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Introduction

Sequential decision-making under uncertainty

Examples include,
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Introduction - Formalism

observation, 
reward

action
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Partially Observable Markov Decision Process (POMDP)
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Introduction - Formalism

The (optimal) solution for a POMDP optimally trades off information-gathering 
actions versus other actions.
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Introduction - Solutions
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We will be focusing on online tree search methods

■ Each node represents a belief
■ Each edge represents an action or an observation
■ Given a prior belief, the posterior belief is calculated via 

probabilistic inference



Introduction - Solutions
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How to get an exact solution?

Given a POMDP definition, construct a tree of all states, actions 
and observations

Problem?

Size of the tree - 

Only relevant for very small POMDPs



Introduction - Solutions

Approximate planners:

POMCP, DESPOT, POMCPOW, PFT-DPW, AdaOPS… 

Planning efficiency Aware of state 
uncertainty

Optimal (in some 
sense)

Gradient-based, 
open-loop

Yes No No

Deterministic 
approximations

Yes No No

Monte-Carlo 
Sampling

Yes Yes Yes
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Introduction - Our Approach
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In this research, we derive a framework instead of solving the original 
POMDP, considers a simplified version of that POMDP.

Then, we aim at deriving a mathematical relationship between the solution of 
the simplified, and the theoretical POMDP.
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Belief Based Rewards - Motivation

12

A generalization of POMDPs (limited to state-based rewards).

Supports explicit reasoning of uncertainty, e.g.,

■ Pose uncertainty (of the robot, other agents, etc.)
■ Map representation
■ Semantic uncertainty



Belief Based Rewards - Motivation
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Information-Theoretic functions may be used as uncertainty measures, commonly used as reward 
functions. E.g.,

■ Differential entropy

■ Information Gain
■ Mutual information
■ Kullback-Leibler divergence
■ and more…



We focused on entropy as an information-theoretic reward function,

a weighted sum of state-dependent reward and entropy (discrete or continuous)

Belief Based Rewards - Introduction
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Belief Based Rewards - The Challenge
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The difficulty - Information theoretic functions are generally intractable

And even approximations are computationally difficult -                  - for every reward calculation
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Belief Based Rewards - Our Contribution
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We introduced an abstract observation model,

■ Aggregates a set of K observations 
■ The new probability value is the aggregate average

Abstract



Belief Based Rewards - Our Contribution
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Using the abstract observation model, we derived analytical bounds compared to the non-abstract model,

- Horizon
- Entropy weight
- Num clustered observations



Belief Based Rewards - Our Contribution
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Using the abstract observation model, we derived analytical bounds compared to the non-abstract model,

Some interesting observations:

Here, K=3

■ There is no loss for abstracting the state-dependent reward
■ The bound can be made adaptive by reducing the size of K

■ K does not need to remain constant throughout the tree

- Horizon
- Entropy weight
- Num clustered observations



Belief Based Rewards - Results
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Speed-up for free

■ Exact same solution
■ A fraction of the planning time

Baseline algorithm
Our algorithm
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Continuous-Discrete State Spaces - The Challenge
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Computing the reward function requires explicit knowledge of the hypotheses

However, the number of hypotheses may grow exponentially with the horizon!

Belief tree Hypothesis tree



Continuous-Discrete State Spaces - Motivation
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What others have done?

■ Either implicitly assume known observation source
■ Or prune hypotheses based on heuristics

It is not hard to show that a pruned set of hypotheses leads to 
a biased estimation



Continuous-Discrete State Spaces - Our Contributions (1)
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Instead of computing all possible hypotheses, we utilize MCTS sampling and exploration approach. 
MCTS:

■ An MDP solver
■ Uses UCT to tradeoff exploration-exploitation for actions

■ Given an action, samples the next state

Selection Backpropagation

RolloutExpansion



We add a layer that samples hypotheses via Monte-Carlo sampling

■ Tends to sample the more “important” hypotheses
■ Can support belief-dependent rewards

Continuous-Discrete State Spaces - Our Contributions (1)
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Selection Backpropagation

RolloutExpansionHypothesis Expansion



Continuous-Discrete State Spaces - Our Contributions (1)
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Continuous-Discrete State Spaces - Our Contributions (2)
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Our second contribution bridges the gap between the full hypothesis tree and a simplified tree

Full tree Any subset

This is too computationally 
expensive

Instead, do this



Continuous-Discrete State Spaces - Our Contributions (2)
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Derived a deterministic bound to relate the full set of hypotheses to a subset thereof,

Full tree Any subset

Importantly, the bound relies on the 
available hypotheses

Can bound the theoretical value with 
access only to the simplified tree



Continuous-Discrete State Spaces - Results
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Tunable loss limit (hyperparameter) 

Small loss in the value function, 
may lead to significant 
improvement in planning time 

Value estimation Planning time
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POMDPs with Deterministic Guarantees - Motivation
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Short reminder:

■ POMDP is a formal framework for decision-making under uncertainty
■ Finding an optimal policy is generally intractable
■ Must resort to approximate solvers

Note - in this section we focus on discrete spaces



POMDPs with Deterministic Guarantees - Motivation
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SOTA approximate solvers rely on sampling

They choose a subset of the state and observation spaces



POMDPs with Deterministic Guarantees - The Challenge

Naturally, sampling comes with probabilistic theoretical guarantees

Can we get deterministic guarantees?

34

DESPOT

AdaOPS

POMCP

…



POMDPs with Deterministic Guarantees - Approach
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In our work, we show that deterministic guarantees are indeed possible!

Given a POMDP:

We define a simplified POMDP, 



POMDPs with Deterministic Guarantees - Approach
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With the simplified POMDP, we define a simplified value function,

 

The formulation is flexible enough to allow any selection of the simplified state and observation spaces,



POMDPs with Deterministic Guarantees - Our Contribution
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Derived upper and lower bounds for the optimal value function,

■ The bounds are easier to compute than the optimal value function
■ The bounds shrink monotonically as the algorithm explores the tree
■ Converge to the optimal value function
■ This is the first work to our knowledge to provide deterministic guarantees for anytime online 

POMDPs



POMDPs with Deterministic Guarantees - Our Contribution
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Importantly, the bounds can be calculated during planning. 

How can we use them?

■ Pruning of sub-optimal branches

Made possible by the deterministic guarantees

■ Stopping criteria for the planning phase

Made possible by the deterministic guarantees

■ Finding the optimal solution in finite time

Without recovering the theoretical tree



POMDPs with Deterministic Guarantees - Our Contribution
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Algorithm blueprint

represents most SOTA algorithms

(similar structure)

Can attach our bounds to any such algorithm



POMDPs with Deterministic Guarantees - Our Contribution
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POMCP DB-POMCP RB-POMCP

Deterministic guarantees

Pruning

Finite-time optimality

No

No

No

Yes

Yes

No

Yes

Yes

Yes



POMDPs with Deterministic Guarantees - Results
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We compared the time it takes for the algorithms to find the optimal action
■ SOTA algorithms excluded as they don't ensure optimal solutions
■ Each point in the graph corresponds to the time it took to find the optimal action

UCT effectively stops exploring
before guaranteeing the optimal solution

Can’t guarantee optimality

RB-POMCP empirically scales 
linearly with problem size

(more points is better)
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Summary



 

Thank you for listening!
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