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Abstract— Multi-robot belief space planning (MR-BSP) is
essential for reliable and safe autonomy. While planning, each
robot maintains a belief over the state of the environment and
reasons how the belief would evolve in the future for different
candidate actions. Yet, existing MR-BSP works have a common
assumption that the beliefs of different robots are consistent at
planning time. Such an assumption is often highly unrealistic, as
it requires prohibitively extensive and frequent communication
capabilities. In practice, each robot may have a different belief
about the state of the environment. Crucially, when the beliefs
of different robots are inconsistent, state-of-the-art MR-BSP
approaches could result in a lack of coordination between the
robots, and in general, could yield dangerous, unsafe and sub-
optimal decisions. In this paper, we tackle this crucial gap. We
develop a novel decentralized algorithm that is guaranteed to
find a consistent joint action. For a given robot, our algorithm
reasons for action preferences about 1) its local information,
2) what it perceives about the reasoning of the other robot,
and 3) what it perceives about the reasoning of itself perceived
by the other robot. This algorithm finds a consistent joint
action whenever these steps yield the same best joint action
obtained by reasoning about action preferences; otherwise, it
self-triggers communication between the robots. Experimental
results show efficacy of our algorithm in comparison with two
baseline algorithms.

I. INTRODUCTION

Multi-robot decision making under uncertainty in partially
observable domains is a fundamental problem in robotics
and AI, with numerous applications where multiple agents
operate in the same environment. Examples include au-
tonomous driving, environmental monitoring, and search and
rescue missions. Such problems are often formulated within
the framework of Decentralized Partially Observed Markov
Decision Process (Dec-POMDP) or multi-robot Belief Space
Planning (MR-BSP).

Multi-robot decision making under uncertainty and belief
space planning have been investigated in recent years under
different perspectives. Calculating a globally optimal solution
of the underlying problem is computationally intractable
[6]. Nevertheless, progress has been made considering a
decentralized general-purpose paradigm, Dec-POMDP, and
macro-actions (e.g. [1], [2], [3], [7], [15], [16]).
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Approaches that consider a non-cooperative setting, where
each robot has its own reward function (representing a differ-
ent task), typically tackle the problem within the framework
of dynamic games by reasoning about the Nash equilibrium
of the multi-robot system (e.g. [14], [18], [20]), or by
leveraging multi-objective optimization (e.g. [12]). Multi-
Robot BSP (MR-BSP) approaches have been also investi-
gated considering a cooperative setting, i.e. all robots have
the same reward function (same task). For instance, the
works [4], [10], [17] consider MR-BSP with Gaussian high-
dimensional distributions in the context of cooperative active
SLAM and active inference.

Yet, a prevailing assumption in existing approaches, being
explicit or implicit, is that the beliefs of different robots
at planning time are consistent, i.e. conditioned on the
same information. Such an assumption requires all the data
(observations) captured by different robots to be available
to each robot, such that the beliefs of individual robots can
be conditioned on the same data. This, in turn, requires pro-
hibitively extensive and frequent communication capabilities.
However, in numerous problems and scenarios, extensive
data sharing between the robots cannot be made on a regular
basis. Moreover, it is often the case that only a partial or
compressed version of the data can be communicated in
practice. As a result, each robot may have access to different
data, which would correspond to a different belief about the
state of the environment, i.e. to inconsistent beliefs.

Crucially, when the beliefs of different robots are incon-
sistent, the state-of-the-art MR-BSP approaches could result
in a lack of coordination between the robots, and in general,
could yield dangerous, unsafe, and sub-optimal decisions.
For instance, consider the toy example shown in Figure 1,
where two robots aim to reach a common goal point without
colliding with each other. Due to lack of communication,
the robots beliefs become inconsistent; MR-BSP in such a
setting may result in each robot calculating a different joint
action, which can lead to a collision (Figure 1(c)).

Despite this, to our knowledge, multi-robot planning with
inconsistent beliefs has not been explicitly addressed thus far.
Arguably, the closest work to our paper is [22], where the
authors explicitly consider the beliefs of different robots may
be inconsistent. However, that work requires communication
whenever the beliefs of different robots are detected to
be inconsistent, so that, eventually, planning is done with
consistent beliefs.

In this paper we address this crucial gap of MR-BSP
with inconsistent beliefs. To our knowledge, this work is
the first to address this gap. Specifically, we develop a novel
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Fig. 1. (a) Two robots, r and r′, acquire separate observations (zr, zr′ ) and begin a planning session. The robots aim to cooperatively reach the green star while satisfying
a safety property of avoiding obstacles and collisions; each agent has two candidate actions ({ar, ār} for robot r, and {ar′ , ār′} for robot r′). (b) The robot communicate
their observations to each other (red color), after which their histories, and beliefs, become consistent. Decentralized MR-BSP in such case yields the same best joint action for
both robots. Here, Hc represents the common history between the robots prior to acquiring the observations zr and zr′ . (c) The robots do not communicate their observations,
and as a result, the robots’ beliefs become inconsistent. This causes the robots to conclude inconsistent joint-actions, which leads to a collision.

decentralized MR-BSP framework that explicitly accounts
for inconsistent beliefs and self-triggers communication only
when the same joint action selection by different robots
cannot be guaranteed.

At the core of our proposed approach is the notion of
action consistency [8], [9], [11], which captures the obser-
vation that decision making involves identifying which action
is preferable over other actions: If in two decision making
problems a certain action is preferred over other candidate
actions, then this action would be identified as the best action
in both problems, regardless of the actual objective function
values. In such case, the two problems are action-consistent.
Thus far, this concept has been considered for simplification
with performance guarantees of single-robot POMDP and
BSP problems (see, e.g., [5], [13], [19], [21], [23]).

