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Autonomous agents
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Introduction

Perception - environment representation and understanding
usually deals with uncertainty

Noisy measurements

Partial information

Multiple input sources

Introduction And Motivation 5 / 70



Introduction

Decision making - planning into the future and taking actions

Uncertainty handling

Dynamic environments

Safety

Predicting the future
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Introduction

Decision making usually starts from scratch at each planning session
while discarding previous information

Previous planning sessions might have valuable data

Reusing previous information can be efficient and time saving
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Partially Observable Markov Decision Process
(POMDP)
A mathematical framework for modeling decision-making problems under
uncertainty, with each individual problem being characterized by a
7-tuple: (S,A,O, T, Z,R, bk).

S - State space

A - Action space

O - Observation space

PT (sk+1|sk, ak) - State transition density function

PZ(ok+1|sk+1) - Observation density function

R(sk, a, sk+1) - State reward function

bk - Current belief (probability over states)
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POMDP - Non-Parametric Distributions Estimation

Statistical techniques are used to estimate probability distributions
from samples

No parametric assumptions regarding the functional form of a
distribution

Each belief is approximated with a finite number of state samples
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POMDP - Belief-Dependent Reward

Typical reward function of belief node is formulated as expected reward
over states r(b, a, b′) = Es′∈b[r(s, a, s

′)], but it is not always enough and
in many applications belief dependent reward is needed

Quantify uncertainty using information-theoretic measures, such as
information gain and differential entropy

Needed in information gathering, active sensing and other tasks
Typically more computationally demanding than the expected state
reward.

▶ expected state reward - O(n)
▶ differential entropy (boers10) - O(n2)

Introduction And Motivation 10 / 70



POMDP - Belief-MDP

Every POMDP problem (S,A,O, T, Z,R, bk) can be viewed as MDP
over the belief space (B,A, τ, R, b0)

B - space of all possible beliefs over states

A - same as in POMDP definition

τ(bk+1|bk, ak) - belief transition function

R - same as in POMDP definition

b0 - same as in POMDP definition
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POMDP - Policy, Value Function, Action Value
Function, Return

Policy π ∈ Π is a mapping from belief space B to action space A
π : b→ a.
Gk =

∑k+L−1
i=k γi−kr(bi, π(bi), bi+1) is the return.

V π(b) = E
π
[Gk|bk = b]

Qπ(b, a) = E
π
[Gk|bk = b, ak = a]

Introduction And Motivation 12 / 70



POMDP - Autonomy Loop
True state of the agent is unknown, instead it maintains a belief
(distribution over states)

Hk = (b0, a0, o1, a1, o2, .., ak−1, ok) = {o1:k, a1:k−1}
bk = P(sk|Hk)

Figure: ANP - 086762
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POMDP - Computational Complexity

Solving POMDPs is hard

Curse of dimensionality

Curse of history

Continuous state space

Continuous observation space

Continuous action space
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POMDP - Online Algorithms

Sample the belief space and build a partial belief tree/graph

Operate within limited budget constraints

Anytime property - adapt and improve solutions as more samples
are generated

Find optimal action/policy according to sampled tree
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POMDP - Online Algorithms

Figure: Garg 2019
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Online Algorithms - MCTS

Figure: Browne et al. 2012
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MCTS - Explanation

Four consecutive steps are applied in each iteration

Selection - Starting from root node a child selection policy is
applied recursively until the chosen expandable node is reached

Expansion - A child node is added to expand the tree according to
available actions

Simulation - A pre-defined policy is applied to generate trajectory
until horizon depth is reached

Backpropagation - Simulation result is propagated back to the
parents until root node is reached
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POMDP - Related Work Online Solvers

Online solvers
▶ POMCP (2010 Silver et al.)
▶ Despot (2013 Somani et al.)
▶ POMCPOW (2018 Sunberg et al.)

Online solvers with belief dependent rewards
▶ PFT-DPW (2018 Sunberg et al.)
▶ IPFT (2020 Fischer et al.)
▶ ρ-POMCP (2020 Thomas et al.)

Calculation reuse
▶ iX-BSP(2021 Farhi and Indelman)
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POMDP - Related Work Online Solvers

Algorithm S A O R Reuse
POMCP Continuous Discrete Discrete State Trivial
Despot Continuous Discrete Discrete State Trivial

POMCPOW Continuous Continuous Continuous State No
PFT-DPW Continuous Continuous Continuous Belief No

IPFT Continuous Continuous Continuous Belief No
ρ-POMCP Continuous Continuous Continuous Belief No
iX-BSP Continuous Discrete Continuous Belief Yes
IR-PFT Continuous Continuous Continuous Belief Yes
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Our Motivation

Solving POMDPs with continuous state, action and observation spaces

The probability to sample same belief twice is zero.

