Online Robust Planning Under Model Uncertainty: A Sample-Based Approach

Tamir Shazman', Idan Lev-Yehudi’, Ron Benchetrit’, Vadim Indelman®'

1Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Haifa 32000, Israel
2Technion Autonomous Systems Program (TASP), Technion - Israel Institute of Technology, Haifa 32000, Israel
3Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel
“Stephen B. Klein Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
{tmyr, idanlev, ronbenc } @ campus.technion.ac.il, vadim.indelman @technion.ac.il

Abstract

Online planning in Markov Decision Processes (MDPs) en-
ables agents to make sequential decisions by simulating
future trajectories from the current state, making it well-
suited for large-scale or dynamic environments. Sample-
based methods such as Sparse Sampling and Monte Carlo
Tree Search (MCTS) are widely adopted for their ability
to approximate optimal actions using a generative model.
However, in practical settings, the generative model is of-
ten learned from limited data, introducing approximation er-
rors that can degrade performance or lead to unsafe behav-
iors. To address these challenges, Robust MDPs (RMDPs)
offer a principled framework for planning under model un-
certainty, yet existing approaches are typically computation-
ally intensive and not suited for real-time use. In this work,
we introduce Robust Sparse Sampling (RSS), the first online
planning algorithm for RMDPs with finite-sample theoreti-
cal performance guarantees. Unlike Sparse Sampling, which
estimates the nominal value function, RSS computes a ro-
bust value function by leveraging the efficiency and theoreti-
cal properties of Sample Average Approximation (SAA), en-
abling tractable robust policy computation in online settings.
RSS is applicable to infinite or continuous state spaces, and
its sample and computational complexities are independent of
the state space size. We provide theoretical performance guar-
antees and empirically show that RSS outperforms standard
Sparse Sampling in environments with uncertain dynamics.

1 Introduction

Markov Decision Processes (MDPs) provide a mathemati-
cal framework for modeling sequential decision-making un-
der uncertainty, where an agent interacts with a stochastic
environment to maximize cumulative expected rewards. Ex-
act solutions to MDPs are often computationally infeasible,
as they’ve been shown to be P-complete (Papadimitriou and
Tsitsiklis 1987), and practical methods often resort to ap-
proximate solutions (Littman, Dean, and Kaelbling 1995).
Online methods try to circumvent the complexity of com-
puting a policy by planning online only for the current state
(Koenig 2001; Ross et al. 2008), making it particularly suit-
able for large or dynamic environments where computing
optimal actions for all states in advance is infeasible. Among
the most popular online planning methods are sample-based
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algorithms like Sparse Sampling (Kearns, Mansour, and
Ng 2002) and Monte Carlo Tree Search (MCTS) (Coulom
2006), which approximate near-optimal decisions using lim-
ited computation at runtime.

Sparse Sampling has historical, theoretical and algorith-
mic significance: being the first algorithm to provide finite-
time guarantees for online planning, and computational
complexity scaling only by the planning horizon and ap-
proximation budget, rather than state-space size. It has in-
spired many practical tree-based online planning algorithms
like MCTS (Kocsis and Szepesvari 2006; Browne et al.
2012), popular algorithms for partially observable settings
like POMCP (Silver and Veness 2010) and DESPOT (So-
mani et al. 2013), and has recently been extended to theoret-
ical guarantees of particle-belief approximations in POMDP
planning (Lim, Tomlin, and Sunberg 2019; Lim et al. 2023).

A major limitation of Sparse Sampling, MCTS and ex-
isting online planning methods is that they typically as-
sume access to a generative model, i.e. a simulator that
provides samples of next states and rewards. In practice,
however, such models are often estimated from data and
may introduce approximation errors. If these discrepancies
are ignored, they can lead to poor or even unsafe decision-
making (Mannor et al. 2007).

Robust Markov Decision Processes (RMDPs) offer a the-
oretical framework to address this issue by explicitly mod-
eling uncertainty in the transition dynamics (Iyengar 2005;
Nilim and Ghaoui 2005). RMDPs define sets of plausi-
ble models and optimize for the worst-case within these
sets, thereby guaranteeing performance robustness. How-
ever, solving RMDPs typically involves a computationally
demanding min-max optimization over both policies and
model perturbations, making them difficult to apply in on-
line or large-scale settings.

