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Abstract. Online planning under uncertainty in partially observable
domains is an essential capability in robotics and AI. The partially ob-
servable Markov decision process (POMDP) is a mathematically prin-
cipled framework for addressing decision-making problems in this chal-
lenging setting. However, finding an optimal solution for POMDPs is
computationally expensive and is feasible only for small problems. In this
work, we contribute a novel method to simplify POMDPs by switching
to an alternative, more compact, observation space and simplified model
to speedup planning with formal performance guarantees. We introduce
the notion of belief tree topology, which encodes the levels and branches
in the tree that use the original and alternative observation space and
models. Each belief tree topology comes with its own policy space and
planning performance. Our key contribution is to derive bounds between
the optimal Q-function of the original POMDP and the simplified tree
defined by a given topology with a corresponding simplified policy space.
These bounds are then used as an adaptation mechanism between differ-
ent tree topologies until the optimal action of the original POMDP can
be determined. Further, we consider a specific instantiation of our frame-
work, where the alternative observation space and model correspond to
a setting where the state is fully observable. We evaluate our approach
in simulation, considering exact and approximate POMDP solvers and
demonstrating a significant speedup while preserving solution quality.
We believe this work opens new exciting avenues for online POMDP
planning with formal performance guarantees.

1 Introduction

Decision-making under uncertainty in partially observable domains is a funda-
mental problem in robotics and AI. A key required capability is to operate au-
tonomously online in a partially observable setting, where the agent maintains a
probability distribution (belief) over the state. The partially observable Markov
decision process (POMDP) [1] is a mathematically principled framework for ad-
dressing decision-making problems in these challenging settings. By considering
all kinds of uncertainty and planning in the belief space, POMDP has shown
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proven advantages in general decision-making problems under uncertainty and
many robotics tasks.
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Fig. 1: The idea of using alternative observa-
tion space and model to simplify POMDP.

However, deriving the optimal solution
for a general POMDP is computationally
infeasible due to its inherent complexity,
attributed to the curse of dimensional-
ity and the curse of history. As a re-
sult, practical online methods often resort
to approximating the full POMDP using
various techniques [2–4]. Notable approxi-
mate solvers include POMCP [3], employ-
ing Monte Carlo rollouts, and DESPOT
[5, 6], which leverages branch-and-bound
and dynamic programming techniques. Re-
cent developments have also introduced methods for approximating the infor-
mation state [7], as well as using a finite memory window [8].

In addition to approximation, recent research has focused on simplifying
POMDPs while providing formal performance guarantees. For example, these
prior studies encompass simplifying the observation model [9], reducing the state
and observation space [10], sparsifying beliefs [11], and employing multi-level
simplification strategies [12,13]. Kara et al. [8] achieved POMDP simplification
by simplifying historical memory feedback and demonstrated near optimality.
Additionally, Flaspohler et al. [14] proposed an online method for generating
macro actions to support open-loop planning across multiple steps with perfor-
mance guarantees, albeit necessitating the expensive calculation of the Value of
Information for observations.

From the practical side, simplifying the observation space and model is cru-
cial in numerous visual tasks, especially in the context of active visual SLAM
(see e.g. [15]). Moreover, for safety-critical robotics and AI tasks, it is essen-
tial to provide a rigorous theoretical analysis that the simplified models can
effectively represent the original POMDP and establish a performance guaran-
tee. This involves ensuring that the simplified objective or value function has a
bounded error compared to the original. Some simplification methods can offer
theoretical performance guarantees, demonstrating a bounded value function er-
ror when comparing the original POMDP and the simplified model [9,10], as well
as between the theoretical and estimated models [16]. Given such performance
guarantees, the simplified POMDP solver can adapt the simplification level to
ensure the same optimal policy is calculated as the original one. However, current
methods do not consider adapting the simplified observation space and model
simultaneously. Moreover, Lev-Yeudi et al. [9] focus solely on simplifying the
observation model within the original complex space.

In this paper, we introduce a new methodology to speedup POMDP planning
with formal performance guarantees by switching to an alternative observation
space and simplified model. The alternative observation space may be entirely
different than the original observation space. For instance, it could correspond
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to the space of images with lower resolution, or to a learned latent representa-
tion space. The simplified observation model could correspond, e.g. to a smaller
deep neural network. We introduce a novel structure of a simplified belief tree
where different levels and branches may use either the original or the alternative
observation space and model (see Fig. 1). We refer to a particular such choice
as a belief tree topology.

Each belief tree topology comes with its own policy space and planning per-
formance, which comes with a reduced computational cost, compared to the
original POMDP, because of the selective switch to the alternative observation
space and simplified model. Further, we consider a specific instantiation of our
framework, where the alternative observation space and model correspond to
a setting where the state is fully observable. We derive novel bounds for this
setting between the optimal Q-function of the original POMDP and the sim-
plified POMDP for a given topology, considering the corresponding simplified
policy space. These bounds are then used as an adaptation mechanism between
different tree topologies until the optimal policy of the original POMDP is de-
termined. Finally, we introduce a practical sparse sampling estimator to the
proposed simplification and demonstrate that effective estimation can be used
to significantly accelerate planning while preserving the solution quality.

