
Previous Knowledge Utilization
In Online and Non-Parametric

Belief Space Planning

Michael Novitsky





Previous Knowledge Utilization
In Online and Non-Parametric

Belief Space Planning

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Autonomous Systems

and Robotics

Michael Novitsky

Submitted to the Senate
of the Technion — Israel Institute of Technology

Shevat 5785 Haifa February 2025





This research was carried out under the supervision of Associate Prof. Vadim Indelman,
in the Technion Autonomous Systems and Robotics Program.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s Master’s
research period, the most up-to-date versions of which being:

M. Novitsky, M. Barenboim, and V. Indelman. “Previous Knowledge Utilization In Online
Belief Space Planning.” In: IEEE Robotics and Automation Letters (RA-L). Submitted. 2024.
arXiv: 2412.13128.

Acknowledgements

I wish to express my gratitude to my advisor, Associate Professor Vadim Indelman,
for his invaluable guidance, support, and patience throughout my Master’s studies.
His ability to provide direction while allowing me the freedom to explore has been
instrumental. Additionally, I am profoundly thankful to my family, and especially
to my wife Anaelle, for their unwavering support and encouragement throughout this
journey.

The Technion’s funding of this research is hereby acknowledged.

https://arxiv.org/abs/2412.13128




Contents

List of Figures

Abstract 1

Notation and Abbreviations 3

1 Introduction 7
1.1 Planning Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Information Reuse In Online Algorithms . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Belief MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Non-Parametric Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Multiple Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 PFT-DPW Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Approach 15
3.1 Incremental Multiple Importance Sampling Update . . . . . . . . . . . . 15
3.2 Experience-Based Value Function Estimation . . . . . . . . . . . . . . . 15
3.3 Our POMDP Planning Algorithm: IR-PFT . . . . . . . . . . . . . . . . 19

3.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Results 25
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 IR-PFT Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Continuous Light-Dark 2D . . . . . . . . . . . . . . . . . . . . . 25

4.2 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Accumulated Reward Analysis . . . . . . . . . . . . . . . . . . . . . . . 27



5 Conclusions and Future Work 29
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Appendix 31
A.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

Hebrew Abstract i



List of Figures

1.1 Illustration of a belief tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Illustration of trajectory reuse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Illustration of reuse of three trajectories. . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Illustration of horizon gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Illustration of Continuous Light-Dark 2D problem. . . . . . . . . . . . . . . . . . . 26
4.2 Runtime comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Accumulated Reward Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 28





Abstract

Online planning under uncertainty remains a critical challenge in robotics and au-
tonomous systems. In real-world scenarios, autonomous agents often lack direct access
to the true state of the environment and instead maintain a belief (distribution over
possible states). Uncertainty in such systems arises from various sources, including
imperfect perception due to sensor noise and limited information. Partially Observ-
able Markov Decision Processes (POMDPs) provide a well-established mathematical
framework for such problems.

Tree search techniques are widely used to create partial future trajectories within
computational limits. However, a significant limitation of most existing methods is
their tendency to discard information from previous planning sessions and start plan-
ning from scratch each time. This study introduces a novel, computationally efficient
approach that incorporates historical planning data into the current decision-making
process. We address a broad category of problems with continuous state, action,
and observation spaces, where rewards are general functions of belief. Our theoret-
ical framework for information reuse is based on Multiple Importance Sampling (MIS)
and demonstrates how it can be applied to estimate action-value functions using expert
demonstrations without planning. We build upon this approach by developing our al-
gorithm, IR-PFT, which leverages Monte Carlo Tree Search (MCTS) and incorporates
trajectory reuse from previous planning sessions into the ongoing planning process. Ex-
perimental results reveal that our method not only significantly reduces computation
time but also maintains high performance levels. Our findings suggest that the integra-
tion of historical planning information can substantially enhance the efficiency of online
decision-making in uncertain environments, ultimately leading to more responsive and
adaptive autonomous systems.

1



2



Notation and Abbreviations

S State Space
A Action Space
O Observation Space
T State Transition Model
Z Observation Model
r(·) Reward function over state or belief
ρ(·) Reward function over belief
b0 Initial belief at time index 0
bk Posterior Belief at time index k
b−

k Propagated belief at time index k
sk State at time k

ak Action at time k

ok Observation at time k

Hk History of prior belief actions and observations up to time k

H−
k History of prior belief actions and observations up to time

k − 1
π Policy function which maps belief to action
·k:k+d Sequence from time index k to time index k + d

πk:k+d−1 Sequence of policy functions for horizon d which map belief
to action

V π(·) Value function given policy π

Qπ(·, a) Action value function given policy π and action a

Gk Return following time k

B Belief space
b̂k Posterior belief based on state samples at time index k
b̂−

k Propagated belief based on state samples at time index k
si

k The i-th state particle in belief b̂k

ÊIS
p [f(x)] Importance sampling estimator of E[f(x)]

xi i-th sample in the importance sampling estimator of E[f(x)]
wi

IS i-th weight in the importance sampling estimator of E[f(x)]
ÊMIS

p [f(x)] Multiple Importance Sampling estimator of E[f(x)]
xi,m The i-th sample in m-th importance sampling distribution
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wm
MIS m-th weight in the multiple importance sampling estimator

of E[f(x)]
qm m-th distribution in the multiple importance sampling esti-

mator of E[f(x)]
nm Number of samples from m-th importance sampling distri-

bution
navg Average number of samples in importance sampling distri-

butions
GP F (m)(b, a) Particle filter belief update performed with m particles and

a simulated observation
N(bk) Number of times belief bk was visited in the MCTS tree
N(bk, ak) Number of Executions of action ak from belief bk in the

MCTS tree
N(b−

k ) Number of times propagated belief b−
k was visited in the

MCTS tree
Q(·, a) Action value function in MCTS algorithm
Q̂π(·, a) Sample-based action value function estimator given policy π

and action a

Q̂π
IS(·, a) Importance sampling action value function estimator given

policy π and action a

Q̂π
MIS(·, a) Multiple Importance Sampling action value function estima-

tor given policy π and action a

D Dataset of trajectories and returns
τ i i-th trajectory in dataset D

τ i
suffix i-th trajectory suffix

τ ′i i-th reused trajectory
Gi

ki
i-th return in dataset D following time ki

G̃i
k Adjusted i-th return following time ki

bm
km

Posterior belief at time index km marking the beginning of
trajectory τm

am
km

Action at time index km of τm

τ l,m l-th trajectory from m-th distribution
Gl,m

k l-th return from m-th distribution
G̃l,m

k Adjusted l-th return from m-th distribution following time
k

b−l,m
km

l-th Propagated belief from m-th distribution at time index
km

C(bkm , akm) Set of propagated belief children of belief bkm and action akm

G̃m,l,y
k Extended y-th return from l-th propagated belief child from

m-th distribution following time k
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G̃m,l,y
k Adjusted y-th return from l-th propagated belief child from

m-th distribution following time k

dl,m
prev Horizon of propagated belief b−l,m

km+1 before reuse
πb Behavioral policy in off-policy evaluation
πt Target policy in off-policy evaluation
πrollout Rollout policy in MCTS
b−

