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 a b s t r a c t

Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete 
information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled frame-
work for formulating decision-making problems under such conditions. However, finding an optimal solution for 
a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate 
solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers 
are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a de-
terministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that 
at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that 
our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that 
have a certain structure to provide them with deterministic guarantees with marginal computational overhead. 
In return, not only do we certify the solution quality, but we demonstrate that making a decision based on 
the deterministic guarantee may result in superior performance compared to the original algorithm without the 
deterministic certification.

1.  Introduction

Decision-making under uncertainty is a common challenge in many 
practical autonomous systems. In such systems, agents often operate 
with incomplete information about their environment. This uncertainty 
can arise from various sources, including sensor noise, hardware limi-
tations, modeling approximations, and the inherent unpredictability of 
the environment. Mathematically, Decision-making under uncertainty 
can be formalized as Partially Observable Markov Decision Process 
(POMDP).

Unfortunately, finding an optimal solution to most POMDP prob-
lems is computationally intractable, mostly due to a large number of 
possibilities for the ground truth of the current state, and exponentially 
increasing possibilities of the future outcomes, commonly referred to 
as the curse of dimensionality, and the curse of history. As such, most 
state-of-the-art (SOTA) algorithms aim to find an approximate solution.

One prominent approach to deriving approximate solutions employs 
an online tree-search paradigm. In this framework, following each real-
world decision, an online solver evaluates the current state and projects 
potential future scenarios. These scenarios are organized within a tree 
graph structure. As the tree is constructed, the agent assesses the impli-
cations of selecting a particular action, subsequently receiving feedback 
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from the environment. This feedback informs the estimation of proba-
bilities for new states, guiding the selection of subsequent actions based 
on accumulated knowledge. This iterative process continues, building 
on past outcomes to navigate the decision space.

Given the inherent approximation in these solutions, a natural in-
quiry regarding the connection between the approximate solution and 
the actual problem at hand. Some state of the art online algorithms, e.g. 
[1], offer asymptotic guarantees thus having no finite time guarantees 
on the solution quality. A different class of algorithms suggests finite 
time, but probabilistic guarantees such as [2]. Many algorithms have 
shown good empirical performance, at the advent of the practical use 
case of POMDP problems, e.g. [3], but fall short of providing a frame-
work that bridges between the policy found and the underlying POMDP.

In this paper, we focus on deriving deterministic guarantees for 
POMDPs with discrete state, action and observation spaces. Unlike ex-
isting black-box sampling mechanisms employed in algorithms such as 
[3–5], our approach assumes access not only to the observation model 
but also to the transition and the prior models. By leveraging this ad-
ditional information, we develop novel bounds that necessitate only a 
subset of the state and observation spaces, enabling the computation 
of deterministic bounds with respect to the optimal policy at any be-
lief node within the constructed tree. From a practical standpoint, we 
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$M$


$\langle \mathcal {X}, \mathcal {A}, \mathcal {Z}, T, O, \mathcal {R}, b_0\rangle $


$\mathcal {X}$


$\mathcal {A}$


$\mathcal {Z}$


$T(x_t,a_t,x_{t+1}) \triangleq \mathbb {P}(x_{t+1} | x_t, a_t)$


$x_t \in \mathcal {X}$


$x_{t+1} \in \mathcal {X}$


$a_t \in \mathcal {A}$


$O(x_t,z_t) \triangleq \mathbb {P}(z_t | x_t)$


$z_t \in \mathcal {Z}$


$x_t \in \mathcal {X}$


$b_0\equiv \mathbb {P}(x_0 \mid H_0)$


$t=0$


$H_t \triangleq \{z_{1:t}, a_{0:t-1}\}$


$H_t^- \triangleq \{z_{1:t-1}, a_{0:t-1}\}$


$t$


$a_{t-1}$


$z_t$


$b \left ( x_t \right ) = \eta _t \mathbb {P}(z_t | x_t ) \sum _{x_{t-1} \in \mathcal {X}} \mathbb {P}(x_t | x_{t-1}, a_{t-1} ) b \left ( x_{t-1} \right )$


$\eta _t$


$b_t\triangleq \mathbb {P}(x_t\mid H_t)$


$b_t$


$a_t = \pi _t(H_t)$


$t$


$H_t$


$t$


$\pi _t \equiv \pi _t(H_t)$


$r(b_t, a_t)=\mathbb {E}_{x\sim b_t}[r_x(x, a_t)]$


$-\mathcal {R}_{\max }\leq r_x(x,a_t)\leq \mathcal {R}_{\max }$


$\pi $


$T$


$\pi $


\begin {equation}\label {eq: bellman update} V^{\pi }_t( b_{t}) =r( b_{t } ,\pi _t) + \underset {z_{t+1:T}}{\mathbb {E}} \left [ \sum _{\tau =t+1}^{T}r( b_{\tau } ,\pi _\tau )\right ].\end {equation}


$V^{\pi }_t( b_{t})$


$V^{\pi }_t( H_{t})$


$a_t$


$\pi $


\begin {equation}Q^\pi _t( b_{t}, a_t) =r( b_{t } ,a_t) + \underset {z_{t+1:T}}{\mathbb {E}} \left [ \sum _{\tau =t+1}^{T}r( b_{\tau } ,\pi _\tau )\right ]. \label {Xeqn2-2}\end {equation}


\begin {equation}\label {eq: bellman optimality} V^{\pi ^* }_t( b_{t}) =\max _{a_t}\{r( b_{t } , a_t) + \underset {z_{t+1}\mid a_t, b_t}{\mathbb {E}} \left [ V^{\pi ^* }_{t+1}( b_{t+1})\right ]\}.\end {equation}


$\pi ^*$


$\mathcal {V}_{max,t}, \mathcal {V}_{min,t}$


$t$


$\mathcal {V}_{max,t}=(T-t)\cdot \mathcal {R}_{\max }$


$\mathcal {V}_{min,t}=(t-T)\cdot \mathcal {R}_{\max }$


$\tau _t=\{x_0,a_0,z_1,x_1,a_1,\dots , a_{t-1}, x_t, z_t\}$


$\mathbb {P}(\tau _t)$


$\mathbb {P}^\pi (\tau _t)\equiv \mathbb {P}(\tau _t\mid b_0, \pi _0, \dots , \pi _t)$


$\bar {M}$


$\langle \bar {\mathcal {X}}, \mathcal {A}, \bar {\mathcal {Z}}, \bar {T}, \bar {O}, \mathcal {R}, \bar {b}_0\rangle $


$\bar {\mathcal {X}}, \bar {\mathcal {Z}}, \bar {T}$


$\bar {O}$


\begin {align}\bar {b}_0(x) \triangleq & \begin {cases} b_0(x) & , \ x \in \bar {\mathcal {X}}_0 \label {eq:simplifiedPrior}\\ 0 & , \ otherwise \end {cases}\\ \bar {\mathbb {P}}(x_{t+1}\mid x_t, a_t) \triangleq & \begin {cases} \mathbb {P}(x_{t+1}\mid x_t, a_t) & , \ x_{t+1} \in \bar {\mathcal {X}}(H_{t+1}^-) \label {eq:simplifiedTransition}\\ 0 & , \ otherwise \end {cases}\\ \bar {\mathbb {P}}(z_{t}\mid x_t) \triangleq & \begin {cases} \mathbb {P}(z_{t}\mid x_t) & , \ z_t \in \bar {\mathcal {Z}}(H_t)\label {eq:simplifiedObservation}\\ 0 & , \ otherwise \end {cases}\end {align}


$\bar {\mathcal {\mathcal {X}}}(H_{t+1}^-)\subseteq \mathcal {\mathcal {X}}$


$\bar {\mathcal {Z}}(H_t)\subseteq \mathcal {Z}$


$\bar {\mathcal {X}}(H_{t+1}^-)\equiv \bar {\mathcal {X}}$


$\bar {\mathcal {Z}}(H_t)\equiv \bar {\mathcal {Z}}$


$\mathcal {A}$


$b_0$


$M$


\begin {align}\label {def:simplifiedValueFunc} \bar {V}^\pi (\bar {b}_0)&\triangleq \bar {\mathbb {E}}\left [\sum _{t=0}^{T}r(x_t, a_t)\right ]\\ &=\sum _{t=0}^{T} \sum _{z_{1:t}}\sum _{x_{0:t}}\prod _{k=1}^{t} \ \bar {\mathbb {P}}( z_{k} \mid x_{k})\bar {\mathbb {P}}( x_{k} \mid x_{k-1} ,\pi _{k-1}) \bar {b}( x_{0}) r( x_{t} ,a_{t})\\ &= \sum _{t=0}^T \sum _{\tau _{t}} \bar {\mathbb {P}}^\pi (\tau _t) r(x_t, a_t),\end {align}


$\bar {\mathbb {E}}[\cdot ]$


$\gamma ^t V_{max,t}$


$\bar {\mathcal {X}}\equiv \mathcal {X}$


$b_t$


$t$


$T$


$V^{\pi }(b_t)$


$\pi $


$\bar {V}^{\pi }(b_t)$


$\pi $


\begin {align}\label {eq:thm} &\left |V^\pi (b_t) \! - \! \bar {V}^\pi (b_t)\right | \notag \\ &\quad \leq \! \mathcal {R}_{\max } \! \! \! \sum _{\tau =t+1}^{T} \!\! \left [ 1\! -\! \! \! \sum _{z_{t+1:{\tau }}}\sum _{x_{t:{\tau }}}b( x_{t}) \! \! \prod _{k=t+1}^{\tau }\overline {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\right ]\triangleq \epsilon ^\pi (b_t).\end {align}


$\epsilon ^\pi (b_t, a_t)$


$a_t$


$b_t$


$\pi $


\begin {equation}\left |Q^\pi (b_t, a_t) \! - \! \bar {Q}^\pi (b_t, a_t)\right | \leq \epsilon ^\pi (b_t, a_t), \label {Xeqn5-11}\end {equation}


\begin {align}\label {eq:Q_z_bound} \epsilon ^\pi (b_t, a_t) &\triangleq \mathcal {R}_{\max }\sum _{\tau =t+1}^{T}\big [ 1-\sum _{z_{t+1:{\tau }}}\sum _{x_{t:{\tau }}}b( x_{t})\overline {\mathbb {P}}( z_{t+1} \mid x_{t+1}) \mathbb {P}( x_{t+1}\mid x_{t} ,a_{t})\cdot \\ & \ \ \
\prod _{k=t+2}^{\tau }\overline {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\big ].\notag \end {align}


$\epsilon ^\pi (b_t)$


$\epsilon ^\pi (b_t, a_t)$


$z\in \bar {\mathcal {Z}}$


$\bar {\mathcal {Z}}$


$\epsilon ^\pi (b_t)$


$\epsilon ^\pi (b_t, a_t)$


\begin {equation}\sum _{z_{1:{\tau }}}\sum _{x_{0:{\tau }}}b( x_{0})\prod _{k=1}^{\tau }\overline {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1}) \xrightarrow {\bar {\mathcal {Z}}\rightarrow \mathcal {Z}} 1 \notag \label {Xeqn6}\end {equation}


$\epsilon ^\pi (b_t)\rightarrow 0$


$\epsilon ^\pi (b_t, a_t)\rightarrow 0$


\begin {equation}\textsc {UDB}^{\pi }(b_t,a_t) \triangleq \bar {Q}^{\pi }(b_t, a_t) + \epsilon ^\pi (b_t, a_t) = r(b_t, a_t) + \bar {\mathbb {E}}_{z_{t+1}}[\bar {V}^\pi (b_{t+1})] + \epsilon ^\pi (b_t, a_t). \label {Xeqn7-13}\end {equation}


$\bar {Q}^{\pi }(b_t, a_t)$


$\mathcal {R}_{\max }\cdot (T-t-1)$


\begin {equation}V^{\pi *}(b_t) \leq \textsc {UDB}^{\pi ^{\dagger }}(b_t), \label {Xeqn8-14}\end {equation}


$\pi ^{\dagger }$


\begin {gather}\pi ^{\dagger }(b_t) = \arg \max _{a_t \in \mathcal {A}} [\bar {Q}^{\pi ^{\dagger }}(b_t, a_t) + \epsilon ^{\pi ^{\dagger }}(b_t, a_t)] = \arg \max _{a_t \in \mathcal {A}} \textsc {UDB}^{\pi ^{\dagger }}(b_t,a_t)\\ \textsc {UDB}^{\pi ^{\dagger }}(b_t) \triangleq \max _{a_t \in \mathcal {A}} \textsc {UDB}^{\pi ^{\dagger }}(b_t,a_t).\end {gather}


\begin {equation}\label {eq:exploration} a_t = \arg \max _{a_t \in \mathcal {A}}[ \textsc {UDB}^{\pi ^{\dagger }}(b_t,a_t)],\end {equation}


$b_0$


$\bar {b}_0$


$t=0$


$T$


$V^{\pi }(b_0)$


$\pi $


$\bar {V}^{\pi }(\bar {b}_0)$


$\pi $


\begin {equation}\mathcal {L}^\pi _0(H_0) \leq V^\pi (b_0) \leq \mathcal {U}^\pi _0(H_0). \label {Xeqn10-18}\end {equation}


\begin {align}\mathcal {U}^\pi _0(H_0) &\equiv \bar {V}^\pi (\bar {b}_0) + \mathcal {V}_{max,0}\left [1-\sum _{\tau _{0}}\bar {\mathbb {P}}(\tau _{0})\right ] \notag \\ &\ \ \ +\sum _{t=0}^{T-1}\mathcal {V}_{max,t+1}\left [ \sum _{\tau _{t}} \bar {\mathbb {P}}^{\pi }(\tau _{t})-\sum _{\tau _{t+1}}\bar {\mathbb {P}}^{\pi }(\tau _{t+1})\right ] \label {eq:upperBound}\\ \mathcal {L}^\pi _0(H_0) &\equiv \bar {V}^\pi (\bar {b}_0) + \mathcal {V}_{min,0}\left [1-\sum _{\tau _{0}}\bar {\mathbb {P}}(\tau _{0})\right ]\notag \\ &\ \ \ +\sum _{t=0}^{T-1}\mathcal {V}_{min,t+1}\left [ \sum _{\tau _{t}} \bar {\mathbb {P}}^{\pi }(\tau _{t})-\sum _{\tau _{t+1}}\bar {\mathbb {P}}^{\pi }(\tau _{t+1})\right ] \label {eq:lowerBound}\end {align}


$\mathcal {R}_{\max }\cdot (T-t)$


$\mathcal {V}_{max,t}$


\begin {align}\label {def:RecursiveBound} \mathcal {U}^\pi _0(H_t) \triangleq &\sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) r(x_t, \pi _t) + \sum _{\tau _t \in \mathcal {T}(H_t)}\bar {\mathbb {P}}(\tau _t)\mathcal {V}_{\max , t} \\ \notag &+ \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, \pi _t)}\left [\mathcal {U}^\pi _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\max , t}\right ]\\ \mathcal {L}^\pi _0(H_t) \triangleq &\sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) r(x_t, \pi _t) + \sum _{\tau _t \in \mathcal {T}(H_t)}\bar {\mathbb {P}}(\tau _t)\mathcal {V}_{\min , t} \\ \notag &+ \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, \pi _t)}\left [\mathcal {L}^\pi _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\min , t}\right ]\end {align}


\begin {align}&\mathcal {U}^\pi _0(H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T), &\mathcal {L}^\pi _0(H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T).\end {align}


$\mathcal {T}(H_t)$


$H_t$


$\mathcal {T}(H_t)=\{\left (x_{0:t}, a_{0:t-1}, z_{1:t}\right )\mid (a_{0:t-1}, z_{1:t})=H_t\}$


$\mathcal {U}^\pi _0(H_t)$


$\mathcal {L}_0^\pi (H_t)$


$H_t$


$H_0$


$H_t$


$\sum _{\tau _{t}\in \mathcal {T}(H_t)} \mathbb {P}(\tau _t)$


$H_t$


$H_{t+1}$


$\mathcal {U}_0(H_t)$


$\mathcal {A}$


$\mathcal {U}_0^\star (H_t)$


$\mathcal {L}_0^\star (H_t)$


$H_t$


\begin {align}\mathcal {U}^\star _0(H_t) &\triangleq \max _{a_t\in \mathcal {A}} \sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) \left [r(x_t, a_t) + \mathcal {V}_{\max , t}\right ] \label {eq:optimalRecursive}\\ &\ \ \ + \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, a_t)}\left [\mathcal {U}^\star _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\max , t}\right ] \notag \\ \mathcal {L}^\star _0(H_t) &\triangleq \max _{a_t\in \mathcal {A}} \sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) \left [r(x_t, a_t) + \mathcal {V}_{\min , t}\right ] \label {eq:optimalRecursive2}\\ &\ \ \ + \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, a_t)}\left [\mathcal {L}^\star _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\min , t}\right ] \notag \end {align}


\begin {align}&\mathcal {U}_0^\star (H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T), &\mathcal {L}_0^\star (H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T).\end {align}


\begin {equation}\mathcal {L}_0^\star (H_0) \leq V^{\pi ^*}(H_0) \leq \mathcal {U}_0^\star (H_0). \label {Xeqn11-27}\end {equation}


\begin {equation}\mathcal {L}_0^\star (H_0) \leq V^{\pi ^*}(H_0) \leq \mathcal {U}_0^\star (H_0). \label {Xeqn38-A.110}\end {equation}


\begin {equation}\label {eq:interval} I^{\star }(H_0, a_0)\in \left [\mathcal {L}_0^{\star }(H_t,a_0), \mathcal {U}_0^{\star }(H_0,a_0) \right ],\end {equation}


$a^2$


$a^4$


\begin {align}a_t &= \arg \max _{a\in \mathcal {A}}\{\sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) r(x_t, a) + \sum _{z_{t+1}\in \bar {\mathcal {Z}}( H_{t},a)}\mathcal {U}_0^{\star }(H_{t+1}) \label {eq:rootBoundExplor} \\ \notag &\ \ \ + \mathcal {V}_{\max , t} \left [\sum _{\tau _t\in \mathcal {T}(H_t)}\bar {\mathbb {P}}(\tau _t) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t},a)}\bar {\mathbb {P}}(\tau _{t+1})\right ]\}\\ z_{t+1} &= \arg \max _{o_{t+1} \in \mathcal {Z}(H_{t},a_t)}\{\mathcal {U}_0^{\star }((H_{t}, a_t, o_{t+1})) - \mathcal {L}_0^{\star }((H_{t}, a_t, o_{t+1}))\}\label {eq:obsExplor} \\ x_{t+1} &= \arg \max _{x \in \mathcal {X}(H_{t+1})} \{\bar {\mathbb {P}}^{\star }((\tau _t, a_t, z_{t+1}, x)) - \sum _{\tau _{T}} \bar {\mathbb {P}}^{\star }(\tau _T \mid \tau _t, a_t, z_{t+1}, x)\}, \label {eq:stateExplor}\end {align}


