Simplifying Complex Observation Models in Continuous POMDP Planning with Probabilistic Guarantees and Practice

Idan Lev-Yehudi Moran Barenboim Vadim Indelman

Introduction

- Planning under uncertainty can be formalized as a Partially Observable Markov Decision Process (POMDP)

[^0]
Introduction

- Planning under uncertainty can be formalized as a Partially Observable Markov Decision Process (POMDP)
- Optimally solving POMDPs is computationally expensive and feasible only for small tasks

[^1]
Introduction

- Planning under uncertainty can be formalized as a Partially Observable Markov Decision Process (POMDP)
- Optimally solving POMDPs is computationally expensive and feasible only for small tasks
- Visual observations are complex to model in planning ${ }^{1}$

[^2]
Introduction

- Planning under uncertainty can be formalized as a Partially Observable Markov Decision Process (POMDP)
- Optimally solving POMDPs is computationally expensive and feasible only for small tasks
- Visual observations are complex to model in planning ${ }^{1}$
- Learned observation models are impractical for solving the POMDP in real-time

[^3]
Contribution

- We explore planning with a simpler observation model while attaining formal guarantees of the solution quality

Contribution

- We explore planning with a simpler observation model while attaining formal guarantees of the solution quality
- Potential of substantial computational improvement for complex models

Contribution

- We explore planning with a simpler observation model while attaining formal guarantees of the solution quality
- Potential of substantial computational improvement for complex models
- Our main contributions:
- Bound the theoretical loss with observation model discrepancy
- Probabilistic bound for the empirical simplified performance
- Practical computation of the bounds in SOTA planners

Continuous POMDP Solvers

- POMCPOW is a SOTA continuous POMDP solver ${ }^{2}$

```
```

Algorithm 2 POMCPOW

```
```

Algorithm 2 POMCPOW
procedure $\operatorname{SimULATE}(s, h, d)$
procedure $\operatorname{SimULATE}(s, h, d)$
if $d=0$ then
if $d=0$ then
return 0
return 0
$a \leftarrow$ ACtionPROGWIDEN (h)
$a \leftarrow$ ACtionPROGWIDEN (h)
$s^{\prime}, o, r \leftarrow G(s, a)$
$s^{\prime}, o, r \leftarrow G(s, a)$
if $|C(h a)| \leq k_{o} N(h a)^{\alpha_{o}}$ then
if $|C(h a)| \leq k_{o} N(h a)^{\alpha_{o}}$ then
$M(h a o) \leftarrow M(h a o)+1$
$M(h a o) \leftarrow M(h a o)+1$
else
else
$o \leftarrow$ select $o \in C(h a)$ w.p. $\frac{M(h a o)}{\sum_{o} M(h a o)}$
$o \leftarrow$ select $o \in C(h a)$ w.p. $\frac{M(h a o)}{\sum_{o} M(h a o)}$
append s^{\prime} to B (hao)
append s^{\prime} to B (hao)
append $\mathcal{Z}\left(o \mid s, a, s^{\prime}\right)$ to $W(h a o)$
append $\mathcal{Z}\left(o \mid s, a, s^{\prime}\right)$ to $W(h a o)$
if $o \notin C(h a)$ then \triangleright new node
if $o \notin C(h a)$ then \triangleright new node
$C(h a) \leftarrow C(h a) \cup\{o\}$
$C(h a) \leftarrow C(h a) \cup\{o\}$
total $\leftarrow r+\gamma \operatorname{RoLLOUT}\left(s^{\prime}\right.$, hao,$\left.d-1\right)$
total $\leftarrow r+\gamma \operatorname{RoLLOUT}\left(s^{\prime}\right.$, hao,$\left.d-1\right)$
else
else
$s^{\prime} \leftarrow$ select $B(h a o)[i]$ w.p. $\frac{W(h a o)[i]}{\sum_{j=1}^{m} W(h a o)[j]}$
$s^{\prime} \leftarrow$ select $B(h a o)[i]$ w.p. $\frac{W(h a o)[i]}{\sum_{j=1}^{m} W(h a o)[j]}$
$r \leftarrow R\left(s, a, s^{\prime}\right)$
$r \leftarrow R\left(s, a, s^{\prime}\right)$
total $\leftarrow r+\gamma \operatorname{Simulate}\left(s^{\prime}, h a o, d-1\right)$
total $\leftarrow r+\gamma \operatorname{Simulate}\left(s^{\prime}, h a o, d-1\right)$
$N(h) \leftarrow N(h)+1$
$N(h) \leftarrow N(h)+1$
$N(h a) \leftarrow N(h a)+1$
$N(h a) \leftarrow N(h a)+1$
$Q(h a) \leftarrow Q(h a)+\frac{\text { total }-Q(h a)}{N(h a)}$
$Q(h a) \leftarrow Q(h a)+\frac{\text { total }-Q(h a)}{N(h a)}$
return total

```
```