Each planning session starts only with root node and previous
information is discarded

Previously sampled beliefs can still provide useful information during
current planning session

We want to use previous trajectories to get efficient estimation of
Qπ(b, a) = E

π
[Gk|bk = b, ak = a]
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Contributions

Theoretical justification for information reuse in a non-parametric
setting

Novel MCTS-based algorithm that incorporates information reuse
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Approach - Experience-Based Value Function
Estimation

We assume access to a dataset D containing trajectories with horizon d
and returns of an expert agent that followed policy π, current belief bk
and action ak

D ≜ {τ i, Gi}
τ i ≜ (biki, a

i
ki
)→ (b−iki+1, o

i
ki+1, b

i
ki+1a

i
ki+1)→ ...→

(b−iki+d, o
i
ki+d, b

i
ki+d)
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Approach - Experience-Based Value Function
Estimation
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Approach - Experience-Based Value Function
Estimation

How to estimate Qπ(bk, ak)?

Continuous state, action and observation spaces

The probability that we have trajectory that starts with bk and ak is
0
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Approach - Experience-Based Value Function
Estimation

Figure: Illustration of τ ′
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Approach - Experience-Based Value Function
Estimation

Given trajectory τ i ∈ D

τ i = (biki, a
i
ki
)→ τ isuffix

τ isuffix ≜ (b−iki+1, o
i
ki+1, b

i
ki+1a

i
ki+1)→ ...→ (b−iki+d, o

i
ki+d, b

i
ki+d)

and current belief bk and action ak we construct new trajectory τ ′i

τ ′i = (bk, ak)→ τ isuffix
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Approach - Experience-Based Value Function
Estimation

To estimate Qπ(bk, ak) using trajectory τ ′i two adjustments are required

G̃i ≜ Gi − r(biki, a
i
ki
, biki+1

) + r(bk, ak, b
i
ki+1

)

Adjust the likelihood of G̃i since
P(τ isuffix|biki, a

i
ki
, π) ̸= P(τ isuffix|bk, ak, π)
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Approach - Experience-Based Value Function
Estimation

Figure: Illustration of τ ′
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Approach - Importance Sampling

Given target distribution p(x) and proposal distribution q(x)

Ep[f(x)] ≈ 1
N

∑N
i=1wi · f(xi), wi =

p(xi)
q(xi) , x

i ∼ q.

q must satisfy q(xi) = 0⇒ p(xi) = 0
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Approach - Importance Sampling Action Value
Function Estimator

Given NIS partial trajectories sampled from the same proposal
distribution P(·|biki, a

i
ki
, π) and target distribution P(·|bk, ak, π) we define

Importance Sampling estimator Q̂π
IS(bk, ak) ≜

1
NIS

∑NIS

i=1 wi · G̃i

wi ≜
P(τ isuffix|bk,ak,π)
P(τ isuffix|biki ,a

i
ki
,π)

Actually we have many different distributions so we want to use
Multiple Importance Sampling
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Approach - Experience-Based Value Function
Estimation

We designate by M the count of unique distributions
{P(·|bmkm, a

m
km
, π)}Mi=1 from which partial trajectories originate and we

denote the sample count from each distribution as nm.
Dataset D can be reformulated

D ≜ {τ l,m, Gl,m}M,nm

m=1,l=1.
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Approach - Multiple Importance Sampling

Ep[f(x)] ≈
∑M

m=1
1
nm

∑nm

i=1wm(xi,m)f(xi,m)
p(xi,m)
qm(xi,m)

M proposal distributions {qm}Mm=1

nm - number of samples from distribution qm
xi,m - i’th sample from distribution qm
wm is a weighting function that must satisfy

▶ qm(xi,m) = 0⇒ wm(xi,m)f(xi,m)p(xi,m) = 0
▶ f(xi,m) ̸= 0⇒

∑M
m=1 w(xi,m) = 1
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Approach - Multiple Importance Sampling Action
Value Function Estimation

Using Multiple Importance Sampling Estimator (Assuming Balance
Heuristic)

Q̂π
MIS(bk, ak) ≜

∑M
m=1

∑nm

l=1

P(τ l,msuffix|bk,ak,π)G̃l,m∑M
j=1 nj ·P(τ l,msuffix|b

j
kj
,ajkj

,π)
.
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Approach - Experience-Based Value Function
Estimation
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Approach - Experience-Based Value Function
Estimation

How to calculate a single term P(τ isuffix|biki, a
i
ki
, π)?