$\bar {\mathbb {P}}^{\star }(\tau _t)$


$\tau _t$


$\sum _{\tau }\bar {\mathbb {P}}(\tau )$


$\mathcal {V}_{\max ,t}, \mathcal {V}_{\min ,t}$


\begin {equation*}\Delta V(H_t)\;\triangleq \;\mathcal {V}_{\max }(H_t)-\mathcal {V}_{\min }(H_t),\end {equation*}


\begin {equation*}\delta (H_t)\;\triangleq \; \sum _{\tau _t\in \mathcal {T}(H_t)}\bar {\mathbb {P}}(\tau _t)\;-\!\!\! \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\; \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})} \bar {\mathbb {P}}(\tau _{t+1}),\end {equation*}


\begin {align}\label {eq:gap} \mathcal {U}^\pi _0(H_t)-\mathcal {L}^\pi _0(H_t)\;=\; \Delta V(H_t)\,\delta (H_t) +\!\!\!\!\!\sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\!\!\!\!\!\left [\mathcal {U}^\pi _0(H_{t+1})-\mathcal {L}^\pi _0(H_{t+1})\right ].\end {align}


$\Delta V(H_k)$


$\bar {\mathcal {X}}\!, \bar {\mathcal {Z}}$


$\Delta V(H_k)$


$\Delta V(H_k)=\mathcal {V}_{\max }(H_k)-\mathcal {V}_{\min }(H_k)$


$H_k$


$\Delta V(H_k)$


$\Delta V(H_k)$


$\mathcal {A}$


$\bar {\mathcal {X}}, \bar {\mathcal {Z}}$


$\mathcal {A}$


$\tau $


$\mathbb {P}_{\tau }$


$\mathbb {P}_{\tau }$


$\tau =\{x_0, a_0, x_1, z_1, \ldots , a_{t-1}, x_t, z_t\}$


$ha$


$h$


$V_{\max ,d}$


$V_{\max ,d}=\mathcal {R}_{\max } \cdot (D-d)$


\begin {equation}UCT(H_t, a_t) = \hat {Q}^{mean}(H_t, a_t) + c\sqrt {\frac {log(N(H_t))}{N(H_t, a_t)}}, \label {Xeqn13-33}\end {equation}


$\hat {Q}^{mean}$


$c$


$O(|\mathcal {A}|)$


$O(|\mathcal {A}| + |\bar {\mathcal {Z}}|)$


$O(|\mathcal {A}|)$


$\Delta \mathbb {P}^{(i)}(\cdot )$


$\Delta \mathcal {U}^{(i)}(\cdot )$


\begin {align}\label {eq:incrementalUpdate} \mathcal {U}_{0}^{( i)}( H_{t} ,a_{t}) &=\mathcal {U}_{0}^{( i-1)}( H_{t} ,a_{t}) +\Delta \overline {\mathbb {P}}^{( i)}\left ( \tau _{t}^{( i)}\right )\left [ r\left ( x_{t}^{( i)} ,a_{t}\right ) +V_{max,t}\right ] \notag \\ &\ \ \ +\Delta \mathcal {U}_{0}^{( i)}\left ( H_{t+1}^{( i)}\right ) -\Delta \overline {\mathbb {P}}^{( i)}\left ( \tau _{t+1}^{( i)}\right ) V_{max,t} \notag \end {align}


\begin {equation}\mathcal {U}_{0}^{( i)}( H_{T}) =\underset {a_{t} \in \mathcal {A}}{\max }\left \{\mathcal {U}_{0}^{( i)}( H_{t} ,a_{t})\right \}. \label {Xeqn14-35}\end {equation}


$O(|\mathcal {A}|)$


$\tau _d \in \tau (ha)$


$O(D)$


$D$


$O(1)$


$O(|A|)$


$O(1)$


$H=5$


$a^1$


$a^3$


$H=15$


$\epsilon $


$\epsilon $


$V_{max,d}$


$\mathcal {A}$


\begin {align}\bar {V}^\pi (\bar {b}_t)&\triangleq r(\bar {b}_t, \pi _t) + \bar {\mathbb {E}}\left [\bar {V}(b_t)\right ]\\ &=\sum _{x_t}\bar {b}(x_t)r(x_t,\pi _t) + \sum _{z_t}\bar {\mathbb {P}}(z_{t+1}\mid H^-_{t+1})\bar {V}(\bar {b}(z_{t+1})),\end {align}


$b_t$


$t$


$T$


$V^{\pi }(b_t)$


$\pi $


$\bar {V}^{\pi }(b_t)$


$\pi $


\begin {align}&\left |V^\pi (b_t) \! - \! \bar {V}^\pi (b_t)\right |\notag \\ &\quad \leq \! \mathcal {R}_{\max } \! \! \! \sum _{\tau =t+1}^{T} \!\! \left [ 1\! -\! \! \! \sum _{z_{t+1:{\tau }}}\sum _{x_{t:{\tau }}}b( x_{t}) \! \! \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\right ]\triangleq \epsilon _z^\pi (b_t). \label {Xeqn15-A.38}\end {align}


$b_0$


\begin {equation}V_0^\pi (b_0)=\mathbb {E}_{z_{1:T}}\left [\sum _{t=0}^T r(b_t,a_t)\right ] \label {Xeqn16-A.39}\end {equation}


\begin {align}V_0^\pi (b_0) &=\sum _{z_{1:T}}\prod _{\tau =1}^{T}\mathbb {P}\left ( z_{\tau } \mid H_{\tau }^{-}\right )\notag \\ &\quad \sum _{t=0}^{T}\left [\sum _{x_{t}}\frac {\mathbb {P}( z_{t} \mid x_{t})\sum _{x_{t-1}}\mathbb {P}( x_{t} \mid x_{t-1} ,\pi _{t-1}) b_{t-1}}{\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )} r( x_{t} ,a_{t})\right ]\\ &=\sum _{z_{1:T}}\prod _{\tau =1}^{T}\mathbb {P}\left ( z_{\tau } \mid H_{\tau }^{-}\right )\notag \\ &\quad \sum _{t=0}^{T}\left [\sum _{x_{0:t}}\frac {\ \prod _{k=1}^{t} \ \mathbb {P}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})}{\prod _{\tau =1}^{t}\mathbb {P}\left ( z_{\tau } \mid H_{\tau }^{-}\right )} r( x_{t} ,a_{t})\right ]\\ &=\sum _{t=0}^{T}\sum _{z_{1:T}}\sum _{x_{0:T}}\prod _{k=1}^{t} \ \mathbb {P}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0}) r( x_{t} ,a_{t})\end {align}


\begin {equation}\bar {V}_0^\pi (b_0)=\sum _{t=0}^{T}\sum _{z_{1:T}}\sum _{x_{0:T}}\prod _{k=1}^{t} \ \bar {\mathbb {P}}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0}) r( x_{t} ,a_{t}). \label {Xeqn17-A.43}\end {equation}


$t$


\begin {align}&| \mathbb {E}_{z_{1:t}}[ r( b_{t})] -\bar {\mathbb {E}}_{z_{1:t}}[ r(\bar {b}_{t})]| \\ =&| \sum _{z_{1:t}}\sum _{x_{0:t}}[\prod _{k=1}^{t} \ \mathbb {P}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0}) r( x_{t}) \\ \notag &-\prod _{k'=1}^{t} \ \bar {\mathbb {P}}( z_{k'} \mid x_{k'})\mathbb {P}( x_{k'} \mid x_{k'-1} ,\pi _{k'-1}) b( x_{0}) r( x_{t})]| \\ \leq & \sum _{z_{1:t}}\sum _{x_{0:t}}\left | r( x_{t})\Bigg [\prod _{k=1}^{t}\mathbb {P}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})\right . \notag \\ &\left .\ \ \ -\prod _{k'=1}^{t} b( x_{0}) \ \bar {\mathbb {P}}( z_{k'} \mid x_{k'})\mathbb {P}( x_{k'} \mid x_{k'-1} ,\pi _{k'-1})\Bigg ]\right | \\ =&\sum _{z_{1:t}}\sum _{x_{0:t}}| r( x_{t})| \Bigg [\prod _{k=1}^{t}\mathbb {P}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})\notag \\ &\ \ \ -\prod _{k'=1}^{t} b( x_{0}) \ \bar {\mathbb {P}}( z_{k'} \mid x_{k'}) \ \mathbb {P}( x_{k'} \mid x_{k'-1} ,\pi _{k'-1})\Bigg ]\end {align}


\begin {align}=&\sum _{z_{1:t}}\sum _{x_{0:t}}| r( x_{t})| \Bigg [\prod _{k=1}^{t}\mathbb {P}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0}) \\ &-\prod _{k=1}^{t-1} b( x_{0})\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})\notag \\ &+\prod _{k=1}^{t-1}b( x_{0})\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1}) \notag \\ & -\prod _{k'=1}^{t} b( x_{0})\bar {\mathbb {P}}( z_{k'} ,x_{k'} \mid x_{k'-1} ,\pi _{k'-1})\Bigg ]\notag \\ =&\sum _{z_{1:t}}\sum _{x_{0:t}}| r( x_{t})| \Bigl \{\\ &\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})\Bigg [\prod _{k=1}^{t-1}\mathbb {P}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0}) \notag \\ &-\prod _{k=1}^{t-1} b( x_{0})\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\Bigg ] \notag \\ &+\prod _{k=1}^{t-1}b( x_{0})\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})[\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1}) \notag \notag \\ &-\ \bar {\mathbb {P}}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})]\Bigr \} \notag \end {align}


\begin {align}\leq & \mathcal {R}_{\max }\sum _{z_{1:t}}\sum _{x_{0:t}}\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})\Bigg [ b( x_{0})\prod _{k=1}^{t-1}\mathbb {P}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) \notag \\ &\ \ \ -b( x_{0})\prod _{k=1}^{t-1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\Bigg ]\\ &+\mathcal {R}_{\max }\sum _{z_{1:t}}\sum _{x_{0:t}}\prod _{k=1}^{t-1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})[\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})\notag \\ &\ \ \ - \bar {\mathbb {P}}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})]\notag \\ =&\mathcal {R}_{\max }\sum _{z_{1:t}}\sum _{x_{0:t}}\mathbb {P}( z_{t} ,x_{t} \mid x_{t-1} ,\pi _{t-1})\cdot \\ &\left [ b( x_{0})\prod _{k=1}^{t-1}\mathbb {P}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) -b( x_{0})\prod _{k=1}^{t-1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\right ] +\mathcal {R}_{\max } \delta _{t} \notag \end {align}


\begin {align}=&\mathcal {R}_{\max }\sum _{z_{1:t-1}}\sum _{x_{0:t-1}}\Bigg [ b( x_{0})\prod _{k=1}^{t-1}\mathbb {P}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) \\ &\ \ \ -b( x_{0})\prod _{k=1}^{t-1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1})\Bigg ] +\mathcal {R}_{\max } \delta _{t}, \notag \end {align}


\begin {align}=\ldots =\mathcal {R}_{\max }\sum _{\tau =1}^{t} \delta _{\tau }. \label {Xeqn18-A.53}\end {align}


$t\in [1,T]$


\begin {equation}\label {bound_delta} \left |V^\pi (b_t) - \bar {V}^\pi (b_t)\right | \leq \mathcal {R}_{\max }\sum _{t=1}^{T}\sum _{\tau =1}^{t} \delta _{\tau }\end {equation}


\begin {align}\delta _\tau &=\sum _{z_{1:\tau }}\sum _{x_{0:\tau }}\prod _{k=1}^{\tau -1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})[\mathbb {P}( z_{\tau } ,x_{\tau } \mid x_{\tau -1} ,\pi _{\tau -1}) \notag \\ & \ \ \ \ -\ \bar {\mathbb {P}}( z_{\tau } ,x_{\tau } \mid x_{\tau -1} ,\pi _{\tau -1})]\notag \\ &=\sum _{z_{1:\tau -1}}\sum _{x_{0:\tau -1}}\prod _{k=1}^{\tau -1}\bar {\mathbb {P}}( z_{k} ,x_{k} \mid x_{k-1} ,\pi _{k-1}) b( x_{0})[1\notag \\ & -\ \sum _{z_{\tau }}\sum _{x_{\tau }}\bar {\mathbb {P}}( z_{\tau } ,x_{\tau } \mid x_{\tau -1} ,\pi _{\tau -1})] \label {delta}\end {align}


\begin {align}&\left |V^\pi (b_t) - \bar {V}^\pi (b_t)\right | \notag \\ & \ \ \ \leq \! \mathcal {R}_{\max } \! \! \! \sum _{\tau =t+1}^{T} \!\! \left [ 1\! -\! \! \! \sum _{z_{t+1:{\tau }}}\sum _{x_{t:{\tau }}}b( x_{t}) \! \! \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\right ] \label {Xeqn20-A.56}\end {align}


\begin {equation}V^{\pi *}(b_t) \leq \textsc {UDB}^{\pi }(b_t), \label {Xeqn21-A.57}\end {equation}


$\pi $


\begin {align}\textsc {UDB}^{\pi }(b_t) &\triangleq \max _{a_t \in \mathcal {A}} [\bar {Q}^{\pi }(b_t, a_t) + \epsilon _z^\pi (b_t, a_t)] \\ & = \max _{a_t \in \mathcal {A}} [r(b_t, a_t) + \bar {\mathbb {E}}_{z_{t+1} | b_t,a_t}[\bar {V}^\pi (b_{t+1})] + \epsilon _z^\pi (b_t, a_t)].\end {align}


$\pi _t(b_t)$


$b_t$


\begin {equation}\pi _t(b_t) = \arg \max _{a_t \in \mathcal {A}} [\bar {Q}^{\pi }(b_t, a_t) + \epsilon _z^\pi (b_t, a_t)]. \label {Xeqn22-A.60}\end {equation}


$\displaystyle H_{t} =\{a_{0} ,z_{1} ,\dotsc ,z_{k} \notin \bar {\mathcal {Z}} ,\dotsc ,z_{t}\}$


\begin {equation}\bar {V}_{t}^{\pi }(\mathbb {P}( x_{t} \mid a_{0} ,z_{1} ,\dotsc ,z_{k} \notin \bar {\mathcal {Z}} ,\dotsc ,z_{t})) \equiv 0\ \ \forall k\in [ 1,t] . \label {Xeqn23-A.61}\end {equation}


\begin {equation}V_{t,\max } \triangleq \mathcal {R}_{\max } \cdot ( T-t-1) \label {Xeqn24-A.62}\end {equation}


$\displaystyle ( t=T)$


$T$


$b_T$


\begin {equation}\textsc {UDB}^{\pi }( b_{T}) =\max _{a_{T}}\{r( b_{T} ,a_{T}) +\epsilon _{z}( b_{T} ,a_{T})\} \equiv \arg \max _{a_{T}}\{r( b_{T} ,a_{T})\} \label {Xeqn25-A.63}\end {equation}


$\displaystyle V_{T}^{\star }( b_{T}) \leq \textsc {UDB}^{\pi }( b_{T})$


$t$


\begin {equation}V_{t}^{\star }( b_{t}) \leq \textsc {UDB}^{\pi }( b_{t}) . \label {Xeqn26-A.64}\end {equation}


$t-1$


\begin {equation}V_{t}^{\star }( b_{t}) \leq \textsc {UDB}^{\pi }( b_{t}) \ \ \forall b_{t} , \label {Xeqn27-A.65}\end {equation}


\begin {gather}Q^{\star }( b_{t-1} ,a_{t-1}) =r( b_{t-1} ,a_{t-1}) +\sum _{z_{t} \in \mathcal {Z}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right ) V_{t}^{\star }( b( z_{t}))\\ \leq r( b_{t-1} ,a_{t-1}) +\sum _{z_{t} \in \mathcal {Z}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right ) \textsc {UDB}^{\pi }( b( z_{t})) \ \\ =r( b_{t-1} ,a_{t-1}) +\sum _{z_{t} \in \mathcal {Z}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\left [\bar {V}_{t}^{\pi }( b_{t}) +\epsilon _{z}^{\pi }( b_{t})\right ].\end {gather}


\begin {gather}=r( b_{t-1} ,a_{t-1}) +\bar {\mathbb {E}}_{z_{t} \mid b_{t-1} ,a_{t-1}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] +\epsilon _{z}^{\pi }( b_{t-1} ,a_{t-1})\\ \equiv \textsc {UDB}^{\pi }( b_{t-1} ,a_{t-1}) .\end {gather}


$\displaystyle Q_{t-1}^{\star }( b_{t-1} ,a_{t-1}) \leq \textsc {UDB}^{\pi }( b_{t-1} ,a_{t-1})$


$a_t$


\begin {gather}\textsc {UDB}^{\pi }( b_{t-1}) =\max _{a_{t-1} \in \mathcal {A}}\left \{\textsc {UDB}^{\pi }( b_{t-1} ,a_{t-1})\right \}\\ \geq \max _{a_{t-1} \in \mathcal {A}}\left \{Q_{t-1}^{\star }( b_{t-1} ,a_{t-1})\right \} =V_{t-1}^{\star }( b_{t-1}) , \notag \end {gather}


$b_t$


$\pi _t$


$t$


$\bar {\mathbb {P}}(z_t \mid x_t)$


$z_t$


$x_t$


\begin {gather}\mathbb {E}_{z_{t}}\left [\bar {V}_{t}^{\pi }( b_{t}) +\epsilon _{z}^{\pi }( b_{t})\right ] = \bar {\mathbb {E}}_{z_{t}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] +\epsilon _{z}^{\pi }( b_{t-1} ,a_{t-1})\end {gather}


\begin {align}& \mathbb {E}_{z_{t}}\left [\bar {V}_{t}^{\pi }( b_{t}) +\epsilon _{z}^{\pi }( b_{t})\right ] = \\ & \mathbb {E}_{z_{t}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] +\mathbb {E}_{z_{t}}\Bigg [\mathcal {R}_{\max }\sum _{\tau =t+1}^{T}\Bigg [ 1 - \sum _{z_{t+1:\tau }}\sum _{x_{t:\tau }} b_{t}\prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k})\notag \\ & \ \ \mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1})\Bigg ]\Bigg ]\\ \notag \end {align}