To enhance scalability, various approaches have been pro-
posed within the robust reinforcement learning (RL) com-
munity. Some methods utilize robust variants of function
approximation (Tamar, Mannor, and Xu 2014), while others
introduce sample-based algorithms that learn robust policies
by interacting with an environment affected by model un-
certainty (Wang and Zou 2021; Panaganti et al. 2022; Pana-
ganti and Kalathil 2022; Dong et al. 2022). Although these
techniques show promise, they are generally not tailored for
online planning, as they aim to learn global policies across



the entire state space rather than allocating computational
effort to the specific decision at hand. In contrast to robust
reinforcement learning, few works address the challenges of
robust online planning, being limited to parametric uncer-
tainty structures or deterministic MDPs (Sharma et al. 2019;
Kohankhaki et al. 2024). This highlights the need for robust
online planning methods that are both general-purpose and
theoretically grounded.

To address the challenge of online planning under model
uncertainty, we adopt the RMDP framework to formalize ro-
bustness and introduce a new sample-based planning algo-
rithm: Robust Sparse Sampling (RSS). RSS extends Sparse
Sampling to explicitly handle model uncertainty. To enable
efficient robust decision-making in online settings, it lever-
ages the theoretical properties and computational efficiency
of the Sample Average Approximation framework (Shapiro,
Dentcheva, and Ruszczynski 2021). We also establish theo-
retical performance guarantees.

1.1 Contributions

This work addresses online planning under model uncer-
tainty by formulating a sample-based robust planner and es-
tablishing its theoretical and empirical merits. Our main con-
tributions are:

* Algorithmic novelty. We propose Robust Sparse Sam-
pling (RSS), which, to the best of our knowledge, is
the first sample-based online planning algorithm that
directly addresses robust MDPs while providing finite-
sample performance guarantees. Notably, the complex-
ity of RSS is independent of the size of the state space,
making it suitable for environments with infinite or con-
tinuous state spaces.

Theoretical guarantees. By leveraging the convergence
theory of Sample Average Approximation technique, we
derive an error bound between the value of the policy in-
duced by RSS and the true optimal robust value function.
This bound can be made arbitrarily small by appropri-
ately setting the planning parameters.

Empirical validation. Experiments on two benchmark
domains demonstrate that RSS substantially reduces
catastrophic failures and achieves higher empirical re-
turns than classical Sparse Sampling when the transition
dynamics are misspecified.

1.2 Related Work

Robustness in online MDP planning has been explored in
only a couple of recent studies. Sharma et al. (2019) intro-
duced Robust Adaptive Monte Carlo Planning (RAMCP),
which embeds Monte Carlo Tree Search in the Bayes-
adaptive framework. That framework requires a prior over
the transition model, and misspecifying this prior can harm
performance; RAMCP seeks to hedge against such misspec-
ification by computing a policy that is robust to prior errors.
However, RAMCEP still assumes that transition uncertainty
follows a specific parametric form, which limits its applica-
bility in settings where the dynamics are non-parametric or
deviate from that model.

Kohankhaki et al. (2024) introduced Uncertainty Adapted
MCTS (UA-MCTS), an MCTS variant for deterministic
MDPs that adjusts node selection based on estimated transi-
tion uncertainty. Although UA-MCTS demonstrates strong
empirical performance in deterministic settings, it lacks for-
mal robustness guarantees and does not extend naturally to
stochastic environments, limiting its general applicability.

2 Preliminaries
2.1 Robust Markov Decision Process (RMDP)

We consider a Markov Decision Process (MDP) defined as
M = (S, A,r, P,v). The (possibly infinite) state space is
S. We assume the action space A is finite. We assume a
bounded reward function r : S x.A — [0, 1], yet our analysis
can be trivially extended to any time-dependent bounded re-
ward. For the transition kernel P, P; ,(s’) denotes the prob-
ability of transitioning to state s’ given state s and action a.
v € [0,1) is the discount factor.

