belief node b~ and reusing
its action-value function, the counter N (bg,ay) is incremented by the visitation count
N (b™) using the relation

N(bg,ar) = >, N(b;). (3.18)
b;eC(bk,ak)

This approach accelerates our algorithm for a given number of simulations, offering
a speedup over PFT-DPW [21].

To summarize, here is the high-level logical flow of our algorithm: At each iteration,
we either reuse a propagated belief node by extending its horizon by Ad, as illustrated

in Figure 3.3, and compute the extended return for the subtree rooted at the reused

20

node b, or create a new node. Subsequently, the Multiple Importance Sampling (MIS)
estimator (3.16) is employed to evaluate the action-value function. To avoid the com-
putational expense of a naive calculation, we leverage Theorem 3.1 to perform efficient

incremental updates of the estimator in (3.16).

3.3.1 Algorithm Description

The complete algorithm is outlined across multiple methods - Algs. 3.1, 3.2, 3.3 and
3.4. Alg. 3.1 illustrates a general planning loop wherein the agent iteratively plans
and executes actions until the problem is solved. After each planning session, reuse

candidates are updated based on the preceding planning tree. The main algorithm is

Algorithm 3.1 General Planning Loop
1: Procedure: SOLVE(b, D)
2: while ProblemNotSolved() do
3: a < Plan(b, D)
4: 0 4+ ReceiveObservation(b, a)
5. b, 07,1 < Gppgn(b,a,0)
6: UpdateReuseCandidates(a, D, b,b’)
7
8

bt
: end while

detailed in Alg. 3.2 with key modifications compared to the PFT-DPW algorithm [21]
highlighted in red. The ActionProgWiden method (line 5) is implemented following
the same approach as described in [21]. ShouldReuse method (line 7) evaluates three
conditions: current node b is the root, the balance between reused and new nodes, and
the availability of reuse candidates. The second criterion is important because, while
acquiring estimates from prior partial trajectories is runtime-efficient, generating new
trajectory samples from the correct distribution is essential. Currently, our algorithm
only applies reuse to the root node, as it promises the most significant computational
savings. Since the root node typically has the shallowest depth in the tree, we can
optimize by conserving numerous reward computations for most of its descendants.
While extending reuse to nodes at other depth levels is feasible, it falls outside the

scope of this work.

The GetReuseCandidate method (line 8) selects a reuse candidate propagated belief
b'~ from the dataset D based on a distance function fp (line 2). An example of fp
is [|[E[b~ — by, 1. 5]||3 where by, ; represents the maximum likelihood propagated belief,
given belief b and action a which can be calculated using (2.11) with O(m) complexity
where m is the number of samples. Since fp is applied to the entire dataset, it needs
to be computationally efficient. Additionally, reusing nodes with high visitation counts

will further reduce the overall runtime of the algorithm.

21

Algorithm 3.2 IR-PFT
Procedure: PLAN(b, D)

1=0

1:
2:
3: while ¢ < n do

4: Simulate(b, dpgz, D)
5: end while

6: a = argmax,{Q(b,a)}
7: return a

1: Procedure: SIMULATE(b, d, D)

2: if d =0 then

3: return 0

4: end if

5: a < ActionProgWiden(b)

6: if |C(ba)| < koN(ba)* then

7. if ShouldReuse(b,a, D) then

8: b'~ < GetReuseCandidate(b, a, D)

9: FillHorizonPropagated(b'~, d — d;-)
10: N(b) + N(b)+ N({'")
11: N(ba) < N(ba) + N (V")
12: i i+ N(b'") {update simulation counter}
13: Q(ba) - MI1SUpdate() {update using (3.16)}
14: C(b,a) < C(b,a) U{(b'")}
15: return total
16: else
17: V07,1 < Gppam) (b, a)

18: C(b,a) < C(b,a) U{(b'")}

19: C)«~CO)u{,r}

20: total < r +~yROLLOUT (Y ,d — 1)
21: end if

22: else

23: b/~ + sample uniformly from C(ba)
24: b, r + sample uniformly from C'(b'")
25: total < r + ySimulate(t/,d — 1,T)
26: end if