\begin {align}&\hspace *{-2pt}\sum _{z_{t} \in \mathcal {Z}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\mathcal {R}_{\max }\sum _{\tau =t+1}^{T}\!\left [\! 1-\!\sum _{z_{t+1:\tau }}\sum _{x_{t:\tau }} b_{t}\!\prod _{k=t+1}^{\tau }\!\bar {\mathbb {P}}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1})\right ]\\ &\quad =\mathcal {R}_{\max }\sum _{\tau =t+1}^{T}\Bigg [ 1-\sum _{z_{t}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\sum _{z_{t+1:\tau }}\sum _{x_{t:\tau }} b( x_{t})\notag \\ &\qquad \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1})\Bigg ]\end {align}


$x_{t-1}$


\begin {gather}=\mathcal {R}_{\max }\sum _{\tau =t+1}^{T}[ 1-\sum _{z_{t}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\!\sum _{z_{t+1:\tau }}\sum _{x_{t-1:\tau }}\!\!\frac {\bar {\mathbb {P}}( z_{t} \mid x_{t})\mathbb {P}( x_{t} \mid x_{t-1} ,\pi _{t-1}) b( x_{t-1})}{\mathbb {P}\left ( z_{t} {\mid } H_{t}^{-}\right )} \cdot \\ \quad \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1})] \notag \end {gather}


\begin {gather}=\mathcal {R}_{\max }\sum _{\tau =t+1}^{T}[ 1-\sum _{z_{t:\tau }}\sum _{x_{t-1:\tau }}\bar {\mathbb {P}}( z_{t} \mid x_{t})\mathbb {P}( x_{t} \mid x_{t-1} ,a_{t-1}) b( x_{t-1}) \cdot \\ \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k})\mathbb {P}( x_{k} \mid x_{k-1} ,\pi _{k-1})] \equiv \epsilon _{z}^{\pi }( b_{t-1} ,a_{t-1}) \notag \end {gather}


$\mathbb {E}_{z_{t} \mid b_{t-1} ,a_{t-1}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] =\bar {\mathbb {E}}_{z_{t} \mid b_{t-1} ,a_{t-1}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ]$


\begin {align}\mathbb {E}_{z_{t} \mid b_{t-1} ,a_{t-1}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] &=\sum _{z_{t} \in \mathcal {Z}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\bar {V}_{t}^{\pi }( b_{t})\\ &=\sum _{z_{t} \in \bar {\mathcal {Z}}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\bar {V}_{t}^{\pi }( b_{t}) +\sum _{z_{t} \in \mathcal {Z} \backslash \bar {\mathcal {Z}}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right )\bar {V}_{t}^{\pi }( b_{t})\\ &=\sum _{z_{t} \in \bar {\mathcal {Z}}}\bar {\mathbb {P}}\left ( z_{t} \mid H_{t}^{-}\right ) \cdot \bar {V}_{t}^{\pi }( b_{t}) +\sum _{z_{t} \in \mathcal {Z} \backslash \bar {\mathcal {Z}}}\mathbb {P}\left ( z_{t} \mid H_{t}^{-}\right ) \cdot 0\\ &=\bar {\mathbb {E}}_{z_{t} \mid b_{t-1} ,a_{t-1}}\left [\bar {V}_{t}^{\pi }( b_{t})\right ] ,\end {align}


\begin {equation}a_t = \arg \max _{a_t \in \mathcal {A}}[ \textsc {UDB}^{\pi }(b_t,a_t)] = \arg \max _{a_t \in \mathcal {A}} [\bar {Q}^{\pi }(b_t, a_t) + \epsilon _z^\pi (b_t, a_t)]. \label {Xeqn28-A.83}\end {equation}


$\textsc {UDB}_n^{\pi }(b_t)$


$\textsc {UDB}_n$


\begin {equation}\textsc {UDB}_n^{\pi }(b_t) - \bar {V}_n^{\pi }(b_t) = \epsilon _{n,z}^\pi (b_t), \label {Xeqn29-A.84}\end {equation}


$n\in [0, \left |\mathcal {Z}\right |]$


$\bar {\mathcal {Z}}_n$


$\left |\mathcal {Z}\right |$


$\bar {\mathcal {Z}}_n(H_t)\equiv \bar {\mathcal {Z}}_n$


$t$


$H_t$


$n$


$\epsilon _{n,z}^\pi (b_t)$


\begin {equation}\epsilon _{n,z}^\pi (b_t)= \mathcal {R}_{\max } \! \! \! \sum _{\tau =t+1}^{T} \!\! \left [ 1\! -\! \! \! \sum _{z_{t+1:{\tau }}\in \bar {\mathcal {Z}}_n}\sum _{x_{t:{\tau }}}b( x_{t}) \! \! \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\right ], \label {Xeqn30-A.85}\end {equation}


$\epsilon _{n,z}^\pi (b_t)\rightarrow 0$


$n\rightarrow \left |\mathcal {Z}\right |$


\begin {equation}\sum _{z_{t+1:{\tau }}\in \bar {\mathcal {Z}}_n}\sum _{x_{t:{\tau }}}b( x_{t}) \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1}) \rightarrow 1 \label {Xeqn31-A.86}\end {equation}


$\bar {\mathcal {Z}}_n$


$n\in [0, \left |\mathcal {Z}\right |]$


\begin {equation}V^{\pi *}(b_t) \leq \textsc {UDB}_n^{\pi }(b_t) = \bar {V}_n^{\pi }(b_t) + \epsilon _{n,z}^\pi (b_t). \label {Xeqn32-A.87}\end {equation}


\begin {equation}\left |V^\pi (b_t) - \bar {V}_n^\pi (b_t)\right |\leq \epsilon _{n,z}^\pi (b_t), \label {Xeqn33-A.88}\end {equation}


$\pi $


$\bar {\mathcal {Z}}_n\subseteq \mathcal {Z}$


\begin {equation}\bar {V}_n^\pi (b_t) - \epsilon _{n,z}^\pi (b_t) \leq V^\pi (b_t) \leq V^{\pi *}(b_t) \leq \bar {V}_n^{\pi }(b_t) + \epsilon _{n,z}^\pi (b_t). \label {Xeqn34-A.89}\end {equation}


$\epsilon _{n,z}^\pi (b_t)\rightarrow 0$


$n\rightarrow \left |\mathcal {Z}\right |$


$\left |\mathcal {Z}\right |$


$\textsc {UDB}_n^{\pi }(b_t) \xrightarrow {n\rightarrow \left |\mathcal {Z}\right |} V^{\pi *}(b_t)$


$b_t$


$t$


$T$


$V^{\pi }(b_t)$


$\pi $


$\bar {V}^{\pi }(b_t)$


$\pi $


\begin {align}&\left |V^\pi (b_t) \! - \! \bar {V}^\pi (b_t)\right | \notag \\ &\leq \! \mathcal {R}_{\max } \! \! \! \sum _{\tau =t+1}^{T} \!\! \left [ 1\! -\! \! \! \sum _{z_{t+1:{\tau }}}\sum _{x_{t:{\tau }}}b( x_{t}) \! \! \prod _{k=t+1}^{\tau }\bar {\mathbb {P}}( z_{k} \mid x_{k}) \mathbb {P}( x_{k}\mid x_{k-1} ,\pi _{k-1})\right ]\triangleq \epsilon ^\pi (b_t). \label {Xeqn35-A.90}\end {align}


$\tau _{t} =\{x_{0} ,a_{0} ,z_{1} ,x_{1} ,a_{1} ,\dotsc ,a_{T-1} ,x_{t} ,z_{t}\}$


\begin {equation}V^{\pi }( b_{0}) =\sum _{\tau _{T}}\mathbb {P}^{\pi }( \tau _{T})\left [\sum _{t=0}^{T} r( x_{t} ,a_{t})\right ] \label {Xeqn36-A.91}\end {equation}


\begin {align}&=\sum _{\tau _{T}}\mathbb {P}^{\pi }( x_{1:T} ,z_{1:T} ,a_{1:T} \mid \tau _{0})\mathbb {P}^{\pi }( \tau _{0})\left [\sum _{t=0}^{T} r( x_{t} ,a_{t})\right ]\\ &=\sum _{\tau _{0}}\mathbb {P}^{\pi }( \tau _{0})\sum _{x_{1:T} ,z_{1:T} ,a_{1:T}}\mathbb {P}^{\pi }( x_{1:T} ,z_{1:T} ,a_{1:T} \mid \tau _{0})\left [\sum _{t=0}^{T} r( x_{t} ,a_{t})\right ]\\ &=\sum _{\tau _{0}}\mathbb {P}^{\pi }( \tau _{0})\Bigg [ r( x_{0} ,a_{0}) \notag \\ &\ \ \ +\sum _{x_{1:T} ,z_{1:T} ,a_{1:T}}\mathbb {P}^{\pi }( x_{1:T} ,z_{1:T} ,a_{1:T} \mid \tau _{0})\left [\sum _{t=1}^{T} r( x_{t} ,a_{t})\right ]\Bigg ]\end {align}


$\mathbb {P}^{\pi }( \cdot )$


$\bar {\mathbb {P}}^{\pi }( \cdot )$


$t=0$


\begin {align}& \leq \sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Bigg [ r( x_{0} ,a_{0}) +\sum _{x_{1:T} ,z_{1:T} ,a_{1:T}} \notag \\ &\ \ \ \mathbb {P}^{\pi }( x_{1:T} ,z_{1:T} ,a_{1:T} \mid \tau _{0})\left [\sum _{t=1}^{T} r( x_{t} ,a_{t})\right ]\Bigg ] \\ &\ \ \ +\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max,0}\end {align}


$t=1$


\begin {align}=&\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Bigg [ r( x_{0} ,a_{0}) +\sum _{x_{1:T} ,z_{1:T} ,a_{1:T}}\mathbb {P}^{\pi }( x_{2:T} ,z_{2:T} ,a_{2:T} \mid \tau _{1})\notag \\ &\ \ \ \mathbb {P}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid \tau _{0})\left [\sum _{t=1}^{T} r( x_{t} ,a_{t})\right ]\Bigg ]\\ &+\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max, 0}\\ =&\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Biggl [ r( x_{0} ,a_{0}) \\ \notag &+\sum _{x_{1} ,z_{1} ,a_{1}}\mathbb {P}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid \tau _{0})\sum _{x_{2:T} ,z_{2:T} ,a_{2:T}} \notag \\ &\ \ \ \notag \mathbb {P}^{\pi }( x_{2:T} ,z_{2:T} ,a_{2:T} \mid \tau _{1})\left [\sum _{t=1}^{T} r( x_{t} ,a_{t})\right ]\Biggr ]\\ &+\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max, 0}\\ =&\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Biggl [ r( x_{0} ,a_{0}) \\ \notag &+\sum _{x_{1} ,z_{1} ,a_{1}} \mathbb {P}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid \tau _{0})\Biggl [ r( x_{1} ,a_{1}) \\ \notag &+\sum _{x_{2:T} ,z_{2:T} ,a_{2:T}}\mathbb {P}^{\pi }( x_{2:T} ,z_{2:T} ,a_{2:T} \mid \tau _{1})\left [\sum _{t=2}^{T} r( x_{t} ,a_{t})\right ]\Biggr ]\Biggr ]\\ \notag &+\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max, 0}\end {align}


\begin {align}\leq & \sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Biggl [ r( x_{0} ,a_{0}) \\ \notag &+\sum _{x_{1} ,z_{1} ,a_{1}}\bar {\mathbb {P}}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid \tau _{0})\Biggl [ r( x_{1} ,a_{1}) \\ \notag &+\sum _{x_{2:T} ,z_{2:T} ,a_{2:T}}\mathbb {P}^{\pi }( x_{2:T} ,z_{2:T} ,a_{2:T} \mid \tau _{1})\left [\sum _{t=2}^{T} r( x_{t} ,a_{t})\right ]\Biggr ]\Biggr ]\\ &+\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\left [ 1-\sum _{x_{1} ,z_{1} ,a_{1}}\bar {\mathbb {P}}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid \tau _{0})\right ] \mathcal {V}_{max, 1} +\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max, 0}\end {align}


\begin {align}& =\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\Biggl [ r( x_{0} ,a_{0}) \\ \notag &\ \ +\sum _{x_{1} ,z_{1} ,a_{1}}\bar {\mathbb {P}}^{\pi }( x_{1} ,z_{1} ,a_{1} \mid x_{0} ,a_{0})\Bigg [ r( x_{1} ,a_{1}) +\sum _{x_{2:T} ,z_{2:T} ,a_{2:T}} \notag \\ &\ \ \ \notag \mathbb {P}^{\pi }( x_{2:T} ,z_{2:T} ,a_{2:T} \mid \tau _{1})\left [\sum _{t=2}^{T} r( x_{t} ,a_{t})\right ]\Bigg ]\Biggr ]\\ & +\left [\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0}) -\sum _{\tau _{1}}\bar {\mathbb {P}}^{\pi }( \tau _{1})\right ] \mathcal {V}_{max, 1} +\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \mathcal {V}_{max, 0}\end {align}


$t=T$


\begin {align}V^{\pi }( b_{0}) &\leq \sum _{t=0}^{T}\sum _{\tau _{t}}\bar {\mathbb {P}}^{\pi }( \tau _{t}) r( x_{t} ,a_{t}) +\mathcal {V}_{max, 0}\left [ 1-\sum _{\tau _{0}}\bar {\mathbb {P}}^{\pi }( \tau _{0})\right ] \notag \\ &\ \ \ +\sum _{t=0}^{T-1} \mathcal {V}_{max, t+1}\left [\sum _{\tau _{t}}\bar {\mathbb {P}}^{\pi }( \tau _{t}) -\sum _{\tau _{t+1}}\bar {\mathbb {P}}^{\pi }( \tau _{t+1})\right ] \label {Xeqn37-A.106}\end {align}


$\mathcal {A}$


$\mathcal {U}_0^\star (H_t)$


$\mathcal {L}_0^\star (H_t)$


$H_t$


\begin {align}&\mathcal {U}^\star _0(H_t) \triangleq \sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) \left [r(x_t, a_t) + \mathcal {V}_{\max , t}\right ] \notag \\ &\ \ \ + \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, a_t)}\left [\mathcal {U}^\star _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\max , t}\right ]\\ &\mathcal {L}^\star _0(H_t) \triangleq \sum _{\tau _{t}\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t) \left [r(x_t, a_t) + \mathcal {V}_{\min , t}\right ]\notag \\ &\ \ \ + \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t, a_t)}\left [\mathcal {L}^\star _0(H_{t+1}) - \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\min , t}\right ]\end {align}


\begin {align}&\mathcal {U}_0^\star (H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T), &\mathcal {L}_0^\star (H_T) \triangleq \sum _{\tau _{T}\in \mathcal {T}(H_T)} \bar {\mathbb {P}}(\tau _T) r(x_T).\end {align}


$\mathcal {L}_{0}^{\star }( H_{0}) \leq V^{\pi ^{*}}( b_{0}) \leq \mathcal {U}_{0}^{\star }( H_{0})$


\begin {equation}V^{\pi ^{*}}( b_{0}) \leq \mathcal {U}_{0}^{\pi ^{*}}( H_{0}) \leq \underset {\pi \in \Pi }{\max }\mathcal {U}_{0}^{\pi }( H_{0}) \label {Xeqn39-A.111}\end {equation}


\begin {align*}&\underset {\pi _{0:T} \in \Pi }{\max }\mathcal {U}_{0}^{\pi }( H_{0})\\ &=\underset {\pi _{0:T} \in \Pi }{\max }\sum _{\tau _{0} \in \mathcal {T}( H_{0})}\overline {\mathbb {P}}( \tau _{0})[ r( x_{0} ,\pi _{0}) \notag \\ &\ \ \ +\mathcal {V}_{max,0}] +\sum _{z_{1} \in \overline {\mathcal {Z}}( H_{0} ,\pi _{0})}\left [\mathcal {U}_{0}^{\pi }( H_{1}) -\sum _{\tau _{1} \in \mathcal {T}( H_{1})}\overline {\mathbb {P}}( \tau _{1}) \mathcal {V}_{max,0}\right ]\\ &=\underset {\pi _{0} \in \Pi }{\max }\Bigg \{\sum _{\tau _{0} \in \mathcal {T}( H_{0})}\overline {\mathbb {P}}( \tau _{0})[ r( x_{0} ,\pi _{0}) +\mathcal {V}_{max,0}] \notag \\ &\ \ \ +\underset {\pi _{1:T} \in \Pi }{\max }\sum _{z_{1} \in \overline {\mathcal {Z}}( H_{0} ,\pi _{0})}\left [\mathcal {U}_{0}^{\pi }( H_{1}) -\sum _{\tau _{1} \in \mathcal {T}( H_{1})}\overline {\mathbb {P}}( \tau _{1}) \mathcal {V}_{max,0}\right ]\Bigg \}\\ &=\underset {a_{0}}{\max }\Bigg \{\sum _{\tau _{0} \in \mathcal {T}( H_{0})}\overline {\mathbb {P}}( \tau _{0})[ r( x_{0} ,a_{0}) +\mathcal {V}_{max,0}] \notag \\ &\ \ \ +\sum _{z_{1} \in \overline {\mathcal {Z}}( H_{0} ,a_{0})}\left [\underset {\pi _{1:T} \in \Pi }{\max } \mathcal {U}_{0}^{\pi }( H_{1}) -\sum _{\tau _{1} \in \mathcal {T}( H_{1})}\overline {\mathbb {P}}( \tau _{1}) \mathcal {V}_{max,0}\right ]\Bigg \}\end {align*}


$t=T$


\begin {equation}V^{\pi ^{*}}( b_{0}) \leq \mathcal {U}_{0}^{\pi ^{*}}( H_{0}) \leq \underset {\pi \in \Pi }{\max }\mathcal {U}_{0}^{\pi }( H_{0}) = \mathcal {U}_{0}^{\star }( H_{0}). \qed \label {Xeqn40-A.112}\end {equation}


$\pi $


$\tau _T$


$\mathcal {U}_0^{\star }((H_t, a_t, o_{t+1}))$


$\mathcal {L}_0^{\star }((H_t, a_t, o_{t+1}))$


\begin {align}\mathcal {U}_0^{\star }((H_t, a_t, o_{t+1})) - \mathcal {L}_0^{\star }((H_t, a_t, o_{t+1})) = 0.\end {align}