During planning, the agent has access only to an approxi-
mate generative model of the transition kernel P°, which is
an estimate of the true transition model P. We assume that
there exists a state-action dependent bound between the true
and approximate transition kernels of the form:

¥(s,a) €S x A, D(Pya,P2) < p, (1)

where p € [0,1], and D(-,-) is a distance metric between
two probability distributions. p quantifies the maximum al-
lowable deviation between the true transition model P; ,
and the estimated model P ,. Higher values of p indicate
greater uncertainty, with p = 0 meaning perfect model ac-
curacy. This uncertainty bound can be estimated from sta-
tistical confidence intervals (Berend and Kontorovich 2012)
or explicitly defined based on domain-specific knowledge.
In this work, we focus on D(-,-) being the Total Variation
(TV) distance, i.e., D(Ps 4, P2,) = 3| Ps.a — P2, ||1.

Planning directly with the emp1rica1 model P can lead to
suboptimal or unsafe policies (Mannor et al. 2007). To guard
against model error, we adopt the Robust MDP framework
(RMDP). Instead of a single transition kernel, RMDP con-
sider an uncertainty set of transition kernels. Adopting the
common rectangularity assumption (Iyengar 2005; Nilim
and Ghaoui 2005), according to which the uncertainty in the
transition kernels is independent for each state-action pair,
we define the uncertainty set as:

P= Q) Pea )
(s,a)eSxA

sa—{PsaeA(S) (Psa7PO <P}» (3)

where A(S) is the set of probability distributions over S.

For a fixed model P’ and policy 7, the (non-robust) value

function is
o0

VTP (s) = Epr x [thT(St, ar) | so = s,a; = W(St)]
t=0
4)
The robust value function takes the worst case model in P:
V7(s) = min V" 5
(s) = min (s), (5)



and our planning objective is to find a policy that maximizes
this worst-case return, i.e. V*(s) = max, V"™ (s) where
7 € argmax, V™ (s). We denote the corresponding robust
action-value function by QQ*. A deterministic robust optimal
policy is known to exist (Iyengar 2005), and its value func-
tion satisfies the robust Bellman equation:

V*(s)=max [r(s, a)+vy min Eyop, , [V*(s/)]]. (6)
acA s,a€Ps,a o
This formulation guarantees that the robust value serves as a
lower-bound for the true value, providing explicit protection
against transition-model misspecification.

2.2 Robust Action-Value Function Dual Form

Computing a robust policy under an imperfect transition
model using online, sample-based methods is challenging,
due to the infinite number of possible transition distributions
within the uncertainty set (2). This makes a direct optimiza-
tion of the robust Bellman’s equation (6) intractable. In their
recent work, Panaganti et al. (2022) show that the dual form
of the optimal robust action-value function admits the fol-
lowing closed-form expression:

Q*(Sva) = 7”(8, a)_

v i (Byops, (0= V()4 =0+

€0, 5]

p (n — inf V*(S”)) )

(N

where [z]; = max{0, x}. The dual variable 7 serves as a
Lagrange multiplier, balancing the trade-off between the ex-
pected value and the worst-case value.

However, estimating the infimum of the robust value func-
tion V*(s”) over all states s” is generally intractable, and
particularly problematic in large or continuous state spaces,
where computing the infimum term is computationally pro-
hibitive. To simplify the dual formulation, we assume the
existence of a fail-state, stated in the following assumption.

Assumption (Fail-State). There exists a state sy € S
such that 7(sf,a) = 0 and P, ,(sy) = 1 for all actions

Sf,a
a € A and all transition probabilities P’ € P. This implies
V*(sy) = 0, and hence infy» V*(s”) = 0. Under this as-
sumption, equation (7) simplifies to:

Q*(s,a) =r(s,a)—

min By, (0= V*(s)4] = n(1 = p)).
n€l0. 555
(8)

To simplify the notation in the remainder of the paper, we
define for each state-action pair (s, a) the function:

FLo(m) £ Egnpe, [0 =V ()] =01 =p). )
Hence, we can rewrite the dual action-value in equation (8):

