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Introduction

I Planning under uncertainty can be formalized as a
Partially Observable Markov Decision Process (POMDP)

I Optimally solving POMDPs is computationally expensive and
feasible only for small tasks

I Visual observations are complex to model in planning1

I Learned observation models are impractical for solving the
POMDP in real-time

1Wang et al., “DualSMC: Tunneling Differentiable Filtering and Planning
under Continuous POMDPs”; Deglurkar et al., “Compositional Learning-based
Planning for Vision POMDPs”.
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Contribution

I We explore planning with a simpler observation model while
attaining formal guarantees of the solution quality

I Potential of substantial computational improvement for
complex models

I Our main contributions:

I Bound the theoretical loss with observation model discrepancy
I Probabilistic bound for the empirical simplified performance
I Practical computation of the bounds in SOTA planners
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Continuous POMDP Solvers

I POMCPOW is a SOTA
continuous POMDP solver 2

2Sunberg and Kochenderfer, “Online algorithms for POMDPs with
continuous state, action, and observation spaces”
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Problem Formulation

I A POMDP is the tuple 〈X ,A,Z, pT , pZ , r, γ, L, b0〉
I X ,A,Z are state, action and observation spaces
I pT , pZ are probabilistic transition and observation models
I rt : X ×A → R is a bounded reward function at time t
I γ is the reward discount for future time steps
I L is the time limit (horizon)
I b0 is the starting distribution (belief) of states

I Action-value function:
QpZ

P (bt, a) , rt(bt, a) + Ezt+1:L∼pZ [
∑L

i=t+1 γ
i−tri(bi, πi)]

5 / 13



Problem Formulation

I A POMDP is the tuple 〈X ,A,Z, pT , pZ , r, γ, L, b0〉
I X ,A,Z are state, action and observation spaces
I pT , pZ are probabilistic transition and observation models
I rt : X ×A → R is a bounded reward function at time t
I γ is the reward discount for future time steps
I L is the time limit (horizon)
I b0 is the starting distribution (belief) of states

I Action-value function:
QpZ

P (bt, a) , rt(bt, a) + Ezt+1:L∼pZ [
∑L

i=t+1 γ
i−tri(bi, πi)]

5 / 13



Simplfying the Observation Model

I We replace pZ with a cheaper model qZ
I Simplified Action-value function: QqZ

P

PlannerPB-MDPTheoretical
Values

Original
Model

Simplified
Model

I Can we bound |QpZ
P − Q̂

qZ
MP
| ?
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Approach to Bounds

I Pre-sample states at which
we compute ”observation
model discrepancy”

I During online, we weight
these states according to
their likelihood

I We prove convergence
guarantees for our estimated
bounds
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State-Dependent Observation TV-Distance

I Obs. TV-Distance: ∆Z(x) ,
∫
Z |pZ(z | x)− qZ(z | x)| dz

I mi(xi, a) , V max
i+1 ·Exi+1∼pT (·|xi,a)

[∆Z(xi+1)]

I mi(bi, a) , Exi∼bi [mi(xi, a)]

I It is natural to define cumulative bound function

ΦP(bt, a) , mt(bt, a) + Ezt+1:L−1∼qZ [
L−1∑
i=t+1

mi(bi, πi)]

QpZ
P (bt, a) , rt(bt, a) + Ezt+1:L∼pZ [

L∑
i=t+1

γi−tri(bi, πi)]
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TV-Distance Loss Bounds

Theorem 2
For every belief bt, action a, policy π, observation models pZ and
qZ , the following bound holds deterministically:

|QpZ
P (bt, a)−QqZ

P (bt, a)| ≤ ΦP(bt, a)

Theorem 3 (Informal)

For every bounded state-action function (ri/mi), its finite-sample
cumulative function (QqZ

MP
/ΦMP

) has probabilistic

concentration bounds from its theoretical counterpart (QqZ
P /ΦP)

under certain regularity conditions of the POMDP
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Empirical Concentration Inequalities

Corollary 3

For arbitrary ε, δ > 0 there exists a number of particles for which

|QpZ
P (bt, a)− Q̂qZ

MP
(b̄t, a)| ≤ Φ̂MP

(b̄t, a) + ε

with probability of at least 1− δ for any guaranteed planner

(A)

(B)

(C)(B)

(C)

PlannerPB-MDPTheoretical
Values

Original
Value

I (A) is given by Theorem 2, (B) is given by Theorem 3, (C) is
given by any planner with performance guarantees
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Practical Computation of Bounds

I Computation of mi is impractical
I Importance Sampling
I Separate calculations to offline/online

Online

Offline

I Optimizations:

I Considering state-samples based on a KD-Tree and a
truncation distance

I Computing a Monte Carlo estimate of m̃i.

I In the paper we discuss embedding m̃i into POMDP solvers
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Results in Simulation

I We show in our simulative setup that even with bounds
calculation we achieve a significant speedup
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