Our key observation is that when the robots perform MR-
BSP with inconsistent beliefs, each robot solves a different
planning problem; nevertheless, these problems can still yield
the same best joint action if they are action-consistent.
Leveraging this key observation, in this paper we develop
an approach that detects if a consistent decision making
among robots can be guaranteed albeit the inconsistent be-
liefs. This involves reasoning about the missing information
(observations) and the corresponding beliefs of the other
robot(s). In the case where an action-consistent decision-
making cannot be guaranteed, our approach self-triggers
communication of the information that will eventually lead to
an action-consistent decision-making. The communications
are self-triggered because each robot reasons about when it
has to initiate a communication without being triggered by
any other robot.

To summarize, our main contributions in this paper are: (a)
we introduce a formulation of a new problem, i.e. MR-BSP
with inconsistent beliefs; (b) we develop a novel approach
to address this problem by leveraging the concept of action
consistency and extending it to the multi-robot setting. A
key innovation here is that we can often have the same
joint action selection calculated by different robots, despite
having inconsistent beliefs, even without any communica-
tion. Otherwise, communications are self-triggered to ensure
action consistency. We provide a theoretical guarantee that
our approach will eventually identify a consistent joint action
for the robots. (c) we benchmark our approach in simulation

and compare it against two baseline approaches.

II. PRELIMINARIES & PROBLEM FORMULATION

A. Preliminaries

Consider a team of u robots Γ = {r1, r2, . . . , ru} per-
forming some task(s). We pick a robot r arbitrarily from Γ,
and denote by −r the rest of the robots in the group. From
the perspective of robot r, we define a decentralized multi-
robot POMDP as a 7-tuple: ⟨X ,Z,A, T,O, ρr, brk⟩. Here, X
is the application-dependent joint state space, and Z and A
are the joint observation and joint action spaces. T (x′ | x, a)
and O(z | x) are the joint transition and observation models,
where x ∈ X , a ∈ A and z ∈ Z are, respectively, the
joint state, action and observation. Furthermore, we assume
that the observations of different robots are independent
conditioned on the state, i.e. O(z | x) =

∏
r∈Γ O

r(zr | x)
where zr ∈ Zr is the local observation of robot r, and
Zr and Or(.) are the corresponding observation space and
model. ρr is a general belief-dependent reward function
ρr : B×A 7→ R, where B is the belief space. In this work we
consider a cooperative setting, i.e. each robot has the same
reward function ρ that describes a joint task allocated to
the group (e.g. information gathering). Therefore, ρr(b, a) =
ρr

′
(b, a) for any r, r′ ∈ Γ.
We denote by brk the belief of robot r at time k over the

state xk ∈ X ,

brk[xk] ≜ P(xk | Hr
k), (1)

where Hr
k ≜ {a0:k−1, z

r
1:k, z

−r
1:k} is the history available

to robot r at time k, which includes its own actions and
observations, as well as those of other robots in the group.

In a collaborative setting robot r reasons over the
joint actions of the robots, instead of its individual
actions. The joint action aℓ at any time ℓ is defined as
aℓ ≜ (ar1ℓ , . . . , aruℓ ) = (arℓ , a

−r
ℓ ) ∈ Ar1 × · · · × Aru ≡ A,

where Ar is the individual action space of robot r ∈ Γ.
For ease of exposition we shall consider an open loop

setting, although this is not a limitation of our proposed
concept. Let Ak+ = Ak:k+L−1 = {ak:k+L−1} denote a set
of L-step joint action sequences formed from the joint action
space Ak+. Under these assumptions, the objective function
of robot r for a horizon of L time steps and a candidate joint
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action sequence ak+ ≜ ak:k+L−1 ∈ Ak+ is defined as

J(brk, ak+) = E
zk+1:k+L

[

L−1∑
l=0

ρ(brk+l, ak+l) + ρ(brk+L)], (2)

where the expectation is over future observations zk+1:k+L

of all robots in the group with respect to the distribution
P(zk+1:k+L | brk, ak+). The optimal joint action sequence is:

a∗k+ = argmax
ak+∈Ak+

J(brk, ak+). (3)

In this paper we use the terms “action sequence” and “action”
interchangeably.

B. Problem Formulation

A typical assumption in existing multi-robot belief space
planning approaches is that of consistent histories across all
the robots in Γ at any planning time instant k, i.e.

∀r, r′ ∈ Γ, Hr
k ≡ Hr′

k , (4)

which corresponds to the assumption that each robot has ac-
cess to the observations of all other robots. Yet, in numerous
real world problems and scenarios, such an assumption is
clearly unrealistic (see Section I).

We shall use the term inconsistent beliefs whenever (4) is
not satisfied1. If any two robots r and r′ have inconsistent
beliefs, brk and br

′

k , their theoretical objective function values
(2) for the same joint action ak+ are not necessarily the
same. There are two reasons for this. First, the expectation
in (2) is taken with respect to two different distributions
i.e. P(zk+1:k+L | brk, ak+) and P(zk+1:k+L | br

′

k , ak+). Sec-
ond, even when conditioned on the same realization of
a future observation sequence zk+1:k+l for any time step
l ∈ [1, L], the theoretical posterior future beliefs brk+l and
br

′

k+l are still inconsistent, and hence their corresponding
rewards are different.