27 N(b) « N(b) + 1

28: N(ba) < N(ba) + 1

29: Q(ba) < MISUpdate() {update using (3.16)}

30: return total

The FillHorizonPropagated method (line 9), addresses discrepancies in horizon

22

Algorithm 3.3 Reuse Functions

1: Procedure: UPDATEREUSECANDIDATES(a,D,bk,bZ?ﬁf)
2: ReuseDict dict + {}

3: for b, , € C(by,a) do

4: for bk+1 S C<bl;+1) do

5: for o' € Actions(by+1) do
6: for b, ,, € C(br11,0') do
7 if n(b,,5) > Nmin then
8: D.append(b_, ,)

9: end if
10: end for
11: end for
12: end for
13: end for

Procedure: SHOULDREUSE(b,a,D)

if not b.IsRoot() then
return false

end if

if NumReused(b,a) > %(b’a) then
return false

end if

candidates < D.GetReuseCandidatesDict()

return not(candidates.empty())

—_

Procedure: GETREUSECANDIDATE(b,a,D)
2: b~ <« argming-{fp(b~,b,a)}
3: return b~

lengths when reusing nodes from the previous planning sessions. Algorithm 3.4 per-
forms recursive traversal of the subtree defined by propagated belief '~ and extends
its depth by d using the rollout policy.

At lines 10 and 11, we increment counters, where N(b'~) represents the count of
trajectories passing through reuse candidate propagated belief node b'~. At line 12, we
increment the PLAN procedure counter by N (b'7).

At lines 13 and 29 we utilize (3.16) to update Q(b, a), leveraging efficiency through
the application of Theorem (3.1). At line 14 we store the propagated belief b'~.

Lines 17 - 19 are executed when we choose not to reuse and instead initialize a
new propagated belief from scratch. A new belief is generated using the particle filter
method [25], after which the propagated belief and posterior belief are saved, and a
rollout is performed.

At lines 23 and 24 we sample uniformly both propagated and posterios beliefs.

UpdateReuseCandidates method in Algorithm 3.3 inserts new reuse candidates that
have a visitation count larger than a threshold n.,;,, as we aim to reuse nodes with

higher visitation counts, which leads to a greater speedup.

23

Algorithm 3.4 Fill Horizon Gap

1: Procedure: FILLHORIZONPROPAGATED(b™, d)

2 @new(b7) 0

3. for ¥ € C(b™) do

4 Quew(d”) + Quew(b™) + FillHorizonPosterior (V)
5: end for

6

. Qnew(d™)
: return G

Procedure: FILLHORIZONPOSTERIOR(b, d)
if IsLeaf(b) then
a < DefaultPolicy(b)
V07,1 < Gppim) (b, a)
N(bya) + 1
N ™)+ 1
QW) «+r
Q(b,a) < r
return r
end if
: Q(b) 0
: for a € Actions(b) do
for v/~ € C(b,a) do
Q(b) < Q(b) + FillHorizonPropagated(b'~,d — 1)

end for

e e e e
AT R

: end for

Q(b)
Q(b) +)

: return Q(b)

— = =

24

Chapter 4

Results

4.1 Setup

4.1.1 IR-PFT Evaluation

We assess the performance of the IR-PFT algorithm by comparing it to the PET-DPW
algorithm [21]. Our evaluation focuses on two main aspects: runtime and accumulated
reward, with statistics measured for each. The beliefs are approximated with a finite
number of state particles and each algorithm was evaluated using different quantities of
particles—specifically, 5,10, 15, and 20, while maintaining a constant horizon length of
d = 10. In all experiments, the solvers were limited to 1000 iterations for each planning
phase. The code for both algorithms IR-PFT and PFT was implemented in the Julia
programming language and is available at https://github.com/miken1990/ir-pft.

4.1.2 Continuous Light-Dark 2D

All experiments were conducted using the standard Light-Dark 2D benchmark, where
the agent’s objective is to reach a predefined goal g € R? while minimizing localization
uncertainty through the use of beacons distributed across the map (refer to Figure 4.1).