MLE Maximum likelihood propagated belief
fD(·, ·) Distance function between propagated beliefs
AI-FSSS Adaptive Information Forward Search Sparse Sampling
BSP Belief Space Planning 7
DAG Directed Acyclic Graph 10
DESPOT Determinized Sparse Partially Observable Tree
DPW Double Progressive Widening 14
IPFT Information Particle Filter Tree
IR-PFT Incremental Reuse Particle Filter Tree 8
IS Importance Sampling 13
iX-BSP Incremental Belief Space Planning
KDE Kernel Density Estimation 7
LABECOP Lazy Belief Extraction for Continuous Observation

POMDPs
MCTS Monte Carlo Tree Search 8
MDP Markov Decision Process 12
MIS Multiple Importance Sampling 8
PFT Particle Filter Tree
PFT-DPW Particle Filter Tree - Double Progressive Widening 14
POMCP Partially Observable Monte Carlo Planning
POMCPOW Partially Observable Monte Carlo Planning With Observa-

tion Widening
POMDP Partially Observable Markov Decision Process 7
SITH Simplified Information Theoretic
UCB Upper Confidence Bound 9
UCD Upper Confidence Bound For Directed Acyclic Graphs 10
UCT Upper Confidence Tree 9
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Chapter 1

Introduction

1.1 Planning Under Uncertainty

Autonomous robots and systems heavily rely on effective planning and decision-making
processes. In real-world scenarios, these agents often lack direct access to the true state
of the environment and instead maintain a belief (distribution over possible states).
Uncertainty in such systems arises from various sources, including imperfect percep-
tion due to sensor noise and limited information. To tackle this challenge, Partially
Observable Markov Decision Process (POMDP) provides a well-established mathemat-
ical framework. Solving POMDPs exactly is computationally demanding, as it falls into
the PSPACE-complete complexity class [18]. This computational hardness primarily
stems from two main factors: the curse of history and the curse of dimensionality. Fur-
thermore, many real-world problems involve continuous state and observation spaces,
further exacerbating the computational challenge. Recent advancements have led to
the proposal of online algorithms [19] [20] [12] for solving POMDPs. These algorithms
operate within limited budget constraints, such as restricted time or number of iter-
ations, and employ a sampling-based approach to construct partial trees and search
for the optimal action that maximizes the expected cumulative reward. By sampling a
subset of the belief space, these algorithms effectively address both the curse of history
and the curse of dimensionality, which are key obstacles in solving POMDPs.

In POMDPs, the reward function of a belief node is typically formulated as the
expected reward over states. However, this formulation may be insufficient for certain
problems, such as information gathering and active sensing. In such cases, the problem
is commonly addressed as Belief Space Planning (BSP) or ρ-POMDP [1], where the
reward is defined over the belief itself.

Information-theoretic measures, such as information gain and differential entropy,
are commonly used to quantify uncertainty in the decision-making process [10]. How-
ever, exact calculation of information-theoretic rewards becomes intractable for general
distributions, as it requires integrating over all possible states. To address this chal-
lenge, approximation methods such as Kernel Density Estimation (KDE) and particle
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filter estimation [3] have been proposed in the literature. Nonetheless, these methods
still incur significant computational expenses, with computation complexity scaling
quadratically with the number of samples. As reward calculation is performed for each
node in the tree, it becomes the primary source of computational complexity in online
planning algorithms.

Figure 1.1: Illustration of a belief tree.

The main objective of this paper is to improve planning efficiency within a non-
parametric setting, continuous state, action and observation spaces, and general reward
functions. To address these challenges, we propose a novel approach that leverages the
Multiple Importance Sampling (MIS) framework [27] to tackle the problem of reusing
information from previous planning sessions. Figure 1.1 illustrates a depth-2 belief
tree generated at time step k. The circles represent beliefs, while the squares denote
propagated beliefs. In the proposed approach, this tree will be utilized in subsequent
planning sessions to accelerate the estimation of the action-value function at a future
time k′ > k.

Our approach introduces a new algorithm specifically designed to utilize knowledge
gathered during prior planning sessions. We demonstrate how our method can be
integrated with Monte Carlo Tree Search (MCTS) to create a novel online algorithm
called Incremental Reuse Particle Filter Tree (IR-PFT).

To assess the effectiveness of our algorithm, we conduct experiments in an online
planning setting and evaluate its performance. Our results show a substantial decrease
in planning time without compromising overall performance, underscoring the effec-
tiveness of our proposed approach.

1.2 Related Work

1.2.1 Online Algorithms

The problem of solving POMDPs is notoriously challenging. Nevertheless, recent years
have seen remarkable progress in this field. One notable development is the introduc-
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tion of the POMCP algorithm [19], which extends the Upper Confidence Tree (UCT)
algorithm [14] to handle partially observable settings. In the POMCP algorithm, dur-
ing each simulation, a state particle is randomly sampled from the current belief. This
particle is then propagated through the search tree, and at each belief node, information
such as visitation count and average accumulated reward statistics is recorded. The
action selection process employs a Upper Confidence Bound (UCB) formulation [17].
The authors assume discrete state, action and observation spaces, and a state-based
reward function. The number of samples in each belief node in POMCP is determined
by the number of simulations in which it participated and makes less visited nodes to
be composed of fewer samples.

POMCPOW [21] extends POMCP to continuous state, action and observation
spaces by incorporating progressive widening and representing beliefs as sets of weighted
particles. An access to observation likelihood model is assumed to be given and at each
step the simulated state is inserted into the weighted belief and then a new state is
sampled from that belief according to its weight (observation likelihood).

In PFT-DPW [21] the authors adopt particle filter formulation for belief update and
each belief is represented with a constant number of samples and enables calculation
of information-theoretic rewards.

[24] introduce ρ−POMCP which propagates a set particles in each simulation using
particle filter and adds it to existing particles in visited nodes. Nodes that are visited
more often will have an increasingly better representation and the authors provide an
asymptotical proof of convergence when ρ is continuous and bounded.

[10] introduce IPFT algorithm that extends PFT [21]. They consider reward that
is a linear combination of differential entropy and expected state reward. At each
simulation paticle set is sampled from root belief and propagated through the tree.
Entropy estimates are then averaged over different particle sets in each belief node and
the average value is used to estimate differential entropy.

[12] propose LABECOP - an algorithm that deals with continuous observations
space. At each visit to new belief node b, state particle s is sampled, action a is
chosen according to modified UCB formulation and new observation o is sampled from
s. Previously generated states from b, a are rewieghted according to o and their values
are used to get better estimation of the current value function Q̂(b, a).

SITH-BSP[23, 30] and AI-FSSS[2] make use of simplification of reward function
calculation and observation space sampling accordingly, while preserving action con-
sistency.

[29] quantify the effect of applying simplification and extend ρ-POMDP to
Pρ−POMDP, while providing stochastic bounds on the return.

