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Previous Knowledge Utilization in Online Anytime
Belief Space Planning

Michael Novitsky , Moran Barenboim , and Vadim Indelman , Member, IEEE

Abstract—Online planning under uncertainty remains a critical
challenge in robotics and autonomous systems. While tree search
techniques are commonly employed to construct partial future tra-
jectories within computational constraints, most existing methods
discard information from previous planning sessions considering
continuous spaces. This study presents a novel, computationally
efficient approach that leverages historical planning data in current
decision-making processes. We provide theoretical foundations for
our information reuse strategy and introduce an algorithm based
on Monte Carlo Tree Search (MCTS) that implements this ap-
proach. Experimental results demonstrate that our method sig-
nificantly reduces computation time while maintaining high per-
formance levels. Our findings suggest that integrating historical
planning information can substantially improve the efficiency of
online decision-making in uncertain environments, paving the way
for more responsive and adaptive autonomous systems.

Index Terms—Decision making, Uncertain systems, Monte Carlo
methods.

I. INTRODUCTION

AUTONOMOUS agents often operate under uncertainty
due to sensor noise and incomplete information, main-

taining a belief (probability distribution) over possible states
instead of direct access to the true environment state. Partially
Observable Markov Decision Processes (POMDPs) provide a
framework for such settings, but solving them optimally is com-
putationally intractable (PSPACE-complete) [1], mainly due to
the curse of history, curse of dimensionality, and continuous
state, action and observation spaces common in real-world
applications.

Recent advancements have introduced online algorithms [2],
[3], [4] that find approximate solutions to POMDPs. These
algorithms operate within limited budget constraints, such as
restricted time, and employ a sampling-based approach to con-
struct partial trees and search for the optimal action that maxi-
mizes the expected cumulative reward. By sampling a subset of
the belief space, these algorithms effectively address both the
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curse of history and the curse of dimensionality, which are key
obstacles in solving POMDPs.

In POMDPs, the reward function of a belief node is typically
formulated as the expected reward over states. However, this
formulation may be insufficient for certain problems, such as
information gathering and active sensing. In such cases, the
problem is commonly addressed as Belief Space Planning (BSP)
or ρ-POMDP [5], where the reward is defined over the belief
itself. Information-theoretic measures, such as information gain
and differential entropy, are commonly used to quantify uncer-
tainty in the decision-making process [6]. However, exact calcu-
lation of information-theoretic rewards becomes intractable for
general distributions, as it requires integrating over all possible
states. To address this challenge, approximation methods such as
kernel density estimation (KDE) and particle filter estimation [7]
have been proposed in the literature. Nonetheless, these methods
still incur significant computational expenses, with computation
complexity scaling quadratically with the number of samples.
As reward calculation is performed for each node in the tree,
it becomes the primary source of computational complexity in
online planning algorithms.

The main objective of this letter is to improve planning
efficiency within a non-parametric setting, continuous state,
action and observation spaces, and general reward functions.
To address these challenges, we contribute a novel approach
that leverages the Multiple Importance Sampling framework
[8] to tackle the problem of reusing information from previous
planning sessions. We demonstrate how our method can be
integrated with Monte Carlo Tree Search (MCTS) to create a
novel online algorithm called Incremental Reuse Particle Filter
Tree (IR-PFT). We evaluate our algorithm in an online planning
setting, demonstrating reduced planning time without perfor-
mance loss.

The code for this letter is available at https://github.com/
miken1990/ir-pft.

II. RELATED WORK

Solving POMDPs is challenging, but methods like POMCP
[2] and POMCPOW [10] have advanced the field. POMCP
extends UCT [9] to partial observability by sampling a state
from the current belief, propagating it through a search tree,
and recording statistics with a Multi-Armed Bandit for action
selection in discrete spaces. POMCPOW adapts this approach
to continuous action and observation spaces using progres-
sive widening and weighted particle sets with an observation
likelihood model.
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In PFT-DPW [10] the authors adopt particle filter formulation
for belief update and each belief is represented with a constant
number of samples.ρ−POMCP [11] propagates a set of particles
in each simulation using a particle filter and adds it to existing
particles in visited nodes. Frequently visited nodes achieve
better representation, with convergence proven asymptotically
for continuous, bounded ρ.