The state space S C R? is continuous, representing the agent’s position. The action
space A C R? is also continuous, constrained to movements within the unit circle,
|a|| = 1, where a € A. The observation space O C R? is continuous, providing noisy
measurements of the agent’s location. The initial belief by(s) is modeled as a Gaussian
distribution N (g, Xo), with mean p, and covariance 3.

The state transition model is defined as a Gaussian distribution:
T(s'|s,a)=N(s+a,Xr),

where X7 represents the process noise covariance.

The observation model is also a Gaussian distribution:
p(O | 5) = N(O | SazO : max(r, Tmax)),

25

https://github.com/miken1990/ir-pft

where 7 = ||s — b|| is the Euclidean distance to the nearest beacon b € R2, 7y, is the
maximum distance for decreasing localization accuracy and Yo is the observation noise
covariance.

The reward function is defined as the weighted sum:
R(b,a, V') =Eyp(I(s" = g)ll] = A~ H(b, V),

where: Egp[||(s" — ¢)||] is the expected Euclidean distance between states in b’ and
the goal g € S, H(b,¥) is the differential entropy of the belief transition from b to b’
calculated using [3] and A € R is a scaling factor that balances the contribution of
the differential entropy term. The first term encourages minimization of the expected
distance to the goal, while the second term promotes belief updates that reduce un-
certainty in the agent’s localization. The goal of the agent is to reach the goal while
minimizing uncertainty.

Although the experiment involves Gaussian transitions, our approach is generaliz-

able and remains applicable to any non-parametric settings.

A Beacons

e Mean Belief
Particles
Goal

+ Start

Figure 4.1: Nlustration of Continuous Light-Dark 2D problem.

4.2 Runtime Analysis

We compared the runtime of IR-PFT vs PFT-DPW. The results are depicted in Fig-
ure 4.2 as a function of number of particles. Additionally, we included a speedup
chart, which provides more insightful information, in Figure 4.3. The runtime of IR~
PFT consistently outperformed that of PFT, with a notable saturation in speedup

at approximately 1.5x. This improvement is primarily attributed to the reduction in

26

computational overhead associated with reward calculations, which represent the most
resource-intensive component of the algorithm. As the number of particles increases,
the computation of the differential entropy reward becomes the dominant factor in
runtime, scaling quadratically with the number of samples.

Additionally, node reuse was managed using the ShouldReuse method (line 7), as
detailed in the previous section. This method limits the number of reused nodes in the
tree, ensuring a balance between reusing existing nodes and exploring new nodes to

maintain algorithmic efficiency and exploration capability.

25| BEPFT
INIR-PFT

N
o

Runtime [s]
i
o 9]]

O)

o

5 10 15 20
Particles

Figure 4.2: Runtime comparison.

4.3 Accumulated Reward Analysis

We compare the accumulated rewards of IR-PFT vs PFT (Figure 4.4). The results
show negligible differences, indicating that our method improves runtime without com-

promising on the accumulated reward received by the agent.

27

1 Speedup

1.8¢
o
5
8 1.6
o
wn

1.4+

1.2 5 10 15 20

Particles

Figure 4.3: Speedup.

g 0
© BPFT
= B IR-PFT
o —50¢
©
b/
O
- R L
= 100
)
O
< _150!
5 10 15 20
Particles

Figure 4.4: Accumulated Reward Comparison.

28

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this paper, we have proposed a general framework which allows to reuse prior in-
formation during the current planning session in a non-parametric setting. We derived
theoretical justification for reuse via MIS and introduced a new MCTS-like algorithm,
IR-PFT which reuses information from previous planning session and allows to speed
up calculations in current planning session. In order to evaluate IR-PFT algorithm, we
conducted an empirical performance study. Specifically, we compared the performance
of our approach to the PFT-DPW algorithm which doesn’t reuse prior information and
starts each planning iteration from scratch. We measured various performance metrics,
including runtime, speedup and the accumulated reward. Our results clearly indicate
a speed-up in the planning process when prior information is reused. Importantly,
despite the speedup gain in computations, our approach maintains the same level of
performance as the traditional planning approach without reuse. Incorporating prior
information significantly boosts planning efficiency, delivering time savings while main-
taining high-quality results. These findings underscore the effectiveness and potential

of the proposed approach.