Despot [20] and the follow up works [28], [11], [5] propose a different family of algo-
rithms that utilize determinized random sampling to build the search tree incrementally
and recent works also tackle large observation spaces [11]. The usage of α−vectors in
[28], [11], [5] limits the application to POMDPs with state dependent reward functions.
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All of the aforementioned methods start each planning session from scratch without
utilizing information from previous planning sessions.

1.2.2 Information Reuse In Online Algorithms

In iX-BSP [9], [8]the authors propose reuse algorithm, however they assume an open
loop setting and do not address non-parametric beliefs.

In [6], the authors investigate transpositions in MCTS by representing states as
a Directed Acyclic Graph (DAG) to improve state reuse through modified backprop-
agation strategies. They propose the Upper Confidence Bound For Directed Acyclic
Graphs (UCD) framework, which enables the aggregation of information across shared
states (transpositions). This approach assumes a fully observable state and aggregates
information only when a state is revisited exactly during the current planning session.

1.3 Contributions

In our work, we consider a partially observable setting where the exact state is un-
known, and information is reused even when the belief is not reached exactly during
planning. We address continuous state, action, and observation spaces, incorporat-
ing general belief-dependent rewards, a non-parametric framework, and a closed-loop
control setting. Our work makes three key contributions.

Incremental Multiple Importance Sampling Update

We present an efficient method for updating the MIS estimator incrementally upon the
receipt of new samples by utilizing additional memory.

Experience-Based Value Function Estimation

We demonstrate the application of the MIS estimator for estimating the action-value
function. By leveraging trajectories generated by an expert agent, we show that the
action-value function can be estimated directly from pre-existing data, without addi-
tional planning.

IR-PFT Algorithm

We build upon the efficient MIS update and experience-based value function estimation
to introduce IR-PFT, an online algorithm based on MCTS. This approach accelerates
computations by reusing data from prior planning sessions.

10



Chapter 2

Background

2.1 POMDPs

POMDP is a 7-tuple (S, A, O, T, Z, r, b0), where S, A and O correspond to state, action
and observation spaces.

T ≜ P(sk+1|sk, ak) (2.1)

is the state transition density function,

Z ≜ P(ok+1|sk+1) (2.2)

is the observation density function, r(b, a, b′) represents the reward function based
on the current belief b, the action a, and the subsequent belief b′, while b0 denotes
the current belief over states. We denote by Hk = (b0, a0, o1, a1, o2, ..., ak−1, ok) =
{b0, o1:k, a1:k−1} the history up to time k, which consists of a series of actions made and
observations received. Similarly, we define H−

k = (b0, a0, o1, a1, o2, ..., ak−1) = Hk\{ok}.
Since the exact state of the world is not known and we only receive observations, a prob-
ability distribution (belief) over states is maintained bk = P(sk|Hk). It is assumed that
the belief is sufficient statistics for the decision making and a Bayesian update is used
to update the belief recursively:

bk+1 = ηP(ok+1|sk+1)
∫

sk

P(sk+1|sk, ak)bkdsk. (2.3)

where η is a normalization term.

The belief update can be split into two main steps, first we make a prediction using
the transition model and calculate a propagated belief b−

k+1,

b−
k+1 = P(sk+1|H−

k+1) =
∫

sk

P(sk+1|sk, ak)bkdsk. (2.4)
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and then we use the observation model tocalculate a posterior belief bk,

bk+1 = P(sk+1|Hk+1) = ηP(ok+1|sk+1)b−
k+1. (2.5)

A policy π ∈ Π is a mapping from belief space to action space π : b → a. We define
the value function V π for any policy π and horizon d as

V π(bk) = E
bk+1:k+d

[Gk|bk, π]. (2.6)

where π ≜ πk:k+d−1 represents a sequence of policies for horizon d and

Gk =
k+d−1∑

i=k

r(bi, πi(bi), bi+1) (2.7)

is the return. Similarly, we define the action value function Qπ as

Qπ(bk, a) = Ebk+1 [r(bk, a, bk+1) + V π(bk+1)]. (2.8)

2.2 Belief MDP

Each POMDP problem can be viewed as and Markov Decision Process (MDP)
(B, A, τ, r, b0) over the belief space assuming markovian belief state where B is the
space of all possible beliefs over states, A, r and b0 are same as in POMDP definition
and τ(bk+1|bk, ak) is the belief transition function [13]

τ(bk+1|bk, ak) ≜ P(bk+1|bk, ak) (2.9)

2.3 Non-Parametric Setting

In our work we assume a non-parametric setting, where we use collections of state parti-
cles to estimate complex belief distributions. We leverage the particle filter method [25]
to update our approximations of posterior distributions as we receive new observations
from the environment.

Since we use a finite number of samples to represent each belief, we do not have
access to the theoretical belief bk. Instead, we rely on an approximation, assuming
resampling at each step of the particle filter. m is the total number of particles, and
each state si

k represents the i-th particle. Since we assume resampling, the weights are
uniform and equal to 1

m .

b̂k = 1
m

m∑
i=1

δ(s− si
k). (2.10)

Given resampled belief b̂k, action ak, and propagated belief b̂−
k+1, calculating the prob-
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ability P(b̂−
k+1|b̂k, ak) involves determining all the matchings between the states in b̂k

and those in b̂−
k+1 which is ♯P -complete [26]. We assume, similar to [15], that the

beliefs are not permutation invariant, meaning particle beliefs with different particle
orders are not considered identical. This assumption simplifies the derivation of the
propagated belief likelihood. Consequently, we can express b̂k as {si

k, 1
m}

m
i=1 and b̂−

k+1
as {s−i

k+1, 1
m}

m
i=1

P(b̂−
k+1|b̂k, ak) = 1

m

m∏
i=1

P(s−i
k+1|s

i
k, ak). (2.11)

In the rest of the paper we assume a non-parametric case and for the ease of notation
we remove the hat signˆfrom all beliefs.

2.4 Multiple Importance Sampling

Importance Sampling (IS) is a statistical technique that allows estimating properties of
some target distribution p(x) by sampling from a different proposal distribution q(x).
In this technique, weights are assigned to the samples drawn from q(x) in order to
adjust the contribution of each sample according to p(x):

ÊIS
p [f(x)] = 1

N

N∑
i=1

wi
IS · f(xi), wi

IS = p(xi)
q(xi)

, xi ∼ q. (2.12)

and the distribution q must satisfy q(xi) = 0⇒ p(xi) = 0. When there are M proposal
distributions {qm}Mm=1, Multiple Importance Sampling formulation can be used [27]:

ÊMIS
p [f(x)] =

M∑
m=1

1
nm

nm∑
i=1

wm
MIS(xi,m) p(xi,m)

qm(xi,m)
f(xi,m). (2.13)

Here, nm denotes the number of samples that originate from distribution qm, xi,m

denotes the ith sample that originates from distribution qm and the weights wm
MIS

must satisfy

qm(xi,m) =0⇒ wm
MIS(x)f(x)p(x) = 0. (2.14)

f(xi,m) ̸=0⇒
M∑

m=1
wm

MIS(xi,m) = 1.