IPFT [6] extends PFT [10] by incorporating a reward function
defined as a linear combination of differential entropy and ex-
pected state reward. In each simulation, a particle set is sampled
from the root belief and propagated through the tree. Entropy
estimates are averaged across particle sets at each belief node to
estimate differential entropy.

LABECOP [4] is designed for continuous observation spaces.
At each belief node b, a state s is sampled, an action a selected
via modified UCB, and an observation o is sampled. The states
for b, a are reweighted using o to improve Q̂(b, a).

SITH-BSP [12], [13] and AI-FSSS [14] make use of simplifi-
cation of the reward function calculation and observation space
sampling accordingly, while preserving action consistency. The
extension of ρ-POMDP to Pρ−POMDP in [15] incorporates
stochastic bounds on the return, while also quantifying the
effects of applying simplifications.

DESPOT [3] and subsequent works [16], [17], [18] propose
algorithms that use determinized random sampling to build the
search tree incrementally, with recent work addressing large
observation spaces [17]. The use of α-vectors in [16], [17],
[18] relies on piecewise-linear approximations and thus only
applies to POMDPs with belief-dependent rewards that admit
such representations.

Previous methods start each planning session from scratch,
while iX-BSP [19], [20] proposes reuse but assumes an open
loop setting and does not address non-parametric beliefs. Sample
reuse improves data efficiency in RL by leveraging past expe-
riences [29]. Our approach instead uses online planning from a
given belief, assuming known transition and observation models.
Adaptive Belief Tree (ABT) [21] is an online POMDP solver
for dynamic continuous-state domains that revises its particle-
based belief tree upon model changes. It uses a generative
transition model and assumes state-based rewards; the original
formulation did not address continuous acton and observation
spaces, nor belief-dependent rewards. In this work, we address
continuous state, action, and observation spaces with general
belief-dependent rewards, a non-parametric framework, and a
closed-loop setting.

III. BACKGROUND

A. POMDP

POMDP is defined as a 7-tuple (S,A,O,PT ,PO, r, b0),
where S, A, and O denote the state, action, and observation
spaces. Since the exact state of the world is not known and
only observations are available, the agent maintains a probability
density function (PDF) over the state space—also referred to as
the belief. The belief at time k is given by bk(sk) = P (sk|Hk),
where Hk = (b0, a0, o1, .., ok) = {b0, o1:k, a1:k−1} denotes the
history up to time k, consisting of the initial belief, the sequence

of observations, and the sequence of actions taken. PT is the
state transition density function, PO is the observation density
function, r(b, a, b′) represents the reward function based on the
current belief b, action a, and the resulting belief b′, and b0
denotes the initial belief over states. It is assumed that the belief
is sufficient statistics for the decision making and a Bayesian
update is used to update the belief recursively:

bk+1(sk+1)=ηPO(ok+1|sk+1)
∫
sk

PT (sk+1|sk, ak)bk(sk)dsk.
(1)

where η is a normalization term. A policy π ∈ Π is a mapping
from belief space to action space π : b→ a. We define the value
function V π for any policy π and horizon d as

V π(bk) = E
bk+1:k+d

[Gk|bk, π]. (2)

where π � πk:k+d−1 represents a sequence of policies for
horizon d and Gk =

∑k+d−1
i=k r(bi, πi(bi), bi+1) is the return.

Similarly, we define the action value function Qπ as

Qπ(bk, a) = Ebk+1
[r(bk, a, bk+1) + V π(bk+1)]. (3)

B. Non-Parametric Setting

We adopt a non-parametric setting, representing belief distri-
butions with state particles. Using a particle filter [22], we update
posterior estimates with each new observation. The theoretical
belief bk is approximated by m particles {sik}mi=1 assuming
resampling, each with uniform weight 1

m

b̂k(s) =
1

m

m∑
i=1

δ(s− sik). (4)

Given resampled belief b̂k, action ak, and propagated belief
b̂−k+1, calculating P (b̂−k+1|b̂k, ak) involves determining all the

matchings between the states in b̂k and those in b̂−k+1 which is
�P -complete [23]. We assume, similar to [24], that the beliefs are
not permutation invariant, meaning particle beliefs with different
particle orders are not considered identical. This assumption
simplifies the derivation of the propagated belief likelihood.
Consequently, we can express b̂k as {sik, 1

m}mi=1 and b̂−k+1 as
{s−ik+1,

1
m}mi=1

P (b̂−k+1|b̂k, ak) =
1

m

m∏
i=1

P (s−ik+1|sik, ak). (5)

In the rest of the paper we assume a non-parametric setting and
for the ease of notation we remove the hat signˆand the state
argument (s) from all beliefs.