Q" (s,a) =r(s,a) =y min F{,(n). (10)
n€l0. 555

2.3 Sparse Sampling (SS)

Sparse Sampling (SS) (Kearns, Mansour, and Ng 2002) is a
model-based online planning algorithm assuming a known
transition kernel P, that approximates the optimal action-
value function Q** with high probability by constructing a
stochastic lookahead tree of finite depth H. It operates by
building a recursive search tree. At each node correspond-
ing to a state s, the algorithm explores each action a € A
by drawing C' independent next-state samples from P*%(-).
For each sampled successor state s, the process recursively
continues until the maximum depth H is reached. The re-
cursive computation of the action-value function at depth d
proceeds as follows:

C

N 1 R

Qi (s,a) =7(s,0) + 7+ 5D Vila(si), i~ P,
i=1

Vil 1(s) = max Qg4 (s, a), (11

VL (s) =V (s), Vse S (leaf terminal value).

Here, V,”’(s) denotes a terminal value estimator for V*(s'),
which may be a learned function or set to zero. In this work,
unless stated otherwise, we assume V" (s) = 0.

Sparse Sampling provides theoretical guarantees on the
gap between the nominal value of the policy it computes
and the optimal value function. This difference can be made
arbitrarily small by choosing a sufficiently large number of
samples C' and planning depth H.

2.4 Sample Average Approximation (SAA)

Stochastic programming (Haneveld and Van der Vlerk 2020)
addresses optimization problems under uncertainty, where
the objective function involves an expectation over a random
variable. The general formulation is given by:

min F(x),

reX ( 1 2)

where F(I) £ ]EyNPy [f(y7 l’)} )

Here, P, denotes a probability distribution over random
variables y, X C R is the feasible domain, and f(y,z) is
a real-valued function depending on both the uncertain vari-
able y and the decision variable z.

Computing the expectation E,p, [f(y,z)] exactly can
be challenging, especially when the distribution P, is high-
dimensional or analytically intractable. Sample Average Ap-
proximation (SAA) (Shapiro, Dentcheva, and Ruszczynski
2021) replaces the expectation with an empirical average
based on a finite number of samples drawn from P,. Given
C i.i.d. samples {y;}$ ; from P,, the empirical approxima-
tion of the objective becomes:

C
F(z) = éZf(yi,x). (13)
1=1

SAA is widely used across domains such as operations re-
search, finance, and machine learning to address optimiza-
tion problems under uncertainty (Burroni, Domke, and Shel-
don 2023; Shapiro and Li 2025). Its convergence proper-
ties are well-established (Sinha and Chakrabarty 2024); un-
der suitable regularity conditions on the function f(y,x)



and the feasible set X, the solution of the empirical prob-
lem converges to the true optimum of the original stochas-
tic program as the number of samples increases (Shapiro,
Dentcheva, and Ruszczynski 2021).

3 Robust Sparse Sampling (RSS)
3.1 Robust Action-Value Estimation via SAA

Although the simplified dual formulation in Equation (10)
offers valuable theoretical insight, it remains intractable to
solve directly when the robust value function V*(-) is un-
known. Even if V*(-) were available, evaluating Q*(s, a)
would still require solving a stochastic programming prob-
lem over the function F (1), which involves an intractable
expectation, particularly in large or continuous state spaces.

To address this challenge, we employ the SAA method,

replacing F/,(n) with an empirical estimate F¥, () based

on C samples of the next states {s/}$ , ~ Pga( ). This
leads to the following approximate formulation:

Q*(s,a) =r(s,a) —y min
€0, 525

C
Zn VE(si))+ —n(1—p).

EL,(n),  where

(14)

The function Fﬁa(n) is piecewise linear and convex in 7,
with non—differentlable breakpoints occurring at the sampled
values {V*(s})}<_,. This structure makes the optimization
problem in Equation (14) efficiently solvable.

3.2 RSS Algorithm

The Robust Sparse Sampling (RSS) algorithm, inspired
by the Sparse Sampling algorithm, incorporates robustness
against model uncertainty while using a finite number of
samples online in a recursive manner. Instead of estimat-
ing the nominal action-value function Q*¥ (s, a), RSS es-
timates the robust action-value function Q*(s, a). The com-
plete procedure is described in Algorithm 1.