As a result, it is no longer guaranteed that different robots
will indeed be coordinated on the theoretical level as the
optimal joint action to be identified by robots r and r′ are
no longer necessarily identical. In other words, generally,
argmax

ak+

J(brk, ak+) ̸= argmax
ak+

J(br
′

k , ak+). Such a situation

is clearly undesired as it may lead to sub-optimal planning
performance, and to dangerous, unsafe decision making.

Specifically, consider any two robots r, r′ ∈ Γ. In a
limited communication setting, at time k, consider that
the last time instant when the beliefs of these two robots
were consistent is p ∈ [1, k] time steps behind k.
In other words, at time instant k − p, robots r and
r′ communicated with each other, resulting in brk−p =

P(xk−p | Hr
k−p) and br

′

k−p = P(xk−p | Hr′

k−p) with Hr
k−p =

{a0:k−p−1, z
r
1:k−p, z

−r
1:k−p} ≡ {a0:k−p−1, z

r′

1:k−p, z
−r′

1:k−p} =

Hr′

k−p. Hk−p ≜ Hr
k−p = Hr′

k−p for any r, r′ ∈ Γ. In

1Note that in nonparametric inference methods beliefs are generally
inconsistent also given consistent histories (as given the same history the
belief could be represented by different sets of particles). We leave the
extension of our approach to such a setting to future work, and consider
herein deterministic inference methods.

particular, if there are only two robots in the group, then
Hk−p = {a0:k−p−1, z

r
1:k−p, z

r′

1:k−p}.
During time period [k − p + 1, k], there was no commu-

nication and any robots r, r′ ∈ Γ do not have access to the
non-local observations from these time instances. In other
words, their beliefs

brk = P(xk | Hr
k), br

′

k = P(xk | Hr′

k ), (5)

are inconsistent since robot r does not have access to
z−r
k−p+1:k, and robot r′ does not have access to z−r′

k−p+1:k.
Currently we assume the actions performed by each robot
by time instant k are known. Thus, Hr

k ̸= Hr′

k for any two
robots r, r′ ∈ Γ, where

Hr
k = Hr

k−p ∪ {ak−p:k−1, z
r
k−p+1:k}, (6)

Hr′

k = Hr′

k−p ∪ {ak−p:k−1, z
r′

k−p+1:k}. (7)

The challenge addressed in this paper is to select the same
(consistent) joint action sequence a∗k+ for all the robots in
the group even though their beliefs are inconsistent.

III. APPROACH

Our key objective is to guarantee action consistency for
multiple robots with inconsistent beliefs. With inconsistent
beliefs of the robots, the J-values for a given joint action
evaluated by different robots, each with its own belief,
will generally be different. If we can guarantee the same
preference ordering of the candidate joint actions derived
by all the robots, then we yield a consistent best joint
action regardless of the magnitude of the corresponding J-
values. This is in striking contrast to existing approaches that
implicitly ensure multi-robot action consistency (MR-AC) by
requiring the robots to have consistent beliefs, i.e. assuming
all the data between robots are communicated.

Specifically, we propose to utilize the concept of action
consistency to address multi-robot decision making problems
with inconsistent beliefs. We extend the definition of action
consistency considering a multi-robot setting.

Definition 3.1 (Multi-Robot Action Consistency (MR-AC)):
Consider two robots r, r′ ∈ Γ where r ̸= r′. At time k, the
joint actions selected by r and r′ are a ∈ Ak+ and a′ ∈ Ak+

respectively. Robots r and r′ are action consistent at time
k if and only if a = a′. If, at time k, action consistency is
satisfied for any two robots r, r′ ∈ Γ, then the system of
robots Γ is action consistent at that time.

A. Action preferences with different beliefs

We use the notion of comparing J-values where the order
of the values matters, and not the magnitude. We define
action preference as a binary relation ≽. Consider two joint
actions a, a′ ∈ Ak+. The joint action a is preferred over a′

w.r.t. a given set of beliefs BZ when action a dominates a′

for all the beliefs in BZ :

∀b ∈ BZ a ≽ a′ ⇐⇒ J(b, a) ≥ J(b, a′). (8)

While this is valid for any set of beliefs BZ , in this paper
we shall consider a given set of observations Z, and each
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belief b ∈ BZ results from Bayesian inference considering a
particular observation z ∈ Z. For m number of joint actions
in A, the joint action a∗ ∈ A is most preferred if a∗ ≽ a
holds for all a ∈ A.

Definition 3.2 (Consistent observations): Consider a set
of observations Z, a set of joint actions Ak+ and an objective
function J(.). If there exists an a∗ ∈ Ak+ satisfying a∗ ≽ a
for all a ∈ Ak+, we call Z to be consistent in favor of
a∗. We denote the consistency of Z favoring action a∗ as
cona∗(Z) = true.

Define cobsa∗(Z) as the consistent set of observations in
Z favoring action a∗:

cobsa∗(Z)={z ∈ Z ′| Z ′ ⊆ Z ∧ cona∗(Z ′) = true}. (9)

When cona∗(Z) = true, cobsa∗(Z) contains the entire Z
because all the observations in Z are consistent in favor of
a∗. When cona∗(Z) = false, cobsa∗(Z) contains a proper
subset of observations Z ′ ⊂ Z (instead of the entire Z)
consistent in favor of a∗.

Next, we present our approach to check if MR-AC exists
despite the robots having inconsistent beliefs, and then de-
scribe a mechanism for self-triggered communications until
MR-AC is achieved.

