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Introduction

» Planning under uncertainty can be formalized as a
Partially Observable Markov Decision Process (POMDP)

'Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning
under Continuous POMDPs"; Deglurkar et al., “Compositional Learning-based

Planning for Vision POMDPs".
2/13



Introduction

» Planning under uncertainty can be formalized as a
Partially Observable Markov Decision Process (POMDP)

» Optimally solving POMDPs is computationally expensive and
feasible only for small tasks

'Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning
under Continuous POMDPs"; Deglurkar et al., “Compositional Learning-based

Planning for Vision POMDPs".
2/13



Introduction

» Planning under uncertainty can be formalized as a
Partially Observable Markov Decision Process (POMDP)

» Optimally solving POMDPs is computationally expensive and
feasible only for small tasks

» Visual observations are complex to model in planning?

'Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning
under Continuous POMDPs"; Deglurkar et al., “Compositional Learning-based

Planning for Vision POMDPs".
2/13



Introduction

» Planning under uncertainty can be formalized as a
Partially Observable Markov Decision Process (POMDP)

» Optimally solving POMDPs is computationally expensive and
feasible only for small tasks

» Visual observations are complex to model in planning?

» Learned observation models are impractical for solving the
POMDP in real-time

'Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning
under Continuous POMDPs"; Deglurkar et al., “Compositional Learning-based

Planning for Vision POMDPs".
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Contribution

> We explore planning with a simpler observation model while
attaining formal guarantees of the solution quality
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Contribution

> We explore planning with a simpler observation model while
attaining formal guarantees of the solution quality

» Potential of substantial computational improvement for
complex models

» QOur main contributions:

» Bound the theoretical loss with observation model discrepancy
» Probabilistic bound for the empirical simplified performance
» Practical computation of the bounds in SOTA planners
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Continuous POMDP Solvers

Algorithm 2 POMCPOW

1: procedure SIMULATE(s, h, d)

2 if d = 0 then

3 return

4:  a <+ ACTIONPROGWIDEN(h)
5:

6 if [C(ha)] < k,N(ha)® then
7 M (hao) - M (hao) + 1
8
9

else
0 « select o € C(ha) w.p. %

10: append s’ to B(hao)

» POMCPOW is a SOTA 11:  [append Z(0|s,a, s) to W (hao)|
. 12: if o ¢ C(ha) then > new node
continuous POMDP solver 2 3 g(h(g)ic(huw{o}

14: total < r + yROLLOUT(S, hao,d — 1)
15: else W (hao)
16: s' « select B(hao)[i] w.p. —U—Z]m:1 W (ool
17: r+ R(s,a,s")
18: total < r + ySIMULATE(s, hao,d — 1)

190 N(h)«< N(h)+1
20: N(ha) < N(ha)+1

210 Q(ha) « Q(ha) + 7‘0“;3;,513’1”

22: return total

2Sunberg and Kochenderfer, “Online algorithms for POMDPs with

continuous state, action, and observation spaces”
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Problem Formulation

» A POMDP is the tuple (X, A, Z, pr,pz, 7,7, L, bo)

> X A, Z are state, action and observation spaces

» pr,pz are probabilistic transition and observation models
» r.: X x A— Ris a bounded reward function at time ¢
» ~ is the reward discount for future time steps

» L is the time limit (horizon)

> b is the starting distribution (belief) of states
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» A POMDP is the tuple (X, A, Z, pr,pz, 7,7, L, bo)

> X A, Z are state, action and observation spaces

» pr,pz are probabilistic transition and observation models
» r.: X x A— Ris a bounded reward function at time ¢
» ~ is the reward discount for future time steps

» L is the time limit (horizon)

> b is the starting distribution (belief) of states

» Action-value function:
L i
QY (b, a) = (b, a) + By, 1, wp, [P i Y ri(bi, )]
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Simplfying the Observation Model