5.2 Future Work

Several potential extensions of this work can be envisioned. First, the reuse mechanism
could be extended beyond the root node to other belief nodes in the planning tree.
By allowing every node to reuse prior information when estimating the action-value
function, the computational efficiency of the algorithm could be further enhanced.
Second, the convergence properties of the Multiple Importance Sampling (MIS)
update in the IR-PFT algorithm present an interesting direction for further research.
While this work provided theoretical justification for reuse in the context of experience-
based value function estimation, the MIS update was employed as a heuristic within

the IR-PFT algorithm. A more rigorous analysis of its performance and convergence

29

properties in the Monte Carlo Tree Search (MCTS) framework, particularly under the
challenges posed by a non-stationary policy, could yield deeper insights and establish

stronger theoretical guarantees.

30

Appendix A

Appendix

A.1 Proof of Theorem 3.1

Consider an MIS estimator (2.15) with M different distributions and n,, samples for
each distribution ¢, € {q1,...,qa}. Given a batch of L I.I.D. samples from distribution

¢ny Which may be an existing or new distribution,

M nm

EMIS[f(a)) = S 50 P

1 i=1 2oj=1 My - 45 (Tim)

(2.15) can be efficiently updated with a computational complexity of O(M -ngyg+M - L)
and memory complexity O(M - ngyg).
For every distribution g,, we have the inner sum term » /™ —PEm) f(@im)-

> im0 (Tim)
In case m # m/’:
Ej]\il nj - @i (Tim) < Zjﬂil nj - @i (Tim) + L - @y (2im) - O(1) complexity. We have nyp,
samples and M distributions so the complexity of this update is O(M - nyy,).
In case m = m':
For existing samples ij‘il nj - qi(Tim) < Zj]vil nj - @i (Tim) + L - g (zim) - O(1)
complexity. We have n,, samples existing samples so in total O(n,,) complexity.
For each new sample we need to calculate % f(xim) - O(M) complexity.
We have L new samples so in total O(L - M) ch)lmjpltjaxit’y. The total complexity of the
update is O(M - ngyg +nm + M - L) = O(M - ngpg + M - L).

A.2 Proof of Theorem 3.2

(A1)

31

Applying chain rule yields,

P 1ok, an) P}y U b)) PO bk, a)

k1 Dk O8) 2204 byt) 2 Oy O O (A.2)
P(bkiz-i-l |b7i€z, a/%ﬂz) ﬂ%ﬁ-l’/’b%ﬁ-ﬂbkil—kl’ 7'(') P(bk:-‘rl |b}f¢’ a;%)

32

Bibliography

Mauricio Araya-Lopez, Olivier Buffet, Vincent Thomas, and Francois Charpillet.
“A POMDP Extension with Belief-dependent Rewards.” In: NIPS. 2010, pp. 64—
72.

M. Barenboim and V. Indelman. “Adaptive Information Belief Space Planning.”
In: the 31st International Joint Conference on Artificial Intelligence and the 25th
European Conference on Artificial Intelligence (IJCAI-ECAI). Vienna, Austria,
July 2022.

Y. Boers, H. Driessen, A. Bagchi, and P. Mandal. “Particle filter based entropy.”
In: 2010 13th International Conference on Information Fusion. 2010, pp. 1-8.

H. Caesar, J. Kabzan, and K. Tan et al. “NuPlan: A closed-loop ML-based plan-
ning benchmark for autonomous vehicles.” In: CVPR ADP3 workshop. 2021.

Panpan Cai, Yuanfu Luo, David Hsu, and Wee Sun Lee. “HyP-DESPOT: A
hybrid parallel algorithm for online planning under uncertainty.” In: Intl. J. of
Robotics Research 40.2-3 (2021), pp. 558-573.

Tristan Cazenave, Jean Méhat, and Abdallah Saffidine. “UCD: Upper confi-
dence bound for rooted directed acyclic graphs.” In: Knowledge-Based Systems
34 (2012), pp. 26-33.