Specifically, RSS recursively estimates the robust action-
value function at depth d by sampling C' successor states
from the estimated generative model P . Then, in contrast
to the standard Sparse Sampling, RSS computes the robust
action-value function by solving the SAA problem at each
depth d:

Quls.a) = r(s.a) —y  min  F2f(),  where
7]6[0 P p(1— w)]
s,a C Z 77 Vd 1 ) (1 - p)
Vd*l(s) = raneaj(Qdfl(‘%aL

Vo(s) =0, Vs e S (leaf terminal value).

(15)
where each successor s is drawn i.i.d. from the approxi-
mate model P, (-). The routine is invoked recursively from

Algorithm 1: Robust Sparse Sampling (RSS)

Input: Current state s, current depth d

Parameter: Sample width C, planning horizon H com-
puted based on Theorem 1

Output: Estimated optimal action and its value

1: if d = 0 then

2 return 0

3: end if

4: for all a € Ado

S Viist < H

6: fori:ItOCdo

7 Sample sy~ P°(-| s,a)

8: (, Vi 1( 1)) < RSS(s,d—1)

9: Append Vi 1(8%) to Vgt

10:  end for

11:  Update Qq4(s, a) using Equation (15) with Vi
12: end for ) .

13: return arg max,c 4 Q4(s,a), maxqae 4 Qa(s,a)

the current state s and remaining depth d. The recursion ter-
minates at d = 0, where the leaf value is fixed at 0, .

It is important to emphasize that the function F¥ ,(n) in
Equation (14) is a theoretical construct, as it depends on
the true robust value function V*(+), which is not accessible
to the algorithm in practice. In contrast, the RSS algorithm
avoids this dependency by estimating robust values recur-
sively.

At depth d, RSS replaces V*(s') with V;_;(s), the es-
timated robust value of the sampled successor state s’ from
the previous depth. This substitution yields an empirical es-
timate st’ﬁ(n) that approximates F/ ,(n) without requiring
knowledge of the exact robust value function.

4 Theoretical Analysis of RSS
4.1 Performance Guarantees

Our main theoretical result establishes that the value of the
policy returned by the RSS algorithm can be made arbitrarily
close to the optimal robust value function. Specifically, RSS
guarantees the following bound:

Theorem 1. For any s € S and any ¢ > 0, the Robust
Sparse Sampling algorithm returns a policy 7 such that:

[VT(s) = V*(s)| <
with the following hyperparameters:
€
A= 5, 5=A(1 =), H = [log, (V)]
2
CTREA—E

(e (s =oe) = (S =00))

The proof is provided in the supplementary material.
Similar result was originally shown for the nominal (non-
robust) setting by Kearns, Mansour, and Ng (2002), where
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Figure 1: Illustration of the RSS algorithm. At each depth d,
RSS samples C successor states and recursively esti-

mates their robust values V;_;(s}). The robust action-
value estimate ()4(s,a) is obtained by minimizing the
piecewise-linear convex function F?:%(n). The plot dis-

plays F2,(n). F2,(n). and F£2(n) in red, green, and
blue, respectively, along with their corresponding min-
ima F{r, F{r, and F, 4% Triangles indicate the minima,

and black dots represeni the breakpoints. As the number of
samples C' increases, both F?,(n) and F£(n) converge

to F7,(n). Since both stf(n) and F‘S(f .(n) are piecewise-
linear and convex, their minima can be computed efficiently.

the Sparse Sampling algorithm approximates the optimal
value function V*¥(s). Here, we extend that result to the
robust setting.

This extension is non-trivial, as the robust formulation
must account for worst-case transitions within an uncer-
tainty set, which do not arise in the nominal case.

Proof Sketch. The proof of Theorem 1 follows a structure
similar to the original Sparse Sampling analysis (Kearns,
Mansour, and Ng 2002), but extends it using tools from SAA
theory to handle robustness.