B. MR-AC for robots with inconsistent beliefs

Consider a group of two robots Γ = {r, r′}. In a decentral-
ized setting, we propose a mechanism to ensure MR-AC for
Γ from the perspective of an arbitrarily chosen robot r ∈ Γ.
The aim of r is to select, at planning time k, a joint action
which is necessarily the same with the one chosen by robot
r′, though r and r′ have inconsistent beliefs brk and br

′

k from
(5).

∆Hr′,r ∆Hr,r′cHr,r′

Hr Hr′

Fig. 2. Illustration of Hr, Hr′ , cH,∆Hr,r′ , and ∆Hr′,r . See text for details.

Though robots r and r′ have inconsistent histories at
planning time k, they have a common part of history that
we shall denote as cHr,r′

k ≜ Hr
k ∩ Hr′

k . Accordingly, we
define by ∆Hr,r′

k ≜ Hr′

k \
cHr′,r

k the part in history of robot
r′, i.e. an observation sequence, that is unavailable to robot
r. As discussed below, robot r will have to reason about
these missing observations of robot r′. Similarly we define
∆Hr′,r

k . Therefore, Hr
k = {cHr,r′

k ,∆Hr′,r
k } and Hr′

k =

{cHr,r′

k ,∆Hr,r′

k } as illustrated in Figure 2.
The beliefs (5) can then be expressed as:

brk = P(xk | cHr,r′

k ,∆Hr′,r
k )

br
′

k = P(xk | cHr′,r
k ,∆Hr,r′

k ).
(10)

Recall we assumed that the robots have consistent histo-
ries until time k − p. Initially, as no communication was
triggered at planning time k, according to (6) and (7),
cHr,r′

k = Hk−p ∪ {ak−p:k−1}, ∆Hr,r′

k = {zr′k−p+1:k} and
∆Hr′,r

k = {zrk−p+1:k}.

We propose the following steps to identify MR-AC by
robot r despite inconsistent beliefs brk and br

′

k (10) of the
robots. Conceptually, robot r needs to analyze the joint
action preferences from different perspectives: i) its own
perspective, ii) perspective of the other robot r′, and iii) its
own perspective reasoned by the other robot r′. If r finds the
same best joint action from all the above perspectives, then
it can be assured that the other robot has also calculated the
same best joint action; hence, in such case, both robots are
action-consistent, i.e. choose the same joint action.

Since robot r does not have access to ∆Hr,r′

k , and it is
aware that robot r′ does not have access to ∆Hr′,r

k , these
steps involve reasoning about all possible values of these
missing observations. We denote the corresponding joint
observation spaces, that represent these possible values, by
∆Zr,r′

k and ∆Zr′,r
k . Thus, ∆Hr,r′

k ∈ ∆Zr,r′

k and ∆Hr′,r
k ∈

∆Zr′,r
k . Also, define ∆Zk as

∆Zk = ∆Zr,r′

k ∪∆Zr′,r
k . (11)

Prior to any communication self-triggered by our algorithm,
since ∆Hr,r′

k = {zr′k−p+1:k} and ∆Hr′,r
k = {zrk−p+1:k},

∆Zr,r′

k = Zr′

k−p+1 ×Zr′

k−p+2 × . . .×Zr′

k (12)

∆Zr′,r
k = Zr

k−p+1 ×Zr
k−p+2 × . . .×Zr

k . (13)

In this paper we assume these observation spaces to be
discrete. We leave the extension to continuous observation
spaces to future work.

C. Algorithm VERIFYAC

We present an algorithm named VERIFYAC that verifies
MR-AC from the perspective of robot r. The algorithm
captures the above concept and we now present it in detail.
Figure 3 illustrates conceptually the mentioned steps in a
toy example that has only two possible joint actions and two
possible observations for each robot. The steps of VERIFYAC
are described below.

Step 1: Robot r calculates the best joint action given
its own belief brk via (3): This involves evaluation of the
objective function J(brk, ā) for different candidate joint ac-
tions in Ak+. In other words, this involves evaluation of the
objective function considering the belief brk from (10) which
is conditioned on the consistent history cHr,r′

k and on the
actual local observation(s) ∆Hr′,r

k of robot r. Finally, robot
r selects the best action ā ∈ Ak+ such that J(brk, ā) >
J(brk, ā

′) ∀ā′ ∈ Ak+ and ā ̸= ā′. The concept is illustrated
in Figure 3(a) by black triangles.

However, since robots r and r′ have inconsistent beliefs,
it is not guaranteed that the joint action chosen by robot r
will be the same as chosen by r′. So, we move to Step 2.

Step 2: Robot r mimics the reasoning done by robot r′:
The belief br

′

k (10) of the other robot r′ is conditioned on
∆Hr,r′

k (initially, ∆Hr,r′

k = {zr′k−p+1:k}) which is unavail-
able to robot r. Moreover, br

′

k is not conditioned on the actual
observation of robot r, i.e. ∆Hr′,r

k (initially zrk−p+1:k), which
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J(brk, a)

(a) Step 1 of robot r

ā ā′

40
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J
(.
)

J(brk, a) J(b
r′|r
k , a)

(b) Steps 1-2 of robot r

ā ā′

40

60

80

J
(.
)

J(br
′

k , a) J(b
r|r′
k , a)

(c) Steps 1-2 of robot r′
ā ā′

40

60

80

J
(.
)

J(brk, a) J(b
r′|r
k , a) J(b

r|r′|r
k , a)

(d) Steps 1-3 of robot r

Fig. 3. Illustration of VERIFYAC from the perspective of robot r. Robots r and
r′ have inconsistent beliefs brk and br