Auger Couetoux and Teytaud. “Continuous Upper Confidence Trees with Poly-
nomial Exploration - Consistency.” In: European conference on machine learning.

Springer. 2013.

E. Farhi and V. Indelman. “iX-BSP: Incremental Belief Space Planning.” In:
(2021). arXiv: 2102.09539.

E. I. Farhi and V. Indelman. “iX-BSP: Belief Space Planning through Incremental
Expectation.” In: IEEE Intl. Conf. on Robotics and Automation (ICRA). May
2019.

Johannes Fischer and Omer Sahin Tas. “Information Particle Filter Tree: An On-
line Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains.”
In: Intl. Conf. on Machine Learning (ICML). Vienna, Austria, 2020.

33

https://arxiv.org/abs/2102.09539

[11]

[12]

[16]

[20]

[21]

22]

[23]

[24]

Neha P Garg, David Hsu, and Wee Sun Lee. “DESPOT-a: Online POMDP Plan-
ning With Large State And Observation Spaces.” In: Robotics: Science and Sys-
tems (RSS). 2019.

Marcus Hoerger and Hanna Kurniawati. “An On-Line POMDP Solver for Con-
tinuous Observation Spaces.” In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). IEEE. 2021, pp. 7643-7649.

Mykel J. Kochenderfer. Decision making under uncertainty: theory and applica-
tion. MIT press, 2015.

Levente Kocsis and Csaba Szepesvari. “Bandit based monte-carlo planning.” In:

FEuropean conference on machine learning. Springer. 2006, pp. 282-293.

Michael H Lim, Tyler J Becker, Mykel J Kochenderfer, Claire J Tomlin, and
Zachary N Sunberg. “Optimality guarantees for particle belief approximation of
POMDPs.” In: Journal of Artificial Intelligence Research 77 (2023), pp. 1591—
1636.

Ajay Mandlekar, Jonathan Booher, Max Spero, Albert Tung, Anchit Gupta, Yuke
Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Scaling Robot Supervision to
Hundreds of Hours with RoboTurk: Robotic Manipulation Dataset through Human
Reasoning and Dezterity. 2019. arXiv: 1911.04052 [cs.RO].

Rémi Munos. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle
Applied to Optimization and Planning. 2014.

C. Papadimitriou and J. Tsitsiklis. “The complexity of Markov decision processes.”
In: Mathematics of operations research 12.3 (1987), pp. 441-450.

David Silver and Joel Veness. “Monte-Carlo planning in large POMDPs.” In:
Advances in Neural Information Processing Systems (NIPS). 2010, pp. 2164—
2172.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. “DESPOT: Online
POMDP Planning with Regularization.” In: NIPS. Vol. 13. 2013, pp. 1772-1780.

Zachary Sunberg and Mykel Kochenderfer. “Online algorithms for POMDPs with
continuous state, action, and observation spaces.” In: Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling. Vol. 28. 1. 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Ori Sztyglic and Vadim Indelman. “Speeding up Online POMDP Planning via
Simplification.” In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). 2022.

Vincent Thomas, Geremy Hutin, and Olivier Buffet. “Monte Carlo Information-
Oriented Planning.” In: arXiv preprint arXiv:2103.11345 (2021).

34

https://arxiv.org/abs/1911.04052

[25]

[26]

[27]

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT press, Cam-
bridge, MA, 2005.

L. G. Valiant. “The Complexity of Computing the Permanent.” In: Theoretical
Computer Science 8.2 (Apr. 1979), pp. 189-201.

Eric Veach and Leonidas J Guibas. “Optimally combining sampling techniques
for Monte Carlo rendering.” In: Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques. ACM. 1995, pp. 419-428.

Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. “DESPOT: Online
POMDP planning with regularization.” In: JAIR 58 (2017), pp. 231-266.

A. Zhitnikov and V. Indelman. “Simplified Risk Aware Decision Making with
Belief Dependent Rewards in Partially Observable Domains.” In: Artificial Intel-

ligence, Special Issue on “Risk-Aware Autonomous Systems: Theory and Practice”

(2022).