 return total
    ```
```

[^4]
Problem Formulation

- A POMDP is the tuple $\left\langle\mathcal{X}, \mathcal{A}, \mathcal{Z}, p_{T}, p_{Z}, r, \gamma, L, b_{0}\right\rangle$
- $\mathcal{X}, \mathcal{A}, \mathcal{Z}$ are state, action and observation spaces
- p_{T}, p_{Z} are probabilistic transition and observation models
- $r_{t}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ is a bounded reward function at time t
- γ is the reward discount for future time steps
- L is the time limit (horizon)
- b_{0} is the starting distribution (belief) of states

Problem Formulation

- A POMDP is the tuple $\left\langle\mathcal{X}, \mathcal{A}, \mathcal{Z}, p_{T}, p_{Z}, r, \gamma, L, b_{0}\right\rangle$
- $\mathcal{X}, \mathcal{A}, \mathcal{Z}$ are state, action and observation spaces
- p_{T}, p_{Z} are probabilistic transition and observation models
- $r_{t}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ is a bounded reward function at time t
- γ is the reward discount for future time steps
- L is the time limit (horizon)
- b_{0} is the starting distribution (belief) of states
- Action-value function:
$Q_{\mathbf{P}}^{p_{Z}}\left(b_{t}, a\right) \triangleq r_{t}\left(b_{t}, a\right)+\mathbb{E}_{z_{t+1: L} \sim p_{Z}}\left[\sum_{i=t+1}^{L} \gamma^{i-t} r_{i}\left(b_{i}, \pi_{i}\right)\right]$

Simplfying the Observation Model

- We replace p_{Z} with a cheaper model q_{Z}
- Simplified Action-value function: $Q_{\mathbf{P}}^{q_{Z}}$

Theoretical Values
 PB-MDP Planner

Original Model

Simplified Model

Simplfying the Observation Model

- We replace p_{Z} with a cheaper model q_{Z}
- Simplified Action-value function: $Q_{\mathbf{P}}^{q_{Z}}$

Theoretical Values
 PB-MDP Planner

Original Model

Simplified Model

- Can we bound $\left|Q_{\mathbf{P}}^{p_{Z}}-\hat{Q}_{\mathbf{M}_{\mathbf{P}}}^{q_{Z}}\right|$?

Approach to Bounds

- Pre-sample states at which we compute " observation model discrepancy"
- During online, we weight these states according to their likelihood
- We prove convergence guarantees for our estimated bounds

State-Dependent Observation TV-Distance

- Obs. TV-Distance: $\Delta_{Z}(x) \triangleq \int_{\mathcal{Z}}\left|p_{Z}(z \mid x)-q_{Z}(z \mid x)\right| \mathrm{d} z$

State-Dependent Observation TV-Distance

- Obs. TV-Distance: $\Delta_{Z}(x) \triangleq \int_{\mathcal{Z}}\left|p_{Z}(z \mid x)-q_{Z}(z \mid x)\right| \mathrm{d} z$
$-m_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max } \cdot \mathbb{E}_{x_{i+1} \sim p_{T}\left(\cdot \mid x_{i}, a\right)}\left[\Delta_{Z}\left(x_{i+1}\right)\right]$

State-Dependent Observation TV-Distance

- Obs. TV-Distance: $\Delta_{Z}(x) \triangleq \int_{\mathcal{Z}}\left|p_{Z}(z \mid x)-q_{Z}(z \mid x)\right| \mathrm{d} z$
$-m_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max } \cdot \mathbb{E}_{x_{i+1} \sim p_{T}\left(\cdot \mid x_{i}, a\right)}\left[\Delta_{Z}\left(x_{i+1}\right)\right]$
$-m_{i}\left(b_{i}, a\right) \triangleq \mathbb{E}_{x_{i} \sim b_{i}}\left[m_{i}\left(x_{i}, a\right)\right]$