We assume that the weights wm
MIS are determined using the balance heuristic [27] which

bounds the variance of the estimator and in this case, the MIS estimator is

ÊMIS
p [f(x)] =

M∑
m=1

nm∑
i=1

p(xi,m)∑M
j=1 nj · qj(xi,m)

f(xi,m). (2.15)
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2.5 PFT-DPW Algorithm

The Particle Filter Tree - Double Progressive Widening (PFT-DPW) algorithm [21] is
based on the UCT algorithm [14] and expands its application to a continuous state,
action and observation setting. It utilizes Monte-Carlo simulations to progressively
construct a policy tree for the belief MDP. At every belief node bk and action ak it sets
up visitation counts N(bk, ak) and N(bk), where N(bk) =

∑
ak

N(bk, ak) and action-
value function is calculated incrementally

Q(bk, ak) ≜ 1
N

N∑
i=1

Gi
k, (2.16)

by averaging accumulated reward upon initiating from node bk and taking action ak

within the tree. Notably, Q(bk, ak) (2.16) is not equal to Qπ(bk, ak) (2.8) as the pol-
icy varies across different simulations within the tree, causing the distribution of the
trajectories to be nonstationary, hence the absence of the π superscript.

Employing the particle filter method involves generating a new propagated belief
b−

k+1 and posterior belief bk+1 from bk and ak, during which the observation ok+1 is
sampled and the reward r is computed

bk+1, b−
k+1, ok, r ← GP F (m)(bk, ak). (2.17)

In addressing the continuous state, action, and observation spaces, Double Progressive
Widening (DPW) is implemented, wherein the number of children of a node is con-
strained artificially to kNα, where N represents the number of times the node has been
visited, and k and α serve as hyperparameters [21].
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Chapter 3

Approach

3.1 Incremental Multiple Importance Sampling Update

We consider an MIS setting in which we estimate some target distribution p(x) by
getting samples that arrive incrementally in batches, with each batch originating from
qi ∈ {qm}Mm=1. A straightforward computation of (2.15) would necessitate a complexity
of O(M2 ·navg), where M denotes the number of different distributions and navg denotes
the average sample count across all distributions. We develop an efficient way to update
the estimator (2.15) incrementally in the theorem below.

Theorem 3.1. Consider an MIS estimator (2.15) with M different distributions and
nm samples for each distribution qm ∈ {q1, ..., qM}. Given a batch of L I.I.D samples
from distribution qm′, where qm′ could be one of the existing distributions or a new,
previously unseen distribution, ÊMIS

p [f(x)] (2.15) can be efficiently updated with a
computational complexity of O(M · navg + M ·L) and memory complexity O(M · navg).

Proof. see Appendix A.1.

3.2 Experience-Based Value Function Estimation

We assume that we have access to a dataset

D ≜ {τ i, Gi
ki
}|D|

i=1 (3.1)

of trajectories executed by an agent that followed a policy π. Each trajectory is defined
as the sequence

τ i ≜ (bi
ki

, ai
ki

)→ (b−i
ki+1, oi

ki+1, bi
ki+1ai

ki+1)→ ...

→ (b−i
ki+d, oi

ki+d, bi
ki+d), (3.2)

where ki represents the starting time index and is used to differentiate between different
steps in trajectory τ i and d is the horizon length. We assume that the agent applied a
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particle filter with resampling at each step of the trajectory. The return Gi associated
with trajectory τ i is defined as the accumulated reward,

Gi
ki

≜
d−1∑
j=0

r(bi
ki+j , ai

ki+j , bi
ki+j+1). (3.3)

In this section, we evaluate V π(bk) for the current belief bk using only the dataset D

(3.1), without planning. Such estimation is important in data-expensive domains like
autonomous vehicles [4] and robotic manipulation tasks [16]. In the next section, we
will expand our methodology to include planning.

Reusing trajectories where the initial belief is set to bk presents no challenge - we
can aggregate all trajectories that begin with belief bk and action ak and assuming we
have N such trajectories, we define a sample-based estimator

Q̂π(bk, ak) ≜ 1
N

N∑
i=1

Gi
k. (3.4)

However, in continuous state, action and observation spaces, the probability of sampling
the same belief twice is zero. Consequently, each trajectory in the dataset D (3.1) will
have an initial belief that is different from bk.

To be able to reuse trajectories from (3.1), we discard the initial belief and action
of the trajectory, instead linking the current belief and action to the remainder of the
trajectory. Formally, given a trajectory τ i ∈ D, τ i = (bi

ki
, ai

ki
)→ τ i

suffix where

τ i
suffix ≜(b−i

ki+1, oi
ki+1, bi

ki+1, ai
ki+1)→ ...

→ (b−i
ki+d, oi

ki+d, bi
ki+d). (3.5)

and the current belief bk and action ak, we construct a new trajectory τ ′
i (see Figure

3.1), where τ i represents a trajectory executed by an agent following policy π, while
τ i

suffix denotes the segment of τ i reused for the current belief bk and action ak.

τ ′
i ≜ (bk, ak)→ τ i

suffix. (3.6)

To estimate Qπ(bk, ak) using the information within trajectory τ i, two adjustments
are required. Firstly, we need to modify the initial term in the return Gi to be equal
to r(bk, ak, bi

ki+1), recognizing that bk ̸= bi
ki

and ak ̸= ai
ki

. Consequently, we define the
return of trajectory τ ′

i

G̃i
k ≜ Gi

ki
− r(bi

ki
, ai

ki
, bi

ki+1) + r(bk, ak, bi
ki+1). (3.7)

Secondly, we need to adjust the weight of G̃i due to the disparity between the distri-
bution P(τ i

suffix|bi
ki

, ai
ki

, π) and the distribution P(τ i
suffix|bk, ak, π), which is acheived
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Figure 3.1: Illustration of trajectory reuse.

through importance sampling. The distribution P(·|bi
ki

, ai
ki

, π) of partial trajectory
τ i

suffix is determined by the initial belief bi
ki

and action ai
ki

. Given NIS partial tra-
jectories sampled from the same distribution P(·|bi

ki
, ai

ki
, π), we define an Importance

Sampling estimator

Q̂π
IS(bk, ak) ≜ 1

NIS

NIS∑
i=1

wi · G̃i
k. (3.8)

where wi ≜ P(τ i
suffix|bk,ak,π)

P(τ i
suffix

|bi
ki

,ai
ki

,π) .

As a result of our approach to constructing reusable trajectories as described in
(3.6), we can efficiently calculate the weights wi utilizing the theorem presented below.