C. Importance Sampling

Importance sampling estimates properties of a target PDF
p(x) by sampling from a proposal PDF q(x), assigning weights
to adjust each sample’s contribution according to p(x)

ÊIS
p [f(x)] =

1

N

N∑
i=1

wi · f(xi), wi =
p(xi)

q(xi)
, xi ∼ q. (6)
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The PDF q must satisfy q(xi) = 0⇒ p(xi) = 0. With M
proposal PDFs {qm}Mm=1, Multiple Importance Sampling
formulation [8] can be used:

ÊMIS
p [f(x)] =

M∑
m=1

1

nm

nm∑
i=1

wm(xi,m)
p(xi,m)

qm(xi,m)
f(xi,m).

(7)

Here, nm denotes the number of samples that originate from
PDF qm, xi,m denotes the ith sample that originates from PDF
qm and the weights wm must satisfy

qm(xi,m) = 0⇒ wm(x)f(x)p(x) = 0.

f(xi,m) �= 0⇒
M∑

m=1

wm(xi,m) = 1, (8)

ensuring that at least one PDF qm(x) �= 0 for every valid x.
Under these conditions, the estimator in (7) remains unbiased
[8]. We assume that the weights wm are determined using the
balance heuristic which bounds the variance of the estimator [8]
and in this case the MIS estimator is

ÊMIS
p [f(x)] =

M∑
m=1

nm∑
i=1

p(xi,m)∑M
j=1 nj · qj(xi,m)

f(xi,m). (9)

For more details on MIS, see [8].

D. PFT-DPW

The PFT-DPW algorithm [10] is based on the UCT algorithm
[9] and expands its application to a continuous state, action
and observation setting. It utilizes Monte-Carlo simulations to
progressively construct a policy tree for the belief MDP [10].
At every belief node bk and action ak it sets up visitation
counts N(bk, ak) and N(bk), where N(bk) =

∑
ak

N(bk, ak)
and action-value function is calculated incrementally

Q(bk, ak) �
1

N

N∑
i=1

Gi
k, (10)

by averaging accumulated reward upon initiating from node
bk and taking action ak within the tree. Notably, Q(bk, ak)
(10) is not equal to Qπ(bk, ak) (3) as the policy varies across
different simulations within the tree, causing the distribution of
the trajectories to be non-stationary, hence the absence of the π
superscript. The particle filter generates a propagate belief b−k+1

and posterior belief bk+1 from bk and ak, sampling observation
ok+1 and computing reward r

bk+1, b
−
k+1, ok+1, r ← GPF (m)(bk, ak). (11)

To handle continuous spaces, Double Progressive Widening
limits a node’s children to kNα, whereN is the node visit count,
and k and α are hyperparameters [10].

IV. APPROACH

Our contributions are threefold: (1) an efficient incremental
update method for the Multiple Importance Sampling (MIS)
estimator, enabling action-value estimation from prior and newly

arriving data; (2) the application of MIS for experience-based
value estimation using expert-provided demonstrations with-
out planning; and (3) an MCTS-inspired online algorithm that
speeds up computations by reusing data from previous planning
sessions.

A. Incremental Multiple Importance Sampling Update

In our setting, samples arrive incrementally in batches. A
straightforward computation of (9) would necessitate a complex-
ity of O(M2 · navg), where M denotes the number of different
distributions and navg denotes the average sample count across
all distributions. We develop an efficient way to update the
estimator (9) incrementally in the theorem below.

Theorem 1: Consider an MIS estimator (9) with M differ-
ent distributions and nm samples for each distribution qm ∈
{q1, ..., qM}. Given a batch of L I.I.D samples from distri-
bution qm′ , where qm′ could be one of the existing distribu-
tions or a new, previously unseen distribution, ÊMIS

p [f(x)] (9)
can be efficiently updated with a computational complexity of
O(M · navg +M · L) and memory complexity O(M · navg).

Proof: See Appendix A1.

B. Experience-Based Value Function Estimation

We assume that we have access to a dataset

D � {τ i, Gi
ki
}|D|i=1 (12)

of trajectories executed by an agent that followed an uknown
policy π. Each trajectory is defined as the sequence

τ i � (biki
, aiki

)→ (b−iki+1, o
i
ki+1, b

i
ki+1, a

i
ki+1)→ ...