Andrey Zhitnikov, Ori Sztyglic, and Vadim Indelman. “No Compromise in Solu-
tion Quality: Speeding Up Belief-dependent Continuous POMDPs via Adaptive
Multilevel Simplification.” In: Intl. J. of Robotics Research (2024).

35

NN MY NN N2Y PION KOY PINN 1V NN TIYYY 102 TR DRI NIN NNWNIN 253
DTIP YTON TIWYYO NIV NWDN NND 2NN MY Yy¥IY NN 12100 YN 1NN
Multiple Importance Sampling (MIS) M2>wn 9 Dy DXN2’H 190NN NXIT DY NOOINN
M 5y NYNIN 25UNN NWIN DY DM DR IVN 20V DNWYNID MONNN NPTNN NPaonn
ANY Y MO NN yNanYy MCTS 00N 5y ©91ann IR-PFT - 10V ONONRN NN NNAd
NOY NOWNY MINID NPIND MIRXIN IOV DHTIPN PNIONN 229YI 92XV YN vy Nyl
DIPINOND MMIT VI MNT DY NIIWY D) RON 2NN JIT DX STIYAYN 191N NNNNNA P RO
9YO 9122 YNODN NON YN DY NDPVYY TD DY DWIANND PN DY DOV D2 dNPNRN
2219 927 YV 1IN0, NPNTI RY M22202 MIMNPN MOSNN NJAP DY MDD IR XMYNYN 191N

NY MONDM NPNANN NPMNVIN MIIWYNY

ii

9851

JPRIMVIND MOIYNN NPPDIAIIN DINN TYHNNI DN VNN INNHD NPNTI XD M2202 MPH NION
NPY DY) OYaAPN DN DN 0NA ONINA MOVONN YaP5 DWAT) DPNINVIN DIDD ,MNINNI
DA N9 Sy N9 - "NNNNY DY DONNDN NN OIPNI NON ,N220N DV OIPHNN AND
520 YT ,D0IV1PNA 1IN YYD ,DINY MNPHN DY DN MOIYNI MNTNN-IN .OPIVIND
©po0n (POMDPs) NNNNY DNIN2M DPNPI NVINN MONN N0 DPNPT OMPWYY YPoM
PINNN 12100 ,A80N 2NN MXTIN ON MIAPYI .NIND NPYID 20D NUDIAN NPVNRNN NNDNI
NN PPN 1200 NVN L (belief) NINN DV WD DPIVANRND DANNN 9D 79 DY N9
TVNPN OIDPN DY 121N TPONDIVNND NVONNN NN DN 2A5Y D52 NNPD NN PNYNNNN
N TPORDVIND NVPYTHN NMNND TPORDVNIND (Policy) NYYTna vindw »1 Sy 5NN
990NV NTIYIN AN P2 ,yan pyan ov oovipn L (PSPACE-complete) MmN nwp iyl
DY 2PN J9IND DT IPONDVINND NVYNNN DR YaAPY NN DY PNAY TIAN 1DIDNIY NMIVIND
.(Curse of history) "MV NN NOOP” NN NNIT NYJINN ,NPANNN NN MNYSN MNd
NoYN a8ND AN TN NADIN YOV DTN NI PYan DY 22wnn Wipd naon N0
(Curse "ny10min NYOP” DYA NWIT R NYIN .DPIVARD DANNDD MND NN PIYN 191N
AN N TN NYP PYAN DN NPAXM MMYS a8 >anna .of dimensionality)
LTING MIVIVE NPYIAD TAOND IYVAN NPR IINDVAIN PINT NNINND)