To summarize, in this paper we make the following main contributions: (a)
We propose a novel adaptive simplified belief tree to switch to alternative ob-
servation space and model simultaneously at selected nodes in the tree. To our
knowledge, this work is the first to address simplification of POMDP by an adap-
tive switching to an alternative observation space. We show that our method also
simplifies the policy space, which is of independent interest. (b) We develop a
specific instance of an alternative observation space and model that corresponds
to full observability, and derive novel bounds that serve as formal performance
guarantees and for adaptation between different topologies. (c) We introduce a
practical sparse sampling based estimator of our method. (d) We evaluate our
approach in simulation and show it leads to a substatinoal speedup without
sacrificing planning performance. This paper is accompanied by supplementary
material [17] that provides proofs and further details.

2 Preliminaries and Notations

The basic model of POMDP is defined as a tuple ⟨X ,A,Z,PT ,PZ , bk, r⟩, where
X is the state space, A is the action space, Z is the observation space. The tran-
sition model (or motion model) is defined as PT (xk+1|xk, ak), which describes
the probabilistic transition of the state from xk ∈ X to xk+1 ∈ X under a certain
action ak ∈ A. The observation model is defined as PZ(zk|xk), which describes
the probability of observation zk ∈ Z given a certain state xk ∈ X . The re-
ward function is considered to be state dependent, r : X ,A 7→ R, and holds the
bounded reward assumption: r ∈ [−Rmax, Rmax].

Given that the true state is uncertain, a belief is maintained to represent the
distribution of the current state with regard to history. The belief at time instant
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k is defined as bk ≜ P(xk|hk), where hk ≜ {z1:k, a0:k−1} is the history until that
time. A propagated history without the latest observation is defined as h−k ≜
{z1:k−1, a0:k−1}, and the corresponding propagated belief is b−k ≜ P(xk|h−k ).

A policy function is defined as π : H → A, which decides actions based on
the history. The value function for a certain policy π over the planning horizon
L is defined as the summation of all expected rewards, V π(bk) = r[bk, πk(bk)] +∑L

i=k+1 E
zk+1:i

r[bi, πi(bi)], where for simplicity, in this work we use history and the

corresponding belief interchangeably (i.e. πi(hi) ≡ πi(bi), where bi = P(xi | hi)).
The goal of a POMDP is to find the optimal policy π∗ that maximizes the

value function. The optimal value function can be calculated recursively by the

Bellman optimality as: V π∗(bk) = maxak

[
r(bk, ak) + E

zk+1

V π∗(bk+1)
]
.

3 Adaptive Observation Belief Tree

We shall consider an alternative observation space O instead of the original
observation space Z. For instance, this could correspond to the space of images
with a smaller resolution or to a learned latent vector space. Further, we shall
consider a corresponding simplified observation model PO(o | x), which can be
computationally easier to query for likelihood evaluation and to sample than the
original observation model PZ(z | x). For instance, the original and simplified
models could be represented by neural networks (e.g. [18]) that differ in their
architecture, e.g. large network versus shallower network. We note the simplified
observation model can be also defined over the original observation space, as
in [9].

While constructing a belief tree, we may choose to switch to an alterna-
tive space and simplified model only at certain levels and branches of the tree.
Each such belief tree corresponds to its own planning performance and compu-
tational complexity. How can we decide online where these simplified represen-
tations should be used while constructing the belief tree online while providing
formal performance guarantees? How can we adaptively transition between the
different possibilities? To address these questions, we first introduce the notion
of Adaptive Observation Topology Belief Trees.

3.1 Definition of Adaptive Observation Topology Belief Tree

We use the same definition of posterior belief b and propagated belief b− as the
commom POMDP. Considering a given belief tree Tτ where some belief nodes
have the alternative observation model and space, we define the corresponding
topology τ as follows. The topology τ is defined in terms of binary variables
βτ (hτ−t ) ∈ {0, 1} that indicate for each belief node bτ−t with the corresponding
propagated history hτ−t in the belief tree Tτ whether we consider as its chil-
dren an alternative observation space O and model PO(o | x), or the original
observation space Z and model PZ(z | x). Specifically, if βτ (hτ−t ) = 1, then the
node bτ−t in Tτ has the original full observation space. Thus, each belief node
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bτt = P(xt|hτt ) in Tτ is conditioned on a mix of original and simplified observa-
tions, that are part of the corresponding history hτt . See a conceptual illustration
in Fig.1.