> We replace pz with a cheaper model ¢z
> Simplified Action-value function: Q¥

Theoretical ' pp MDP  Planner
— — —
Original (. for2y o
Mp QM
Model \ _11 ) U _,} \ _l\i}
Simplified (7, (oo oA
QY7 QK/ZIP A qu
BN \ _1:} \ _,} UM ]
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Simplfying the Observation Model

> We replace pz with a cheaper model ¢z
> Simplified Action-value function: Q¥

Theoretical
Values PB-MDP Planner
Original -
rigina Ay
Mode (o N } ’QMP} ’\Q&P}
Simplified 7, (’- ("’
1mpliiie qz NGz
odel Q } \Q _1\2’} \Q E’[j}

» Can we bound |QF — A;]VZIP] ?
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Approach to Bounds

» Pre-sample states at which
we compute " observation
model discrepancy”

» During online, we weight
these states according to
their likelihood

» We prove convergence
guarantees for our estimated
bounds
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State-Dependent Observation TV-Distance

> Obs. TV-Distance: Az(z) £ [L|pz(z | 2) — qz(z | z)|d=z
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State-Dependent Observation TV-Distance

> Obs. TV-Distance: Az(z) £ [L|pz(z | 2) — qz(z | z)|d=z
> mi(zi,a) 2VITE, e (B2 (@)

> mi(bi,a) £ E, , [mi(zi,a)]

» It is natural to define cumulative bound function

L-1

Op(be,a) £ me(b,a) + B,y g, [ Y malbi,m))
i=t+1

Qzl)DZ(bha) £ rt(bta ) Zt+1 L~Dz Z o b177rz

i=t+1
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TV-Distance Loss Bounds

Theorem 2
For every belief by, action a, policy 7, observation models py; and
qz, the following bound holds deterministically:

|Q]1;Z(bt>a) - Q%’Z(btaa)’ < @P(bha)
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TV-Distance Loss Bounds

Theorem 2
For every belief by, action a, policy 7, observation models py; and
qz, the following bound holds deterministically:

|Q]1;Z(bt>a) - Q%’Z(btaa)’ < q)P(bt7a>

Theorem 3 (Informal)
For every bounded state-action function (r;/m;), its finite-sample
cumulative function (Qy7.,/®my ) has probabilistic

concentration bounds from its theoretical counterpart (Q¥ /®p)
under certain regularity conditions of the POMDP
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Empirical Concentration Inequalities

Corollary 3
For arbitrary £,0 > O there exists a number of particles for which

’Q%Z (bt7 a) - A(IJ\/Z[P (Etv a’)| < (i)MP (Bta CL) +e€
with probability of at least 1 — & for any guaranteed planner

Original =~ Theoretical pp MpP

Value Values Planner

Q"Z ,—(B)—/ ,—(C)—/ QMP )

A
}_( ‘I)P )—(B)—{‘I’MP ,—(C)—{<I>MP )

» (A) is given by Theorem 2, (B) is given by Theorem 3, (C) is

given by any planner with performance guarantees
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Practical Computation of Bounds

» Computation of m; is impractical

» Importance Sampling
> Separate calculations to offline/online

Online
~ N 1 ~~Na pr(ad|zia) A
mi($iaa) - iil%XN_A Zz’:Al TQO(mﬁ) AZ%ﬂfn)

{z2}2) ~ Q(x)+— Offline.
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Practical Computation of Bounds

» Computation of m; is impractical

» Importance Sampling
> Separate calculations to offline/online

Online
~ N 1 ~~Na pr(ad|zia) A
mi(zi, a) = it Na 2 i1 TQO(xﬁ) AZ%%)

{z2}i2 ~ Qo)+ Offline.

» Optimizations:
» Considering state-samples based on a KD-Tree and a
truncation distance
» Computing a Monte Carlo estimate of m;.

» In the paper we discuss embedding m,; into POMDP solvers
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Results in Simulation
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> We show in our simulative setup that even with bounds
calculation we achieve a significant speedup
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