$\pi $


$H_{t+1}=(H_{t}, a_t, o_{t+1})$


\begin {align*}&\mathcal {U}_0^\pi (H_{t+1}) - \mathcal {L}_0^\pi (H_{t+1}) = \\ &=\sum _{\tau _{t+1} \in \mathcal {T}(H_{t+1})}\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\max , {t+1}} \notag \\ &\ \ \ + \sum _{z_{t+2}\in \bar {\mathcal {Z}}(H_{t+1}, \pi _{t+1})}\left [\mathcal {U}^\pi _0(H_{t+2}) - \!\!\!\!\!\!\!\!\!\sum _{\tau _{t+2}\in \mathcal {T}(H_{t+2})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+2})\mathcal {V}_{\max , {t+1}}\right ]\\ &\ \ \ - \Bigg [\sum _{\tau _{t+1} \in \mathcal {T}(H_{t+1})}\bar {\mathbb {P}}(\tau _{t+1})\mathcal {V}_{\min , {t+1}} + \sum _{z_{t+2}\in \bar {\mathcal {Z}}(H_{t+1}, \pi _{t+1})}\Bigg [\mathcal {L}^\pi _0(H_{t+2}) \notag \\ &\ \ \ - \!\!\!\!\!\!\!\!\!\sum _{\tau _{t+2}\in \mathcal {T}(H_{t+2})}\!\!\!\!\!\!\!\!\!\bar {\mathbb {P}}(\tau _{t+2})\mathcal {V}_{\min , t+1}\Bigg ]Bigg]\\ &=\left [\sum _{\tau _{t+1} \in \mathcal {T}(H_{t+1})}\bar {\mathbb {P}}(\tau _{t+1}) - \sum _{z_{t+2}\in \bar {\mathcal {Z}}(H_{t+1}, \pi _{t+1})} \sum _{\tau _{t+2}\in \mathcal {T}(H_{t+2})}\bar {\mathbb {P}}(\tau _{t+2}) \right ] \Big (\mathcal {V}_{\max , {t+1}} \notag \\ &\ \ \ - \mathcal {V}_{\min , {t+1}}\Big ) + \sum _{z_{t+2}\in \bar {\mathcal {Z}}(H_{t+1}, \pi _{t+1})} \left [\mathcal {U}^\pi _0(H_{t+2}) - \mathcal {L}^\pi _0(H_{t+2}) \right ]\end {align*}


$\forall t\in \left [0, T-1 \right ], \mathcal {V}_{\max , {t+1}} - \mathcal {V}_{\min , {t+1}} \neq 0$


$\mathcal {U}_0^\pi (H_{t+1}) - \mathcal {L}_0^\pi (H_{t+1}) = 0$


\begin {equation}\ \sum _{\tau _{t+1} \in \mathcal {T}(H_{t+1})}\bar {\mathbb {P}}(\tau _{t+1}) - \sum _{z_{t+2}\in \bar {\mathcal {Z}}(H_{t+1}, \pi _{t+1})} \sum _{\tau _{t+2}\in \mathcal {T}(H_{t+2})}\bar {\mathbb {P}}(\tau _{t+2}) = 0, \ \forall t\in \left [0, T-2 \right ]. \label {Xeqn41-A.114}\end {equation}


\begin {align}1 - \sum _{\tau _{T}} \bar {\mathbb {P}}^{\star }(\tau _T \mid \tau _t, a_t, z_{t+1}, x)=0\end {align}


$(\tau _t, a_t, z_{t+1}, x)$


\begin {equation*}\Delta (H_t)\;\triangleq \;\mathcal {U}^\pi _0(H_t)-\mathcal {L}^\pi _0(H_t),\qquad \Delta V(H_t)\;\triangleq \;\mathcal {V}_{\max }(H_t)-\mathcal {V}_{\min }(H_t).\end {equation*}


\begin {align}\Delta (H_t) &=\sum _{\tau _t\in \mathcal {T}(H_t)} \bar {\mathbb {P}}(\tau _t)\,\Delta V(H_t) +\!\!\!\sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\!\!\! \bigl [ \Delta (H_{t+1}) \notag \\ & \ \ \
-\!\!\!\!\sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})}\!\!\! \bar {\mathbb {P}}(\tau _{t+1})\,\Delta V(H_t)\bigr ] . \label {eq:gap_recursion}\end {align}


$\mathcal {T}(H_{t+1})$


$\bar {\mathcal {Z}}$


$\bar {\mathcal {X}}(H_{t+1})$


$t+1$


\begin {equation*}\delta (H_t)\;\triangleq \; \sum _{\tau _t\in \mathcal {T}(H_t)}\bar {\mathbb {P}}(\tau _t)\;-\!\!\! \sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\; \sum _{\tau _{t+1}\in \mathcal {T}(H_{t+1})} \bar {\mathbb {P}}(\tau _{t+1}),\end {equation*}


$z_{t+1}\notin \bar {\mathcal {Z}}(H_t,\pi _t)$


$z_{t+1}\in \bar {\mathcal {Z}}$


$x_{t+1}\notin \bar {\mathcal {X}}(H_{t+1})$


$\tau _t$


\begin {equation*}\Delta (H_t)\;=\;\Delta V(H_t)\,\delta (H_t) +\!\!\!\sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\!\!\!\Delta (H_{t+1}),\end {equation*}


\begin {equation*}\mathcal {U}^\pi _0(H_t)-\mathcal {L}^\pi _0(H_t)\;=\; \Delta V(H_t)\,\delta (H_t) +\!\!\!\sum _{z_{t+1}\in \bar {\mathcal {Z}}(H_t,\pi _t)}\!\!\!\left [\mathcal {U}^\pi _0(H_{t+1})-\mathcal {L}^\pi _0(H_{t+1})\right ].\end {equation*}
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$\Delta V(H_k)$


$\bar {\mathcal {Z}}$


$\bar {\mathcal {X}}$


$\left |\mathcal {Z}\right |\approx 1.5 \times 10^6$


$k{\times }k$


$n$


$n=15$


$k=3$


$n$


$n$


$\mathsf {good},\mathsf {bad}$


$i$


$r_{\text {step}}<0$


$r_{\text {sensor}}<0$


$r_{\text {good}}>0$


$r_{\text {bad}}<0$


$r_{\text {exit}}>0$


$k{\times }n$


$5{\times }5$


$s=(x,y)$


$0.7$


$0.3$


$+10$


$-10$


$0$


$K$


$\{10, 50, 500, 5000\}$


$\lambda $


$\{0, 0.01, 0.1\}$


$c=\{0.1, 1.0, 10.0\}$


$V_{\max }$


$\mathcal {R}_{\max }\cdot (\mathcal {T}-t-1)$

https://orcid.org/0000-0002-1863-3442
mailto:moranboim@gmail.com
mailto:moranbar@campus.technion.ac.il
mailto:vadim.indelman@technion.ac.il
https://doi.org/10.1016/j.artint.2025.104442
https://doi.org/10.1016/j.artint.2025.104442
http://creativecommons.org/licenses/by/4.0/


M. Barenboim and V. Indelman

Fig. 1. The figure depicts two search trees: a complete tree (left) that considers all states and observations at each planning step, and a simplified tree (right) that 
incorporates only a subset of states and observations, linked to simplified models. Our methodology establishes a deterministic link between these two trees.

demonstrate how to harness the theoretical derivations to recent ad-
vancements in POMDP approximate solvers, by attaching the bounds to 
existing state-of-the-art algorithms. We show that despite their stochas-
tic nature, we can guarantee deterministic linkage to the optimal solu-
tion with marginal computational overhead. We extend the approach 
even further by demonstrating how to utilize the bounds to explore the 
tree and finally select an action based on the deterministic guarantees.

In this paper, our main contributions are as follows. First, we intro-
duce a simplified POMDP that uses a subset of the state and observation 
spaces to increase the computational efficiency. Then, we derive deter-
ministic bounds that relate between the former and the non-simplified 
POMDP. Notably, the bounds are only a function of the states and ob-
servations known to the simplified POMDP and hence can be calculated 
while planning to guide the decision-making and even exploration. We 
also show a tighter version of the bounds considered in the conference 
version of this paper, [6]. We further extend the approach and show that 
utilizing these bounds for exploration results in convergence to the opti-
mal solution of the POMDP in finite time; While the optimality guaran-
tees applied only to observation-space simplification in the conference 
version, we extend the results in this paper by deriving optimality guar-
antees for both state- and observation-space simplification. Based on 
the derived bounds, we illustrate how to incorporate the bounds into a 
general structure of common state-of-the-art algorithms. We utilize the 
bounds for exploration, decision-making and pruning of suboptimal ac-
tions while planning. Last, we demonstrate the practicality of the bounds 
by experimenting with our novel algorithms, suggested in this paper, 
namely DB-POMCP, RB-POMCP and DB-DESPOT, which are variants of 
the POMCP and DESPOT algorithms, to improve the empirical results in 
finite-horizon problems.

2.  Related work

Over the last two decades there has been significant progress in on-
line POMDP planning, aiming to balance the trade-off between compu-
tational efficiency and the quality of the solution.

The Heuristic Search Value Iteration (HSVI) [7] algorithm marked 
a significant milestone in POMDP planning by introducing an efficient 
point-based value iteration method that provides convergence guaran-
tees. HSVI leverages a heuristic to focus the search on the most promis-
ing regions of the belief space, thus improving computational efficiency 
while maintaining solution quality. Another pivotal algorithm, Succes-
sive Approximations of the Reachable Space under Optimal Policies 
(SARSOP) [8], builds on this idea by further refining the focus on reach-
able belief states under optimal policies. SARSOP’s ability to prune irrel-
evant parts of the belief space enables it to handle larger POMDPs more 
effectively. However, these approaches were limited in their scalability 
to large state spaces due to the necessity of computing a complete belief 
state at each posterior node in the planning tree.

SARSOP, like other point-based offline solvers, provides suboptimal-
ity guarantees after completion of an offline solve, whereas our setting is 

online decision making under tight per-decision budgets, yielding a cer-
tificate at each iteration. In large spaces with concentrated posteriors, 
exhaustive belief updates can allocate computation to low-probability 
regions; sampling-based online planners (including ours) naturally bias 
effort toward high-probability trajectories. Consequently, SARSOP is not 
our primary baseline for time-constrained online planning. That said, its 
focus on “optimally reachable” beliefs is complementary and can inform 
our selection of simplified state/observation models without changing 
guarantees.

The advent of Monte Carlo methods brought a significant shift in on-
line POMDP planning. The Partially Observable Monte Carlo Planning 
(POMCP) [1] algorithm introduced a particle filter-based approach com-
bined with Monte Carlo tree search (MCTS). POMCP uses a set of par-
ticles to represent the belief state and UCT (Upper Confidence bounds 
applied to Trees, [9]) to guide the search, making it much more scal-
able and for large state and observation spaces. POMCP is a forward 
search algorithm which handles the large state and observation spaces 
by aggregating Monte-Carlo rollouts of future scenarios in a tree struc-
ture. During each rollout, a single state particle is recursively propagated 
from the root node to the leaves of the tree. It adaptively trades off be-
tween actions that lead to unexplored areas of the tree and actions that 
lead to rewarding areas of the tree search by utilizing UCT [10]. The 
guarantees on the provided solution by POMCP are asymptotic, imply-
ing that the quality of the solution remains unknown within any finite 
time frame.

Another notable approximate solver, Anytime Regularized DESPOT 
(AR-DESPOT) [2,11] is derived from Regularized DESPOT, which holds 
theoretical guarantees for the solution quality with respect to its opti-
mal value. Similar to POMCP, AR-DESPOT performs forward search and 
propagates a single particle from the root node down to its leaves. It re-
lies on branch-and-bound approach in the forward search, and utilizes 
dynamic programming techniques to update the value function estimate 
at each node. In contrast to POMCP, Regularized DESPOT offers a prob-
abilistic lower bound on the value function obtained at the root node, 
providing a theoretical appeal by measuring its proximity to the optimal 
policy.

While the primary focus of this paper is on discrete POMDP planning, 
it is essential to acknowledge recent advancements in POMDP planning 
that encompass both discrete and continuous observation spaces. Few 
notable approaches include POMCPOW [3], LABECOP [4] and AdaOPS 
[5], which leverage explicit use of observation models. These algo-
rithms employ importance sampling mechanisms to weigh each state 
sample based on its likelihood value, which is assumed to be known. 
Although these methods have exhibited promising performance in prac-
tical scenarios, POMCPOW and LABECOP currently lack formal guar-
antees, while [5] derives probabilistic guarantees which do not hold in 
practice for AdaOPS algorithm, due to assumption relaxations. To ad-
dress this gap, [12,13] introduced a simplified solver aimed at bridging 
the theoretical gap between the empirical success of these algorithms 
and the absence of theoretical guarantees for continuous observation 
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spaces. Lim et al. [13], derive (i) high-probability bounds on the value 
loss of their particle-belief solver and (ii) a deterministic guarantee on its 
expected return-obtained after averaging over both the solvers internal 
randomness and the POMDPs stochastic dynamics. Because this guaran-
tee is only in expectation, a single execution may still violate the bound, 
whereas the results presented in this paper hold deterministically for ev-
ery run.

3.  Preliminaries

A finite horizon POMDP 𝑀 is defined as a tuple ⟨ ,,, 𝑇 , 𝑂,, 𝑏0⟩, 
where  , , and  represent a discrete state, action, and observa-
tion spaces, respectively. The transition density function 𝑇 (𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1) ≜
ℙ(𝑥𝑡+1|𝑥𝑡, 𝑎𝑡) defines the probability of transitioning from state 𝑥𝑡 ∈ 
to state 𝑥𝑡+1 ∈  by taking action 𝑎𝑡 ∈ . The observation density func-
tion 𝑂(𝑥𝑡, 𝑧𝑡) ≜ ℙ(𝑧𝑡|𝑥𝑡) expresses the probability of receiving observa-
tion 𝑧𝑡 ∈  from state 𝑥𝑡 ∈  . 𝑏0 ≡ ℙ(𝑥0 ∣ 𝐻0) represents the prior prob-
ability function, which is the distribution function over the state space 
at time 𝑡 = 0.

Given the limited information provided by observations, the true 
state of the agent is uncertain and a probability distribution func-
tion over the state space, also known as a belief, is maintained. The 
belief depends on the entire history of actions and observations, de-
noted as 𝐻𝑡 ≜ {𝑧1∶𝑡, 𝑎0∶𝑡−1}. We also define the propagated history 
as 𝐻−

𝑡 ≜ {𝑧1∶𝑡−1, 𝑎0∶𝑡−1}. At each time step 𝑡, the belief is updated 
by applying Bayes’ rule using the transition and observation models, 
given the previous action 𝑎𝑡−1 and the current observation 𝑧𝑡, 𝑏

(

𝑥𝑡
)

=
𝜂𝑡ℙ(𝑧𝑡|𝑥𝑡)

∑

𝑥𝑡−1∈ ℙ(𝑥𝑡|𝑥𝑡−1, 𝑎𝑡−1)𝑏
(

𝑥𝑡−1
)

, where 𝜂𝑡 denotes a normaliza-
tion constant and 𝑏𝑡 ≜ ℙ(𝑥𝑡 ∣ 𝐻𝑡) denotes the belief at time t. The updated 
belief, 𝑏𝑡, is sometimes referred to as the posterior belief, or simply the 
posterior. We will use these interchangeably throughout the paper.

A policy function 𝑎𝑡 = 𝜋𝑡(𝐻𝑡) determines the action to be taken at 
time step 𝑡, based on the history 𝐻𝑡 and time 𝑡. In the rest of the paper 
we write 𝜋𝑡 ≡ 𝜋𝑡(𝐻𝑡) for conciseness. The reward is defined as an expec-
tation over a state-dependent function, 𝑟(𝑏𝑡, 𝑎𝑡) = 𝔼𝑥∼𝑏𝑡 [𝑟𝑥(𝑥, 𝑎𝑡)], and is 
assumed to be bounded by −max ≤ 𝑟𝑥(𝑥, 𝑎𝑡) ≤ max. The value function 
for a policy 𝜋 over a finite horizon 𝑇  is defined as the expected cumu-
lative reward received by executing 𝜋 and can be computed using the 
Bellman update equation,

𝑉 𝜋
𝑡 (𝑏𝑡) = 𝑟(𝑏𝑡, 𝜋𝑡) + 𝔼

𝑧𝑡+1∶𝑇

[ 𝑇
∑

𝜏=𝑡+1
𝑟(𝑏𝜏 , 𝜋𝜏 )

]

. (1)

We use 𝑉 𝜋
𝑡 (𝑏𝑡) and 𝑉 𝜋

𝑡 (𝐻𝑡) interchangeably throughout the paper. The 
action-value function is defined by executing action 𝑎𝑡 and then follow-
ing policy 𝜋,

𝑄𝜋
𝑡 (𝑏𝑡, 𝑎𝑡) = 𝑟(𝑏𝑡, 𝑎𝑡) + 𝔼

𝑧𝑡+1∶𝑇

[ 𝑇
∑

𝜏=𝑡+1
𝑟(𝑏𝜏 , 𝜋𝜏 )

]

. (2)

The optimal value function may be computed using Bellman’s principle 
of optimality,
𝑉 𝜋∗
𝑡 (𝑏𝑡) = max

𝑎𝑡
{𝑟(𝑏𝑡, 𝑎𝑡) + 𝔼

𝑧𝑡+1 ∣𝑎𝑡 ,𝑏𝑡

[

𝑉 𝜋∗
𝑡+1(𝑏𝑡+1)

]

}. (3)

The goal of the agent is to find the optimal policy 𝜋∗ that maximizes 
the value function.

For notational convenience, we introduce a few more simplifying 
notations; We use 𝑚𝑎𝑥,𝑡,𝑚𝑖𝑛,𝑡 to denote upper an lower bounds on 
the value function at time step 𝑡. In the simplest case, these may be 
𝑚𝑎𝑥,𝑡 = (𝑇 − 𝑡) ⋅max, 𝑚𝑖𝑛,𝑡 = (𝑡 − 𝑇 ) ⋅max. Additionally, we denote a 
trajectory as, 𝜏𝑡 = {𝑥0, 𝑎0, 𝑧1, 𝑥1, 𝑎1,… , 𝑎𝑡−1, 𝑥𝑡, 𝑧𝑡}, and a corresponding 
probability distribution over the possible trajectories, ℙ(𝜏𝑡). We denote a 
policy-dependent trajectory distribution as ℙ𝜋 (𝜏𝑡) ≡ ℙ(𝜏𝑡 ∣ 𝑏0, 𝜋0,… , 𝜋𝑡).

