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Motivation: The Reality Gap
Online Planning methods (e.g., MCTS, Sparse Sampling) are powerful tools
for large-scale decision-making, but they typically assume access to a perfect
generative model.
I In real-world scenarios, models are often learned from data, leading to

Approximation Errors.
I Planning with a mismatched model (P o 6= Ptrue) can lead to unsafe

decisions or catastrophic failures.
Robust MDPs (RMDPs) provide a framework to hedge against this un-
certainty by optimizing for the worst-case scenario. However, existing solvers
are notoriously computationally intensive and unsuitable for real-time online
planning.

Our Contribution: Robust Sparse Sampling
(RSS)

We introduce RSS, the first online planning algorithm for RMDPs with finite-
sample theoretical guarantees.
I Robust: Explicitly hedges against model uncertainty within a budget ρ.
I Efficient: Leverages Sample Average Approximation (SAA) to make the

robust Bellman backup tractable.
I Scalable: Computational complexity is independent of the

state-space size, enabling planning in continuous domains.

Robust MDP Framework
We model uncertainty using an ambiguity set P centered around the estimated
model P o with radius ρ:

Ps,a = {Ps,a ∈ ∆(S) : DTV (Ps,a, P o
s,a) ≤ ρ}

The objective is to find the optimal robust value function V ∗(s):

V ∗(s) = max
a∈A

r(s, a) + γ min
P ′∈Ps,a

Es′∼P ′[V ∗(s′)]


The Dual Formulation: Directly minimizing over the uncertainty set is in-
tractable. We utilize the dual form (assuming a fail-state exists), which trans-
forms the problem into a scalar optimization over η:

Q∗(s, a) = r(s, a)− γ min
η∈[0, 2

ρ(1−γ)]
(Es′∼P o[(η − V ∗(s′))+]− η(1− ρ))︸ ︷︷ ︸

F ρ
s,a(η)

Robust Value Estimation via SAA
Since the expectation in F ρ

s,a(η) is intractable, we approximate it using Sample
Average Approximation (SAA). We define the empirical dual function F̂
using C samples drawn from P o:

F̂ ρ
s,a(η) = 1

C
C∑

i=1
(η − V ∗(s′i))+ − η(1− ρ)

This function is piecewise-linear and convex, making the minimization prob-
lem efficiently solvable.

Method: Robust Sparse Sampling (RSS)
Since the true robust value function inside F̂ ρ

s,a(η) is unknown, RSS substitutes
it with a recursive estimator at depth d. We define the estimator F̃ ρ,d

s,a (η) to
obtain the following update rule:

Q̂d(s, a) = r(s, a)− γ min
η∈[0, 2

ρ(1−γ)]


1
C

C∑
i=1

(η − V̂d−1(s′i))+ − η(1− ρ)


︸ ︷︷ ︸
F̃ ρ,d

s,a (η)

This results in a piecewise-linear convex optimization problem that can
be solved efficiently in O(C log C).

Algorithm Robust Sparse Sampling (RSS)
1: Input: State s, Depth d
2: if d = 0 then
3: return 0
4: end if
5: for all a ∈ A do
6: Sample C next states s′i ∼ P o(·|s, a)
7: Recursive call: V̂i← RSS(s′i, d− 1)
8: Solve SAA minimization using sorted values of V̂i

9: Update Q̂d(s, a)
10: end for
11: return maxa Q̂d(s, a)

Theorem 1: Finite-Sample Guarantee
For any state s and accuracy ε > 0, RSS returns a policy π such that:

|V π(s)− V ∗(s)| ≤ ε

using a planning horizon H and sample width C that are polynomial in 1/ε, 1/ρ,
and independent of |S|.

Figure: Proof Sketch: The dual function F ρ
s,a is Lipschitz continuous. Consequently, its

minimum can be probabilistically bounded by its empirical estimate F̂ ρ
s,a. Using recursion, we

demonstrate that the error in the recursive estimator F̃ ρ,d
s,a remains bounded.

Experimental Results
We compared RSS against standard Sparse Sampling (SS) in domains with
localized model uncertainty.

1. FrozenLake (8x8 Stochastic Grid) Setup: The estimated
model P o is accurate everywhere except near "holes", where it underestimates
the transition noise probability by ρ.

Uncertainty Level (ρ) RSS (Ours) Standard SS
0.2 0.171 0.123
0.3 0.145 0.109
0.4 0.126 0.098
0.5 0.127 0.080

Table: Average discounted returns over 1000 seeds. RSS significantly outperforms SS as
uncertainty grows.

2. CartPole (Robust Control) Setup: A "Hazard Zone" exists with
high noise variance σhigh. The planning model assumes low noise everywhere.

Figure: As the true environment noise increases (x-axis), the performance of standard SS
(Red) collapses. RSS (Blue) maintains high performance by anticipating worst-case outcomes.
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