Theorem 3.2. Given belief node bk, action ak and trajectory τ i = (bi
ki

, ai
ki

)→ τ i
suffix

where τ i
suffix is defined in (3.5), the following equality holds:

P(τ i
suffix|bk, ak, π)

P(τ i
suffix|bi

ki
, ai

ki
, π)

=
P(b−i

ki+1|bk, ak)
P(b−i

ki+1|bi
ki

, ai
ki

)
. (3.9)

Proof. see appendix A.2.
We denote by M the number of unique distributions of partial trajectories

{P(·|bm
km

, am
km

, π)}Mm=1, (3.10)

where each distribution is defined by the initial belief bm
km

and action am
km

. Addition-
ally, we denote the sample count from each distribution as nm. Consequently, we can
reformulate the dataset D (3.1) as follows:

D ≜ {τ l,m, Gl,m
k }

M,nm

m=1,l=1. (3.11)

Using this formulation, we define a multiple importance sampling estimator assuming
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the balance heuristic (2.15),

Q̂π
MIS(bk, ak) ≜

M∑
m=1

nm∑
l=1

P(τ l,m
suffix|bk, ak, π)G̃l,m

k∑M
j=1 nj · P(τ l,m

suffix|b
j
kj

, aj
kj

, π)
. (3.12)

where τ l,m
suffix represents the lth partial trajectory that was sampled from the distribu-

tion P(·|bm
km

, am
km

, π) and G̃l,m
k is the adjusted accumulated reward (3.7).

Using Theorem 3.2, we can re-write the MIS estimator (3.12)

Q̂π
MIS(bk, ak) ≜

M∑
m=1

nm∑
l=1

P(b−l,m
km+1|bk, ak)∑M

j=1 nj · P(b−l,m
km+1|b

j
kj

, aj
kj

)
· G̃l,m

k . (3.13)

Since each element in the second sum of (3.13) corresponds to a propagated belief,
which might appear more than once, we can rewrite the sum in a more compact form.
Specifically, we group the terms based on unique propagated beliefs and account for
their multiplicity:

Q̂π
MIS(bk, ak) ≜

M∑
m=1

|C(bkm ,akm )|∑
l=1

W (b−l,m
km+1) ·

N(b−l,m
km+1)∑

y=1
G̃m,l,y

k . (3.14)

The weights W (b−l,m
km+1) are defined by:

W (b−l,m
km+1) =

P(b−l,m
km+1|bk, ak)∑M

j=1 nj · P(b−l,m
km+1|b

j
kj

, aj
kj

)
(3.15)

C(bkm , akm) denotes the set of reused propagated belief children associated with bkm and
akm . The term N(b−l,m

km+1) represents the visitation count of b−l,m
km+1, indicating the number

of trajectories that pass through the propagated belief b−l,m
km+1 and G̃m,l,y

k is the return of
the y-th trajectory passing through b−l,m

km+1. Note that b−l,m
km+1 in (3.14) represents unique

propagated beliefs, which differs from (3.13), where it denotes the propagated belief
associated with a single trajectory. Figure 3.2 illustrates the estimator from (3.14).
For the current belief bk and action ak, three prior trajectories are incorporated: two
from (bi

ki
, ai

ki
) and one from (bj

kj
, aj

kj
). Light green edges show the connections between

(bk, ak) and the reused nodes for estimating Q̂π
MIS(bk, ak). Further in this work, we

consider a framework where the dataset D (3.11) expands over time with trajectory
samples from an agent following policy π. Theorem 3.1 is used to efficiently update the
estimator (3.13) with new samples.

To clarify, our framework differs from standard off-policy evaluation methods. Tra-
ditional importance sampling for experience-based value estimation operates within the
off-policy paradigm [22], where trajectories originate from the current belief bk, using
behavioral (πb) and target (πt) policies to estimate V πt(bk). In contrast, we estimate
V π(bk) for the current belief and a specified policy π, with trajectories drawn form
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Figure 3.2: Illustration of reuse of three trajectories.

different beliefs in the dataset D (3.1). To our knowledge, such a setting has not been
addressed before in the context of action-value function estimation in POMDPs.

3.3 Our POMDP Planning Algorithm: IR-PFT

Up to this point, we considered a specific single policy, denoted as π, and utilized
previously-generated trajectories by an agent following π to estimate the action-value
function Qπ(bk, ak). In this section, we present an anytime POMDP planning algorithm
that uses trajectories from the dataset D, which includes data from previous planning
sessions, to accelerate current planning.

We name our algorithm Incremental Reuse Particle Filter Tree (IR-PFT). Instead of
calculating Q(bk, ak) from scratch in each planning session, we use previous experience
to speed up the calculations.

We adopt the same approach as in Section 3.2 to reuse trajectories, with three key
modifications: first, the propagated belief nodes from the previous planning session in
dataset D have a shorter planning horizon. We extend the horizon of these nodes before
reusing them; second, the policy varies across different simulations (as in standard
MCTS), resulting in a non-stationary distribution of reused trajectories in D; and
third, we integrate the planning and generation of new trajectories with the reuse of
previous trajectories within an anytime MCTS setting.

Figure 3.3 visually illustrates the horizon alignment process, where a propagated
belief node b−

ki
with horizon dprev must be extended by ∆d to match the current horizon

d. We analyze the complexity of the correction of belief nodes from previous planning
sessions in case of using the MCTS [7] algorithm in Corollary 3.3.

Corollary 3.3. Given an MCTS tree T with horizon dprev, number of simulations m

and N nodes, extending its horizon by ∆d will require adding at most m ·∆d nodes and
reward calculations.

The proof is straightforward: after m simulations, the MCTS tree contains at most m

leaves and we need to extend each leaf by ∆d and for each new node we calculate a
reward.
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Figure 3.3: Illustration of horizon gap.

We now define the estimator

Q̂MIS(bk, ak) ≜
M∑

m=1

|C(bkm ,akm )|∑
l=1

W (b−l,m
km+1) ·

N(b−l,m
km+1)∑

s=1
Ḡm,l,y

k , (3.16)

where the weights W (b−l,m
km+1) are defined in (3.15). Ḡm,l,y

k is the extended return defined
as

Ḡm,l,y
k = G̃m,l,y

k +
k+dl,m

prev+∆d−1∑
i=k+dl,m

prev

r(bi, πrollout(bi), bi+1). (3.17)

dl,m
prev is the horizon of propagated belief b−l,m

km+1, Ḡm,l,y
k shares the same values in the

summation as the return G̃m,l,y
k (3.7), but it also includes additional terms from the ex-

tended trajectory due to the horizion extension using the rollout policy πrollout. There-
fore, only the rewards for these additional terms need to be computed when extending
the horizon, while all shared terms (G̃m,l,y

k ) can be reused.
Since the tree policy varies between simulations, the update represented by (3.16)

operates in a heuristic manner, with its convergence yet to be established. We intend
to explore this aspect in a future work.

After extending the horizon of a reused propagated belief node b− and reusing
its action-value function, the counter N(bk, ak) is incremented by the visitation count
N(b−) using the relation

N(bk, ak) =
∑

b−
k

∈C(bk,ak)

N(b−
k ). (3.18)

This approach accelerates our algorithm for a given number of simulations, offering
a speedup over PFT-DPW [21].