4.  Simplified POMDP

Typically, it is infeasible to fully expand a Partially Observable 
Markov Decision Process (POMDP) tree due to the extensive compu-

tational resources and time required. To address this challenge, we pro-
pose two approaches. In the first approach, presented in Section 5.1, we 
propose a solver that selectively chooses a subset of the observations 
to branch from, while maintaining a full posterior belief at each node. 
This allows us to derive an hypothetical algorithm that directly uses our 
suggested deterministic bounds to choose which actions to take while 
exploring the tree. As in most scenarios computing a complete poste-
rior belief may be too expensive, in Section 5.2 we suggest an improved 
method that in addition to branching only a subset of the observations, 
selectively chooses a subset of the states at each encountered belief.

The presented approaches diverge from many existing algorithms 
that rely on black-box prior, transition, and observation models. Instead, 
our method directly utilizes state and observation probability values to 
evaluate both the value function and the associated bounds. In return, 
an anytime deterministic guarantee on the value function for the de-
rived policy concerning its deviation from the optimal value function is 
derived.

To that end, we define a simplified POMDP, which is a re-
duced version of the original POMDP that abstracts or ignores cer-
tain states and/or observations. A simplified POMDP, 𝑀̄ , is a tuple 
⟨̄ ,, ̄, 𝑇̄ , 𝑂̄,, 𝑏̄0⟩, where ̄ , ̄, 𝑇̄  and 𝑂̄ are the simplified versions 
of the state and observation spaces, and their corresponding transition 
and observation models,

𝑏̄0(𝑥) ≜

{

𝑏0(𝑥) , 𝑥 ∈ ̄0

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

ℙ̄(𝑥𝑡+1 ∣ 𝑥𝑡, 𝑎𝑡) ≜

{

ℙ(𝑥𝑡+1 ∣ 𝑥𝑡, 𝑎𝑡) , 𝑥𝑡+1 ∈ ̄(𝐻−
𝑡+1)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

ℙ̄(𝑧𝑡 ∣ 𝑥𝑡) ≜

{

ℙ(𝑧𝑡 ∣ 𝑥𝑡) , 𝑧𝑡 ∈ ̄(𝐻𝑡)
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

where ̄(𝐻−
𝑡+1) ⊆  and ̄(𝐻𝑡) ⊆  may be chosen arbitrarily, e.g. by 

sampling or choosing a fixed subset a-priori, as the derivations of the 
bounds are independent of the subset choice. Note that the simpli-
fied prior, transition and observation models are unnormalized and do 
not aim to represent valid distribution functions. For the rest of the 
sequel we drop the explicit dependence on the history, and denote 
̄(𝐻−

𝑡+1) ≡ ̄ , ̄(𝐻𝑡) ≡ ̄. The action space,  and prior probability, 𝑏0
are as defined in the original POMDP, 𝑀 .

With the definition of the simplified POMDP, we define a correspond-
ing simplified value function,

𝑉 𝜋 (𝑏̄0) ≜ 𝔼̄

[ 𝑇
∑

𝑡=0
𝑟(𝑥𝑡, 𝑎𝑡)

]

(7)

=
𝑇
∑

𝑡=0

∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

𝑡
∏

𝑘=1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ̄(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏̄(𝑥0)𝑟(𝑥𝑡, 𝑎𝑡) (8)

=
𝑇
∑

𝑡=0

∑

𝜏𝑡

ℙ̄𝜋 (𝜏𝑡)𝑟(𝑥𝑡, 𝑎𝑡), (9)

where the simplified expectation-like operator, 𝔼̄[⋅], is taken with re-
spect to the simplified prior, transition and observation models, which 
do not include the entire distribution, and thus is not a complete expec-
tation.

We use the simplified value function as a computationally-efficient 
replacement for the theoretical value function; For clarity, the simpli-
fied POMDP and consequently all derivations consider a finite-horizon 
POMDP, but its extension to the discounted infinite horizon case is 
straightforward, by introducing the discount factor whenever the re-
ward is being used, and an additive term for truncating the tree, 𝛾 𝑡𝑉𝑚𝑎𝑥,𝑡, 
as suggested in, e.g., [14].

In the following sections, we will derive upper and lower bounds be-
tween the simplified and the theoretical values of a given policy. Then, 
we will show how to use the simplification to achieve guarantees with 
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respect to the optimal value function of the original POMDP, and how 
to utilize these bounds for planning.

5.  Anytime dnistic guarantees for implified POMDPs

5.1.  Simplified observation space

We first analyze the performance guarantees of a simplified obser-
vation space, while assuming a complete belief update at each consid-
ered history node, i.e., ̄ ≡  . Such an approach is viable when the 
posterior belief can be calculated efficiently, e.g. when the state spae is 
sufficiently small. We start by presenting a bound between the simpli-
fied value function and the theoretical one of a given policy; then, we 
provide optimality guarantees for any policy, obtained by solving the 
simplified POMDP, both in terms of convergence and a deterministic 
bound, in which the optimal value, for an unknown policy must reside 
in.

5.1.1.  Fixed olicy uarantees for sied bservation paces
The following theorem describes the guarantees of the observation-

simplified value function with respect to its theoretical value,
Theorem 1.  Let 𝑏𝑡 belief state at time 𝑡, and 𝑇  be the last time step of the 
POMDP. Let 𝑉 𝜋 (𝑏𝑡) be the theoretical value function by following a policy 𝜋, 
and let 𝑉 𝜋 (𝑏𝑡) be the simplified value function, as defined in (7), by following 
the same policy. Then, for any policy 𝜋, the difference between the theoretical 
and simplified value functions is bounded as follows,
|

|

𝑉 𝜋 (𝑏𝑡)−𝑉 𝜋 (𝑏𝑡)||

≤max

𝑇
∑

𝜏=𝑡+1

[

1−
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

≜ 𝜖𝜋 (𝑏𝑡).

(10)

Proof.  The proof is provided in Appendix A.1. ∎
Similarly, the action-dependent bound on the value difference, de-

noted 𝜖𝜋 (𝑏𝑡, 𝑎𝑡), is the bound of taking action 𝑎𝑡 in belief 𝑏𝑡 and following 
policy 𝜋 thereafter,
|

|

𝑄𝜋 (𝑏𝑡, 𝑎𝑡)−𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡)|| ≤ 𝜖𝜋 (𝑏𝑡, 𝑎𝑡), (11)

where,

𝜖𝜋 (𝑏𝑡, 𝑎𝑡) ≜ max

𝑇
∑

𝜏=𝑡+1

[

1 −
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)ℙ(𝑧𝑡+1 ∣ 𝑥𝑡+1)ℙ(𝑥𝑡+1 ∣ 𝑥𝑡, 𝑎𝑡)⋅ (12)

𝜏
∏

𝑘=𝑡+2
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

.

Importantly, 𝜖𝜋 (𝑏𝑡) and 𝜖𝜋 (𝑏𝑡, 𝑎𝑡) only contain terms which depend on 
observations that are within the simplified space, 𝑧 ∈ ̄. This is an essen-
tial property of the bounds, as it is a value that can easily be calculated 
during the planning process and provides a certification of the policy 
quality at any given node along the tree. Furthermore, it is apparent 
from (10) that as the number of observations included in the simplified 
set, ̄, increases, the values of 𝜖𝜋 (𝑏𝑡) and 𝜖𝜋 (𝑏𝑡, 𝑎𝑡) consequently dimin-
ishes,

∑

𝑧1∶𝜏

∑

𝑥0∶𝜏

𝑏(𝑥0)
𝜏
∏

𝑘=1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

̄→
←←←←←←←←←←←←←←←←←←←←←→ 1

leading to a convergence towards the theoretical value function, i.e. 
𝜖𝜋 (𝑏𝑡) → 0 and 𝜖𝜋 (𝑏𝑡, 𝑎𝑡) → 0.

5.1.2.  Optimality guarantees for simplified observation spaces
Theorem 1 provides both lower and upper bounds for the theoreti-

cal value function, assuming a fixed policy. Using this theorem, we can 
derive upper and lower bounds for any policy, including the optimal 
one. This is achieved by applying the Bellman optimality operator to 
the upper bound in a repeated manner, instead of the estimated value 

function; In the context of tree search algorithms, our algorithm explores 
only a subset of the decision tree due to pruned observations. However, 
at every belief node encountered during this exploration, all potential 
actions are expanded. The action-value function of these expanded ac-
tions is bounded using the Upper Deterministic Bound, which we now 
define as

UDB𝜋 (𝑏𝑡, 𝑎𝑡) ≜ 𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡) + 𝜖𝜋 (𝑏𝑡, 𝑎𝑡) = 𝑟(𝑏𝑡, 𝑎𝑡) + 𝔼̄𝑧𝑡+1 [𝑉
𝜋 (𝑏𝑡+1)] + 𝜖𝜋 (𝑏𝑡, 𝑎𝑡).

(13)

In the event that no subsequent observations are chosen for a given 
history, the value of 𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡) simplifies to the immediate reward plus 
an upper bound for any subsequent policy, given by max ⋅ (𝑇 − 𝑡 − 1). 
Then, we make the following claim,
Lemma 1.  The optimal value function can be bounded by,

𝑉 𝜋∗(𝑏𝑡) ≤ UDB𝜋
†
(𝑏𝑡), (14)

where the policy 𝜋† is determined according to Bellman optimality over the 
UDB, i.e.
𝜋†(𝑏𝑡) = arg max

𝑎𝑡∈
[𝑄̄𝜋† (𝑏𝑡, 𝑎𝑡) + 𝜖𝜋

†
(𝑏𝑡, 𝑎𝑡)] = arg max

𝑎𝑡∈
UDB𝜋† (𝑏𝑡, 𝑎𝑡) (15)

UDB𝜋† (𝑏𝑡) ≜ max
𝑎𝑡∈

UDB𝜋† (𝑏𝑡, 𝑎𝑡). (16)

Proof.  The proof is provided in Appendix A.1.2. ∎
Notably, using UDB to find the optimal policy does not require a 

recovery of all the observations in the theoretical belief tree, but only a 
subset which depends on the definition and complexity of the POMDP. 
Each action-value is bounded by a lower and upper bound, which can 
be represented as an interval enclosing the theoretical value. When the 
bound intervals of two candidate actions do not overlap, one can clearly 
discern which action is suboptimal, rendering its subtree redundant for 
further exploration. This distinction sets UDB apart from current state-
of-the-art online POMDP algorithms. In those methods, any finite-time 
stopping condition fails to ensure optimality since the bounds used are 
either heuristic or probabilistic in nature.  Note, however, that previous 
offline algorithms did utilize similar pruning, such as SARSOP.

In addition to certifying the obtained policy with Bellman optimality 
criteria, one can utilize UDB as an exploration criteria,

𝑎𝑡 = arg max
𝑎𝑡∈

[UDB𝜋† (𝑏𝑡, 𝑎𝑡)], (17)

which ensures convergence to the optimal value function, as the number 
of visited posterior nodes increases. 
Corollary 1.1.  By utilizing Lemma 1 and the exploration criteria defined in
(17), an increasing number of explored belief nodes guarantees convergence 
to the optimal value function. 
Proof.  The proof is provided in Proof 2.3. ∎

5.2.  Simplified state and observation spaces

In most scenarios, a complete evaluation of posterior beliefs during 
the planning stage may pose significant computational challenges. To 
tackle this issue, we propose the use of a simplified state space in addi-
tion to the simplified observation space considered thus far. Specifically, 
we derive deterministic guarantees of the value function that allow for 
the selection of a subset from both the states and observations.

We start the analysis of simplifying the state-and-observation spaces 
by fixing a policy and derive upper and lower bounds for the theoretical, 
yet unknown, value function at the root node, hereafter referred to as 
the ’root-value’. This process involves the use of a simplified value func-
tion and an additional bonus term, which are easier to compute than 
the theoretical value function. Considering that various segments of the 
decision tree contribute differently to the upper bound, we then exam-
ine each subtree’s contribution separately, which leads to a recursive 
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formulation of the bound. Importantly, these bounds are exclusively de-
rived in relation to, and hold only with respect to, the root node. This is 
in contrast to the bounds shown in Theorem 1, which bound the value 
function of each node in the belief tree.

Using the deterministic bounds at the root allows us to certify the 
performance of following a particular policy starting from the root of 
the planning tree. Based on these bounds we extend previous results, 
shown in theorem  2, and show that, (1) exploring the tree with a bound 
that is formulated with respect to the root node leads to an optimistic 
estimation of the optimal value function with respect to that root node. 
(2) Utilizing the bounds for action exploration leads to convergence to 
the optimal solution of the entire tree.

5.2.1.  Fixed policy guarantees
We begin by stating the core theorem of our paper, which sets forth 

the upper and lower bounds of a root-value function, with a simplified 
value function,

Theorem 2. 
Let 𝑏0 and 𝑏̄0 be the theoretical and simplified belief states, respectively, 

at time 𝑡 = 0, and 𝑇  be the last time step of the POMDP. Let 𝑉 𝜋 (𝑏0) be the 
theoretical value function by following a policy 𝜋, and let 𝑉 𝜋 (𝑏̄0) be the sim-
plified value function by following the same policy, as defined in (7). Then, 
for any policy 𝜋, the theoretical value function and at the root is bounded as 
follows,

𝜋
0 (𝐻0) ≤ 𝑉 𝜋 (𝑏0) ≤  𝜋

0 (𝐻0). (18)

where,

 𝜋
0 (𝐻0) ≡ 𝑉 𝜋 (𝑏̄0) + 𝑚𝑎𝑥,0

[

1 −
∑

𝜏0

ℙ̄(𝜏0)

]

+
𝑇−1
∑

𝑡=0
𝑚𝑎𝑥,𝑡+1

[

∑

𝜏𝑡

ℙ̄𝜋 (𝜏𝑡) −
∑

𝜏𝑡+1

ℙ̄𝜋 (𝜏𝑡+1)

]

(19)

𝜋
0 (𝐻0) ≡ 𝑉 𝜋 (𝑏̄0) + 𝑚𝑖𝑛,0

[

1 −
∑

𝜏0

ℙ̄(𝜏0)

]

+
𝑇−1
∑

𝑡=0
𝑚𝑖𝑛,𝑡+1

[

∑

𝜏𝑡

ℙ̄𝜋 (𝜏𝑡) −
∑

𝜏𝑡+1

ℙ̄𝜋 (𝜏𝑡+1)

]

(20)

Proof.  The proof is provided in Proof A.1.4. ∎
In this theorem, we introduced a minor modification to the theorem 
presented in the conference version of this paper, [6]. We replaced the 
term max ⋅ (𝑇 − 𝑡) with the more general 𝑚𝑎𝑥,𝑡 by performing simple 
algebraic transitions; the principles and conclusions of both remain the 
same. A key aspect of Theorem 2 is that the bounds it establishes are 
exclusively dependent on the simplified state and observation spaces. 
This characteristic is vital in order to compute them during the planning 
phase.

The intuition behind the result of the derivation can be interpreted 
as follows; it takes a conservative approach to the value estimation by 
assuming that every trajectory not observed may obtain an extremum 
value. Moreover, it allows flexibility in how the trajectories are selected, 
which are allowed to be chosen arbitrarily in terms of the simplified state 
space, observation space and the horizon of each trajectory.

The theorem provides bounds for the theoretical value function at 
the root node of the search tree, given a policy. Using Bellman-like 
equations, one can restructure the formulation to compute the bounds 
recursively, which is crucial for making computations in online planning 
computationally efficient,
 𝜋

0 (𝐻𝑡) ≜
∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)𝑟(𝑥𝑡, 𝜋𝑡) +

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)max,𝑡 (21)

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

⎡

⎢

⎢

⎣

 𝜋
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)max,𝑡

⎤

⎥

⎥

⎦

𝜋
0 (𝐻𝑡) ≜

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)𝑟(𝑥𝑡, 𝜋𝑡) +

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)min,𝑡 (22)

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

⎡

⎢

⎢

⎣

𝜋
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)min,𝑡

⎤

⎥

⎥

⎦

and, 

 𝜋
0 (𝐻𝑇 ) ≜

∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ), 𝜋

0 (𝐻𝑇 ) ≜
∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ). (23)

where  (𝐻𝑡) represent the set of trajectories that consist history 𝐻𝑡, i.e., 
all trajectories  (𝐻𝑡) = {

(

𝑥0∶𝑡, 𝑎0∶𝑡−1, 𝑧1∶𝑡
)

∣ (𝑎0∶𝑡−1, 𝑧1∶𝑡) = 𝐻𝑡}. The val-
ues  𝜋

0 (𝐻𝑡) and 𝜋
0 (𝐻𝑡), represent the relative upper and lower bounds 

of node 𝐻𝑡 with respect to the value function at the root, 𝐻0. In other 
words, they do not represent the bounds of a policy starting from node 
𝐻𝑡. The first two summands have a similar structure to the standard 
Bellman update operator used in POMDPs, with two main differences. 
First, the state dependent reward is multiplied by the probability of the 
entire trajectory from the root node, and not the density value of the 
belief. Notably, the value of ∑𝜏𝑡∈ (𝐻𝑡) ℙ(𝜏𝑡) will generally not sum to 
one, due to the dependence of the summed trajectories on the history. 
Second, there is no expectation operator over the values of the next time 
step. This is a result of using a distribution over the trajectories, instead 
of the belief itself. The last summand assigns an optimistic value for the 
set of trajectories reached to node 𝐻𝑡 but not to 𝐻𝑡+1.

