Multi-robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach

Tanmoy Kundu, Moshe Rafaeli, Vadim Indelman.

Multi-Robot Belief Space Planning (MRBSP)

 Handling uncertainty in partially observable environments is fundamental in multi-robot decision making

- Approach: Belief Space Planning (BSP)
 - Computing a globally optimal solution in BSP is computationally intractable

- Previous research
 - Decentralized POMDP, BSP in cooperative and non-cooperative setting

Multi-Robot Belief Space Planning (MRBSP)

- Consider a group of N robots
- Cooperative setting, i.e. same task (reward function) for all robots
- Decentralized POMDP tuple from the perspective of robot r:

$$\langle \mathcal{X}, \mathcal{Z}, \mathcal{A}, T, O, \rho, b_k \rangle$$

Joint state, observation, and action spaces

Joint transition and observation models

Belief-dependent reward function of robot r

Belief of robot r at planning time instant k

• Objective function

$$J^{r}(b_{k}, a_{k+1}) = \mathbb{E}_{z_{k+1:k+L}} \left[\sum_{l=0}^{L-1} \rho(b_{k+l}, a_{k+l}) + \rho(b_{k+L}) \right]$$

Multi-Robot Belief Space Planning (MRBSP)

- A common assumption: Beliefs of different robots are consistent at planning time
 - Data of each robot is available to all other robots

Requires prohibitively high number of communication capabilities

Our work relaxes previous assumption

- In reality
 - Frequent communications among the robots may not be possible
 - Sparse communications inconsistent beliefs

- > Our work: Multi-robot coordination with inconsistent beliefs of the robots
 - Multi-robot cooperative BSP with inconsistent beliefs

Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

• Histories & beliefs of the robots may <u>differ</u> due to limited data-sharing capabilities

$$b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r) \qquad b_k^{r'} = \mathbb{P}(x_k \mid \mathcal{H}_k^{r'}) \qquad \mathcal{H}_k^r \neq \mathcal{H}_k^{r'}$$

• Decentralized POMDP tuple from the perspective of robot r:

$$\langle \mathcal{X}, \mathcal{Z}, \mathcal{A}, T, O, \rho, \frac{b_k^r}{k} \rangle$$

• Objective function:

$$J(\mathbf{b}_{k}^{r}, a_{k+1}) = \mathbb{E}_{z_{k+1:k+L}} \left[\sum_{l=0}^{L-1} \rho(\mathbf{b}_{k+l}^{r}, a_{k+l}) + \rho(\mathbf{b}_{k+L}^{r})\right]$$

Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

• Histories & beliefs of the robots may <u>differ</u> due to limited data-sharing capabilities

$$b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r) \qquad b_k^{r'} = \mathbb{P}(x_k \mid \mathcal{H}_k^{r'}) \qquad \mathcal{H}_k^r \neq \mathcal{H}_k^{r'}$$

• Can lead to a lack of coordination and unsafe and sub-optimal actions

Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

• Histories & beliefs of the robots may <u>differ</u> due to limited data-sharing capabilities

$$b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r) \qquad b_k^{r'} = \mathbb{P}(x_k \mid \mathcal{H}_k^{r'}) \qquad \mathcal{H}_k^r \neq \mathcal{H}_k^r$$

Can lead to a lack of coordination and unsafe and sub-optimal actions

Action Consistency

[Indelman RA-L'16][Elimelech and Indelman, IJRR'22] [Kitanov and Indelman, IJRR'24]

 If two decision-making problems have the same action preference, this implies both have the same best action regardless of the actual objective/value function values

- Key idea: to guarantee consistent multi-robot decision-making, each robot
 - reasons about its own and other robots' action preferences while accounting for the missing information between the robots
 - checks if for all these realizations, we get the same best joint action

Inconsistent and Common Histories

- From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:
 - 1. Its local information
 - 2. What it perceives about the reasoning of the other robot r'
 - 3. What it perceives about the reasoning of itself perceived by the other robot r'

• From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:

1. Its local information

select $\bar{a} \in \mathcal{A}$ s.t. $J(b_k^r, \bar{a}) > J(b_k^r, \bar{a}') \quad \forall \bar{a}' \in \mathcal{A}$

 $b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r)$

- From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:
 - 1. Its local information

2. What it perceives about the reasoning of the other robot r'

For each possible observation of r', $\tilde{z}^{r'} \in \Delta \mathcal{Z}_{k}^{r,r'}$, robot r constructs a plausible belief of robot r': $b_{k}^{r'|r}(\tilde{z}^{r'}) \triangleq \mathbb{P}(x_{k} \mid {}^{c}\mathcal{H}_{k}^{r,r'}, \tilde{z}^{r'})$ evaluates $J(b_{k}^{r'|r}(\tilde{z}^{r'}), a) \quad \forall a \in \mathcal{A}$ Checks if \bar{a} is selected