State-Dependent Observation TV-Distance

- Obs. TV-Distance: $\Delta_{Z}(x) \triangleq \int_{\mathcal{Z}}\left|p_{Z}(z \mid x)-q_{Z}(z \mid x)\right| \mathrm{d} z$
$-m_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max } \cdot \mathbb{E}_{x_{i+1} \sim p_{T}\left(\cdot \mid x_{i}, a\right)}\left[\Delta_{Z}\left(x_{i+1}\right)\right]$
$-m_{i}\left(b_{i}, a\right) \triangleq \mathbb{E}_{x_{i} \sim b_{i}}\left[m_{i}\left(x_{i}, a\right)\right]$
- It is natural to define cumulative bound function

$$
\begin{aligned}
& \Phi_{\mathbf{P}}\left(b_{t}, a\right) \triangleq m_{t}\left(b_{t}, a\right)+\mathbb{E}_{z_{t+1: L-1} \sim q_{Z}}\left[\sum_{i=t+1}^{L-1} m_{i}\left(b_{i}, \pi_{i}\right)\right] \\
& Q_{\mathbf{P}}^{p_{Z}}\left(b_{t}, a\right) \triangleq r_{t}\left(b_{t}, a\right)+\mathbb{E}_{z_{t+1: L} \sim p_{Z}}\left[\sum_{i=t+1}^{L} \gamma^{i-t} r_{i}\left(b_{i}, \pi_{i}\right)\right]
\end{aligned}
$$

TV-Distance Loss Bounds

Theorem 2
For every belief b_{t}, action a, policy π, observation models p_{Z} and q_{Z}, the following bound holds deterministically:

$$
\left|Q_{\mathbf{P}}^{p_{Z}}\left(b_{t}, a\right)-Q_{\mathbf{P}}^{q_{Z}}\left(b_{t}, a\right)\right| \leq \Phi_{\mathbf{P}}\left(b_{t}, a\right)
$$

TV-Distance Loss Bounds

Theorem 2
For every belief b_{t}, action a, policy π, observation models p_{Z} and q_{Z}, the following bound holds deterministically:

$$
\left|Q_{\mathbf{P}}^{p_{Z}}\left(b_{t}, a\right)-Q_{\mathbf{P}}^{q_{Z}}\left(b_{t}, a\right)\right| \leq \Phi_{\mathbf{P}}\left(b_{t}, a\right)
$$

Theorem 3 (Informal)
For every bounded state-action function (r_{i} / m_{i}), its finite-sample cumulative function ($Q_{\mathrm{M}_{\mathrm{P}}}^{q_{Z}} / \Phi_{\mathrm{M}_{\mathrm{P}}}$) has probabilistic concentration bounds from its theoretical counterpart $\left(Q_{\mathbf{P}}^{q_{Z}} / \Phi_{\mathbf{P}}\right)$ under certain regularity conditions of the POMDP

Empirical Concentration Inequalities

Corollary 3
For arbitrary $\varepsilon, \delta>0$ there exists a number of particles for which

$$
\left|Q_{\mathbf{P}}^{p_{Z}}\left(b_{t}, a\right)-\hat{Q}_{\mathbf{M}_{\mathbf{P}}}^{q_{Z}}\left(\bar{b}_{t}, a\right)\right| \leq \hat{\Phi}_{\mathbf{M}_{\mathbf{P}}}\left(\bar{b}_{t}, a\right)+\varepsilon
$$

with probability of at least $1-\delta$ for any guaranteed planner

- (A) is given by Theorem 2, (B) is given by Theorem 3, (C) is given by any planner with performance guarantees

Practical Computation of Bounds

- Computation of m_{i} is impractical
- Importance Sampling
- Separate calculations to offline/online

$$
\begin{aligned}
& \tilde{m}_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max } \frac{1}{N_{\Delta}} \sum_{i=1}^{N_{\Delta}} \frac{p_{T}\left(x_{n}^{\Delta} \mid x_{i}, a\right)}{Q_{0}\left(x_{n}^{n}\right)} \Delta_{Z}\left(x_{n}^{\Delta}\right) \\
&\left\{x_{n}^{\Delta}\right\}_{n=1}^{N_{\Delta}} \sim Q_{0}(x) \text { Offline }
\end{aligned}