Using Markov assumptions and chain rule!
P(τ isuffix|biki, a

i
ki
, π) = P(b−iki+1, o

i
ki+1, ..., b

i
ki+L|biki, a

i
ki
, π) =

P(b−iki+1|biki, a
i
ki
) · P(oiki+1, ..., b

i
ki+L|b−iki+1, π) =

P(b−iki+1|biki, a
i
ki
) · P(oiki+1|b−iki+1) · P(biki+2, ..., b

i
ki+L|b−iki+1, o

i
ki+1, π) =

P(b−iki+1|biki, a
i
ki
) · P(oiki+1|b−iki+1) · P(biki+2|b−iki+1, o

i
ki+1) ·

P(aiki+2, ..., b
i
ki+L|biki+2, π) = P(b−iki+1|biki, a

i
ki
) · P(oiki+1|b−iki+1) ·

P(biki+2|b−iki+1, o
i
ki+1) · P(aiki+2|biki+2, π) · P(b−iki+2, ..., b

i
ki+L|biki+1, a

i
ki+1, π)...
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Approach - Experience-Based Value Function
Estimation

How to calculate a single term P(τ isuffix|biki, a
i
ki
, π)?

P(τ isuffix|biki, a
i
ki
, π) =∏d

j=1 P(b
−i
ki+j|biki+j−1, a

i
ki+j−1)

∏d
l=1 P(oiki+l|b−iki+l) ·∏d

n=2 P(biki+n|b−iki+n, o
i
ki+n) ·

∏d−1
m=2 P(aiki+m|biki+m, π)

Luckily we don’t have to make the full calculation!
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Trajectory Likelihood Ratio

Lemma 1
P(τ isuffix|bk,ak,π)
P(τ isuffix|biki ,a

i
ki
,π)

=
P(b−i

ki+1|bk,ak)
P(b−i

ki+1|biki ,a
i
ki
)

Approach 42 / 70



Trajectory Likelihood Ratio

Theorem 1
P(τ isuffix|bk,ak,π)
P(τ isuffix|biki ,a

i
ki
,π)

=
P(b−i

ki+1|bk,ak)
P(b−i

ki+1|biki ,a
i
ki
)

Proof.
P(τ isuffix|bk,ak,π)
P(τ isuffix|biki ,a

i
ki
,π)

=
P(b−i

ki+1,o
i
ki+1,...,b

i
ki+L|bk,ak,π)

P(b−i
ki+1,o

i
ki+1,...,b

i
ki+L|biki ,a

i
ki
,π)

=

P(b−i
ki+1|bk,ak)

P(b−i
ki+1|biki ,a

i
ki
)
·
������������P(oiki+1,...,b

i
ki+L|b

−i
ki+1,π)

P(oiki+1,...,b
i
ki+L|b

−i
ki+1,π)

=
P(b−i

ki+1|bk,ak)
P(b−i

ki+1|biki ,a
i
ki
)
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Approach - Experience-Based Value Function
Estimation

Using Theorem 1 we can rewrite Multiple Importance Sampling
Estimator

Q̂π
MIS(bk, ak) ≜

∑M
m=1

∑nm

l=1

P(b−l,m
km+1|bk,ak)G̃l,m∑M

j=1 nj ·P(b−l,m
km+1|b

j
kj
,ajkj

)
.
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Approach - Experience-Based Value Function
Estimation

Given belief bk, action ak and dataset D

Demonstrated estimation of action value function without planning

Next we will show our algorithm IR-PFT
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Approach - IR-PFT Algorithm

We name our algorithm Incremental Reuse Particle Filter Tree (IR-PFT).
It is based on the PFT algorithm and incorporates trajectories from
previous planning sessions for fast estimation of Q(bk, ak).
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Approach - IR-PFT Algorithm

Two issues that must be addressed before reusing previous trajectories

Horizon of previous trajectories is shorter than current Horizon

Previous trajectories were sampled from different distributions
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Approach - IR-PFT Algorithm
Align the horizon using Postorder traversal before reusing previous
trajectories, as they have a shorter horizon
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Incremental Multiple Importance Sampling Update

Lemma 2
Given an MCTS tree T with horizon d, number of simulations m and N
nodes, extending its horizon by ∆d will require adding at most m ·∆d
nodes.
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Horizon Extension In MCTS

Theorem 2

Given a MCTS tree T with horizon d, number of simulations m and N
nodes, extending its horizon by ∆d will require adding at most m ·∆d
nodes.