Further, we now define Bayesian belief update operators that correspond to
the original and alternative observation space and model,

ψz(b
τ
t−1, at−1, zt)≜η

−1
z bτ−t (xt)PZ(zt|xt), ψo(b

τ
t−1, at−1, ot)≜η

−1
o bτ−t (xt)PO(ot|xt),

where bτ−t (xt) ≜
∫
xt−1

bτt−1(xt−1)PT (xt|xt−1, at−1)dxt−1, and

ηz ≜
∫
xt

PZ(zt|xt)bτ−t (xt)dxt, and ηo ≜
∫
xt

PO(ot|xt)bτ−t (xt)dxt, (1)

are the normalization constants. Finally, we define an augmented belief update
operator,

ψz̄t+1(b
τ
t , at, z̄t+1, h

τ−
t )≜βτ (hτ−t )ψz(b

τ
t , at, zt+1) +

(
1− βτ (hτ−t )

)
ψo(b

τ
t , at, ot+1).

(2)

We now define a child node propagation process from hτ−t to the set of possible
posterior histories at time instant t ≥ 1.

γτ (hτ−t ) =

{
{hτt : hτt = (hτ−t , zt) ∀zt ∈ Z}, if βτ (hτ−t ) = 1,
{hτt : hτt = (hτ−t , ot) ∀ot ∈ O}, if βτ (hτ−t ) = 0.

(3)

We can now construct the sets Hτ
t and Hτ−

t , that represent all the possible
posterior and propagated histories, respectively, from t = 1 to the end of the
planning horizon t = L for a given topology τ ,

Hτ
t =

{
hτt : hτt ∈ γτ (hτ−t ),∀hτ−t ∈ Hτ−

t

}
, (4)

Hτ−
t =

{
hτ−t : hτ−t = (hτ−t−1, at−1),∀at−1 ∈ A,∀hτt−1 ∈ Hτ

t−1

}
, (5)

and Hτ
0 = {b0}. These history sets represent all the belief nodes inside the belief

tree Tτ . We shall use the set Hτ−
0:L−1 to represent all the propagated belief nodes

in the belief tree Tτ from time instant 0 to L− 1.
The original full POMDP belief tree can be viewed as a particular case where

no belief node has a simplified observation model and space. The original topol-
ogy is denoted as τZ , and the belief tree is denoted as TτZ . On the other extreme,
if all the belief nodes have a simplified observation model and space, we denote
the topology as τO and its belief tree as TτO .

Further, let us define an augmented observation space Z̄ for a certain topol-
ogy τ as a function of a propagated history hτ−t and the corresponding binary
variable βτ (hτ−t ) as

Z̄t(h
τ−
t , τ) ≜

{
Ot, if β

τ (hτ−t ) = 0,
Zt, if β

τ (hτ−t ) = 1.
(6)
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Based on this augmented observation space, we define a corresponding aug-
mented observation model for any z̄t ∈ Z̄t,

PZ̄(z̄t|xt, hτ−t , τ) ≜ βτ (hτ−t )PZ(z̄t|xt) +
(
1− βτ (hτ−t )

)
PO(z̄t|xt). (7)

We now introduce the notion of a topology-dependent policy space. The action
at is decided by a policy πτ

t at each node: at = πτ
t (h

τ
t ). It depends on the

history within the history space Hτ
t , which is determined by the given topology

τ . Different topologies can lead to different history space and thus to a different
policy space. For a specific topology τ , the topology-dependent policy space Πτ

is the set of all the possible policies that may be adopted,

Πτ ≜ {πτ
t : Hτ

t 7→ A, 0 ≤ t ≤ L}. (8)

The optimal value function for a given topology τ can be calculated recursively
by the Bellman’s principle of optimality, i.e. for any belief bτt :

V τ∗(bτt ) = max
at

[
r(bτt , at) + Eτ

z̄t+1|bτt ,at

V τ∗(ψz̄t+1(b
τ
t , at, z̄t+1, h

τ−
t+1))

]
, (9)

where we define, Eτ

z̄t+1|bτt ,at

≡ Eτ

z̄t+1|hτ−
t+1

= E
xt|hτ−

t

Eτ

z̄t|xt,h
τ−
t

, where Eτ

z̄t|xt,h
τ−
t

is an ex-

pectation over z̄t with respect to the augmented observation model (7). Specifi-
cally, recalling the augmented belief update operator (2), for any function f(.),

Eτ

z̄t|hτ−
t

f(ψz̄(b
τ
t−1, at−1, z̄t, h

τ−
t )) = E

xt|hτ−
t

[
βτ (hτ−

t )

∫
zt∈Zt

PZ(zt|xt)f(ψz(b
τ
t−1, at−1, zt))dzt+

(
1− βτ (hτ−

t )
) ∫

ot∈Ot

PO(ot|xt)f(ψo(b
τ
t−1, at−1, ot))dot

]
.