5.2.2.  Optimality guarantees
We have shown in Theorem 2 how to calculate bounds for the differ-

ence in value functions between the original and the simplified POMDP, 
given a fixed policy. In this section, we show that by applying Bellman-
like optimality operator on 0(𝐻𝑡), the obtained value at the root node 
is an upper bound for the optimal value function. More formally, 

Corollary 1.1.  Let  be the set of actions and  ⋆
0 (𝐻𝑡), ⋆

0 (𝐻𝑡) be the 
upper and lower bounds of node 𝐻𝑡 chosen according to,

 ⋆
0 (𝐻𝑡) ≜ max

𝑎𝑡∈

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)

[

𝑟(𝑥𝑡, 𝑎𝑡) + max,𝑡
]

(24)

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝑎𝑡)

⎡

⎢

⎢

⎣

 ⋆
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)max,𝑡

⎤

⎥

⎥

⎦

⋆
0 (𝐻𝑡) ≜ max

𝑎𝑡∈

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)

[

𝑟(𝑥𝑡, 𝑎𝑡) + min,𝑡
]

(25)

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝑎𝑡)

⎡

⎢

⎢

⎣

⋆
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)min,𝑡

⎤

⎥

⎥

⎦

and, 

 ⋆
0 (𝐻𝑇 ) ≜

∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ), ⋆

0 (𝐻𝑇 ) ≜
∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ). (26)

Then, the optimal root-value is bounded by,

⋆
0 (𝐻0) ≤ 𝑉 𝜋∗ (𝐻0) ≤  ⋆

0 (𝐻0). (27)

Proof.  The proof is provided in Proof A.1.5. ∎
In this corollary, we establish that employing the ’partial’ root-bound is 
sufficient for ensuring both upper and lower bounds in relation to the 
optimal value function at the root node. This approach differs from that 
presented in the previous section (see Lemma 1). There, each node in 
the tree was associated with its unique upper bound based on its value 
function. In contrast, the current corollary demonstrates that using the 
’partial’ bound across all nodes in the tree, which is valid only at the 
root, still guarantees bounded value for the optimal root-value function, 
while avoiding the requirement to maintain a complete belief at each 
node of the tree.
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Fig. 2. Bound intervals for different actions. The optimal value function is guar-
anteed to be between the maximal lower and upper bounds. As a result, actions 
𝑎2 and 𝑎4 are suboptimal and can be pruned safely.

5.2.3.  Early stopping criteria
Corollary 1.1 establishes that the recursive Bellman-like optimality 

operator, can be used to bound the optimal value function at the root. 
Since the bounds are deterministic, these bounds can be used for elimi-
nating suboptimal actions with full certainty while planning.

Then, we define the interval for each action at the root as,
𝐼⋆(𝐻0, 𝑎0) ∈

[

⋆
0 (𝐻𝑡, 𝑎0), ⋆

0 (𝐻0, 𝑎0)
]

, (28)

and use it as a tool for pruning suboptimal actions once an upper bound 
of an action falls below the best lower bounds amongst other actions 
within that node, see Fig. 2 for an illustration.

State-of-the-art algorithms such as POMCP and DESPOT employ 
probabilistic and asymptotic reasoning to approximate the optimal pol-
icy, and lack a mechanism to conclusively determine the suboptimality 
of an action, leading to infinite exploration of suboptimal actions. In 
contrast, utilizing (28) guarantees that once an action is identified sub-
optimal, it can be safely excluded from further consideration. Since the 
bounds can be integrated with arbitrary exploration methods, it provides 
a novel mechanism for pruning with contemporary SOTA algorithms.

Importantly, this approach introduces a practical stopping criterion 
for the online tree search process. When the exploration results in only 
one viable action remaining at the root, it signifies the identification 
of the optimal action. Note that this does note necessitate exhaustive 
exploration of the entire tree or complete convergence of the bounds.

5.2.4.  Exploration strategies
One can further utilize the root upper bound to determine the explo-

ration of actions, the simplified state and observation spaces at run time, 
which guarantees convergences to the optimal value function in finite 
time, which is novel for online tree search POMDPs solvers to the best 
of our knowledge. We define the following deterministic exploration 
strategy,

𝑎𝑡 = argmax
𝑎∈

{
∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)𝑟(𝑥𝑡, 𝑎) +

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝑎)

 ⋆
0 (𝐻𝑡+1) (29)

+ max,𝑡

⎡

⎢

⎢

⎣

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡) −

∑

𝜏𝑡+1∈ (𝐻𝑡 ,𝑎)
ℙ̄(𝜏𝑡+1)

⎤

⎥

⎥

⎦

}

𝑧𝑡+1 = arg max
𝑜𝑡+1∈(𝐻𝑡 ,𝑎𝑡)

{ ⋆
0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1)) − ⋆

0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1))} (30)

𝑥𝑡+1 = arg max
𝑥∈(𝐻𝑡+1)

{ℙ̄⋆((𝜏𝑡, 𝑎𝑡, 𝑧𝑡+1, 𝑥)) −
∑

𝜏𝑇

ℙ̄⋆(𝜏𝑇 ∣ 𝜏𝑡, 𝑎𝑡, 𝑧𝑡+1, 𝑥)}, (31)

where the actions are chosen by the highest upper bound, sometimes 
referred to as an “optimism in face of uncertainty”, which offers a balance 

between exploration and exploitation of actions that are possibly op-
timal or have high uncertainty in their value. Observations are chosen 
based on the maximum gap between the upper and lower bounds, which 
results in observations with high uncertainty in their value. Last, we de-
fine ℙ̄⋆(𝜏𝑡) as the probability of a trajectory 𝜏𝑡 under a policy derived 
from recursive action selection as per (29). Subsequently, the selection 
of states effectively maximizes the difference in probability between the 
individual trajectory density and the aggregate probability of all sam-
pled trajectories that begin with that particular trajectory. 
Corollary 2.2.  Performing exploration based on (29)–(31) ensures that 
the algorithm converges to the optimal value function within a finite number 
of planning iterations.
Proof.  The proof is provided in Proof A.1.6. ∎

Importantly, alternative methods for the state-action-observation ex-
ploration are viable and, if given limited planning time, may offer im-
proved performance in practice. Corollary 2.2 suggests one way that 
is guaranteed to converge in finite time. We leave the investigation 
of other approaches for finite-time convergence using the determinis-
tic bounds for future research.

Moreover, the bounds suggested in this chapter can be integrated 
with established algorithms like POMCP or DESPOT [1,2], an approach 
which offers several advantages over the existing algorithms. First, The 
quality of their solutions with respect to the optimal value can be as-
sessed and validated. Second, whenever the bounds at the root of the 
solver do not overlap, the planning session can be terminated early with 
a guarantee of identifying the optimal action.

5.3.  Impact of POMDP characteristics on deterministic bounds

To make explicit how POMDP characteristics affect bound tightness, we 
recast the upper–lower gap in terms of simplified-space coverage and 
local value spread.

The analytical bounds depend on trajectory-probability terms such 
as ∑𝜏 ℙ̄(𝜏) and on the auxiliary bounds max,𝑡,min,𝑡; starting from the 
recursive definitions in (21), let
Δ𝑉 (𝐻𝑡) ≜ max(𝐻𝑡) − min(𝐻𝑡),

𝛿(𝐻𝑡) ≜
∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡) −

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1),

then following the derivation in Section A.1.7, 
 𝜋

0 (𝐻𝑡) − 𝜋
0 (𝐻𝑡) = Δ𝑉 (𝐻𝑡) 𝛿(𝐻𝑡) +

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

[

 𝜋
0 (𝐻𝑡+1) − 𝜋

0 (𝐻𝑡+1)
]

.

(32)
Eq. (32) indicates that the gap accumulates the value function spread 

Δ𝑉 (𝐻𝑘) only on the time-steps where the trajectory is not part of the 
simplified set. The attributes govern the magnitude of the bounds are 
twofold:

1. Coverage probability of the simplified spaces. An important 
quantity is the probability mass of trajectories not part of the sim-
plified sets, ̄, ̄, rather than the cardinality of the omitted sets. A 
large POMDP whose belief is highly concentrated within the simpli-
fied spaces can therefore yield a smaller gap than a small, nearly 
uniform domain.

2. Magnitude of the local value spread, Δ𝑉 (𝐻𝑘). Each time a trajec-
tory leaves the simplified spaces, its contribution to the gap is scaled 
by Δ𝑉 (𝐻𝑘) = max(𝐻𝑘) − min(𝐻𝑘), the policy-independent spread 
between the upper and lower cumulative value bounds at node 𝐻𝑘. 
Sharpening these auxiliary bounds, e.g. by using informed rollouts 
or MDP-optimal surrogates, reduces Δ𝑉 (𝐻𝑘) and proportionally nar-
rows the overall gap.

Practical implication. Maximizing the probability coverage of the sim-
plified spaces, followed by tightening the auxiliary bounds to reduce 
Δ𝑉 (𝐻𝑘), yields a more favourable gap-complexity trade-off than a uni-
form expansion of the simplified spaces.
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6.  Algorithms

In this section we aim to describe how to fit our bounds to a blueprint 
of a general algorithm, named Algorithm—, which serves as an 
abstraction to many existing algorithms. Then, we explicitly describe 
two algorithms, DB-POMCP, an adaptation to POMCP that uses UCB 
for exploration, and our deterministic bounds for decision-making, and 
RB-POMCP, a particle-based solver that utilizes the bounds both for 
decision-making and exploration.

To compute the deterministic bounds, we utilize Bellman’s update 
and optimality criteria. This approach naturally fits dynamic program-
ming approaches such as DESPOT [11] and AdaOPS [5]. However, it 
may also be attached with algorithms that rely on Monte-Carlo estima-
tion, such as POMCP [1], by viewing the search tree as a policy tree.

While the analysis presented in Section 5 is general and indepen-
dent of the selection mechanism of the states or observations, we focus 
on sampling as a way to choose the simplified states at each belief node 
and the observations to branch from. Furthermore, the selection of the 
subspaces ̄ , ̄ need not be fixed, and may change over the course of 
time, similar to state-of-the-art algorithms, such as [1–5]. Alternative 
selection methods may also be feasible, as sampling from the correct 
distribution is not required for the bounds to hold. Importantly, attach-
ing our bounds to arbitrary exploration mechanism certifies the algo-
rithm solution with deterministic bounds to the optimal solution, and 
may result in an improved decision making, as will be shown in the 
experimental section.

Algorithm— is outlined in Algorithm 1. For clarity of exposition, 
we assume the following; at each iteration a single state particle is prop-
agated from the root node to the leaf (Line 2 of function Search). The 
selection of the next state and observations are done by sampling from 
the observation and transition models (Line 26), and each iteration ends 
with the full horizon of the POMDP (Line 23). However, none of these 
are a restriction of our approach and may be replaced with arbitrary 
number of particles, arbitrary state and observation selection mecha-
nism and a single or multiple expansions of new belief nodes at each 
iteration.

To compute the bounds, we require both the state trajectory, de-
noted as 𝜏, and its probability value, ℙ𝜏 . We use the state trajectory as 
a mechanism to avoid duplicate summation of an already accounted for 
probability value and is utilized to ascertain its uniqueness at a belief 
node. The probability value, ℙ𝜏 , is the likelihood of visiting a trajec-
tory 𝜏 = {𝑥0, 𝑎0, 𝑥1, 𝑧1,… , 𝑎𝑡−1, 𝑥𝑡, 𝑧𝑡} and is calculated as the product of 
the prior, transition and observation likelihoods (Line 16). If a trajec-
tory was not previously observed in a belief node, its reward value is 
multiplied by the likelihood of the trajectory. Each trajectory likelihood 
is maintained as part of a cumulative sum of all visited trajectories in 
the node. This cumulative sum is then used to calculate the upper and 
lower bounds, which are shown in Lines 32-33. The term computed in 
Line 32 represents the loss of holding only a subset of the states in 
node ℎ𝑎 from the set in node ℎ, plus the loss of having only a partial 
set of posterior nodes and a subset of their states. 𝑉max,𝑑 represents an 
upper bound for the value function. A simple bound on the value func-
tion can be 𝑉max,𝑑 = max ⋅ (𝐷 − 𝑑), but other more sophisticated bounds 
may also be used. In the experimental section we show that despite the 
additional overhead, utilizing the deterministic bounds, (20) and (19), 
within the actual decision-making improves the results of the respective 
algorithms.

6.1.  DB-POMCP

DB-POMCP uses Theorem 2 for decision-making once an optimal ac-
tion was found or at time-out given limited planning time. In aligning 
Algorithm 1 with the POMCP framework, the action exploration process 
determined by the Upper Confidence Bounds for Trees (UCT) criterion,

𝑈𝐶𝑇 (𝐻𝑡, 𝑎𝑡) = 𝑄̂𝑚𝑒𝑎𝑛(𝐻𝑡, 𝑎𝑡) + 𝑐

√

𝑙𝑜𝑔(𝑁(𝐻𝑡))
𝑁(𝐻𝑡, 𝑎𝑡)

, (33)

Algorithm 1 Algorithm—.
function Search 

1: while time permits do
2: Generate states 𝑥 from 𝑏0. 
3: 𝜏0 ←←← 𝑥
4: ℙ̄0 ←←← 𝑏(𝑥 = 𝜏0 ∣ ℎ0)
5: if 𝜏0 ∉ 𝜏(ℎ0) then
6: ℙ̄(ℎ0) ←←← ℙ̄(ℎ0) + ℙ̄0
7: end if
8: Simulate(ℎ0, 𝐷, 𝜏0, ℙ̄0).
9: end while
10: return 

function fwdUpdate(ℎ𝑎, ℎ𝑎𝑧, 𝜏𝑑 , ℙ̄𝜏 , 𝑥′) 
11: if 𝜏𝑑 ∉ 𝜏(ℎ𝑎) then
12: 𝜏(ℎ𝑎) ←←← 𝜏(ℎ𝑎) ∪ {𝜏𝑑}
13: 𝑅̄(ℎ𝑎) ←←← 𝑅̄(ℎ𝑎) + ℙ̄𝜏 ⋅ 𝑟(𝑥, 𝑎)
14: end if
15: 𝜏𝑑 ←←← 𝜏𝑑 ∪ {𝑥′}
16: ℙ̄𝜏 ←←← ℙ̄𝜏 ⋅𝑍𝑧∣𝑥′ ⋅ 𝑇𝑥′ ∣𝑥,𝑎
17: if 𝜏𝑑 ∉ 𝜏(ℎ𝑎𝑧) then
18: ℙ̄(ℎ𝑎𝑧) ←←← ℙ̄(ℎ𝑎𝑧) + ℙ̄𝜏
19: 𝜏(ℎ𝑎𝑧) ←←← 𝜏(ℎ𝑎𝑧) ∪ {𝜏𝑑}
20: end if
21: return 

function Simulate(ℎ, 𝑑, 𝜏𝑑 , ℙ̄𝑑 )
22: if 𝑑 = 0 then
23: return 
24: end if
25: Select action 𝑎. 
26: Generate next states and observations, 𝑥′, 𝑧.
27: 𝜏𝑑 , ℙ̄𝜏 ←←←fwdUpdate(ℎ𝑎, ℎ𝑎𝑧, 𝜏𝑑 , ℙ̄𝜏 , 𝑥′) 
28: Select next observation 𝑧. 
29: Simulate(ℎ𝑎𝑧, 𝑑 − 1, 𝜏𝑑 , ℙ̄𝜏 )
30: bwdUpdate(ℎ, ℎ𝑎, 𝑑) 
31: return 

function bwdUpdate(ℎ, ℎ𝑎, 𝑑) 
32: 𝜖(ℎ𝑎) = 𝛾𝐷−𝑑𝑉max,𝑑 (ℙ̄(ℎ) − ℙ̄(ℎ𝑎)) + 𝛾𝐷−𝑑−1 ⋅ 𝑉max,𝑑+1(ℙ̄(ℎ𝑎) −

∑

𝑧∣ℎ𝑎
ℙ̄(ℎ𝑎𝑧))

33: 𝑈 (ℎ𝑎)= 𝑅̄(ℎ𝑎) + 𝛾
∑

𝑧∣ℎ𝑎𝑈 (ℎ𝑎𝑧) + 𝜖(ℎ𝑎)
34: 𝐿(ℎ𝑎)= 𝑅̄(ℎ𝑎) + 𝛾

∑

𝑧∣ℎ𝑎𝐿(ℎ𝑎𝑧) − 𝜖(ℎ𝑎)
35: 𝑈 (ℎ) ←←← max𝑎′{𝑈 (ℎ𝑎′)}
36: 𝐿(ℎ) ←←← max𝑎′{𝐿(ℎ𝑎′)}
37: return

where 𝑄̂𝑚𝑒𝑎𝑛 is the average of the cumulative sums obtained from sam-
pled explorations, and 𝑐 is a tunable constant that trades-off exploration 
and exploitation during planning. Following this criterion, each state 
and observation is then sampled according to their respective transition 
and observation models. The original POMCP method, as discussed in 
[1], employs Monte-Carlo rollouts for value estimation and refrains from 
adding new nodes during these rollouts. During our evaluations we saw 
a negligible difference in performance, thus we avoid presenting roll-
outs to Algorithm 1 for simplicity. However, DB-POMCP supports both 
settings.

6.2.  RB-POMCP

Root-Bounded POMCP (RB-POMCP) differs from DB-POMCP in that 
it uses a different exploration method. We denote it RB-POMCP to em-
phasize that the bounds hold only in the root node, and are not valid 
for any node along the tree, yet unlike DB-POMCP the bounds are 
used for exploration in any part of the tree. The RB-POMCP method-
ology draws inspiration from the Monte-Carlo approach suggested the
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original POMCP algorithm and innovates by incorporating upper and 
lower bounds, as defined in (24) and (25), to guide both the exploration 
and the decision-making processes.

The RB-POMCP framework is constructed based on the structure out-
lined in Algorithm 1, which necessitates specific implementations for 
abstract state, action, and observation exploration functions. In our ap-
proach, we opt for an approximation to the exploration mechanism pro-
posed in Section 5.2.4. More precisely, while we adhere to the action 
exploration strategy described in the lemma, we simplify the observa-
tion and state exploration components by employing basic Monte-Carlo 
sampling techniques, akin to those used in the standard POMCP algo-
rithm. This modification is intended to enhance the algorithm’s planning 
efficiency without compromising the integrity of the algorithm bounds. 
The remainder of the RB-POMCP algorithm adheres closely to the pro-
cedures specified in Algorithm 1. Additionally, we use pruning and stop-
ping criteria, as described in Section 5.2.3.

6.3.  Time complexity

The cost of updating a posterior node depends on the underly-
ing solver. For dynamic programming methods, such as DESPOT and 
AdaOPS, the extra bookkeeping required by our bounds is negligible, so 
the original time complexity is essentially unchanged. For Monte Carlo 
methods, such as POMCP, the baseline complexity is 𝑂(||) related 
mainly to the action-selection; A naive implementation of our bounds 
adds another linear complexity term, making it 𝑂(|| + |̄|) due to the 
summation over the simplified observation space described in Corol-
lary 1.1 and Algorithm 1, Line 32 of bwdUpdate function.