First, we show that both F Sﬁa(rj), defined in (10), and its

empirical counterpart F£ .(n), defined in (14), are Lipschitz
continuous with respect to 7. This property allows us to ap-
ply concentration inequalities from SAA theory (Shapiro,
Dentcheva, and Ruszczynski 2021), yielding probabilistic
bounds between F¢,(n) and Fﬁ .(n). Consequently, we
obtain bounds on the difference between the true robust
action-value function Q*(s, a) and the SAA-based estimate
Q* (s,a). Next, we establish a concentration bound between
F? ,(n) and F£:d(n), the estimator used by RSS at depth d,
as defined in (15). This step uses the bound from the pre-
vious stage, combined with an inductive argument over the
estimated robust value function Vy_; at depth d — 1. The
relationship and differences between F¥ (1), stfa(n), and
Fr:%(n) are illustrated in Figure 1.

We then apply a union bound over every state-action pair
in the search tree, guaranteeing that the concentration in-
equalities hold simultaneously at all nodes.

Finally, to relate the robust value of the policy V™ (s) re-

turned by RSS to the optimal robust value V*(s), we gener-
alize a key lemma from (Kearns, Mansour, and Ng 2002) to
the robust setting. This lemma bounds the value gap in terms
of the maximum approximation error in the robust action-
value function. Combining all steps yields the final bound
stated in Theorem 1.

4.2 Computational Complexity

The RSS algorithm builds a lookahead tree of depth
H, where each node branches into |A| - C chil-
dren—corresponding to |A| actions and C' sampled next
states per action. Therefore, the total number of nodes in
the tree is (|A| - C)H.

At each node, the algorithm performs two main opera-
tions: (1) sampling C' next states using the generative model,
and (2) solving the SAA optimization problem defined in
Equation 15. The sampling step incurs a cost of O(C'). For
the optimization step, the algorithm minimizes a piecewise-
linear convex function F;%(n), which has C breakpoints at

the values {Vy_(s})}< ;. The minimum is guaranteed to
lie at one of the breakpoints or at the boundary points 77 = 0
andn = ﬁ. The optimal solution can thus be found by
first sorting the C breakpoints in O(C log C) time, followed
by a linear scan to identify the minimizer, resulting in a total
per-node complexity of:

O(Clog(C).

Multiplying this by the total number of nodes yields the
overall computational complexity of RSS:

O ((|A]- ClogC)™) .

For comparison, the standard Sparse Sampling algorithm
has complexity O ((|A|- C)f), implying that RSS intro-
duces only an additional logarithmic factor due to the ro-
bust optimization step. Importantly, in most practical appli-
cations, sampling successor states from the generative model
dominates the computational cost. As a result, the added
log C' factor in RSS is typically negligible in practice and
does not significantly affect overall runtime.

5 Experiments

We evaluate the performance of the proposed RSS algo-
rithm in two benchmark environments: FrozenLake and
CartPole, aiming to empirically assess its robustness
under model misspecification and compare it to standard
Sparse Sampling (SS).

All experiments are conducted in the setting of online
planning with model uncertainty. The agent computes ac-
tions by simulating future trajectories using an inaccurate
generative model, differing from the true environment dy-
namics.

In these environments, uncertainty is present only in cer-
tain regions, while others are accurately modeled. This re-
flects a common real-world scenario in which hazardous or
rarely visited states lack sufficient data, resulting in higher
model uncertainty, whereas frequently visited safe regions
benefit from more reliable transition estimates. To capture



this structure, we apply the robust backup update (15) ex-
clusively in states with uncertainty. In all other states, we
use the standard expected backup (11). Full algorithmic de-
tails are provided in the supplementary material.

This selective use of robust backups preserves the theo-
retical guarantees established in Theorem 1, while avoiding
overly conservative behavior in well-modeled regions. Fur-
ther discussion of this design choice appears in the supple-
mentary material.

5.1 FrozenLake

Environment. The FrozenLake task is played on an
8 x 8 grid. The agent begins in the upper-left cell and must
navigate to the goal in the lower-right cell without falling
into any of the “hole” cells scattered throughout the grid. At
each time step, the agent chooses one of four actions: up,
down, left or right, but movement is stochastic: with
probability p the agent moves in the intended direction, and
with probability (1 — p)/2 it instead slips to one of the two
orthogonal neighbors.