DNND) DN ,7PY320 2PN PINS N8O 0o (online algorithms) ©IMIN DNIIVON
D9V DDIANND NPXIVIN T9DN IN N¥ IIT WD 71NPN” PN PNAYNI DNPIDY AN Vil
D001 NPT T DY TPYYY VISNN 2NN DY DT DT "2Npn”"nv 505 07PN PNINSN NN
OMNPIONN TNX . (belief trees) VIN KXY N)2) DPIVIND ODDNN 9 TO TINN OYTNY
noop” oy TTMNN NN Monte Carlo Tree Search (MCTS) NN 9NV X9 DINONN
XY TP)A VI9ND 3NN DY (NTNNR RD) INON 0XT T DY "neTnmin nYOYPM rmowinn
Y25 (exploration) NPPN P2 NN DIPIVOND XY NNI¥ D35 NPPVLDVVLD NOINI NINN
D9YYY DMHVIN RO DNNY D) DY TN DNV ONNY NNAY > (exploitation) 9N
INY MY DN 200D

A5V DNTIPN PNIDNN 22VVN YN YIDIYN-N NN MN»PN MOV 217 DY IPMynvn No2n
NINAD 1IN Oy N DM 78PN YATH DARYN N2 1D 1 TOI19N” nvdya SNONN IONN
1INV VIDN XY YIDIY NYDID YN 2N TNODN , NNIVTN NYN) WS It 9pNN .Poon NN
Y NaNT PIMNOP OY DTTINNN NN NONN MOONNN NOAP PYNNA ONTIPN PNIdDNN 2OV

JMND DY NPHYD NPNPNS DN DOININN JNAY ,DXNT IPANM NIV ,ANN YANIN DY Ny

NPYMNOVIN MOIYND TPNTA-PAN N2IDNA ,NDTYN DTN 12N NUNIY DY IN1NINA Y2 AIPNHND
NPPO1M

NY-"2N52) 0D IPNND POMYT 12NNND NNYD DXIINND 1NONI N NN MNNMND D PON
PN ANV NIDTYN OIPMNDI) IYN ,IANNN OV IPNNN NOPN ToNNa

M. Novitsky, M. Barenboim, and V. Indelman. “Previous Knowledge Utilization In Online
Belief Space Planning.” In: IEEE Robotics and Automation Letters (RA-L). Submitted. 2024.
arXiv: 2412.13128.

nmn

NIRYM MIS20N ,1PMINN DY IR0 TIN DTN 12N MOMID POY ININD MTIND NI N

TIVA NNPD MPND YAOIN 1NN TN SN MNIND 1DV DD IOY YN ININD STIND TIND

DOV THRNND TITYM NPNNN DY ONIN SNYND 1VI9) P NNAYND NTIN PPN NN INNONID
ST 95 TIND

I IPNN PN DY 1PIDLY NMON NTIN NION

https://arxiv.org/abs/2412.13128

VN9 XY 1PN 1NN DNIP Y1 DIN)
DMNNRN ANNa

PPN DYy NN

ININN NOAPY MWATN DY *PoN MM oYY
NPY01217 NPMNVIN MIIYNA DYTAD JODNN

1IN HNDM

INIWY MYNOV NIN — 1IDVN VIDY YN
2025 aNMaa nan n”avnn vVav

10N NI 1NIPN 1PN DD Y1 DIN)
DMNNRN ANNa

1IN HNDM

iii

	List of Figures
	Abstract
	Notation and Abbreviations
	1 Introduction
	1.1 Planning Under Uncertainty
	1.2 Related Work
	1.2.1 Online Algorithms
	1.2.2 Information Reuse In Online Algorithms

	1.3 Contributions

	2 Background
	2.1 POMDPs
	2.2 Belief MDP
	2.3 Non-Parametric Setting
	2.4 Multiple Importance Sampling
	2.5 PFT-DPW Algorithm

	3 Approach
	3.1 Incremental Multiple Importance Sampling Update
	3.2 Experience-Based Value Function Estimation
	3.3 Our POMDP Planning Algorithm: IR-PFT
	3.3.1 Algorithm Description

	4 Results
	4.1 Setup
	4.1.1 IR-PFT Evaluation
	4.1.2 Continuous Light-Dark 2D

	4.2 Runtime Analysis
	4.3 Accumulated Reward Analysis

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	A Appendix
	A.1 Proof of Theorem 3.1
	A.2 Proof of Theorem 3.2

	Bibliography
	Hebrew Abstract