To summarize, here is the high-level logical flow of our algorithm: At each iteration,
we either reuse a propagated belief node by extending its horizon by ∆d, as illustrated
in Figure 3.3, and compute the extended return for the subtree rooted at the reused
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node b−, or create a new node. Subsequently, the Multiple Importance Sampling (MIS)
estimator (3.16) is employed to evaluate the action-value function. To avoid the com-
putational expense of a naive calculation, we leverage Theorem 3.1 to perform efficient
incremental updates of the estimator in (3.16).

3.3.1 Algorithm Description

The complete algorithm is outlined across multiple methods - Algs. 3.1, 3.2, 3.3 and
3.4. Alg. 3.1 illustrates a general planning loop wherein the agent iteratively plans
and executes actions until the problem is solved. After each planning session, reuse
candidates are updated based on the preceding planning tree. The main algorithm is

Algorithm 3.1 General Planning Loop
1: Procedure: Solve(b, D)
2: while ProblemNotSolved() do
3: a← Plan(b, D)
4: o← ReceiveObservation(b, a)
5: b′, b′−, r ← GP F (m)(b, a, o)
6: UpdateReuseCandidates(a, D, b, b′)
7: b← b′

8: end while

detailed in Alg. 3.2 with key modifications compared to the PFT-DPW algorithm [21]
highlighted in red. The ActionProgWiden method (line 5) is implemented following
the same approach as described in [21]. ShouldReuse method (line 7) evaluates three
conditions: current node b is the root, the balance between reused and new nodes, and
the availability of reuse candidates. The second criterion is important because, while
acquiring estimates from prior partial trajectories is runtime-efficient, generating new
trajectory samples from the correct distribution is essential. Currently, our algorithm
only applies reuse to the root node, as it promises the most significant computational
savings. Since the root node typically has the shallowest depth in the tree, we can
optimize by conserving numerous reward computations for most of its descendants.
While extending reuse to nodes at other depth levels is feasible, it falls outside the
scope of this work.

The GetReuseCandidate method (line 8) selects a reuse candidate propagated belief
b′− from the dataset D based on a distance function fD (line 2). An example of fD

is ||E[b−− b−
MLE ]||22 where b−

MLE represents the maximum likelihood propagated belief,
given belief b and action a which can be calculated using (2.11) with O(m) complexity
where m is the number of samples. Since fD is applied to the entire dataset, it needs
to be computationally efficient. Additionally, reusing nodes with high visitation counts
will further reduce the overall runtime of the algorithm.
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Algorithm 3.2 IR-PFT
1: Procedure: Plan(b, D)
2: i = 0
3: while i < n do
4: Simulate(b, dmax, D)
5: end while
6: a = argmaxa{Q(b, a)}
7: return a

1: Procedure: Simulate(b, d, D)
2: if d = 0 then
3: return 0
4: end if
5: a← ActionProgWiden(b)
6: if |C(ba)| ≤ koN(ba)αo then
7: if ShouldReuse(b, a, D) then
8: b′− ← GetReuseCandidate(b, a, D)
9: FillHorizonPropagated(b′−, d− db−)

10: N(b)← N(b) + N(b′−)
11: N(ba)← N(ba) + N(b′−)
12: i← i + N(b′−) {update simulation counter}
13: Q(ba)←MISUpdate() {update using (3.16)}
14: C(b, a)← C(b, a) ∪ {(b′−)}
15: return total

16: else
17: b′, b′−, r ← GP F (m)(b, a)
18: C(b, a)← C(b, a) ∪ {(b′−)}
19: C(b′−)← C(b′−) ∪ {(b′, r)}
20: total← r + γROLLOUT (b′, d− 1)
21: end if
22: else
23: b′− ← sample uniformly from C(ba)
24: b′, r ← sample uniformly from C(b′−)
25: total← r + γSimulate(b′, d− 1, T )
26: end if
27: N(b)← N(b) + 1
28: N(ba)← N(ba) + 1
29: Q(ba)←MISUpdate() {update using (3.16)}
30: return total

The FillHorizonPropagated method (line 9), addresses discrepancies in horizon
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Algorithm 3.3 Reuse Functions
1: Procedure: UpdateReuseCandidates(a,D,bk,breal

k+1)
2: ReuseDict dict← {}
3: for b−

k+1 ∈ C(bk, a) do
4: for bk+1 ∈ C(b−

k+1) do
5: for a′ ∈ Actions(bk+1) do
6: for b−

k+2 ∈ C(bk+1, a′) do
7: if n(b−

k+2) > nmin then
8: D.append(b−

k+2)
9: end if

10: end for
11: end for
12: end for
13: end for

1: Procedure: ShouldReuse(b,a,D)
2: if not b.IsRoot() then
3: return false
4: end if
5: if NumReused(b, a) > T otal(b,a)

2 then
6: return false
7: end if
8: candidates← D.GetReuseCandidatesDict()
9: return not(candidates.empty())

1: Procedure: GetReuseCandidate(b,a,D)
2: b− ← argminb−{fD(b−, b, a)}
3: return b−

lengths when reusing nodes from the previous planning sessions. Algorithm 3.4 per-
forms recursive traversal of the subtree defined by propagated belief b′− and extends
its depth by d using the rollout policy.

At lines 10 and 11, we increment counters, where N(b′−) represents the count of
trajectories passing through reuse candidate propagated belief node b′−. At line 12, we
increment the Plan procedure counter by N(b′−).

At lines 13 and 29 we utilize (3.16) to update Q(b, a), leveraging efficiency through
the application of Theorem (3.1). At line 14 we store the propagated belief b′−.

Lines 17 - 19 are executed when we choose not to reuse and instead initialize a
new propagated belief from scratch. A new belief is generated using the particle filter
method [25], after which the propagated belief and posterior belief are saved, and a
rollout is performed.

At lines 23 and 24 we sample uniformly both propagated and posterios beliefs.
UpdateReuseCandidates method in Algorithm 3.3 inserts new reuse candidates that

have a visitation count larger than a threshold nmin, as we aim to reuse nodes with
higher visitation counts, which leads to a greater speedup.
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Algorithm 3.4 Fill Horizon Gap
1: Procedure: FillHorizonPropagated(b−, d)
2: Qnew(b−)← 0
3: for b′ ∈ C(b−) do
4: Qnew(b−)← Qnew(b−) + FillHorizonPosterior(b′)
5: end for
6: return Qnew(b−)

|C(b−)|

1: Procedure: FillHorizonPosterior(b, d)
2: if IsLeaf(b) then
3: a← DefaultPolicy(b)
4: b′, b′−, r ← GP F (m)(b, a)
5: N(b, a)← 1
6: N(b′−)← 1
7: Q(b′−)← r

8: Q(b, a)← r

9: return r

10: end if
11: Q(b)← 0
12: for a ∈ Actions(b) do
13: for b′− ∈ C(b, a) do
14: Q(b)← Q(b) + FillHorizonPropagated(b′−, d− 1)
15: end for
16: end for
17: Q(b)← Q(b)

N(b)
18: return Q(b)
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Chapter 4

Results

4.1 Setup

4.1.1 IR-PFT Evaluation

We assess the performance of the IR-PFT algorithm by comparing it to the PFT-DPW
algorithm [21]. Our evaluation focuses on two main aspects: runtime and accumulated
reward, with statistics measured for each. The beliefs are approximated with a finite
number of state particles and each algorithm was evaluated using different quantities of
particles—specifically, 5, 10, 15, and 20, while maintaining a constant horizon length of
d = 10. In all experiments, the solvers were limited to 1000 iterations for each planning
phase. The code for both algorithms IR-PFT and PFT was implemented in the Julia
programming language and is available at https://github.com/miken1990/ir-pft.