The immediate reward at each state is defined as: r(s) =
m, where d(s) is the Manhattan distance from state s

to the goal. A terminal reward of 1 is granted upon reaching
the goal, while falling into a hole yields a reward of 0. Each
episode ends when a terminal state is reached or after 150
time steps.

Model Uncertainty. In our setup, the true transition dy-
namics are defined using p = 0.4. However, the agent plans
using an approximate model that differs only in states adja-
cent to holes. In these uncertain regions, the probability of
moving in the intended direction is increased to p° = p + p,
while the probabilities of deviating to either perpendicular
direction are adjusted to (1 —p°)/2. This modification satis-
fies the uncertainty condition defined in (1). Elsewhere, the
approximate model matches the true dynamics exactly. A vi-
sualization of the environment is shown in Figure 2.

Experimental Setup and Results. Experimental results
are summarized in Table 1. We evaluate RSS and standard
SS under varying levels of model uncertainty, each over
1000 different seeds. As a benchmark, we also evaluate SS
with full access to the true dynamics, achieving an average
discounted return of 0.249 4 0.012. All methods use a plan-
ning horizon of H = 3, sample width C' = 50, and discount
factor v = 0.99. The uncertainty budget p is varied across
the set {0.1,0.2,0.3,0.4,0.5,0.6}.

As expected, both RSS and SS underperform compared
to the SS variant with full access to the true environment
dynamics. However, RSS consistently demonstrates better
performance than SS across all values of p, with the per-
formance gap widening as uncertainty increases. This high-
lights RSS’s robustness to model misspecification and its
ability to maintain stronger performance under growing un-
certainty.

5.2 CartPole

Environment. We use the CartPole environment,
where the agent must balance a pole on a moving cart by

G

Figure 2: Visualization of the 8 x 8 FrozenLake environ-
ment, a stochastic grid-world where the agent starts in the
top-left cell (S) and aims to reach the goal in the bottom-
right cell (G), while avoiding hazardous holes represented
by black squares. Due to the stochastic nature of the envi-
ronment, the agent’s actions may not always result in the
intended direction. Cells adjacent to holes are marked with
red squares containing question marks, highlighting regions
of model uncertainty where the agent’s planning model de-
viates from the true environment dynamics.

p RSS SS
0.1 | 0.177 £0.011 | 0.172 £ 0.011
0.2 | 0.171 £ 0.011 | 0.123 = 0.009

0.3 | 0.145 £ 0.010 | 0.109 £ 0.009
0.4 | 0.126 £ 0.009 | 0.098 £ 0.008
0.5 | 0.127 £ 0.009 | 0.080 £ 0.007
0.6 | 0.118 £ 0.009 | 0.080 £ 0.008

Table 1: Performance of RSS and SS in the FrozenLake en-
vironment under varying uncertainty levels p. The reported
values are the average discounted return with the standard
error over 1000 different seed. The best-performing algo-
rithm for each p is highlighted in bold. The average dis-
counted return of SS with access to the true dynamics is
0.249 £ 0.012.

applying discrete left or right forces. The continuous state is
defined by the cart’s position x, velocity &, pole angle 6, and
angular velocity 6. An episode terminates if || > 0.2 radi-
ans, |z| > 2.4, or after 200 time steps. The reward is defined
as 7(f) = 1 —0.2|0] in non-terminal states, and 0 otherwise,
encouraging the pole to remain upright.

At the start of each episode, the cart is centered and the
pole is vertical. At each step, the agent selects a force, transi-
tioning to the next state according to deterministic dynamics,
with added Gaussian noise A (0,03(x)) on the pole angle.
The noise variance depends on the current cart position z,
defined as:

2 .
o2(z) = Thighs 1 Ta <|z] < (16)
0 afow ,  otherwise

This models a narrow “hazard zone” x € =+[z,, 23], where
the system is more unstable due to higher noise.



Model Uncertainty. The hazard zone is assumed to be
narrow and difficult to model accurately. As such, the plan-
ning model assumes a constant low noise crlzow across all
states, underestimating the true noise in the hazard zone.
This mismatch induces localized model uncertainty. Full
noise specifications and uncertain total variance calculations
are detailed in the supplementary material..