However, we show that our added bounds can still be updated 
in 𝑂(||) by storing two additional scalar bookkeeping values for 
each node. Namely, incremental visitation probability, Δℙ(𝑖)(⋅), and the 
change to child’s upper bound, Δ (𝑖)(⋅).

Each POMCP visit touches a single observation child, so only that 
branch must be updated. The bounds are therefore updated incremen-
tally,

 (𝑖)
0 (𝐻𝑡, 𝑎𝑡) =  (𝑖−1)

0 (𝐻𝑡, 𝑎𝑡) + Δℙ
(𝑖)(

𝜏(𝑖)𝑡
)[

𝑟
(

𝑥(𝑖)𝑡 , 𝑎𝑡
)

+ 𝑉𝑚𝑎𝑥,𝑡
]

+ Δ (𝑖)
0

(

𝐻 (𝑖)
𝑡+1

)

− Δℙ
(𝑖)(

𝜏(𝑖)𝑡+1
)

𝑉𝑚𝑎𝑥,𝑡

and,

 (𝑖)
0 (𝐻𝑇 ) = max

𝑎𝑡∈

{

 (𝑖)
0 (𝐻𝑡, 𝑎𝑡)

}

. (34)

Because only one branch is modified, the per-visit overhead remains 
𝑂(||). The full algebraic derivation is provided in Section A.1.7.

During each visitation to a node, the trajectory bookkeeping 𝜏𝑑 ∈
𝜏(ℎ𝑎) shown in Algorithm 1 Line 11, is used to determine whether a 
specific trajectory has already been encountered at the current node. 
This verification process can potentially result in an added linear com-
plexity of 𝑂(𝐷), where 𝐷 represents the planning horizon. However, 
this overhead can be circumvented by assigning a unique ID value to 
each trajectory at the previous step and subsequently checking whether 
a pair, comprising the ID value and the new state, has already been vis-
ited. This approach reduces the overhead to an average time complexity 
of 𝑂(1) by utilizing hash maps efficiently.

While the asymptotic time complexity remains similar, the deter-
ministic certificates add a constant-factor bookkeeping cost per node, 
due to hash lookups and updates of bounds (𝑂(|𝐴|) worst-case plus 𝑂(1)
on average for Algorithm 1). Practical wall-clock effects depend on im-
plementation details and engineering optimizations, so we confine this 
section to the algorithmic analysis; systematic profiling is orthogonal to 
our contribution and left to future work.

7.  Experiments

Our primary contribution is of a theoretical nature, yet we conducted 
experiments to evaluate the practical applicability of our proposed 

methodologies. Initially, we adopted a hybrid strategy, such as DB-
POMCP, by incorporating our deterministic bounds exclusively for the 
decision-making, while relying on existing exploration strategies such as 
POMCP and DESPOT. Essentially, this approach enhances the POMCP 
and DESPOT frameworks by equipping them with mechanisms that en-
sure bounded sub-optimality. In a subsequent experimental setup, we 
applied the deterministic bounds to both the exploration and decision-
making phases, based on the methodologies outlined in Section 6.2. 
We then compared the empirical performance of using the determin-
istic bounds solely for decision-making to the baseline algorithms with-
out the incorporation of any deterministic bounds. Our findings indicate 
that while the application of deterministic bounds to decision-making 
can enhance performance, this strategy becomes less effective in iden-
tifying the optimal action as the complexity of the POMDP increases. 
Conversely, when the deterministic bounds are applied to both explo-
ration and decision-making (Section 6.2), the results demonstrate a lin-
ear increase in planning time proportional to the size of the POMDP, 
indicating better scalability.

7.1.  Deterministic-bounds for decision-making

In this subsection, we focus on the application of deterministic 
bounds exclusively for decision-making. This approach involves using 
a predefined exploration strategy during the planning phase, but mak-
ing the final action selection based on the deterministic bounds as shown 
in (24). The comparative results for the standard and deterministically-
bounded versions of the POMCP and DESPOT algorithms are presented 
in Table 1. These versions, labeled DB-POMCP and DB-DESPOT, adhere 
to the original exploration criteria of their respective algorithms but se-
lect actions based on the highest lower bound, as specified in (20).

Our experimental analysis reveals that, in addition to offering a level 
of optimality certification for the chosen actions, utilizing determinis-
tic bounds for action selection can enhance the expected cumulative 
reward. It is important to note, however, that this method does not 
always lead to better outcomes. Specifically, it may not be advanta-
geous in situations where the highest lower bound is less than other 
available upper bounds (for instance, comparing actions 𝑎1 and 𝑎3 in 
Fig. 2).  In practice, when the bounds overlap, using them for action 
selection provides only heuristic guidance and may be incorrect. In our 
experiments, we used uniform bounds accross all future belief states, 
which are not useful for guiding the policy towards better actions. In 
fact, the more symmetric the bounds are at different nodes, the more 
belief nodes the algorithm will have to visit to distinguish between the 
attractiveness of different actions. While this can be improved by consid-
ering informed bounds, e.g. MDP-optimal for upper bounds or rollout-
based lower bounds, we leave it for future work. When using uninformed 
bounds, a large POMDP with large state, observation or action spaces, 
leads to more loose bounds, which in turn reduces the effectiveness of 
our approach. This limitation is evident in the results for the Laser Tag 
POMDP, a considerably larger problem compared to the other POMDPs 
evaluated, where the deterministic bounds did not yield performance 
improvements.

7.2.  Root-bounds for decision-making and exploration

The performance outcomes presented in Table 2 reveal that the RB-
POMCP algorithm typically matches or surpasses the standard POMCP 
in various tested environments, except for the Navigate to Goal POMDP 
scenario. The limited performance in this particular context can be at-
tributed to the nature of RB-POMCP’s exploration strategy, which is de-
signed to assure optimality over extended planning periods but does 
not inherently guarantee enhanced results within limited planning du-
rations. Unlike probabilistic algorithms that leverage statistical concen-
tration inequalities-such as the Hoeffding inequality employed in the 
Upper Confidence Bounds for Trees (UCT) [14] exploration mechanism 
of POMCP-RB-POMCP adopts a more cautious strategy. This approach 
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Table 1 
Performance comparison with and without deterministic bounds, for short horizon, 𝐻 = 5.
    Tiger POMDP  Laser Tag  Discrete Light Dark  Baby POMDP
  Cardinalities (|𝑆|, |𝐴|, |𝑂|)  (2, 3, 2)  (5930, 5, ∼1.5×106)  (122, 5, 21)  (2, 2, 2)
  DB-DESPOT (ours)  3.74 ± 0.48 −5.29 ± 0.14 −5.29 ± 0.01 −3.92 ± 0.56
  AR-DESPOT  2.82 ± 0.55 −5.10 ± 0.14 −61.53 ± 5.80 −5.40 ± 0.85
  DB-POMCP (ours)  3.01 ± 0.21 −3.97 ± 0.24 −3.70 ± 0.82 −4.48 ± 0.57
  POMCP  2.18 ± 0.76 −3.92 ± 0.27 −4.51 ± 1.15 −5.39 ± 0.63

Table 2 
Performance comparison with and without deterministic bounds, for medium horizon, 𝐻 = 15.
    Algorithm  Tiger POMDP  Rock Sample  Navigate to Goal  Baby POMDP
  Cardinalities (|𝑆|, |𝐴|, |𝑂|)  (2, 3, 2)  (1801, 8, 3)  (25, 5, 25)  (2, 2, 2)
  RB-POMCP (ours)  1.53 ± 0.76  8.50± 0.22  61.21 ± 0.71 −11.97 ± 0.27
  DB-POMCP (ours) −1.05 ± 0.15  7.86 ± 0.21  62.37 ± 0.75 −12.13 ± 0.22
  POMCP −5.59 ± 0.24  5.69 ± 0.20  68.45 ± 0.69 −12.49 ± 0.27

Fig. 3. The graphs show the measured planning time for RB-POMCP and DB-POMCP to find the optimal action for Rock Sample under different UCT coefficient 
values. Guaranteeing the optimal action made possible by using the bounds in Corollary 1.1. All simulation runs were capped at 3,600 s.

entails considering both worst-case and best-case scenarios to establish 
a deterministic link with the optimal value may not always translate to 
superior immediate performance due to its conservative nature.

7.3.  Planning for optimal action

To highlight the differences between RB-POMCP and DB-POMCP, we 
examined each algorithm’s planning time to deterministically identify 
the optimal value, as depicted in Fig. 3. Notably, conventional state-of-
the-art algorithms, such as POMCP and DESPOT, cannot deterministi-
cally identify the optimal action within a finite timeframe and are thus 
not considered in this analysis.

DB-POMCP incorporates the Upper Confidence Bounds for Trees 
(UCT) method for exploration. However, its exploration strategy lacks 
awareness of the deterministic bounds of the optimal value function, 
leading to insufficient guidance toward actions that may be optimal. 
Despite significantly increasing the exploration coefficient beyond the 
values suggested in previous works [1,3], our findings, as presented in 
Fig. 3, demonstrate that the exploration bonus diminishes too rapidly, 

effectively limiting further exploration of potentially optimal actions. 
While UCT, in theory, explores the belief tree indefinitely, in practical 
scenarios, the exploration rate of new branches diminishes exponen-
tially over time, making it less effective in environments where iden-
tifying the optimal action in a reasonable time is crucial. Conversely, 
RB-POMCP directly utilizes upper and lower bounds information, fa-
cilitating a more targeted search for the optimal value. This approach 
leads to a planning duration that scales linearly with the problem size, 
as evidenced in Fig. 3, highlighting its efficiency in identifying optimal 
actions within a finite timeframe.

7.4.  Technical details

The implementation of our algorithm written in the Julia program-
ming language, using the Julia POMDPs package for evaluation and the 
vanilla POMDP versions, provided by [15]. This package primarily sup-
ports infinite horizon problems; however, we modified it to also handle 
finite-horizon POMDPs. The experiments were conducted on a comput-
ing platform consisting of an Intel(R) Core(TM) i7-7700 processor with 8 
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CPUs operating at 3.60GHz and 15.6GHz. The hyper-parameters for the 
POMCP and AR-DESPOT solvers, and further details about the POMDPs 
used for our experiments are detailed in the appendix.

8.  Discussion and future work

The principal advantage of the proposed algorithm is its explicit and 
deterministic upper and lower bounds on the value function, quanti-
fying the maximum deviation of the current policy from optimality. 
These bounds support a principled early termination by choosing a user-
specified tolerance 𝜖, guaranteeing an 𝜖-optimal policy and pruning of 
provably irrelevant action branches - capabilities that, to our knowl-
edge, existing online POMDP planners lack. Moreover, they allow one 
to utilize the bounds for deterministic limits on the probability of catas-
trophic outcomes, an essential feature for safety-critical tasks.

However, the present implementation has few shortcomings. First, 
while not limited by the theoretical derivations, our implementation 
considers naive bounds on the value function, that is, best-or-worst pos-
sible rewards at each unvisited history or state. This results in relatively 
loose bounds which hinders scalability to large POMDPs. Tighter alter-
natives, such as history-dependent relaxations or bounds derived from 
the MDP-optimal value function commonly used in other POMDP solvers 
would alleviate this issue. We believe that this opens a new avenue of 
research, that focuses on general, efficient value function bounds which 
are easily applicable to the present deterministic-bounds algorithm (see 
𝑉𝑚𝑎𝑥,𝑑 in Algorithm- Line 32). Second, it adds implementation com-
plexity, especially apparent compared simple algorithms like POMCP. 
Last, the bounds add bookkeeping overhead in both time and memory 
when attached to existing algorithms, although Section 6.3 shows that 
the asymptotic complexity can be reduced to match existing algorithms, 
and pruning suboptimal actions may further reduce the time efficiency.

9.  Conclusions

This work addresses the computational challenges of decision-
making under uncertainty, typically formalized as Partially Observable 
Markov Decision Processes (POMDPs). Our objective is to bridge the 
theoretical gap between the quality of solutions obtained from approxi-
mate solvers and the generally intractable optimal solutions. We present 
a novel methodology that guarantees anytime, deterministic bounds for 
approximate POMDP solvers. We achieve this by defining a simplified 
POMDP, that utilizes only a subset of the state and observation spaces 
to alleviate the computational burden. We establish a theoretical rela-
tionship between the optimal value function, which is computationally 
intensive, and a more tractable value function obtained using the sim-
plified POMDP. Based on the theoretical derivation, we suggest the use 
of the deterministic bounds to govern the exploration, while being the-
oretically guaranteed to converge to the optimal value in finite time. 
Building upon this theoretical framework, we show how to integrate 
the bounds with a general structure of common state-of-the-art algo-
rithms. Additionally, we leverage our deterministic bounds to develop 
an early stopping criterion that identifies convergence to the optimal 
value, a novel capability that is not possible with existing probabilis-
tic bounds. We introduce two algorithms that incorporate the suggested 
bounds, named DB-POMCP and RB-POMCP. DB-POMCP exploits the de-
terministic relationship for decision-making, while RB-POMCP uses the 
bounds for both decision-making and exploration. Finally, we evaluate 
the practical use of our approach by comparing the suggested algorithms 
to state-of-the-art algorithms, demonstrating their effectiveness.
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Appendix A. 

A.1.  Mathematical analysis

We start by restating the definition of the simplified value function,
𝑉 𝜋 (𝑏̄𝑡) ≜ 𝑟(𝑏̄𝑡, 𝜋𝑡) + 𝔼̄

[

𝑉 (𝑏𝑡)
]

(A.36)

=
∑

𝑥𝑡

𝑏̄(𝑥𝑡)𝑟(𝑥𝑡, 𝜋𝑡) +
∑

𝑧𝑡

ℙ̄(𝑧𝑡+1 ∣ 𝐻−
𝑡+1)𝑉 (𝑏̄(𝑧𝑡+1)), (A.37)

A.1.1. Theorem 1
Let 𝑏𝑡 belief state at time 𝑡, and 𝑇  be the last time step of the POMDP. 

Let 𝑉 𝜋 (𝑏𝑡) be the theoretical value function by following a policy 𝜋, 
and let 𝑉 𝜋 (𝑏𝑡) be the simplified value function, as defined in (7), by 
following the same policy. Then, for any policy 𝜋, the difference between 
the theoretical and simplified value functions is bounded as follows,
|

|

𝑉 𝜋 (𝑏𝑡)−𝑉 𝜋 (𝑏𝑡)||

≤max

𝑇
∑

𝜏=𝑡+1

[

1−
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

≜ 𝜖𝜋𝑧 (𝑏𝑡).

(A.38)

Proof.  For notational convenience, we derive the bounds for the value 
function by denoting the prior belief as 𝑏0,

𝑉 𝜋
0 (𝑏0) = 𝔼𝑧1∶𝑇

[ 𝑇
∑

𝑡=0
𝑟(𝑏𝑡, 𝑎𝑡)

]

(A.39)

applying the belief update equation,

𝑉 𝜋
0 (𝑏0) =

∑

𝑧1∶𝑇

𝑇
∏

𝜏=1
ℙ
(

𝑧𝜏 ∣ 𝐻−
𝜏
)

𝑇
∑

𝑡=0

[

∑

𝑥𝑡

ℙ(𝑧𝑡 ∣ 𝑥𝑡)
∑

𝑥𝑡−1
ℙ(𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)𝑏𝑡−1

ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
) 𝑟(𝑥𝑡, 𝑎𝑡)

]

(A.40)

=
∑

𝑧1∶𝑇

𝑇
∏

𝜏=1
ℙ
(

𝑧𝜏 ∣ 𝐻−
𝜏
)

𝑇
∑

𝑡=0

[

∑

𝑥0∶𝑡

∏𝑡
𝑘=1 ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)

∏𝑡
𝜏=1 ℙ

(

𝑧𝜏 ∣ 𝐻−
𝜏
)

𝑟(𝑥𝑡, 𝑎𝑡)

]

(A.41)

=
𝑇
∑

𝑡=0

∑

𝑧1∶𝑇

∑

𝑥0∶𝑇

𝑡
∏

𝑘=1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)𝑟(𝑥𝑡, 𝑎𝑡) (A.42)

which applies similarly to the simplified value function,

𝑉 𝜋
0 (𝑏0) =

𝑇
∑

𝑡=0

∑

𝑧1∶𝑇

∑

𝑥0∶𝑇

𝑡
∏

𝑘=1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)𝑟(𝑥𝑡, 𝑎𝑡). (A.43)

We begin the derivation by focusing on a single time step, 𝑡, and later 
generalize to the complete value function.
|𝔼𝑧1∶𝑡 [𝑟(𝑏𝑡)] − 𝔼̄𝑧1∶𝑡 [𝑟(𝑏̄𝑡)]| (A.44)
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=|
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

[
𝑡

∏

𝑘=1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)𝑟(𝑥𝑡) (A.45)

−
𝑡

∏

𝑘′=1
ℙ̄(𝑧𝑘′ ∣ 𝑥𝑘′ )ℙ(𝑥𝑘′ ∣ 𝑥𝑘′−1, 𝜋𝑘′−1)𝑏(𝑥0)𝑟(𝑥𝑡)]|

≤
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

|

|

|

|

|

|

𝑟(𝑥𝑡)

[ 𝑡
∏

𝑘=1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)

−
𝑡

∏

𝑘′=1
𝑏(𝑥0) ℙ̄(𝑧𝑘′ ∣ 𝑥𝑘′ )ℙ(𝑥𝑘′ ∣ 𝑥𝑘′−1, 𝜋𝑘′−1)

]

|

|

|

|

|

|

(A.46)

=
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

|𝑟(𝑥𝑡)|

[ 𝑡
∏

𝑘=1
ℙ(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)

−
𝑡

∏

𝑘′=1
𝑏(𝑥0) ℙ̄(𝑧𝑘′ ∣ 𝑥𝑘′ ) ℙ(𝑥𝑘′ ∣ 𝑥𝑘′−1, 𝜋𝑘′−1)

]

(A.47)

where the second transition is due to triangle inequality, the third transi-
tion is equality by the construction, i.e. using the simplified observation 
models imply that the difference is nonnegative. We add and subtract, 
followed by rearranging terms,

=
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

|𝑟(𝑥𝑡)|

[ 𝑡
∏

𝑘=1
ℙ(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0) (A.48)

