

Online Robust Planning under Model Uncertainty: A Sample-Based Approach

 Tamir Shazman ¹ Idan Lev-Yehudi ²

 Ron Benchetrit ³ Vadim Indelman ^{4,1}
¹Faculty of Data and Decision Sciences, Technion

²Technion Autonomous Systems Program (TASP)

³Faculty of Computer Science, Technion

⁴Stephen B. Klein Faculty of Aerospace Engineering, Technion

Motivation: The Reality Gap

Online Planning methods (e.g., MCTS, Sparse Sampling) are powerful tools for large-scale decision-making, but they typically assume access to a **perfect generative model**.

- ▶ In real-world scenarios, models are often learned from data, leading to **Approximation Errors**.
- ▶ Planning with a mismatched model ($P^o \neq P_{true}$) can lead to **unsafe decisions or catastrophic failures**.

Robust MDPs (RMDPs) provide a framework to hedge against this uncertainty by optimizing for the worst-case scenario. However, existing solvers are notoriously **computationally intensive** and unsuitable for real-time online planning.

Our Contribution: Robust Sparse Sampling (RSS)

We introduce **RSS**, the first online planning algorithm for RMDPs with **finite-sample theoretical guarantees**.

- ▶ **Robust:** Explicitly hedges against model uncertainty within a budget ρ .
- ▶ **Efficient:** Leverages Sample Average Approximation (SAA) to make the robust Bellman backup tractable.
- ▶ **Scalable:** Computational complexity is **independent of the state-space size**, enabling planning in continuous domains.

Robust MDP Framework

We model uncertainty using an ambiguity set \mathcal{P} centered around the estimated model P^o with radius ρ :

$$\mathcal{P}_{s,a} = \{P_{s,a} \in \Delta(\mathcal{S}) : D_{TV}(P_{s,a}, P^o) \leq \rho\}$$

The objective is to find the optimal robust value function $V^*(s)$:

$$V^*(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \min_{P' \in \mathcal{P}_{s,a}} \mathbb{E}_{s' \sim P'} [V^*(s')] \right]$$

The Dual Formulation: Directly minimizing over the uncertainty set is intractable. We utilize the dual form (assuming a fail-state exists), which transforms the problem into a scalar optimization over η :

$$Q^*(s, a) = r(s, a) - \gamma \min_{\eta \in [0, \frac{2}{\rho(1-\gamma)}]} \frac{(\mathbb{E}_{s' \sim P^o} [(\eta - V^*(s'))_+] - \eta(1 - \rho))}{F_{s,a}^{\rho}(\eta)}$$

Robust Value Estimation via SAA

Since the expectation in $F_{s,a}^{\rho}(\eta)$ is intractable, we approximate it using **Sample Average Approximation (SAA)**. We define the empirical dual function \hat{F} using C samples drawn from P^o :

$$\hat{F}_{s,a}^{\rho}(\eta) = \frac{1}{C} \sum_{i=1}^C (\eta - V^*(s'_i))_+ - \eta(1 - \rho)$$

This function is **piecewise-linear and convex**, making the minimization problem efficiently solvable.

Method: Robust Sparse Sampling (RSS)

Since the true robust value function inside $\hat{F}_{s,a}^{\rho}(\eta)$ is unknown, RSS substitutes it with a recursive estimator at depth d . We define the estimator $\tilde{F}_{s,a}^{\rho,d}(\eta)$ to obtain the following update rule:

$$\hat{Q}_d(s, a) = r(s, a) - \gamma \min_{\eta \in [0, \frac{2}{\rho(1-\gamma)}]} \frac{\left[\frac{1}{C} \sum_{i=1}^C (\eta - \hat{V}_{d-1}(s'_i))_+ - \eta(1 - \rho) \right]}{\tilde{F}_{s,a}^{\rho,d}(\eta)}$$

This results in a **piecewise-linear convex optimization** problem that can be solved efficiently in $O(C \log C)$.

Algorithm Robust Sparse Sampling (RSS)

```

1: Input: State  $s$ , Depth  $d$ 
2: if  $d = 0$  then
3:   return 0
4: end if
5: for all  $a \in \mathcal{A}$  do
6:   Sample  $C$  next states  $s'_i \sim P^o(\cdot | s, a)$ 
7:   Recursive call:  $\hat{V}_i \leftarrow \text{RSS}(s'_i, d - 1)$ 
8:   Solve SAA minimization using sorted values of  $\hat{V}_i$ 
9:   Update  $\hat{Q}_d(s, a)$ 
10:  end for
11: return  $\max_a \hat{Q}_d(s, a)$ 

```

Theorem 1: Finite-Sample Guarantee

For any state s and accuracy $\epsilon > 0$, RSS returns a policy π such that:

$$|V^\pi(s) - V^*(s)| \leq \epsilon$$

using a planning horizon H and sample width C that are polynomial in $1/\epsilon, 1/\rho$, and independent of $|\mathcal{S}|$.