In this work, we switch the observation space adaptively at some of the belief
nodes. This process corresponds to different topologies, each with its own policy
space (8). We will explore different topologies τ1, . . . , τn, which can be seen as
different levels of simplification for POMDP, to speedup planning while providing
formal performance guarantees.

3.2 Performance Guarantees

Generally, each topology τ corresponds to its own planning performance. In
this section, we revisit general bounds between the optimal Q-function of the
original POMDP, and the simplified POMDP considering some given topology
τ , with the corresponding theoretical belief trees TτZ and Tτ . These lightweight
bounds can then be utilized for planning and for the adaptation between different
topologies, as described next.

Specifically, we would like to bound∣∣Qπτ

τ (bk, ak)−QπτZ∗

τZ (bk, ak)
∣∣ ≤ B(τ, πτ , bk, ak), (10)

where πτZ∗ is the optimal policy of the original POMDP, and πτ ∈ Πτ is some
policy of the simplified POMDP considering the topology τ .
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We can therefore bound the optimal Q-function of the original POMDP
as lb(τ, πτ , bk, ak) ≤ QπτZ∗

τZ (bk, ak) ≤ ub(τ, πτ , bk, ak), where lb(τ, π
τ , bk, ak) ≜

Qπτ

τ (bk, ak)−B(τ, πτ , bk, ak) and ub(τ, π
τ , bk, ak) ≜ Qπτ

τ (bk, ak)+B(τ, πτ , bk, ak).
Given such bounds it is possible to identify the optimal action of the original

POMDP, a⋆k ≜ argmaxak∈AQ
πτZ∗

τZ (bk, ak), when

∃āk ∈ A, s.t. lb(τ, πτ , bk, āk) > ub(τ, πτ , bk, ak) ∀ak ∈ A \ {āk}, (11)

and assigning a⋆k = āk. Such a situation is illustrated in Fig. 2b. This achieves a
formal performance guarantee, getting the same optimal action a∗k as the original
full POMDP. Moreover, if the bound B(τ, πτ , bk, ak) does not depend on the
original full observation space and model, we can avoid building the original
belief tree TτZ .

In case the condition (11) is not satisfied, as illustrated in Fig. 2a, we can
no longer guarantee the optimal action a⋆k will be selected. In such a case, there
are several options: (i) determine the action using either the optimal simplified
Q-function, i.e. argmaxak∈AQ

πτ∗

τ (bk, ak), or using the bounds, e.g. the action
with the highest lower or upper bound, while bounding the worst-case loss in
planning performance (regret), similar to e.g. [11, 12]; (ii) tighten the bounds
until the condition (11) is met. The latter can be done either by considering
different policies in a given topology τ , or by switching to another topology.

(a) Overlapping appears for topology τ (b) No overlapping for topology τ′

Fig. 2: (a) Bounds over the optimal Q function considering topology τ . Due to the indicated overlap,
the optimal action cannot be deduced. (b) The bounds can be tightened by switching to a different
topology τ ′, as described in the text, until (11) is satisfied, and the optimal action can be determined.

The tightest bounds for a given topology can be obtained as follows,

lb(τ, bk, ak) = max
πτ∈Πτ

lb(τ, πτ , bk, ak) (12)

ub(τ, bk, ak) = min
πτ∈Πτ

ub(τ, πτ , bk, ak). (13)

In general, these bounds are not necessarily obtained for the optimal policy
πτ∗ = argmaxπτ∈Πτ V πτ

τ (bk) ≡ argmaxπτ∈Πτ Qπτ

τ (bk, π
τ
k(bk)). Moreover, it is

possible that even with these tightest bounds, the condition (11) is not satisfied,
in which case we have to switch to another topology, as discussed in Section 4.2.
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We provide a conceptual illustration of the above in Fig. 2, considering three
possible actions, ak, a

′
k and a′′k . In Fig. 2a, there is no overlap between the bounds

of ak and a′′k . We can conclude that the action ak is definitely better than a′′k , and
can safely prune it. However, we cannot distinguish between ak and a′k due to
the overlap between the bounds. In order to find the optimal action, we have to
try another simplified topology τ ′ as in Fig. 2b. With the new topology τ ′, there
is no bound overlap for action ak with respect to other actions, i.e. the condition
(11) is met, indicating a⋆k = ak is the best action. Thus, we find the optimal
action a⋆k for the original POMDP without exploring the original complicated
belief tree TτZ , and only exploring different simplified belief trees.

For the general setting considered herein, we now provide one possible bound
B(τ, πτ , bk, ak) from (10) that is valid without any further assumptions. Specif-
ically, we propose to use the QMDP as the upper bound of the POMDP [19],

B(τ, πτ , bk, ak) = max
πQMDP

∣∣Qπτ

τ (bk, ak)−QπQMDP

(bk, ak)
∣∣. (14)

To retrieve this bound, we only need to explore a smaller policy space without
any observations (see connection of our approach to QMDP in Remark 1).