→ (b−iki+d, o
i
ki+d, b

i
ki+d), (13)

where ki represents the starting time index and is used to
differentiate between different steps in trajectory τ i and d is
the horizon length. We assume that the agent applied a particle
filter with resampling at each step of the trajectory. The return
Gi associated with trajectory τ i is defined as the accumulated
reward,

Gi
ki

�
d−1∑
j=0

r(biki+j , a
i
ki+j , b

i
ki+j+1). (14)

In this section, we evaluateV π(bk) for the current belief bk using
only the dataset D (12), without planning. Such estimation is
important in data-expensive domains like autonomous vehicles
[25] and robotic manipulation tasks [26]. In the next section, we
will expand our methodology to include planning.

Reusing trajectories where the initial belief is set to bk presents
no challenge - we can aggregate all trajectories that begin
with belief bk and action ak and assuming we have N such
trajectories, we define a sample-based estimator

Q̂π(bk, ak) �
1

N

N∑
i=1

Gi
k. (15)

In continuous spaces, the chance of sampling the same belief
twice is zero, so each trajectory in D (12) begins from a belief
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Fig. 1. τ i is a trajectory that was executed by an agent that followed policy
π, τ isuffix is the part that we reuse from τ i for the current belief bk and action
ak .

different from bk. To be able to reuse trajectories from (12), we
discard the initial belief and action of the trajectory, instead link-
ing the current belief and action to the remainder of the trajectory.
Formally, given a trajectory τ i ∈ D, τ i = (biki

, aiki
)→ τ isuffix

where

τ isuffix � (b−iki+1, o
i
ki+1, b

i
ki+1, a

i
ki+1)→ ...

→ (b−iki+d, o
i
ki+d, b

i
ki+d). (16)

and the current belief bk and action ak, we construct a new
trajectory τ ′i (see Figure 1),

τ ′i � (bk, ak)→ τ isuffix. (17)

To estimate Qπ(bk, ak) using the information within trajectory
τ i, two adjustments are required. Firstly, we need to modify the
initial term in the return Gi to be equal to r(bk, ak, b

i
ki+1), rec-

ognizing that bk �= biki
and ak �= aiki

. Consequently, we define
the return of trajectory

G̃i
k � Gi

ki
− r(biki

, aiki
, biki+1) + r(bk, ak, b

i
ki+1). (18)

Secondly, we need to adjust the weight of G̃i due to the dis-
parity between P (τ isuffix|biki

, aiki
, π) and P (τ isuffix|bk, ak, π),

which is acheived through importance sampling. The distri-
bution P (·|biki

, aiki
, π) of τ isuffix (16) is determined by the

initial belief biki
and action aiki

. Given NIS partial trajectories
sampled from the same distribution P (·|biki

, aiki
, π), we define

an Importance Sampling estimator

Q̂π
IS(bk, ak) �

1

NIS

NIS∑
i=1

wi · G̃i
k. (19)

where wi � P(τ i
suffix|bk,ak,π)

P(τ i
suffix|biki

,ai
ki

,π)
. As a result of our approach

to constructing reusable trajectories as described in (17), we
can efficiently calculate the weights wi utilizing the theorem
presented below.

Theorem 2: Given belief node bk, action ak and trajectory
τ i = (biki

, aiki
)→ τ isuffix where τ isuffix is defined in (16), the

following equality holds:

P (τ isuffix|bk, ak, π)
P (τ isuffix|biki

, aiki
, π)

=
P (b−iki+1|bk, ak)

P (b−iki+1|biki
, aiki

)
. (20)

Proof: See Appendix A2.
Let M be the number of unique partial trajectory PDFs
{P (·|bmkm

, amkm
, π)}Mm=1 each defined by its initial belief bmkm

Fig. 2. Illustration of reuse of three trajectories.

and action amkm
, and let nm denote the sample count for each.

Consequently, the datasetD (12) can be reformulated as follows:

D � {τ l,m, Gl,m
k }M,nm

m=1,l=1. (21)

Using this formulation, we define a multiple importance
sampling estimator assuming the balance heuristic (9),

Q̂π
MIS(bk, ak) �

M∑
m=1

nm∑
l=1

P (τ l,msuffix|bk, ak, π)G̃l,m
k∑M

j=1 nj · P (τ l,msuffix|bjkj
, ajkj

, π)
.