Experimental Setup and Results. We set z, = 0.02,
xp = 0.03, 0100 = 1073, and vary opgn from 0.07 to 0.15.
We compare RSS against standard SS, using a planning hori-
zon H = 5, width C' = 10, and discount factor v = 0.999.
As a reference, we also evaluate SS with access to the true
noise model. Each configuration is averaged over 500 ran-
dom seeds.

CartPole: Discounted return vs Noise ¢ in hazard zone
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Figure 3: Average discounted return comparison of RSS and
SS (with/without access to true dynamics) under increasing
noise variance in the hazard zone. Error bars denote standard
error across 500 different seeds.

Figures 3 show the average discounted performance as
a function of the noise standard deviation 0,45, within the
hazard zone. An additional figure in the supplementary ma-
terial presents the success rate—defined as completing 200
steps without termination—under varying noise levels. As
expected, the SS variant with full access to the true dynam-
ics achieves the highest performance across all noise levels,
as it can plan optimally using accurate environment informa-
tion. The performance of both SS variants (with and without
model access) degrades as noise increases, indicating their
increased sensitivity to unmodeled uncertainty.

In contrast, RSS maintains stable performance across all
levels of noise, demonstrating its robustness to model mis-
specification. Notably, in low-noise regimes, RSS underper-
forms compared to SS without access. This is a known phe-
nomenon in robust planning: robust policies are inherently
conservative, as they optimize for the worst-case plausible
dynamics within an uncertainty set, leading to overly cau-
tious behavior that sacrifices performance for safety (Man-
nor, Mebel, and Xu 2012).

However, as the noise variance increases, RSS maintains
a near-constant performance level in this scenario. SS with-
out access to the true model continues to rely on an under-
estimated noise model, resulting in unsafe and suboptimal
actions, while RSS anticipates and mitigates adverse dy-
namics. As a result, RSS eventually outperforms SS with-
out access in both return and success rate. This crossover
point highlights the fundamental trade-off in robust plan-
ning: while robust methods may underperform in low-risk
settings, they provide significant benefits in high-uncertainty
environments by reducing risk and failure rates.

6 Conclusions

In this work, we introduced the Robust Sparse Sampling
(RSS) algorithm, the first online planning algorithm for
RMDPs with finite-sample theoretical performance guaran-
tees. RSS extends the Sparse Sampling algorithm by incor-
porating robustness against model errors, leveraging the dual
formulation of robust value functions and Sample Average
Approximation (SAA) techniques. Our theoretical analysis
establishes finite-time error bounds for RSS, and we demon-
strate its effectiveness in simulative experiments in environ-
ments with uncertain transition dynamics.

We hope that the RSS algorithm and methods will serve
as a foundation for future research in robust online planning,
both for methods that can scale better for large state and ac-
tion spaces, and for online methods that can handle model
uncertainty. Moreover, we wish to extend our methods to
anytime-fashion Monte Carlo Tree Search (MCTS), and to
Partially Observable Markov Decision Process (POMDP)
settings.

Limitations While the RSS algorithm is the first to ad-
dress robust online planning under model uncertainty with
formal performance guarantees, it exhibits several important
limitations.

Similar to Sparse Sampling, RSS suffers from signifi-
cant sample and computational inefficiency, as the complex-
ity grows exponentially with the planning horizon H. This
severely restricts its practical applicability in environments
requiring long-horizon planning. However, in settings where
short planning horizons are sufficient—e.g., due to low dis-
count factors or inherently short episodes—RSS may still
offer a viable and effective alternative.

Second, the algorithm assumes prior knowledge of the
uncertainty budget parameter p. In real-world applications,
accurately estimating p is often nontrivial, especially in
non-stationary or partially observed environments where
the transition dynamics may evolve over time. Estimating
such parameters reliably remains an open problem in robust
decision-making (Kumar et al. 2024; Suilen et al. 2022).

A current limitation that leads to over-conservatism is
the rectangularity assumption of the uncertainty set. Recent
works have shown promising directions to address this issue
(Goyal and Grand-Clement 2023), and we hope to incorpo-
rate those in online robust planning as well.
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