′
k at time k. Candidate joint actions are ā and

ā′. Triangles and squares denote objective function (J(.)) evaluations for r and r′

respectively. (a) Step 1 of r: Robot r computes its belief for its actual observation.
Chooses ā as the best action. (b) Step 1-2 of r: In Step 2, r computes J(.) for each
possible observation of r′. All the observations are consistent in favor of ā. (c) Step
1-2 of r′: Similarly, robot r′ computes Step 1 for its actual observation, and Step
2 for all possible observations of r. (d) Step 3 of r: Combines (a)-(c) and verifies
that the observations at each step are consistent in favor of action ā. Hence, r can be
assured that r′ also has chosen ā. Thus r chooses action ā at time k.

is unavailable to robot r′. Explicitly, the two beliefs are given
by (10).

As ∆Hr,r′

k is unavailable to robot r, it has now to reason
over all the possible observation realizations in ∆Zr,r′

k of
robot r′. For instance, initially, prior to self-triggered com-
munication, due to (13), this corresponds to all the possible
realizations of observation sequences of robot r′ between
time instances k− p+1 and k (one of which is the actually
captured sequence of observations, zrk−p+1:k).

Robot r verifies the consistency of observations ∆Zr,r′

k ,
i.e. conā(∆Zr,r′

k ) = true, in favor of the action ā derived in
Step 1. For each such possible realization, denoted abstractly
by z̃r

′ ∈ ∆Zr,r′

k , robot r first constructs a plausible
corresponding belief of robot r′, denoted as

b
r′|r
k (z̃r

′
) ≜ P(xk | cHr,r′

k , z̃r
′
). (14)

Note the belief is still over the state xk, and it varies for
different values of z̃r

′
it is conditioned upon.

In practice, the belief (14) can be calculated in a Bayesian
manner either by down-dating the observations ∆Hr′,r

k (ini-
tially zrk−p+1:k) from brk (10) and updating with z̃r

′
, or

equivalently, directly from P(xk | cHr,r′

k ) which would have
to be maintained. For instance, for p = 1, we get br

′|r
k (z̃r

′
) =

brk
P(zr

k|
cHr,r′

k )P(z̃r′
k |xk)

P(zr
k|xk)P(z̃r′

k |cHr,r′
k )

= P(xk | cHr,r′

k )
P(z̃r′

k |xk)

P(z̃r′
k |cHr,r′

k )
.

Then, for each z̃r
′ ∈ ∆Zr,r′

k of r′, robot r evaluates
the objective function J(b

r′|r
k (z̃r

′
), a) for different candidate

joint actions a ∈ Ak+. This is illustrated in Figure 3(b) using
blue squares. Generally, each z̃r

′ ∈ ∆Zr,r′

k yields its own

J-values. Moreover, we do not necessarily expect either of
these values to match the objective values J(brk, ā) calculated
by robot r in Step 1 (black triangles), since generally the
observation models and spaces of different robots could vary.
Importantly, with this formulation, the actual observation that
robot r′ captured will be considered, since ∆Hr,r′

k ∈ ∆Zr,r′

k .
Regardless of the magnitude of J-values, it may happen

that for all z̃r
′

the same joint action is chosen, and that action
is identical to the one chosen in Step 1. Such a situation is
depicted in Figure 3(b) where ā is the best joint action in
both steps 1 and 2. In other words, in this scenario, regardless
of what the actual observation of r′ is, robot r can be assured
that when r′ performs its own decision making, i.e. step 1,
it will necessarily choose the same joint action as the one
chosen by r. Therefore, r checks if the best action selected
for each z̃r

′ ∈ ∆Zr,r′

k is the action ā derived in Step 1, i.e. if
conā(∆Zr,r′

k ) = true holds. Thus, r captures the reasoning
about the action selection by r′.

Yet, at this point, robot r cannot guarantee that robot r′

will also reach the same conclusion, i.e. regardless of the
actual observation of robot r (that is unavailable to robot
r′), the same joint action will be selected by robots r′ and r.
Therefore, Steps 1 and 2 are insufficient to guarantee MR-AC
between the two robots, which brings us to Step 3.

Step 3: Robot r mimics the reasoning done by robot r′ that
mimics the reasoning done by robot r: Robot r′, on its side,
similarly performs Steps 1 and 2. In Step 1, r′ evaluates the
objective function for different candidate joint actions based
on its own belief br

′

k conditioned on cHr′,r
k and ∆Hr,r′

k (see
(10)). Refer to Figure 3(c). Since ∆Hr,r′

k ∈ ∆Zr,r′

k , this
calculation will be considered by robot r as a part of its
Step 2.

Robot r′ also performs Step 2, on its side, in which r′

reasons about all possible observations of r, i.e. ∆Zr′,r
k .

Robot r′ thus calculates b
r|r′
k (z̃r) ∀z̃r ∈∆Zr′,r

k . This is
illustrated in Figure 3(c) by blue triangles. Now, if robot
r, on its side, mimics this reasoning done by r′, robot r can
perceive what r′ thinks about the reasoning done by r.

Put formally, robot r verifies if all observations in ∆Zr′,r
k

are in favor of the action ā derived in Step 1 of r,
i.e. conā(∆Zr′,r

k ) = true. So, r computes b
r|r′|r
k (z̃r),

b
r|r′|r
k (z̃r) ≜ P(xk | cHr′,r

k , z̃r), (15)

and evaluates J(b
r|r′|r
k (z̃r), a) for each z̃r ∈ ∆Zr′,r

k and for
all candidate joint actions a ∈ Ak+. Thus, r captures the
reasoning about the action selection by itself reasoned by r′.