(22)

where τ l,msuffix represents the lth partial trajectory that was

sampled from the distribution P (·|bmkm
, amkm

, π) and G̃l,m
k is the

adjusted accumulated reward (18).
Using Theorem 2, we can re-write the MIS estimator (22)

Q̂π
MIS(bk, ak)�

M∑
m=1

nm∑
l=1

P (b−l,mkm+1|bk, ak)∑M
j=1 nj · P (b−l,mkm+1|bjkj

, ajkj
)
·G̃l,m

k .

(23)

Since each element in the second sum of (23) corresponds to a
propagated belief, which might appear more than once, we can
rewrite the sum in a more compact form. Specifically, we group
the terms based on unique propagated beliefs and account for
their multiplicity:

Q̂π
MIS(bk, ak) �

M∑
m=1

|C(bkm ,akm )|∑
l=1

W (b−l,mkm+1)·

N(b−l,mkm+1)∑
y=1

G̃m,l,y
k . (24)

The weights W (b−l,mkm+1) are defined by:

W (b−l,mkm+1) =
P (b−l,mkm+1|bk, ak)∑M

j=1 nj · P (b−l,mkm+1|bjkj
, ajkj

)
(25)

C(bkm
, akm

)denotes the set of reused propagated belief children
associated with bkm

and akm
. The termN(b−l,mkm+1) represents the

visitation count of b−l,mkm+1, indicating the number of trajectories

that pass through the propagated belief b−l,mkm+1 and G̃m,l,y
k is

the return of the y-th trajectory passing through b−l,mkm+1. Note

that b−l,mkm+1 in (24) represents unique propagated beliefs, which
differs from (23), where it denotes the propagated belief asso-
ciated with a single trajectory. Figure 2 illustrates the estimator
from (24). For the current belief bk and action ak, three prior
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Fig. 3. Illustration of horizon gap.

trajectories are incorporated: two from (biki
, aiki

) and one from

(bjkj
, ajkj

). Light green edges show the connections between

(bk, ak) and the reused nodes for estimating Q̂π
MIS(bk, ak).

Further in this work, we consider a framework where the dataset
D (21) expands over time with trajectory samples from an agent
following policy π. Theorem 1 is used to efficiently update the
estimator (23) with new samples.

For the estimator in (24) to be unbiased, the conditions in (8)
must hold. Specifically, for every propagated belief b−k+1 that
can be generated from bk, ak, there must exist at least one pair
bjkj

, ajkj
from which b−k+1 can also be generated.

Our framework differs from standard off-policy evaluation.
Traditional importance sampling estimates V πt(bk) using tra-
jectories from bk under a behavior policy πb [27]. In contrast,
we estimate V π(bk) using trajectories from different beliefs in
the datasetD (12). To our knowledge, such a setting has not been
previously explored for action-value estimation in POMDPs.

C. Our POMDP Planning Algorithm: IR-PFT

Thus far, we used trajectories from a single policy π to
estimate Qπ(bk, ak). In this section, we introduce an anytime
POMDP planning algorithm that accelerates planning by reusing
trajectories from dataset D, which contains data from prior
planning sessions.

We name our algorithm Incremental Reuse Particle Filter Tree
(IR-PFT). Instead of calculating Q(bk, ak) from scratch in each
planning session, we use previous experience to speed up the
calculations.

We adopt the same approach as in Section IV-B to reuse trajec-
tories, with three key modifications: first, the propagated belief
nodes from the previous planning session in dataset D have a
shorter planning horizon. We extend the horizon of these nodes
before reusing them; second, the policy varies across different
simulations (as in standard MCTS), resulting in a non-stationary
distribution of reused trajectories in D; and third, we integrate
the planning and generation of new trajectories with the reuse
of previous trajectories within an anytime MCTS setting. Fig.
3 visually illustrates the horizon alignment process, where a
propagated belief node b−ki

with horizon dprev must be extended
byΔd to match the current horizond. We analyze the complexity
of the correction of belief nodes from previous planning sessions
in case of using the MCTS [28] algorithm in Corollary 1.

Corollary 1: Given an MCTS tree T with horizon dprev ,
number of simulations m and N nodes, extending its horizon
by Δd will require adding at most m ·Δd nodes and reward
calculations.

The proof is straightforward: after m simulations, the MCTS
tree contains at most m leaves and we need to extend each leaf
by Δd and for each new node we calculate a reward.