It is worth noting that this is a general bound that is valid for all definitions
of alternative observation space and model. However, the bound is dependent
on the specific choice of the alternative observation space and model. A specific
choice of alternative observation space and model can lead to a better bound,
as discussed next.

4 Specific Case: Full Observability

In this section, we consider a specific instantiation of our framework from Section
3.1, where the state is fully observable. The corresponding alternative observa-
tion space O and model PO(o | x) are therefore defined as,

PO(o | x) ≜ δ(o− x), where o ∈ O ≜ X . (15)

As seen, the alternative observation space is set to be the state space, and
PO(o | x) is a Dirac function. For the topology τ , if a single belief node bτ−i
switches to the alternative observation space and model, this will reduce the
dimension of the policy space for bτ−i , {πi(bτ−i , z̄i)} from |Z||A| to |X ||A|. This
reduces the number of child posterior belief nodes if |X | < |Z|.

For the original full belief tree, we now consider calculation of the expected
state-dependent reward at any depth i+1, Exi|bτ−

i
Ez̄i|xi,h

τ−
i

Exi+1|xi,ai
[r(xi+1)]].

The corresponding complexity for the original observation space is thus |Z||A||X |2.
In contrast, for the alternative observation space and model (15), the complexity
becomes |A||X |2.

4.1 Performance Guarantees

Having defined the specific alternative observation space and model (15), we are
now interested in providing formal planning performance guarantees by bound-
ing the Q function of the original POMDP, that corresponds to topology τZ , and
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the simplified POMDP considering some topology τ . Specifically, considering, at
this point, some arbitrary policies πτZ and πτ for the two topologies, we aim to
bound

∆Q(bk, ak, π
τZ , πτ , τZ , τ) ≜

∣∣Qπτ

τ (bk, ak)−QπτZ

τZ (bk, ak)
∣∣. (16)

Note that for the optimal policy πτ∗ we get back to (10).
We start with bounding the difference between the expected immediate re-

ward of two different topologies τ and τ ′, where τ ′ has fewer belief nodes using
an alternative observation space. In particular, τ ′ could correspond to πτZ . All
the proofs for this section can be found in the Supplementary document [17].

Lemma 1. Consider two topologies τ and τ ′, where τ ′ has fewer belief nodes
using the alternative observation space. The difference between the expected state-
dependent rewards at any time instant i, considering policy πτ ′

i for topology τ ′

and policy πτ
i for topology τ is bounded as:∣∣∣ Eτ

z̄1:i|bk,πτ
(r(bτi ))− Eτ ′

z̄1:i|bk,πτ′
(r(bτ

′

i ))
∣∣∣ (17)

≤ max
π̄τ∈Πτ

∣∣∣ Eτ

z̄1:i−1|bk,πτ
E

xi|hτ−
i

r(xi)

− E
x0|bk

E
x1|x0,π̄τ

0

Eτ

z̄1|x1,h
τ−
1

... E
xi−1|xi−2,π̄τ

i−2

Eτ

z̄i−1|xi−1,h
τ−
i

E
xi|xi−1,π̄τ

i−1

r(xi)
∣∣∣. (18)

We can use a similar method to also bound the difference between the Q functions
of different topologies.

Lemma 2. The difference (16) between the Q functions of the original and sim-
plified POMDPs, represented by topologies τ ′ and τ , can be bounded by exploring
the simplified policy space Πτ as:

∆Q(bk, ak, π
τ ′
, πτ , τ ′, τ) ≤ max

π̄τ∈Πτ
|Qπ̄τ

τ (bk, ak)−Qπτ

τ (bk, ak)| ≜ δQ(bk, ak, π
τ , τ),

where πτ ′ ∈ Πτ ′
and πτ ∈ Πτ are some policies in the original and simplified

policy spaces, Πτ ′
and Πτ , respectively.

Theorem 1. Consider two topologies τ and τ ′, where τ ′ uses fewer belief nodes
with the alternative observation space. Then, we can bound the Q function of
topology τ ′, by deriving the tightest bound from Lemma 2:

min
πτ∈Πτ

[Qπτ

τ (bk, ak)] ≤ Qπτ′

τ ′ (bk, ak) ≤ max
πτ∈Πτ

[Qπτ

τ (bk, ak)]. (19)

Specifically, τ ′ can be the full topology τZ , which represents the original POMDP:

min
πτ∈Πτ

[Qπτ

τ (bk, ak)] ≤ QπτZ

τZ (bk, ak) ≤ max
πτ∈Πτ

[Qπτ

τ (bk, ak)]. (20)

Since the bounds (20) are valid for any policy πZ ∈ ΠZ , we can utilize them to
bound the optimal Q function for a corresponding optimal policy πτZ∗, i.e.

lb(τ, bk, ak) ≤ QπτZ∗

τZ (bk, ak) ≤ ub(τ, bk, ak), (21)
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Fig. 3: A conceptual illustration of incremental and adaptive transition from topology τ to τ ′.

where

ub(τ, bk, ak) ≜ max
πτ∈Πτ

[Qπτ

τ (bk, ak)], lb(τ, bk, ak) ≜ min
πτ∈Πτ

[Qπτ

τ (bk, ak)]. (22)

Moreover, we can get a tighter lower bound for QπτZ∗

τZ (bk, ak) of the optimal
policy in an iterative process as follows.