4.1.2 Continuous Light-Dark 2D

All experiments were conducted using the standard Light-Dark 2D benchmark, where
the agent’s objective is to reach a predefined goal g ∈ R2 while minimizing localization
uncertainty through the use of beacons distributed across the map (refer to Figure 4.1).

The state space S ⊆ R2 is continuous, representing the agent’s position. The action
space A ⊆ R2 is also continuous, constrained to movements within the unit circle,
∥a∥ = 1, where a ∈ A. The observation space O ⊆ R2 is continuous, providing noisy
measurements of the agent’s location. The initial belief b0(s) is modeled as a Gaussian
distribution N (µ0, Σ0), with mean µ0 and covariance Σ0.

The state transition model is defined as a Gaussian distribution:

T (s′ | s, a) = N (s + a, ΣT ),

where ΣT represents the process noise covariance.
The observation model is also a Gaussian distribution:

p(o | s) = N (o | s, ΣO ·max(r, rmax)),
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where r = ∥s− b∥ is the Euclidean distance to the nearest beacon b ∈ R2, rmax is the
maximum distance for decreasing localization accuracy and ΣO is the observation noise
covariance.

The reward function is defined as the weighted sum:

R(b, a, b′) = Es′∼b′ [∥(s′ − g)∥]− λ ·H(b, b′),

where: Es′∼b′ [∥(s′ − g)∥] is the expected Euclidean distance between states in b′ and
the goal g ∈ S, H(b, b′) is the differential entropy of the belief transition from b to b′

calculated using [3] and λ ∈ R+ is a scaling factor that balances the contribution of
the differential entropy term. The first term encourages minimization of the expected
distance to the goal, while the second term promotes belief updates that reduce un-
certainty in the agent’s localization. The goal of the agent is to reach the goal while
minimizing uncertainty.

Although the experiment involves Gaussian transitions, our approach is generaliz-
able and remains applicable to any non-parametric settings.

Figure 4.1: Illustration of Continuous Light-Dark 2D problem.

4.2 Runtime Analysis

We compared the runtime of IR-PFT vs PFT-DPW. The results are depicted in Fig-
ure 4.2 as a function of number of particles. Additionally, we included a speedup
chart, which provides more insightful information, in Figure 4.3. The runtime of IR-
PFT consistently outperformed that of PFT, with a notable saturation in speedup
at approximately 1.5×. This improvement is primarily attributed to the reduction in
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computational overhead associated with reward calculations, which represent the most
resource-intensive component of the algorithm. As the number of particles increases,
the computation of the differential entropy reward becomes the dominant factor in
runtime, scaling quadratically with the number of samples.

Additionally, node reuse was managed using the ShouldReuse method (line 7), as
detailed in the previous section. This method limits the number of reused nodes in the
tree, ensuring a balance between reusing existing nodes and exploring new nodes to
maintain algorithmic efficiency and exploration capability.

Figure 4.2: Runtime comparison.

4.3 Accumulated Reward Analysis

We compare the accumulated rewards of IR-PFT vs PFT (Figure 4.4). The results
show negligible differences, indicating that our method improves runtime without com-
promising on the accumulated reward received by the agent.
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Figure 4.3: Speedup.

Figure 4.4: Accumulated Reward Comparison.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this paper, we have proposed a general framework which allows to reuse prior in-
formation during the current planning session in a non-parametric setting. We derived
theoretical justification for reuse via MIS and introduced a new MCTS-like algorithm,
IR-PFT which reuses information from previous planning session and allows to speed
up calculations in current planning session. In order to evaluate IR-PFT algorithm, we
conducted an empirical performance study. Specifically, we compared the performance
of our approach to the PFT-DPW algorithm which doesn’t reuse prior information and
starts each planning iteration from scratch. We measured various performance metrics,
including runtime, speedup and the accumulated reward. Our results clearly indicate
a speed-up in the planning process when prior information is reused. Importantly,
despite the speedup gain in computations, our approach maintains the same level of
performance as the traditional planning approach without reuse. Incorporating prior
information significantly boosts planning efficiency, delivering time savings while main-
taining high-quality results. These findings underscore the effectiveness and potential
of the proposed approach.

5.2 Future Work

Several potential extensions of this work can be envisioned. First, the reuse mechanism
could be extended beyond the root node to other belief nodes in the planning tree.
By allowing every node to reuse prior information when estimating the action-value
function, the computational efficiency of the algorithm could be further enhanced.

Second, the convergence properties of the Multiple Importance Sampling (MIS)
update in the IR-PFT algorithm present an interesting direction for further research.
While this work provided theoretical justification for reuse in the context of experience-
based value function estimation, the MIS update was employed as a heuristic within
the IR-PFT algorithm. A more rigorous analysis of its performance and convergence
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properties in the Monte Carlo Tree Search (MCTS) framework, particularly under the
challenges posed by a non-stationary policy, could yield deeper insights and establish
stronger theoretical guarantees.
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Appendix A

Appendix

A.1 Proof of Theorem 3.1

Consider an MIS estimator (2.15) with M different distributions and nm samples for
each distribution qm ∈ {q1, ..., qM}. Given a batch of L I.I.D. samples from distribution
qm′ which may be an existing or new distribution,

ÊMIS
p [f(x)] =

M∑
m=1

nm∑
i=1

p(xi,m)∑M
j=1 nj · qj(xi,m)

f(xi,m),

(2.15) can be efficiently updated with a computational complexity of O(M ·navg +M ·L)
and memory complexity O(M · navg).
For every distribution qm we have the inner sum term ∑nm

i=1
p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m).

In case m ̸= m′:∑M
j=1 nj · qj(xi,m)←

∑M
j=1 nj · qj(xi,m) + L · qm′(xi,m) - O(1) complexity. We have nm

samples and M distributions so the complexity of this update is O(M · nm).
In case m = m′:
For existing samples ∑M

j=1 nj · qj(xi,m) ←
∑M

j=1 nj · qj(xi,m) + L · qm′(xi,m) - O(1)
complexity. We have nm samples existing samples so in total O(nm) complexity.
For each new sample we need to calculate p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m) - O(M) complexity.

We have L new samples so in total O(L ·M) complexity. The total complexity of the
update is O(M · navg + nm + M · L) = O(M · navg + M · L).