We now define the estimator

Q̂MIS(bk, ak) �
M∑

m=1

|C(bkm ,akm )|∑
l=1

W (b−l,mkm+1)

·
N(b−l,mkm+1)∑

y=1

Ḡm,l,y
k , (26)

where the weights W (b−l,mkm+1) are defined in (25). Ḡm,l,y
k is the

extended return defined as

Ḡm,l,y
k = G̃m,l,y

k +

k+dl,m
prev+Δd−1∑

i=k+dl,m
prev

r(bi, πrollout(bi), bi+1).

(27)

dl,mprev is the horizon of propagated belief b−l,mkm+1, Ḡm,l,y
k shares

the same values in the summation as the return G̃m,l,y
k (18), but

it also includes additional terms from the extended trajectory
due to the horizon extension using the rollout policy πrollout.
Therefore, only the rewards for these additional terms need to
be computed when extending the horizon, while all shared terms
(G̃m,l,y

k ) can be reused.
Since the tree policy in MCTS differs across simulations, the

resulting trajectory distribution becomes non-stationary. As a
consequence, the update defined in (26) functions in a heuristic
manner, and its convergence properties remain unproven. We
leave a rigorous investigation of this aspect for future work.

After extending the horizon of a reused propagated belief node
b− and reusing its action-value function, the counter N(bk, ak)
is incremented by the visitation count N(b−) using the relation
N(bk, ak) =

∑
b−k∈C(bk,ak)

N(b−k ). This approach accelerates
our algorithm for a given number of simulations, offering a
speedup over PFT-DPW [10].

To summarize, here is the high-level logical flow of our algo-
rithm: At each iteration, we either reuse a propagated belief node
by extending its horizon by Δd, as illustrated in Figure 3, and
compute the extended return for the subtree rooted at the reused
node b−, or create a new node. Subsequently, the Multiple Im-
portance Sampling (MIS) estimator (26) is employed to evaluate
the action-value function. To avoid the computational expense of
a naive calculation, we leverage Theorem 1 to perform efficient
incremental updates of the estimator in (26).

D. Algorithm Description

The complete algorithm is outlined across multiple methods
- Algs. 1, 2, 3 and 4. Alg. 1 illustrates a general planning loop
wherein the agent iteratively plans and executes actions until the
problem is solved. After each planning session, reuse candidates
are updated based on the preceding planning tree.

The main algorithm is detailed in Alg. 2 with key modifi-
cations compared to the PFT-DPW algorithm [10] highlighted
in red. The ActionProgWiden method (line 12) is implemented
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Algorithm 1 General Planning Loop.
1: Procedure: SOLVE(b, D)
2: while ProblemNotSolved() do
3: a← Plan(b,D)
4: o← ReceiveObservation(b, a)
5: b′, b′−, r ← GPF (m)(b, a, o)
6: UpdateReuseCandidates(a,D, b, b′)
7: b← b′

8: end while

following the same approach as described in [10]. ShouldReuse
method (line 14) evaluates three conditions: current node b
is the root, the balance between reused and new nodes, and
the availability of reuse candidates. The second criterion is
important because, while acquiring estimates from prior partial
trajectories is runtime-efficient, generating new trajectory sam-
ples from the correct distribution is essential. Currently, reuse
is applied only at the root node, where it yields the greatest
computational savings by avoiding many reward computations
due to its shallow depth. While extending reuse to nodes at other
depth levels is feasible, it falls outside the scope of this work.

The GetReuseCandidate method (line 15) selects a candi-
date propagated belief b′− from dataset D using a distance
function fD (line 24). For example, fD may be defined as
||b− − b−MLE ||22, where b−MLE—the maximum likelihood prop-
agated belief for given b and a—is computed via (5) in O(m)
time. Since fD scans the entire dataset, it must be efficient,
and reusing nodes with high visitation counts further reduces
runtime.

The FillHorizonPropagated method (line 16), addresses dis-
crepancies in horizon lengths when reusing nodes from the
previous planning sessions. Algorithm 4 performs recursive
traversal of the subtree defined by propagated belief b′− and
extends its depth by d using the rollout policy.

At lines 17 and 18, we increment counters, whereN(b′−) rep-
resents the count of trajectories passing through reuse candidate
propagated belief node b′−. At line 19, we increment the PLAN

procedure counter by N(b′−).
At lines 20 and 36 we utilize (26) to updateQ(b, a), leveraging

efficiency through the application of Theorem (1). At line 21 we
store the propagated belief b′−.