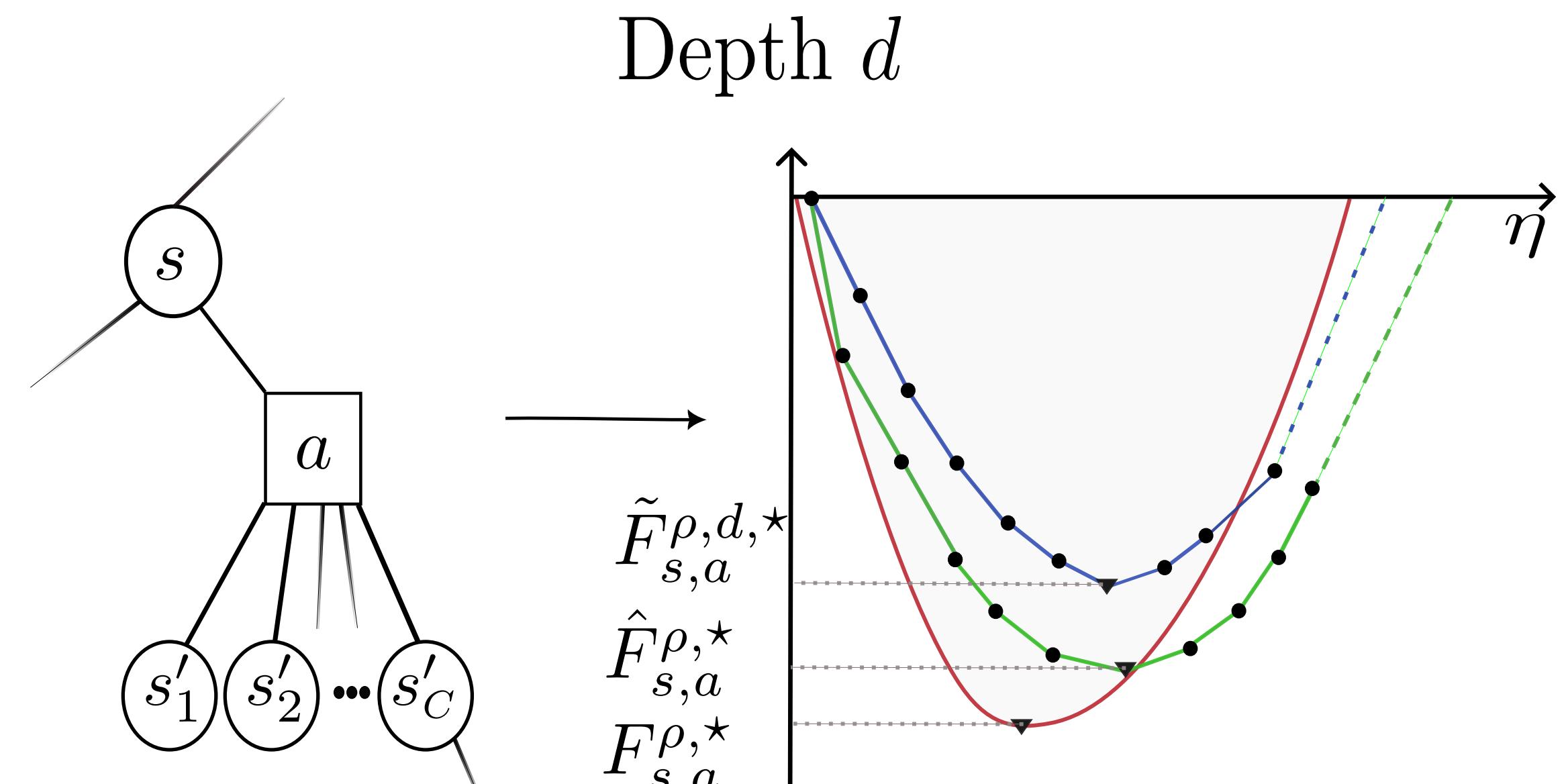


Figure: Proof Sketch: The dual function $F_{s,a}^{\rho}$ is Lipschitz continuous. Consequently, its minimum can be probabilistically bounded by its empirical estimate $\hat{F}_{s,a}^{\rho}$. Using recursion, we demonstrate that the error in the recursive estimator $\tilde{F}_{s,a}^{\rho,d}$ remains bounded.

Experimental Results

We compared RSS against standard Sparse Sampling (SS) in domains with localized model uncertainty.