Theorem 2.

QπτZ∗

τZ (bk, ak) ≥ lb(bk, ak, τ), (23)

where lb(bk, ak, τ) is defined recursively for t ∈ [k + 1, k + L− 1] as

lb(bτt ,at, τ) ≜ βτ (hτ−t+1)[r(b
τ
t , at) + Eτ

z̄t+1|hτ (bτt ),at

max
πτ
t+1

lb(bτt+1, π
τ
t+1(b

τ
t+1), τ)] (24)

+(1− βτ (hτ−t+1))[r(b
τ
t , at) + Eτ

z̄t+1|hτ (bτt ),at

min
πτ
t+1

lb(bτt+1, π
τ
t+1(b

τ
t+1), τ)],

where hτ−t+1 = {hτt (bτt ), at} and lb(bτL, aL, τ) = r(bτL, aL).

Overall, we obtained upper and lower bounds for the optimal Q function
in the original POMDP by only exploring a simplified POMDP represented by
topology τ . These bounds are specific to the considered alternative space and
model (15), as opposed to the previously shown general bounds (12) and (13).
Thus we only need to explore a subset of the policy space of the original POMDP.

Remark 1 (Connections with QMDP). Our simplification of POMDP by an al-
ternative observation space and model has a connection to QMDP planning.
If the topology is chosen to be τO, where all the belief nodes have the alter-
native observation space and model (15), our adaptive belief tree will become
the QMDP belief tree. Hauser [20] exploited QMDP approximation to gather
information during planning. QMDP bound is also used as an upper bound for
POMDP [19]. However, in practice, the pure QMDP approximation usually has
a loose bound, which cannot be used to identify the optimal action, i.e. the con-
dition (11) is not met. In stark contrast, our method uses an adaptive structure
to switch observation space and model at only parts of the belief nodes while
providing formal guarantees in terms of (21) and Theorem 2. It is noted that our
method actually reveals the underlying principle of the QDMP approximation,
which can be considered as a special case within our scheme.
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4.2 Bounds Analysis

Convergence. If we keep transitioning between topologies, at each iteration
turning more nodes back to the original observation space and model, the fi-
nal topology will be τZ . The upper bound of τZ will be the optimal Q func-
tion: ub(τz, bk, ak) = maxπτZ [QπτZ

τZ (bk, ak)] = Q∗
τZ (bk, ak). Similarly, the corre-

sponding lower bound will also become the optimal Q function, lb(τz, bk, ak) =
Q∗

τZ (bk, ak), by iterating Theorem 2.
Monotonicity. Here, we consider the same setting of the topology τ and a

less simplified topology τ ′ same as the Section 4.1. We can use the same technique
as Theorem 1 to prove that the upper bound will be tightened:

uq(τ, bk, ak) = max
πτ

[Qπτ

τ (bk, ak)] ≥ max
πτ′

[Qπτ′

τ ′ (bk, ak)] = uq(τ ′, bk, ak). (25)

The lower bound will also be tightened. Let us assume that topology τ ′ turns
only a single belief node, that had an alternative observation space and model in
τ , back to the original observation space and model. Without losing generality,
assume this node is located at some depth i+ 1. Therefore, all the belief nodes
in Tτ and Tτ ′

at depth i (or smaller) are identical, bτi = bτ
′

i ≜ bi. Then we have:

lb(τ ′, bi, ai) = r(bi, ai) + E
z̄i+1

max
πτ′
i+1

lb(bτ
′

i+1, π
τ ′

i+1, τ
′) (26)

≥ r(bi, ai) + E
z̄i+1

min
πτ
i+1

lb(bτi+1, π
τ
i+1, τ) = lb(τ, bi, ai). (27)

If we keep iterating the inequality back to the root, we will see the lower bound
will be tightened from τ to τ ′: lb(τ ′, bk, ak) ≥ lb(τ, bk, ak). This process can be
generalized to show that the bound becomes tighter also considering the topology
τ ′ turns a number of nodes back to the original observation space and model.