Lines 24–26 execute when reuse is skipped: they initialize
a new propagated belief via the particle filter [22], save the
propagated and posterior beliefs, and perform a rollout.

At lines 30 and 31 we sample uniformly both propagated and
posterior beliefs.

In Algorithm 3, UpdateReuseCandidates selects nodes with
more than nmin visits to maximize speedup.

V. RESULTS

We assess the performance of the IR-PFT algorithm by com-
paring it to the PFT-DPW algorithm [10]. Our evaluation focuses
on two main aspects: runtime and accumulated reward, with
statistics measured for each. In all experiments, the solvers
were limited to 1000 iterations for each planning phase. All

Algorithm 2 IR-PFT.
1: Procedure: PLAN(b, D)
2: i = 0
3: while i < n do
4: Simulate(b, dmax, D)
5: end while
6: a = argmaxa{Q(b, a)}
7: return a

1: Procedure: SIMULATE(b, d, D)
2: if d = 0 then

3: return 0
4: end if
5: a← ActionProgWiden(b)
6: if |C(ba)| ≤ koN(ba)αo then
7: if ShouldReuse(b, a,D) then
8: b′− ← GetReuseCandidate(b, a,D)
9: FillHorizonPropagated(b′−, d− db− )
10: N(b)← N(b) +N(b′−)
11: N(ba)← N(ba) +N(b′−)
12: i← i+N(b′−) {update simulation counter}
13: Q(ba)←MISUpdate defined by eq. (26)
14: C(b, a)← C(b, a) ∪ {(b′−)}
15: return Q(ba)
16: else
17: b′, b′−, r ← GPF (m)(b, a)
18: C(b, a)← C(b, a) ∪ {(b′−)}
19: C(b′−)← C(b′−) ∪ {(b′, r)}
20: total← r + γROLLOUT (b′, d− 1)
21: end if
22: else
23: b′− ← sample uniformly from C(ba)
24: b′, r ← sample uniformly from C(b′−)
25: total← r + γSimulate(b′, d− 1, T )
26: end if
27: N(b)← N(b) + 1
28 N(ba)← N(ba) + 1
29: Q(ba)←MISUpdate defined by eq. (26)
30: return total

experiments were conducted on the standard 2D Light Dark
benchmark, where the agent must reach the goal while mini-
mizing localization uncertainty. Beacons define illuminated re-
gions, where observation noise decreases linearly outside them,
reaching a minimum at the specified white radius, while areas
beyond are considered dark. Refer to the illustration in Fig.
4(a). The reward function is defined as a weighted sum of
the average distance to goal and differential entropy estimator
which is calculated using [7]. Each algorithm was evaluated
using different quantities of particles—specifically, 5, 10, 15,
and 20, while maintaining a constant horizon length of d = 10.
In the following results reuse was done according to Shoul-
dReuse method (line 14) as detailed in the previous section.
We compared the performance of IR-PFT (with and without
reuse) to PFT-DPW and present the findings as a speedup chart
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Fig. 4. Light dark experiments comparing PFT and IR-PFT.

Algorithm 3 Reuse Functions.

1: Procedure: UPDATEREUSECANDIDATES(a,D,bk, brealk+1)
2: ReuseDict dict← {}
3: for b−k+1 ∈ C(bk, a) do
4: for bk+1 ∈ C(b−k+1) do
5: for a′ ∈ Actions(bk+1) do
6: for b−k+2 ∈ C(bk+1, a

′) do
7: if N(b−k+2) > nmin then
8: D.append(b−k+2)
9: end if

10: end for
11: end for
12: end for
13: end for

1: Procedure: SHOULDREUSE(b,a,D)
2: if not b.IsRoot() then
3: return false
4: end if
5: if NumReused(b, a) > |C(b,a)|

2 then
6: return false
7: end if
8: candidates← D.GetReuseCandidatesDict()
9: return not(candidates.empty())

1: Procedure: GETREUSECANDIDATE(b,a,D)
2: b− ← argminb−{fD(b−, b, a)}
3: return b−

in Fig. 4(b), plotted against the number of particles. IR-PFT
consistently outperformed PFT-DPW, with the speedup satu-
rating at approximately 1.5—a factor primarily attributed to
the savings in reward computation, which is the most com-
putationally intensive part of the algorithm. We compare the
accumulated rewards of IR-PFT with and without reuse (Fig.
4(c)). The results show negligible differences, indicating that
our method improves runtime without compromising planning
performance.