Combining Steps 1-3, robot r checks for MR-AC by rea-
soning about selecting a consistent joint action by r and r′,
which involves considering the observations in ∆Zk (defined
in (11)). When the same joint action ā is chosen in Steps 1-3,
as illustrated in Figure 3(d), MR-AC is identified by robot r
using VERIFYAC. Thus, despite having inconsistent beliefs,
robots r and r′ are action consistent, i.e. identify the same
joint action chosen by both the robots at time k.

Theorem 3.3: Steps 1-3 of VERIFYAC are necessary and
sufficient for any robot r to find MR-AC, if MR-AC exists,
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with the robots in Γ = {r, r′} having inconsistent beliefs.
Proof: Steps 1-3 are sufficient: In Steps 1-3 of VERI-

FYAC, robot r analyzes the observation spaces of the robots
∆Zk (defined in (11)) as per the algorithm. Among the
observations in ∆Zk we have the actual local observations
∆Hr,r′

k and ∆Hr′,r
k . When MR-AC exists, conā(∆Zk)

becomes true in favor of some joint action ā. This implies
that the J-values corresponding to the actual observation
values are also consistent in favor of ā. We know that the
actual observations give the joint action preferences with
zero uncertainty. Therefore, conā(∆Zk) = true in Steps
1-3 implies MR-AC for robots r and r′.

Steps 1-3 are necessary: Without communication, robot r
is not aware of the actual observation ∆Hr,r′

k of the other
robot r′. In Steps 1-3 of our algorithm, robot r exhaustively
considers all observations in ∆Zk that include the actual
observations of both the robots in Γ. The actual observations
give the joint action preferences of the robots with zero
uncertainty. If we remove a randomly selected observation
z ∈ ∆Zk in any of the steps in VERIFYAC, there is a
possibility of z being the actual observation of a robot.
This does not guarantee selecting the joint action preference
correctly. Hence, Steps 1-3 are necessary to verify MR-AC.

However, it may often happen that for given beliefs brk and
br

′

k , an MR-AC does not exist, i.e. after performing Steps 1-
3 of VERIFYAC we cannot find a joint action ā which is
chosen by all the steps of VERIFYAC. Mathematically,

∄ā ∈ Ak+ conā(∆Zk) = true. (16)

In the next section, we discuss such scenarios when MR-AC
is not satisfied, and describe our approach to initiate different
communications (COMMs) until MR-AC is enforced.

D. Self-triggered decision for communication

We present an algorithm ENFORCEAC that enforces MR-
AC via COMMs when VERIFYAC fails to find MR-AC.
Each robot assesses the requirement of a COMM by its own
reasoning and it self-triggers a COMM whenever needed.

When (16) holds, a COMM is required. A COMM can send
a local observation, either from r to r′, from r′ to r, or in
both directions, based on the conditions specified below.

Let ā be the best joint action calculated by robot r in Step
1. Robot r reasons about necessity of a COMM from itself
to robot r′ and self-triggers the COMM if

• From the perspective of r, the observations in Step 3
of VERIFYAC are not consistent in favor of the same
action ā, i.e. conā(∆Zr′,r

k ) = false.
In such a case, robot r deduces that robot r′, which reasons
about observations of robot r by considering the observation
space ∆Zr′,r

k (as part of Step 2 of r′), will find some incon-
sistent observation realizations of r in ∆Zr′,r

k . Therefore, r
sends its local observation(s) from ∆Hr′,r

k to r′.
Additionally, a COMM from r to r′ will be triggered if:
• Step 2 of r gives cona′(∆Zr′,r

k ) = true where a′ ̸= ā
(ā is the action chosen in Step 1 of r).

In this case, r perceives that the observations in Step 2 are
consistent in favor of a′, though a′ does not match with the
best action ā in Step 1 of r. Also, r does not know whether
r′ detects the same inconsistency on its side (comparing Step
1 and Step 3 of r′). However, it is required to modify the
action preferences in Step 2 of r via COMM. So, r sends its
local observation to r′. This COMM modifies cHr,r′

k which,
in turn, modifies the action preferences in Step 2 of r.

Similarly, robot r reasons about a COMM from r′ to r if:
• From the perspective of r, the observations in step 2 of

VERIFYAC are not consistent in favor of action ā, i.e.
conā(∆Zr,r′

k ) = false.
Due to the inconsistent observations in Step 2, robot r needs
access to more observations of r′; in other words, robot r
understands the necessity of a COMM from r′. For robot r,
one possibility is to ask r′ to initiate a COMM. However, r
knows that the COMM from r′ to r will happen automatically
without any intervention by r. This is because robot r
deduces that robot r′, on its side, analyzes the necessity of
the same COMM. That is, when r′ will execute its Step 3
it will find inconsistent observations of r and then r′ will
trigger a COMM from itself to r.