- From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:
 - 1. Its local information
 - 2. What it perceives about the reasoning of the other robot r'
 - 3. What it perceives about the reasoning of itself perceived by the other robot r'

For each possible observation of itself, $\tilde{z}^r \in \Delta \mathcal{Z}_k^{r',r}$, robot r

constructs a plausible belief of itself perceived by robot r': $b_k^{r|r'|r}(\tilde{z}^r) \triangleq \mathbb{P}(x_k \mid {}^{c}\mathcal{H}_k^{r',r}, \tilde{z}^r)$ 1 /1 A

evaluates
$$J(b_k^{r|r|r}(\tilde{z}^r),a) \quad \forall a \in \mathcal{A}$$

Checks if \bar{a} is selected

- From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:
 - 1. Its local information
 - 2. What it perceives about the reasoning of the other robot r'
 - 3. What it perceives about the reasoning of itself perceived by the other robot r'

For each possible observation of r', $ilde{z}^r \in \Delta \mathcal{Z}_k^{r',r}$, robot r

constructs a plausible belief of robot r': $b_k^{r|r'|r}(\tilde{z}^r) \triangleq \mathbb{P}(x_k \mid {}^c\mathcal{H}_k^{r',r}, \tilde{z}^r)$ evaluates $J(b_k^{r|r'|r}(\tilde{z}^r), a) \quad \forall a \in \mathcal{A}$ Checks if \bar{a} is selected

- From the perspective of robot r, MR-AC holds if the selected joint actions are the same based on:
 - 1. Its local information
 - 2. What it perceives about the reasoning of the other robot r'
 - 3. What it perceives about the reasoning of itself perceived by the other robot r'

- Same best action in all cases?
 - Yes: MR-AC is guaranteed to be satisfied
 - i.e. robots are guaranteed to choose the same joint action
 - No: <u>self-trigger</u> communication, share some data, repeat Steps 1-3

J(.)

Simulation Results

• Search and Rescue operation in a disaster-hit area

- Probability distribution over the joint state comprising cells $x \triangleq \{x_i\}$
- For simplicity assume cells are stat. independent and robots' poses are known:

$$b_k = p(x \mid \mathcal{H}_k, \xi_{0:k}^r, \xi_{0:k}^{r'}) = \prod_i p(x_i \mid \mathcal{H}_k, \xi_{0:k}^r, \xi_{0:k}^{r'}) \triangleq \prod_i b_k[x_i]$$
• Reward function: entropy (reduce uncertainty) $\rho(b_k) \triangleq -H[x] = \sum_i \sum_{j \in \{0,1\}} b_k[x_i = j] \log b_k[x_i = j]$

Simulation Results

- EnforceAC: our approach ٠
- Baseline I: always communicate all data ٠
- Baseline II: never communicate ٠

c)
$$comm-restr = 30$$

NOT-AC (ACTION INCONSISTENCY), COMMS AND TIME FOR E = 200.

-				
Input	Algorithm	Not-AC	COMM	Time
comm-restr = 0	Baseline-II	181	0	1.3s
Motion prim. $= 4$	Baseline-I	0	400	1.3s
MaxEntropy-Init	ENFORCEAC	0	238	12.4s
comm-restr = 0	Baseline-II	185	0	1.3s
Motion prim. $= 4$	Baseline-I	0	400	1.4s
Entropy-Init	ENFORCEAC	0	268	8.7s
comm-restr = 0	Baseline-II	194	0	3.6s
Motion prim. $= 8$	Baseline-I	0	400	3.5s
MaxEntropy-Init	ENFORCEAC	0	248	36.4s
comm-restr = 0	Baseline-II	188	0	3.6s
Motion prim. $= 8$	Baseline-I	0	400	3.6s
Entropy-Init	ENFORCEAC	0	278	31.1s
comm-restr = 20	Baseline-II	194	0	3.3s
Motion prim. $= 8$	Baseline-I	14	360	4.3s
MaxEntropy-Init	ENFORCEAC	13	224	94.9s
comm-restr = 20	Baseline-II	188	0	3.2s
Motion prim. $= 8$	Baseline-I	14	360	3.6s
Entropy-Init	ENFORCEAC	10	251	31.2s
comm-restr = 30	Baseline-II	188	0	3.4s
Motion prim. $= 8$	Baseline-I	22	340	4.0s
MaxEntropy-Init	ENFORCEAC	20	238	46.9s

Conclusions

- Formulation of a new problem: MRBSP with inconsistent beliefs
- A novel approach to address cooperative MR-BSP with inconsistent beliefs
- A self-triggering mechanism of communication between robots
- Our approach reduces number communications considerably compared to fullcommunication approaches.

Thank

you!