Incremental transition between topologies. We now briefly describe
the calculations involved in transitioning from topology τ to τ ′. Assume in the
latter, some number n of propagated history (belief) nodes from τ that had an
alternative observation space are switched to the original observation space. Let
H̃ be the set of these nodes. When transitioning from τ to τ ′, the Q function of
some belief nodes hr will not change, and we can reuse them without recalcula-
tion. These nodes are located in branches that are common in τ and τ ′, i.e. there
does not exist an ancestor or descendant belief node that is included in H̃.

Moreover, consider histories in Hr that correspond to top-level (minimum
depth) beliefs in τ ′ with respect to all the beliefs represented by Hr, i.e. for each
such history hℓ ∈ Hr of some depth ℓ and the corresponding belief bℓ, there does
not exist another history hℓ′ ∈ Hr with ℓ′ < ℓ and a corresponding belief bℓ′

that is an ancestor of bℓ. By definition, all beliefs in τ ′ that are ancestors of these
minimum-depth beliefs are identical in the two topologies τ and τ ′. Therefore,
as we traverse the tree from the leaves upwards and identify the optimal action
in each branch by maximizing the Q function, at some point, we will reach one
of the minimum-depth beliefs in Hr. At this point, while proceeding upwards
the tree, if we identify that the optimal value functions of all the bτ

′

l′ at a level
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l′ < l do not change with respect to τ , this means the optimal Q function in
that level is determined by a branch that is not affected by the switch from τ to
τ ′. Based on this, it is no longer necessary to keep calculating upwards, which
will lead to a further speedup in planning. See illustration in Fig. 3.

5 Estimator

While thus far, we considered exact calculations of the Q function and of the
bounds, in practice, this is only possible for small problems and is limited to
discrete spaces. In larger and more realistic problem settings, we need to consider
a POMDP solver that constructs an estimator of the (optimal) Q functions. In
this section, we propose to use the sparse sampling method [21], to estimate the
upper and lower bounds derived in Section 4, considering the specific alternative
observation model and space (15).

Fig. 4: A sparse sampling belief tree us-
ing the original and alternative observa-
tion space and models (15).

Specifically, we consider a particle-based be-
lief representation {xi, wi}Ni=1, where N is the
number of particles and wi are the unnormal-
ized weights. The corresponding particle belief

is then b(x) ≜
∑N

i=1 wiδ(x−xi)∑N
j=1 wj . For our simplified

belief tree with the adaptive structure, the sam-
pling process is a bit different from the common
method. Fig. 4 illustrates this process. For the
propagated belief nodes that use an alternative
observation space and model (15), we only gen-
erate a single sample for the new posterior be-
lief node due to the deterministic observation
model in Equation (15). This is in contrast to

generating N samples for posterior belief nodes using the original observation
space. After this step, we generate N samples that represent the propagated be-
lief; these particles are sampled from the transition model given the single sam-
ple from the previous posterior belief and the corresponding action (see Fig. 4).
Compared to the sparse sampling in the original belief tree, our simplification
can reduce the calculation complexity of the state-dependent reward at each
belief node from O(N) to O(1). This reduction is significant for a large N .

Bounded Estimation Error. We define the estimated upper and lower
bound as ûb(b0, a0, τ) and l̂b(b0, a0, τ). The estimation of the upper bound can
be seen as an estimation of the optimal Q function within the belief tree Tτ :

ûb(b0, a0, τ) = max
πτ
1:L−1

[Q̂
πτ
1:L−1

τ (b0, a0)] = Q̂πτ∗
τ (b0, a0). (28)

The estimation of the lower bound l̂b(b0, a0, τ) should be done iteratively follow-
ing the recursive form Theorem 2. Then, we define the estimation error as

∆ûb(b0, a0, τ) ≜ |ûb(b0, a0, τ)− ub(b0, a0, τ)|, (29)

∆l̂b(b0, a0, τ) ≜ |l̂b(b0, a0, τ)− lb(b0, a0, τ)|, (30)
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where for the upper bound, ∆ûb(b0, a0, τ) = |Q̂πτ∗

τ (b0, a0)−Qπτ∗

τ (b0, a0)|.
With the estimator bounds, we can use the estimated upper and lower bounds

to determine the optimal action in case (11) is satisfied. If not, we will follow
the same procedure to switch between topologies as introduced in Section 3.2.
We now bound probabilistically the estimation error of these bounds, utilizing
the Hoeffding inequality and similar derivations to [16,21].

Theorem 3 (Bounded Estimation Error). For all the depth d = 0, . . . , L−1
and ad, the following concentration bound holds with probability at least 1 −
2|A|(|A|C)L−d exp(−Cλ2

2V 2
max

) :

∆ûb(bd, ad, τ) ≤
(L− d)(L− d− 1)

2
λ,∆l̂b(bd, ad, τ) ≤

(L− d)(L− d− 1)

2
λ.

Specifically, for d = 0, we obtain probabilistic bounds on the estimation error of
ûb(b0, a0, τ) and l̂b(b0, a0, τ) at the root of the belief tree.