After a COMM, we update cHr,r′

k , ∆Hr′,r
k , ∆Hr,r′

k , ∆Zr′,r
k

and ∆Zr,r′

k with the transmitted observations. As a result, at
least one of the histories Hr

k and Hr′

k gets updated.
For instance, if robot r communicated some observation

zrj ∈ ∆Hr′,r
k to robot r′, then, from the perspective of

robot r, it updates cHr,r′

k ← cHr,r′

k ∪ {zrj }, ∆Hr,r′

k ←
∆Hr,r′

k \{zrj }. In this case, Hr
k = {cHr,r′

k ,∆Hr′,r
k } remains

the same as robot r did not receive any new observation(s).
Robot r also updates the joint observation space ∆Zr′,r

k

from (13) to exclude the corresponding observation space
Zr

j of the actual observation zrj . Robot r′, upon receiving the
observation zrj , does a similar update to cHr,r′

k , ∆Hr,r′

k and
∆Zr′,r

k . Consequently, Hr′

k = {cHr,r′

k ,∆Hr,r′

k } is updated.
Given the updated histories Hr

k and Hr′

k , we update the
beliefs brk and br

′

k according to (10), and execute VERIFYAC
to check if MR-AC exists with the updated beliefs. If MR-AC
is not satisfied, again COMMs are triggered. This continues
until MR-AC is achieved. Thus, ENFORCEAC enforces MR-
AC via COMMs even though MR-AC is not satisfied initially.

Time complexity of ENFORCEAC: The worst case time
complexity of ENFORCEAC is O(pn), where p is the number
of previous time points before which the robots had consis-
tent history and n ≜ |∆Zk|.

Proof: ENFORCEAC calls VERIFYAC. First we analyze
the time complexity of VERIFYAC, which iterates over all
possible observations in ∆Zr,r′

k and ∆Zr′,r
k in Steps 2

and 3, respectively. For each such observation VERIFYAC
calculates and compares between the corresponding J-values
for different candidate joint actions. Whenever VERIFYAC
finds an inconsistent observation, a COMM is triggered.
Overall, this incurs a runtime of O(|∆Zr′,r

k |+ |∆Zr,r′

k |) =
O(|∆Zk|) = O(n) of VERIFYAC. Note that calculation and
comparison of J-values for each observation takes a constant
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Fig. 4. (a) J values and (b) number of time steps since the last communication, with
no restriction in COMM considering MaxEntropy-Init, 4 motion primitives, and epoch
E = 200. Planning is done at each time step. (c) Performance of ENFORCEAC for
two different realizations (R1 and R2) each with 30 time steps at which the robots
cannot communicate.

amount of time.
Inconsistent observations in VERIFYAC lead to triggering

at most 2p number of COMMs by ENFORCEAC. This hap-
pens when during every COMM each of the two robots sends
its unshared local observation at every single time point in the
time range [k−p+1, k]. After each such COMM, VERIFYAC
is invoked again by ENFORCEAC to check for MR-AC. So,
at most 2pn number of comparisons of J-values in total and
hence complexity of ENFORCEAC is O(pn).

Theorem 3.4: ENFORCEAC converges to MR-AC in a
finite amount of time, even if MR-AC does not exist initially.

Proof: During a COMM, the unknown observation se-
quences can be shared partially, i.e. some of the observations
in the time range [k − p+ 1 : k] can be shared to the other
robot. In the worst case, to ensure MR-AC, robot r may have
to send its entire actual observation in time range [k−p+1, k]
to r′. Sharing all the observations takes finite amount of time.
Hence, ENFORCEAC achieves MR-AC in finite time.

IV. IMPLEMENTATION AND RESULTS

We demonstrate the applicability and performance of our
approach by simulating a search and rescue application in
a disaster ravaged area. We compare our algorithm EN-
FORCEAC with two baseline algorithms – Baseline-I and
Baseline-II. In Baseline-I robots do two-way COMMs at each
time point, and that leads to consistent beliefs of the robots at
each time point. In Baseline-II robots do not communicate at
all, and end up having inconsistent beliefs at every time step.
Simulations were carried out in an Intel Core i7-6500U with
2.5 GHz clock. The algorithms are implemented in Julia.

A. Search and rescue in a disaster affected region

Consider that a team of two robots R = {r, r′} are en-
gaged in finding an unknown number of targets (for example,
victims) in a disaster affected region. Task of the robot
team is to collaboratively find targets with high confidence
(reduced uncertainty) which is facilitated by having different
observations at different locations. Due to poor bandwidth
and other connectivity constraints, the robots have limited
scope of communication between them. The simulations are
done in a 2-D occupancy grid sub-divided into discrete cells
with unique identifiers: {si} for i = [1 . . . X] where X is
the maximum index of the cells. A target is either present
or not present in a given cell si and the presence of a target
in si is denoted as xi = 1, else xi = 0.

We assume the following for ease of implementation and
our algorithm is not limited to these assumptions: (a) each

TABLE I
NOT-AC (ACTION INCONSISTENCY), COMMS AND TIME FOR E = 200.

Input Algorithm Not-AC COMM Time
comm-restr = 0 Baseline-II 181 0 1.3s
Motion prim. = 4 Baseline-I 0 400 1.3s
MaxEntropy-Init ENFORCEAC 0 238 12.4s
comm-restr = 0 Baseline-II 185 0 1.3s
Motion prim. = 4 Baseline-I 0 400 1.4s
Entropy-Init ENFORCEAC 0 268 8.7s
comm-restr = 0 Baseline-II 194 0 3.6s
Motion prim. = 8 Baseline-I 0 400 3.5s
MaxEntropy-Init ENFORCEAC 0 248 36.4s
comm-restr = 0 Baseline-II 188 0 3.6s
Motion prim. = 8 Baseline-I 0 400 3.6s
Entropy-Init ENFORCEAC 0 278 31.1s
comm-restr = 20 Baseline-II 194 0 3.3s
Motion prim. = 8 Baseline-I 14 360 4.3s
MaxEntropy-Init ENFORCEAC 13 224 94.9s
comm-restr = 20 Baseline-II 188 0 3.2s
Motion prim. = 8 Baseline-I 14 360 3.6s
Entropy-Init ENFORCEAC 10 251 31.2s
comm-restr = 30 Baseline-II 188 0 3.4s
Motion prim. = 8 Baseline-I 22 340 4.0s
MaxEntropy-Init ENFORCEAC 20 238 46.9s

robot precisely knows the locations of all the robots in Γ;
thus the belief is the probability distribution over the joint
state x ≜ {xi}. Denote the known pose of any robot r ∈ Γ
at time instant k by ξrk; (b) the initial beliefs br0 and br