A.2 Proof of Theorem 3.2

P(τ i
suffix|bk, ak, π)

P(τ i
suffix|bi

ki
, ai

ki
, π)

=
P(b−i

ki+1, ..., bi
ki+L|bk, ak, π)

P(b−i
ki+1, ..., bi

ki+L|bi
ki

, ai
ki

, π)
. (A.1)
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Applying chain rule yields,

P(b−i
ki+1|bk, ak)

P(b−i
ki+1|bi

ki
, ai

ki
)
·
��������������
P(oi

ki+1, . . . , bi
ki+L|b

−i
ki+1, π)

P(oi
ki+1, . . . , bi

ki+L|b
−i
ki+1, π)

=
P(b−i

ki+1|bk, ak)
P(b−i

ki+1|bi
ki

, ai
ki

)
(A.2)
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נתונות ופעולות אמונה עבור תכנון ללא הפתרון טיב את לשערך ניתן איך מראים אנו הראשון בשלב

קודם ממידע לשיערוך שלנו הגישה האמונה. במרחב פעולות שביצע מומחה מסוכן מידע ובהינתן

Multiple Importance Sampling (MIS) חשיבות פי על פילוגים ממספר דגימה על מתבססת

מנת על הראשון מהשלב הגישה על בונים אנו השני, בשלב לגישתנו. תיאורטית הצדקה המספקת

יותר יעיל מכוון תכנון שמבצע MCTS אלגוריתם על המבוסס IR-PFT - שלנו האלגוריתם את לפתח

שלנו שהשיטה מראות ניסיוניות תוצאות שלו. הקודמים התכנון בשלבי שנצבר במידע שימוש בעזרת

לאלגוריתם דומות ביצוע רמות על שומרת גם אלא החישוב, זמן את משמעותי באופן מצמצמת רק לא

לשפר יכול היסטורי תכנון מידע של ששילוב כך על מצביעים ממצאינו שלנו. השיטה בלי המקורי

להוביל דבר של ובסופו ודאיות, לא בסביבות מקוונת החלטות קבלת של היעילות את משמעותי באופן

יותר. ומסתגלות תגובתיות אוטונומיות למערכות

ii



תקציר

האוטונומיות. והמערכות הרובוטיקה בתחום ומתמשך מרכזי אתגר מהווה ודאיות לא בסביבות מקוון תכנון

ישירה גישה מקבלים אינם הם בהם בתנאים החלטות לקבל נדרשים אוטונומיים סוכנים במציאות,

מצבים פניה על פילוג – "אמונה" על מסתמכים זאת במקום אלא הסביבה, של האמיתי למצב

מוגבל מידע בחיישנים, מובנה רעש כמו שונים, ממקורות נובעת אלו במערכות אי-הוודאות האפשריים.

מספקים (POMDPs) למחצה מובחנים מרקוביים החלטה תהליכי בסביבה. דינמיים ושינויים וחלקי

מתחזק הסוכן המצב, במרחב הוודאות אי בעקבות כאלה. לבעיות היטב מבוססת מתמטית מסגרת

הפילוג בהינתן הסוכן מטרת .(belief) אמונה בשם הידוע האפשריים המצבים כל פני על פילוג

פונקציית מיקסום של במובן האופטימאלית ההחלטה את בתכנון שלב בכל לקחת היא ההתחלתי

היא האופטימאלית המדיניות מציאת האופטימאלית. (Policy) במדיניות שימוש ידי על התגמול

שמספר מהעובדה היתר, בין נובע, הבעיה של הקושי .(PSPACE-complete) חישובית קשה בעיה

עם מעריכי באופן גדל האופטימאלית החחלטה את לקבל מנת על לבחון צריך שהסוכן האפשרויות

.(Curse of history) ההיסטוריה" "קללת בתור ידועה התופעה התצפיות, וכמות הפעולות כמות

מעלה המצב למרחב מימד הוספת שכל העובדה הוא הבעיה של החישובי לקושי נוספת סיבה

(Curse המימדיות" "קללת בשם ידועה זו תופעה האפשריים. המצבים כמות את מעריכי באופן

יותר אף חישובית קשה הבעיה רציפים, ותצפיות פעולות מצב, במרחבי .of dimensionality)
מאוד. פשוטות בבעיות מלבד אפשרית אינה אופטימאלי פתרון ומציאת

נמצאים הם לבעיה, מקורב פתרון למצוא מנסים (online algorithms) מכוונים אלגוריתמים

ומשפרים מוגבלים איטרציות מספר או ריצה זמן כמו "תקציב" אילוצי בחשבון ולוקחים נרחב בשימוש

מסלולים דגימת ידי על נעשית החיפוש מרחב של הדגימה גדל. שה"תקציב" ככל הקיים הפתרון את

מהאלגוריתמים אחד .(belief trees) חיפוש עצי ובניית האפשריים המסלולים כל סך מתוך עתידיים

"קללת עם מתמודד הוא .Monte Carlo Tree Search (MCTS) הוא ביותר הנפוצים המכוונים

עץ בניית החיפוש, מרחב של אחידה) (לא חכמה דגימה ידי על המימדיות" ו"קללת ההיסטוריה"

לבין (exploration) חקירה בין מאזן האלגוריתם בעץ. צומת לכל סטטיסטיקה ואיסוף אמונה

שעלולים מבטיחים לא צמתים גם פעם ומדי מבטיחים, צמתים לפתח כדי (exploitation) ניצול

יותר. גבוהה תגמול להניב

בשלב הקודמים התכנון משלבי במידע אי-השימוש היא הקיימות השיטות רוב של משמעותית מגבלה

למצוא מנת על יותר גבוהה "תקציב" ונדרש משאבים לבזבוז מובילה זו "איפוס" בעיית הנוכחי. התכנון

שנוצרו חיפוש בעצי שימוש כוללת אשר בחישוב, חסכונית חדשנית, גישה מציע זה מחקר מספק. פתרון

של רחבה קטגוריה עם מתמודדים אנו הנוכחי. ההחלטות קבלת בתהליך הקודמים התכנון בשלבי

האמונה. של כלליות פונקציות הם התגמולים שבהן רציפים, ותצפית פעולה מצב, מרחבי עם בעיות

i





אוטונומיות למערכות הבין-יחידתית בתוכנית אינדלמן, ואדים חבר פרופסור של בהנחייתו בוצע המחקר

ורובוטיקה.

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המחקר תקופת במהלך

M. Novitsky, M. Barenboim, and V. Indelman. “Previous Knowledge Utilization In Online
Belief Space Planning.” In: IEEE Robotics and Automation Letters (RA-L). Submitted. 2024.
arXiv: 2412.13128.

תודות

והעזרה הסבלנות ההנחיה, על אינדלמן, ואדים חבר פרופסור שלי, למנחה להודות רוצה אני

חיונית הייתה לחקור חופש מתן תוך אותי להנחות שלו היכולת שלי. השני התואר לימודי לאורך

שלהם המתמיד והעידוד התמיכה על אנאל, לאשתי ובפרט למשפחתי, תודה מוקיר אני להצלחתי.

הדרך. כל לאורך

זה. מחקר מימון על לטכניון מסורה תודה הכרת
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