Proof.
After m simulations, the MCTS tree T contains at most m leaves and
we need to extend each leaf by ∆d

Approach 52 / 70



Approach - IR-PFT Algorithm

To account for different distributions of trajectories, we use the same
update as in the previous section

Q̂MIS(bk, ak) ≜
∑M

m=1

∑nm

l=1

P(b−l,m
km+1|bk,ak)G̃l,m∑M

j=1 nj ·P(b−l,m
km+1|b

j
kj
,ajkj

)
.

The tree policy varies between different simulations, and the
trajectory distribution is non-stationary. Consequently, the update
of Q̂MIS(bk, ak) operates in a heuristic manner and its proof yet to
be established.

Regular calculation of Q̂MIS(bk, ak) will take O(M 2 · navg) time
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Incremental Multiple Importance Sampling Update

Lemma 3
Given a batch of L samples from identical distribution m′,

ÊMIS
p [f(x)] =

∑M
m=1

∑nm

i=1
p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m) can be efficiently

updated with O(M · navg +M · L) time and O(M · navg) memory
complexity.
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Incremental Multiple Importance Sampling Update

We look at
∑nm

i=1
p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m)

In case m ̸= m′

▶
∑M

j=1 nj · qj(xi,m)←
∑M

j=1 nj · qj(xi,m) + L · qm′(xi,m)

Time complexity complexity O(M · navg)

Space complexity complexity O(M · navg)
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Incremental Multiple Importance Sampling Update

We look at
∑nm

i=1
p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m)

In case m ≜ m′

▶
∑M

j=1 nj · qj(xi,m)←
∑M

j=1 nj · qj(xi,m) + L · qm′(xi,m)

▶ Calculate
p(xi,m)∑M

j=1 nj ·qj(xi,m)
f(xi,m)

Time complexity complexity O(M · L)
Space complexity complexity O(M · L)
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Approach - IR-PFT Algorithm

Determining reuse candidate b− for belief b and action a

Large visitation count - N(b−) > Nth

b− = argminb−{fD(b−, b, a)} where fD is a function that measures
how close is b− to propagated beliefs sampled from P(·|b, a)

▶ fD is computed across the entire dataset, needs to be cheap for evaluation.
▶ An example to fD is ||E[b− − b−MLE]||22 where b−MLE is maximul likelihood

propagated belief given belief b and action a
▶ If the probability P(b−|b, a) is low, the estimator will still be consistent
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Approach - IR-PFT Algorithm

Deciding on the balance between reusing previous and opening new
trajectories

Previous trajectories are cheaper to evaluate and we get a speedup
in the processing time

Previous trajectories might be less relevant to current belief b and
action a so we still want to generate new trajectories

As a compromise we aim for the same ratio of reused and non-reused
propagated beliefs
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Approach - IR-PFT Algorithm

Algorithm summary in case reuse possible for b, a

b− = argminb−{fD(b−, b, a)}
FillHorizon(b−)

N(b)← N(b) +N(b−)

N(ba)← N(ba) +N(b−)

Q(ba)← IncrementalMISUpdate()

C(ba)← C(b, a) ∪ {b−}
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Evaluation

We assess IR-PFT by comparing it to the PFT algorithm (Sunberg18).
Our evaluation focuses on two main aspects

Runtime

Accumulated reward

with statistics measured for each. Each algorithm was evaluated using
different quantities of particles.
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Evaluation
All experiments were conducted using the standard 2D Light Dark
benchmark, wherein the agent is trying to reach goal while minimizing
location uncertainty.

Figure: Illustration of light dark problem
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Evaluation

Parameters

d = 20

1000 iterations per planning session

The reward is a linear combination of expected state reward and
differential entropy

100 random scenarios for each particle number
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Evaluation - Runtime
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Evaluation - Speedup
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Evaluation - Accumulated Reward
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Conclusions

Theoretical justification for action value function estimation from
data without planning

We developed a novel MCTS-based algorithm that incorporates
information reuse

We presented empirical study that shows runtime performance gain
without compramising on the accumulated reward

Several future research directions
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Questions?
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