VI. CONCLUSION

In this letter, we have proposed a general framework which
allows to reuse prior information during the current planning ses-
sion. We derived theoretical justification for reuse via Multiple

Algorithm 4 Fill Horizon Gap.

1: Procedure: FILLHORIZONPROPAGATED(b−, d)
2: Qnew(b

−)← 0
3: for b′ ∈ C(b−) do
4: Qnew(b

−)←
Qnew(b

−) + FillHorizonPosterior(b′)
5: end for
6: return Qnew(b

−)

1: Procedure: FILLHORIZONPOSTERIOR(b, d)
2: if IsLeaf(b) then
3: a← DefaultPolicy(b)

4: b′, b′−, r ← GPF (m)(b, a)
5: N(b, a)← 1
6: N(b′−)← 1
7: Q(b′−)← r
8: Q(b, a)← r
9: return r
10: end if
11: Q(b)← 0
12: for a ∈ Actions(b) do
13: for b′− ∈ C(b, a) do
14: Q(b)←

Q(b) + FillHorizonPropagated(b′−, d− 1)
15: end for
16: end for
17: Q(b)← Q(b)

N(b)

18: return Q(b)

Importance Sampling and introduced a new MCTS-like algo-
rithm, IR-PFT which reuses information from previous planning
session and allows to speed up calculations in current planning
session. In order to evaluate IR-PFT algorithm, we conducted
an empirical performance study. Specifically, we compared the
performance of our approach with and without the reuse of
prior information. We measured various performance metrics,
including computation time and the accumulated reward. Our
results clearly indicate a speed-up in the planning process when
prior information is leveraged. Importantly, despite the accel-
erated computations, our approach maintains the same level of
performance as the traditional planning approach without reuse.
Incorporating prior information significantly boosts planning
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efficiency, delivering time savings while maintaining high-
quality results. These findings underscore the effectiveness and
potential of the proposed approach. Scaling to higher dimensions
is challenging, as similar belief states become exponentially
rarer. However, imposing structural assumptions may still allow
reuse, as shown in [20].

APPENDIX A

A1 Proof of Theorem 1

Consider an MIS estimator (9) with M different distributions
and nm samples for each distribution qm ∈ {q1, ..., qM}. Given
a batch of L I.I.D. samples from distribution qm′ which may be
an existing or new distribution,

ÊMIS
p [f(x)] =

M∑
m=1

nm∑
i=1

p(xi,m)∑M
j=1 nj · qj(xi,m)

f(xi,m),

Equation (9) can be efficiently updated with a computational
complexity of O(M · navg +M · L) and memory complexity
O(M · navg).

For every distribution qm we have the term∑nm

i=1
p(xi,m)

∑M
j=1 nj ·qj(xi,m)

f(xi,m).

In case m �= m′:∑M
j=1 nj · qj(xi,m)←∑M

j=1 nj · qj(xi,m) + L · qm′(xi,m)
- O(1) complexity. We have nm samples and M distributions
so the complexity of this update is O(M · nm).

In case m = m′:
For existing samples

∑M
j=1 nj · qj(xi,m)←∑M

j=1 nj ·
qj(xi,m) + L · qm′(xi,m) - O(1) complexity. We have nm sam-
ples existing samples so in total O(nm) complexity.

For each new sample we need to calculate
p(xi,m)

∑M
j=1 nj ·qj(xi,m)

f(xi,m) - O(M) complexity. We have L

new samples so in total O(L ·M) complexity. The total
complexity of the update is O(M · navg +M · L).
A2 Proof of Theorem 2

P (τ isuffix|bk, ak, π)
P (τ isuffix|biki

, aiki
, π)

=
P (b−iki+1, ..., b

i
ki+L|bk, ak, π)

P (b−iki+1, ..., b
i
ki+L|biki

, aiki
, π)

.

(28)

Applying chain rule yields,

P (b−iki+1|bk, ak)
P (b−iki+1|biki

, aiki
)
· P (oiki+1, . . . , b

i
ki+L|b−iki+1, π)

P (oiki+1, . . . , b
i
ki+L|b−iki+1, π)

=
P (b−iki+1|bk, ak)

P (b−iki+1|biki
, aiki

)
. (29)
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