1. FrozenLake (8x8 Stochastic Grid) Setup: The estimated model P^o is accurate everywhere except near "holes", where it underestimates the transition noise probability by ρ .

Uncertainty Level (ρ)	RSS (Ours)	Standard SS
0.2	0.171	0.123
0.3	0.145	0.109
0.4	0.126	0.098
0.5	0.127	0.080

Table: Average discounted returns over 1000 seeds. RSS significantly outperforms SS as uncertainty grows.

2. CartPole (Robust Control) Setup: A "Hazard Zone" exists with high noise variance σ_{high} . The planning model assumes low noise everywhere.

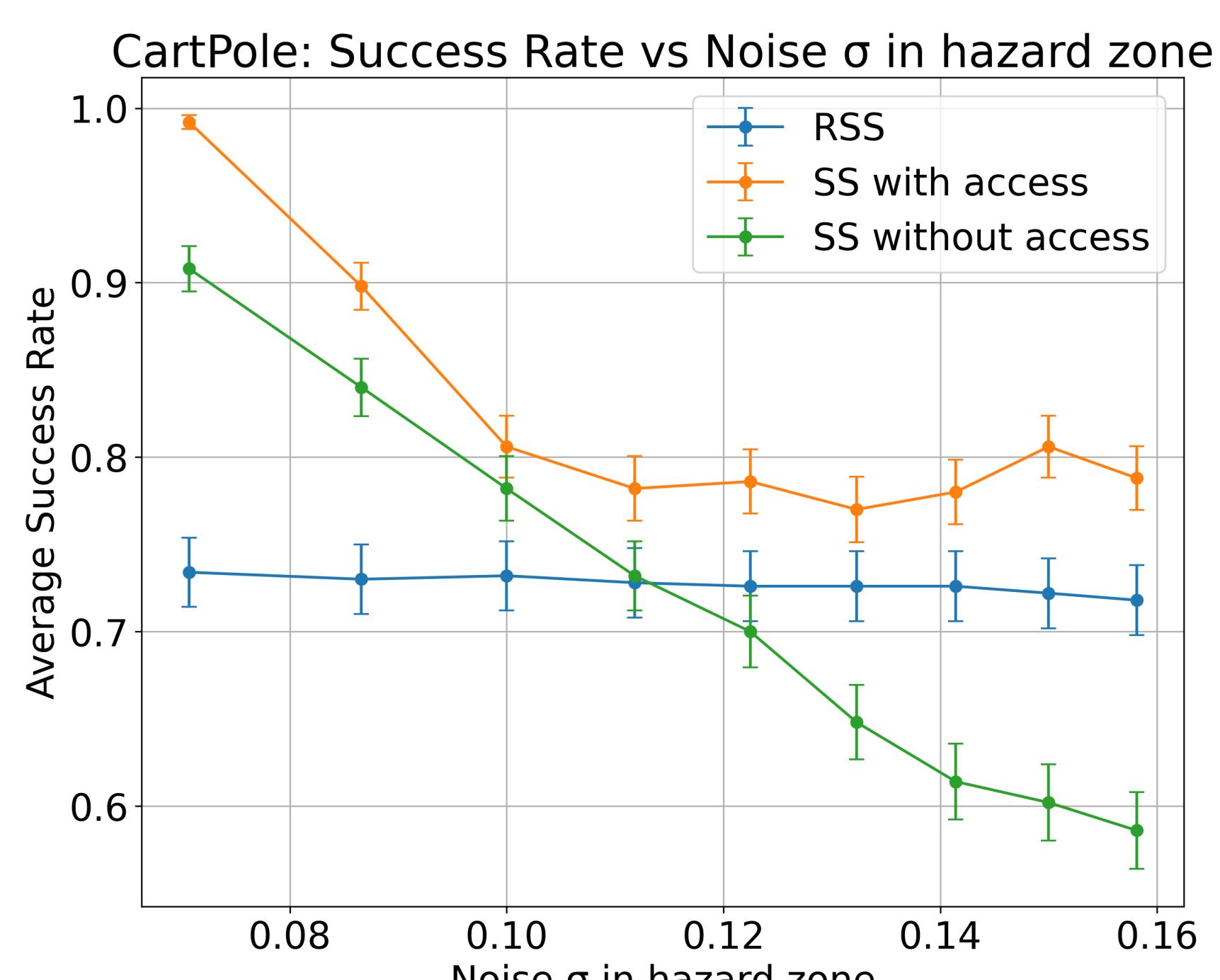


Figure: As the true environment noise increases (x-axis), the performance of standard SS (Red) collapses. RSS (Blue) maintains high performance by anticipating worst-case outcomes.