′

0 of
both robots are given and consistent, i.e. br0 = br

′

0 = b0.
The cells are initially independent of each other, i.e. b0 =
p(x | p0) =

∏
i p0(xi); (c) at any time instant, each robot

observes a single cell where it is located. Based on these
assumptions, it is not difficult to show that the cells remain
independent of each other at any time instant k, i.e. bk =
p(x | Hk, ξ

r
0:k, ξ

r′

0:k) =
∏

i p(xi | Hk, ξ
r
0:k, ξ

r′

0:k) ≜
∏

i bk[xi]
for any history Hk.

To reduce the uncertainty of target occurrences in the loca-
tions of the workspace, we choose an information-theoretic
reward function. Specifically, we consider (minus) entropy,
which measures uncertainty over presence of targets at dif-
ferent locations. Recalling that according to the assumptions
above, the cells are independent for any time instant k, we get
ρ(bk) ≜ −H[x] =

∑
i

∑
j∈{0,1} bk[xi = j] log bk[xi = j].

For a given epoch ⟨1, 2, . . . , E⟩, we do planning using our
algorithm ENFORCEAC at every time step with planning
horizon L = 1. Each robot has four (N, S, E, W) or eight
(additionally NE, NW, SW, SE) motion primitives each of
which moves the robot to a unit distance in the respective
direction. Initially P(xi) = 0.5 for all cells (MaxEntropy-
Init), or initially P(xi) = 0.7 if the cell is occupied and
P(xi) = 0.3 otherwise (Entropy-Init). At any time k ∈ [1, E],
for robot r, beliefs brk, b

r′|r
k and b

r|r′|r
k are updated as

formulated in Section III-C for the joint state x.
Also, at some time instances in E there can be a restriction

in communication even if the algorithm decides to commu-
nicate. We denote a scenario with m such time instances
by comm-restr=m, while comm-restr=0 corresponds to a
scenario with no communication restrictions. This restriction
is not available, in advance, to any of the algorithms.

We run ENFORCEAC with the above setting for epoch
E = 200 without communication restrictions, i.e. comm-
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restr = 0. We show the objective function values in Fig. 4(a),
and the number of time steps since the last communication
in Fig. 4(b). With ENFORCEAC, the robots did not com-
municate for up to five consecutive time steps; nevertheless,
as shown in Table I, in all planning sessions there were no
inconsistent actions despite the robots having inconsistent
beliefs (Not-AC is zero for this problem instance). On
the other hand, Baseline-I communicated two-way at each
planning session, resulting in no action inconsistency, and
Baseline-II did not communicate at all resulting in numerous
inconsistent actions.

Table I summarizes results for additional scenarios, which
vary according to the number of action primitives and the
prior belief (MaxEntropy or Entropy-Init). As seen, con-
sidering no communication restrictions (comm-restr = 0),
ENFORCEAC reduces the number of one-way COMMs by
30-40% compared to Baseline-I, and in all cases ensures con-
sistent decision making between the robots, despite having
inconsistent beliefs.

However, compared to Baseline-I, ENFORCEAC provides
sub-optimal action selection: As shown in Fig. 4(a), the
J values computed by ENFORCEAC are slightly worse
compared to Baseline-I, though the values are well above
the values for Baseline-II. Thus ENFORCEAC ensures MR-
AC with inconsistent beliefs at the expense of quality of
the selected action and higher computational complexity. We
leave further investigation of these aspects to future research.

Dynamic arrival of communication restrictions: In some
scenarios, COMM restrictions may arise dynamically, barring
COMMs between the robots, even though COMM is suggested
by the algorithm. Table I shows that action inconsistencies
(Not-AC) have occurred due to comm-restr > 0 for both
ENFORCEAC and Baseline-I. However, the number of Not-
ACs is less than the number of restricted time steps (comm-
restr) in E. For ENFORCEAC, the reason being: (a) COMM
was not required in some of the comm-restr time steps as
ENFORCEAC ensures MR-AC even without COMM, and (b)
the action selections may be same coincidentally. In fact,
the number of Not-ACs is less for ENFORCEAC compared
to Baseline-I (Table I). This is because, in contrast to
ENFORCEAC, Baseline-I reduces Not-ACs by means of only
reason (b). Action selections, and therefore, objective values,
may differ for two realizations of communication restrictions
(Fig. 4(c)), due to different degrees of belief inconsistencies.

V. CONCLUSION

We have addressed an open problem of ensuring consistent
action selection even if the robots have inconsistent beliefs.
Our algorithm ENFORCEAC verifies multi-robot action con-
sistency. On successful verification, action consistency is
identified without communication. Otherwise, communica-
tion is self-triggered. We provide guarantee that our algo-
rithm provides action consistency eventually. Experimental
results show a reduction of 30 − 40% in the number of
communications, though we do not guarantee optimal action
selection. Future scope is to further reduce the number of
communications and improve the quality of action selection.
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