This Theorem provides guarantees that the sparse sampling method can estimate
our proposed upper and lower bound well with a probabilistically bounded error.

6 Experiments

We evaluate our proposed method through POMDP simulations conducted in
three distinct settings. Firstly, we investigate the exact computation of the orig-
inal POMDP and the proposed bounds to validate the findings of the theoretical
analysis presented in Section 4. Secondly, we assess a sparse sampling POMDP
solver using our estimated bounds, as outlined in Section 5, addressing larger
POMDP problems. Finally, we apply the sparse sampling method to a bea-
con navigation problem to showcase the potential of our approach in practical
robotics applications. The detailed experiment settings appear in Section 6 of
the Supplementary document [17].

6.1 Exact Full Calculation

Fig. 5: Bounds over QτZ∗(bk, ak) con-
sidering exact calculations.

We start with exactly calculating the original Q
function at the root QτZ∗(bk, ak) and the up-
per and lower bound, (22) and (24). To that
end, we consider a small POMDP problem for
which an exact solution can be calculated in
a reasonable time. Specifically, we utilize the
random POMDP library to generate a discrete
POMDP problem with observation, action, and
state spaces of |Z| = 20, |A| = 2, and |X | = 3,
respectively and set the planning horizon to
L = 2. Here, we set the observation space to
be much larger than the state space in order to

represent the kind of POMDP where the observation space is large.
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Method Total Cost Time (s)
Proposed 0.965
Full Problem 2.675

Table 1: Comparison of methods
for an exact calculation of the Q
function.

We show the evolution of the upper ub(τ, bk, ak)
and lower lb(τ, bk, ak) bounds on QτZ∗(bk, ak) dur-
ing this process in Fig. 5, where each iteration corre-
sponds to a different topology τ . We report planning
time in Table 1. As seen, after 3 iterations (topol-
ogy switches) our method finds the optimal action

a∗k = Action 1, with the total planning time of 0.965s versus 2.675s that corre-
sponds to solving the original POMDP exactly in this toy example.

6.2 Online Estimator

Method
Running Time (s)

N = 50 N = 90

Our Simplification 0.869 0.880
Original POMDP 1.782 3.276

Table 2: Comparison of Sparse
Sampling for a Discrete POMDP.
For N = 50 and N = 90, our
method explores 3 and 2 different
topologies, respectively.

Here, we use a sparse sampling estimator to estimate
the upper and lower bounds practically. We generate
a discrete POMDP problem with observation, action,
and state spaces |Z| = 2000, |A| = 2, and |X| =
1000, respectively.

The results of the experiment are reported in Ta-
ble 2. A comparison was conducted between two dis-
tinct sets of sampling parameters: K = N = 90 ver-
sus K = N = 50. With the larger values of K and

N , our method demonstrated the capability to identify the optimal action with
reduced iterations and a significant decrease in planning time. Notably, in both
scenarios, our method successfully identified the same optimal action as the
sparse sampling employed in the original POMDP tree.

6.3 Beacon Navigation Problem

In this experiment, we utilize the sparse sampling estimator to address a specific
problem in robot navigation, referred to as the beacon navigation problem. The
objective is for the robot to navigate a 2D space, maneuvering around obstacles
to reach a specified goal, while localizing itself based on observations from known
beacons. The scenario is shown in Fig. 6a. In this setting, the POMDP problem
has a continuous state and observation space and a discrete action space of
|A| = 4. We provide further details regarding this scenario in the Supplementary
[17]. Table 6c presents timing results for the first planning session. During each
iteration, the considered topology switches back 5 nodes to use the original
observation space and model. Notably, our proposed approach switches twice
between different topologies to identify the same optimal action at the outset,
demonstrating superior efficiency compared to a conventional sparse sampling in
the original belief tree. Fig. 6b shows the corresponding bounds over the optimal
Q-function at the root of the belief tree in this process.

7 Conculsion

We proposed a novel framework to speedup POMDP planning by selectively
switching part of the belief nodes to an alternative observation space and model
while providing formal performance guarantees with respect to the original
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Fig. 6: Beacon Navigation Problem. (a) Scenario. (b) Bounds over the estimated optimal Q function
as a function of iteration number. Our method iterates two different topologies. (c) Planning time.

POMDP problem. We defined the notion of adaptive topology belief trees and
examined a specific definition of the alternative observation space that corre-
sponds to a fully observable setting. In such a setting, we derived novel bounds
that can be used to adaptively switch between different topologies until the op-
timal action of the original problem can be determined. We also demonstrated a
bound across different policy spaces induced by different belief tree topologies,
indicating a new way to simplify the policy space. The experiments support our
claim, leading to a significant speedup in planning (e.g. ×3) while identifying
the same action as with the original observation space. We believe this work
opens new exciting avenues for online POMDP planning with formal perfor-
mance guarantees.
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