$$

Practical Computation of Bounds

- Computation of m_{i} is impractical
- Importance Sampling
- Separate calculations to offline/online

$$
\begin{array}{r}
\tilde{m}_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max } \frac{1}{N_{\Delta}} \sum_{i=1}^{N_{\Delta}} \frac{p_{T}\left(x_{n}^{\Delta} \mid x_{i}, a\right)}{Q_{0}\left(x_{n}^{\Delta}\right)} \Delta_{Z}\left(x_{n}^{\Delta}\right) \\
\left\{x_{n}^{\Delta}\right\}_{n=1}^{N_{\Delta}} \sim Q_{0}(x)
\end{array}
$$

- Optimizations:
- Considering state-samples based on a KD-Tree and a truncation distance
- Computing a Monte Carlo estimate of \tilde{m}_{i}.

Practical Computation of Bounds

- Computation of m_{i} is impractical
- Importance Sampling
- Separate calculations to offline/online

$$
\begin{array}{r}
\tilde{m}_{i}\left(x_{i}, a\right) \triangleq V_{i+1}^{\max \frac{1}{N_{\Delta}}} \sum_{i=1}^{N_{\Delta}} \frac{p_{T}^{\Delta}\left(x_{n}^{\Delta} \mid x_{i}, a\right)}{Q_{0}\left(x_{n}^{n}\right)} \Delta_{Z}\left(x_{n}^{\Delta}\right) \\
\left\{x_{n}^{\Delta}\right\}_{n=1}^{N_{\Delta}} \sim Q_{0}(x)
\end{array}
$$

- Optimizations:
- Considering state-samples based on a KD-Tree and a truncation distance
- Computing a Monte Carlo estimate of \tilde{m}_{i}.
- In the paper we discuss embedding \tilde{m}_{i} into POMDP solvers

Results in Simulation

- We show in our simulative setup that even with bounds calculation we achieve a significant speedup
© Deglurkar, Sampada et al. "Compositional Learning-based Planning for Vision POMDPs". In: Learning for Dynamics and Control Conference. PMLR. 2023, pp. 469-482.
(Sunberg, Zachary and Mykel Kochenderfer. "Online algorithms for POMDPs with continuous state, action, and observation spaces". In: Proceedings of the International Conference on Automated Planning and Scheduling. Vol. 28. 1. 2018.
Wang, Yunbo et al. "DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs". In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. Ed. by Christian Bessiere. Main track. International Joint Conferences on Artificial Intelligence Organization, July 2020, pp. 4190-4198. DOI: 10.24963/ijcai.2020/579. URL:
https://doi.org/10.24963/ijcai.2020/579.

[^0]: ${ }^{1}$ Wang et al., "DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs"; Deglurkar et al., "Compositional Learning-based Planning for Vision POMDPs".

[^1]: ${ }^{1}$ Wang et al., "DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs"; Deglurkar et al., "Compositional Learning-based Planning for Vision POMDPs".

[^2]: ${ }^{1}$ Wang et al., "DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs"; Deglurkar et al., "Compositional Learning-based Planning for Vision POMDPs".

[^3]: ${ }^{1}$ Wang et al., "DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs"; Deglurkar et al., "Compositional Learning-based Planning for Vision POMDPs".

[^4]: ${ }^{2}$ Sunberg and Kochenderfer, "Online algorithms for POMDPs with continuous state, action, and observation spaces"