−
𝑡−1
∏

𝑘=1
𝑏(𝑥0)ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

+
𝑡−1
∏

𝑘=1
𝑏(𝑥0)ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

−
𝑡

∏

𝑘′=1
𝑏(𝑥0)ℙ̄(𝑧𝑘′ , 𝑥𝑘′ ∣ 𝑥𝑘′−1, 𝜋𝑘′−1)

]

=
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

|𝑟(𝑥𝑡)|
{

(A.49)

ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

[ 𝑡−1
∏

𝑘=1
ℙ(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)

−
𝑡−1
∏

𝑘=1
𝑏(𝑥0)ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

+
𝑡−1
∏

𝑘=1
𝑏(𝑥0)ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)[ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

− ℙ̄(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)]
}

applying Holder’s inequality,

≤max
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

[

𝑏(𝑥0)
𝑡−1
∏

𝑘=1
ℙ(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

− 𝑏(𝑥0)
𝑡−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

(A.50)

+max
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

𝑡−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)[ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)

− ℙ̄(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)]

=max
∑

𝑧1∶𝑡

∑

𝑥0∶𝑡

ℙ(𝑧𝑡, 𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)⋅ (A.51)

[

𝑏(𝑥0)
𝑡−1
∏

𝑘=1
ℙ(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1) − 𝑏(𝑥0)

𝑡−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

+max𝛿𝑡

=max
∑

𝑧1∶𝑡−1

∑

𝑥0∶𝑡−1

[

𝑏(𝑥0)
𝑡−1
∏

𝑘=1
ℙ(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1) (A.52)

− 𝑏(𝑥0)
𝑡−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

+max𝛿𝑡,

following similar steps recursively, 

= … = max

𝑡
∑

𝜏=1
𝛿𝜏 . (A.53)

Finally, applying similar steps for every time step 𝑡 ∈ [1, 𝑇 ] results in,

|

|

𝑉 𝜋 (𝑏𝑡) − 𝑉 𝜋 (𝑏𝑡)|| ≤ max

𝑇
∑

𝑡=1

𝑡
∑

𝜏=1
𝛿𝜏 (A.54)

where,

𝛿𝜏 =
∑

𝑧1∶𝜏

∑

𝑥0∶𝜏

𝜏−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)[ℙ(𝑧𝜏 , 𝑥𝜏 ∣ 𝑥𝜏−1, 𝜋𝜏−1)

− ℙ̄(𝑧𝜏 , 𝑥𝜏 ∣ 𝑥𝜏−1, 𝜋𝜏−1)]

=
∑

𝑧1∶𝜏−1

∑

𝑥0∶𝜏−1

𝜏−1
∏

𝑘=1
ℙ̄(𝑧𝑘, 𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)𝑏(𝑥0)[1

−
∑

𝑧𝜏

∑

𝑥𝜏

ℙ̄(𝑧𝜏 , 𝑥𝜏 ∣ 𝑥𝜏−1, 𝜋𝜏−1)] (A.55)

plugging the term in (A.55) to (A.54) and expanding the terms results 
in the desired bound,
|

|

𝑉 𝜋 (𝑏𝑡) − 𝑉 𝜋 (𝑏𝑡)||

≤max

𝑇
∑

𝜏=𝑡+1

[

1−
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

(A.56)

which concludes our derivation. ∎

A.1.2.  Lemma
Lemma 1 The optimal value function can be bounded as

𝑉 𝜋∗(𝑏𝑡) ≤ UDB𝜋 (𝑏𝑡), (A.57)

where the policy 𝜋 is determined according to Bellman optimality over 
the UDB, i.e.
UDB𝜋 (𝑏𝑡) ≜ max

𝑎𝑡∈
[𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡) + 𝜖𝜋𝑧 (𝑏𝑡, 𝑎𝑡)] (A.58)

= max
𝑎𝑡∈

[𝑟(𝑏𝑡, 𝑎𝑡) + 𝔼̄𝑧𝑡+1|𝑏𝑡 ,𝑎𝑡 [𝑉
𝜋 (𝑏𝑡+1)] + 𝜖𝜋𝑧 (𝑏𝑡, 𝑎𝑡)]. (A.59)

Proof.  In the following, we prove by induction that applying the Bell-
man optimality operator on upper bounds to the value function in finite-
horizon POMDPs will result in an upper bound on the optimal value 
function. The notations are the same as the ones presented in the main 
body of the paper. We restate some of the definitions from the paper for 
convenience.

The policy 𝜋𝑡(𝑏𝑡) determined by applying Bellman optimality at belief 
𝑏𝑡, i.e.,
𝜋𝑡(𝑏𝑡) = arg max

𝑎𝑡∈
[𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡) + 𝜖𝜋𝑧 (𝑏𝑡, 𝑎𝑡)]. (A.60)

As it will be needed in the following proof, we also define the value of 
a belief which includes in its history at least one observation out of the 
simplified set, e.g. 𝐻𝑡 = {𝑎0, 𝑧1,… , 𝑧𝑘 ∉ ̄,… , 𝑧𝑡} as being equal to zero. 
Explicitly,

𝑉 𝜋
𝑡 (ℙ(𝑥𝑡 ∣ 𝑎0, 𝑧1,… , 𝑧𝑘 ∉ ̄,… , 𝑧𝑡)) ≡ 0 ∀𝑘 ∈ [1, 𝑡]. (A.61)

We also use the following simple bound,
𝑉𝑡,max ≜ max ⋅ (𝑇 − 𝑡 − 1) (A.62)

Base case (𝑡 = 𝑇 ) - At the final time step 𝑇 , for each belief we set 
the value function to be equal to the reward value at that belief state, 
𝑏𝑇  and taking the action that maximizes the immediate reward,
UDB𝜋 (𝑏𝑇 ) = max

𝑎𝑇
{𝑟(𝑏𝑇 , 𝑎𝑇 ) + 𝜖𝑧(𝑏𝑇 , 𝑎𝑇 )} ≡ argmax

𝑎𝑇
{𝑟(𝑏𝑇 , 𝑎𝑇 )} (A.63)
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which provides an upper bound for the optimal value function for the 
final time step, 𝑉 ⋆

𝑇 (𝑏𝑇 ) ≤ UDB𝜋 (𝑏𝑇 ).
Induction hypothesis - Assume that for a given time step, 𝑡, for all 
belief states the following holds,
𝑉 ⋆
𝑡 (𝑏𝑡) ≤ UDB𝜋 (𝑏𝑡). (A.64)

Induction step - We will show that the hypothesis holds for time step 
𝑡 − 1. By the induction hypothesis,
𝑉 ⋆
𝑡 (𝑏𝑡) ≤ UDB𝜋 (𝑏𝑡) ∀𝑏𝑡, (A.65)

thus,

𝑄⋆(𝑏𝑡−1, 𝑎𝑡−1) = 𝑟(𝑏𝑡−1, 𝑎𝑡−1) +
∑

𝑧𝑡∈
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

𝑉 ⋆
𝑡 (𝑏(𝑧𝑡)) (A.66)

≤ 𝑟(𝑏𝑡−1, 𝑎𝑡−1) +
∑

𝑧𝑡∈
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

UDB𝜋 (𝑏(𝑧𝑡)) (A.67)

= 𝑟(𝑏𝑡−1, 𝑎𝑡−1) +
∑

𝑧𝑡∈
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)[

𝑉 𝜋
𝑡 (𝑏𝑡) + 𝜖𝜋𝑧 (𝑏𝑡)

]

. (A.68)

For the following transition, we make use of Lemma 2,
= 𝑟(𝑏𝑡−1, 𝑎𝑡−1) + 𝔼̄𝑧𝑡 ∣𝑏𝑡−1 ,𝑎𝑡−1

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

+ 𝜖𝜋𝑧 (𝑏𝑡−1, 𝑎𝑡−1) (A.69)

≡ UDB𝜋 (𝑏𝑡−1, 𝑎𝑡−1). (A.70)

Therefore, under the induction hypothesis, 𝑄⋆
𝑡−1(𝑏𝑡−1, 𝑎𝑡−1) ≤

UDB𝜋 (𝑏𝑡−1, 𝑎𝑡−1). Taking the maximum over all actions 𝑎𝑡,
UDB𝜋 (𝑏𝑡−1) = max

𝑎𝑡−1∈

{

UDB𝜋 (𝑏𝑡−1, 𝑎𝑡−1)
}

(A.71)

≥ max
𝑎𝑡−1∈

{

𝑄⋆
𝑡−1(𝑏𝑡−1, 𝑎𝑡−1)

}

= 𝑉 ⋆
𝑡−1(𝑏𝑡−1),

which completes the induction step and the required proof. ∎
Lemma 2.  Let 𝑏𝑡 denote a belief state and 𝜋𝑡 a policy at time 𝑡. Let ℙ̄(𝑧𝑡 ∣
𝑥𝑡) be the simplified observation model which represents the likelihood of 
observing 𝑧𝑡 given 𝑥𝑡. Then, the following terms are equivalent, 
𝔼𝑧𝑡

[

𝑉 𝜋
𝑡 (𝑏𝑡) + 𝜖𝜋𝑧 (𝑏𝑡)

]

= 𝔼̄𝑧𝑡

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

+ 𝜖𝜋𝑧 (𝑏𝑡−1, 𝑎𝑡−1) (A.72)

Proof. 
𝔼𝑧𝑡

[

𝑉 𝜋
𝑡 (𝑏𝑡) + 𝜖𝜋𝑧 (𝑏𝑡)

]

= (A.73)

𝔼𝑧𝑡

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

+ 𝔼𝑧𝑡

[

max

𝑇
∑

𝜏=𝑡+1

[

1 −
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏𝑡
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)

ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]]

(A.74)

focusing on the second summand,
∑

𝑧𝑡∈
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

max

𝑇
∑

𝜏=𝑡+1

[

1 −
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏𝑡
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

(A.75)

= max

𝑇
∑

𝜏=𝑡+1

[

1 −
∑

𝑧𝑡

ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)

𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

(A.76)

by marginalizing over 𝑥𝑡−1,

= max

𝑇
∑

𝜏=𝑡+1
[1 −

∑

𝑧𝑡

ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡−1∶𝜏

ℙ̄(𝑧𝑡 ∣ 𝑥𝑡)ℙ(𝑥𝑡 ∣ 𝑥𝑡−1, 𝜋𝑡−1)𝑏(𝑥𝑡−1)
ℙ
(

𝑧𝑡∣𝐻−
𝑡
) ⋅

(A.77)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)]

canceling out the denominator,

= max

𝑇
∑

𝜏=𝑡+1
[1 −

∑

𝑧𝑡∶𝜏

∑

𝑥𝑡−1∶𝜏

ℙ̄(𝑧𝑡 ∣ 𝑥𝑡)ℙ(𝑥𝑡 ∣ 𝑥𝑡−1, 𝑎𝑡−1)𝑏(𝑥𝑡−1)⋅ (A.78)

𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)] ≡ 𝜖𝜋𝑧 (𝑏𝑡−1, 𝑎𝑡−1)

it is left to show that 𝔼𝑧𝑡 ∣𝑏𝑡−1 ,𝑎𝑡−1

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

= 𝔼̄𝑧𝑡 ∣𝑏𝑡−1 ,𝑎𝑡−1

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

. By the def-
inition of a value function of a belief not included in the simplified set, 
we have that,
𝔼𝑧𝑡 ∣𝑏𝑡−1 ,𝑎𝑡−1

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

=
∑

𝑧𝑡∈
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

𝑉 𝜋
𝑡 (𝑏𝑡) (A.79)

=
∑

𝑧𝑡∈̄
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

𝑉 𝜋
𝑡 (𝑏𝑡) +

∑

𝑧𝑡∈∖̄
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

𝑉 𝜋
𝑡 (𝑏𝑡)

(A.80)

=
∑

𝑧𝑡∈̄
ℙ̄
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

⋅ 𝑉 𝜋
𝑡 (𝑏𝑡) +

∑

𝑧𝑡∈∖̄
ℙ
(

𝑧𝑡 ∣ 𝐻−
𝑡
)

⋅ 0

(A.81)

= 𝔼̄𝑧𝑡 ∣𝑏𝑡−1 ,𝑎𝑡−1

[

𝑉 𝜋
𝑡 (𝑏𝑡)

]

, (A.82)

which concludes the derivation. ∎

A.1.3.  Lemma
Corollary 1.1 We restate the definition of UDB exploration criteria,

𝑎𝑡 = arg max
𝑎𝑡∈

[UDB𝜋 (𝑏𝑡, 𝑎𝑡)] = arg max
𝑎𝑡∈

[𝑄̄𝜋 (𝑏𝑡, 𝑎𝑡) + 𝜖𝜋𝑧 (𝑏𝑡, 𝑎𝑡)]. (A.83)

Corollary 2.3. Using Lemma 1 and the exploration criteria defined in (17) 
guarantees convergence to the optimal value function.
Proof. Let us define a sequence of bounds, UDB𝜋𝑛 (𝑏𝑡) and a correspond-
ing difference value between UDB𝑛 and the simplified value function,
UDB𝜋𝑛 (𝑏𝑡) − 𝑉 𝜋

𝑛 (𝑏𝑡) = 𝜖𝜋𝑛,𝑧(𝑏𝑡), (A.84)

where 𝑛 ∈ [0, ||] corresponds to the number of unique observation in-
stances within the simplified observation set, ̄𝑛, and || denotes the 
cardinality of the complete observation space. Additionally, for the clar-
ity of the proof and notations, assume that by construction the simplified 
set is chosen such that ̄𝑛(𝐻𝑡) ≡ ̄𝑛 remains identical for all time steps 
𝑡 and history sequences, 𝐻𝑡 given 𝑛. By the definition of 𝜖𝜋𝑛,𝑧(𝑏𝑡),

𝜖𝜋𝑛,𝑧(𝑏𝑡) = max

𝑇
∑

𝜏=𝑡+1

⎡

⎢

⎢

⎣

1−
∑

𝑧𝑡+1∶𝜏∈̄𝑛

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

⎤

⎥

⎥

⎦

,

(A.85)

we have that 𝜖𝜋𝑛,𝑧(𝑏𝑡) → 0 as 𝑛 → ||, since
∑

𝑧𝑡+1∶𝜏∈̄𝑛

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1) → 1 (A.86)

as more unique observation elements are added to the simplified obser-
vation space, ̄𝑛, eventually recovering the entire support of the discrete 
observation distribution.

From Lemma 1 we have that, for all 𝑛 ∈ [0, ||] the following holds,
𝑉 𝜋∗(𝑏𝑡) ≤ UDB𝜋𝑛 (𝑏𝑡) = 𝑉 𝜋

𝑛 (𝑏𝑡) + 𝜖𝜋𝑛,𝑧(𝑏𝑡). (A.87)

Additionally, from Theorem 1 we have that,
|

|

𝑉 𝜋 (𝑏𝑡) − 𝑉 𝜋
𝑛 (𝑏𝑡)|| ≤ 𝜖𝜋𝑛,𝑧(𝑏𝑡), (A.88)

for any policy 𝜋 and subset ̄𝑛 ⊆ , thus,
𝑉 𝜋
𝑛 (𝑏𝑡) − 𝜖𝜋𝑛,𝑧(𝑏𝑡) ≤ 𝑉 𝜋 (𝑏𝑡) ≤ 𝑉 𝜋∗(𝑏𝑡) ≤ 𝑉 𝜋

𝑛 (𝑏𝑡) + 𝜖𝜋𝑛,𝑧(𝑏𝑡). (A.89)

Since 𝜖𝜋𝑛,𝑧(𝑏𝑡) → 0 as 𝑛 → ||, and || is finite, it is guaranteed that 
UDB𝜋𝑛 (𝑏𝑡)

𝑛→||

←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑉 𝜋∗(𝑏𝑡) which completes our proof. ∎
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Moreover, depending on the algorithm implementation, the number of 
iterations can be finite (e.g. by directly choosing actions and observa-
tions to minimize the bound). A stopping criteria can also be verified by 
calculating the difference between the upper and lower bounds. The op-
timal solution is obtained once the upper bound equals the lower bound.

A.1.4. Theorem 2
Let 𝑏𝑡 belief state at time 𝑡, and 𝑇  be the last time step of the POMDP. 

Let 𝑉 𝜋 (𝑏𝑡) be the theoretical value function by following a policy 𝜋, 
and let 𝑉 𝜋 (𝑏𝑡) be the simplified value function, as defined in (7), by 
following the same policy. Then, for any policy 𝜋, the difference between 
the theoretical and simplified value functions is bounded as follows,
|

|

𝑉 𝜋 (𝑏𝑡)−𝑉 𝜋 (𝑏𝑡)||

≤max

𝑇
∑

𝜏=𝑡+1

[

1−
∑

𝑧𝑡+1∶𝜏

∑

𝑥𝑡∶𝜏

𝑏(𝑥𝑡)
𝜏
∏

𝑘=𝑡+1
ℙ̄(𝑧𝑘 ∣ 𝑥𝑘)ℙ(𝑥𝑘 ∣ 𝑥𝑘−1, 𝜋𝑘−1)

]

≜ 𝜖𝜋 (𝑏𝑡).

(A.90)

Proof. Recall that we define 𝜏𝑡 = {𝑥0, 𝑎0, 𝑧1, 𝑥1, 𝑎1,… , 𝑎𝑇−1, 𝑥𝑡, 𝑧𝑡}. Then 
the value function is defined as,

𝑉 𝜋 (𝑏0) =
∑

𝜏𝑇

ℙ𝜋 (𝜏𝑇 )

[ 𝑇
∑

𝑡=0
𝑟(𝑥𝑡, 𝑎𝑡)

]

(A.91)

applying chain rule and rearranging terms,

=
∑

𝜏𝑇

ℙ𝜋 (𝑥1∶𝑇 , 𝑧1∶𝑇 , 𝑎1∶𝑇 ∣ 𝜏0)ℙ𝜋 (𝜏0)

[ 𝑇
∑

𝑡=0
𝑟(𝑥𝑡, 𝑎𝑡)

]

(A.92)

=
∑

𝜏0

ℙ𝜋 (𝜏0)
∑

𝑥1∶𝑇 ,𝑧1∶𝑇 ,𝑎1∶𝑇

ℙ𝜋 (𝑥1∶𝑇 , 𝑧1∶𝑇 , 𝑎1∶𝑇 ∣ 𝜏0)

[ 𝑇
∑

𝑡=0
𝑟(𝑥𝑡, 𝑎𝑡)

]

(A.93)

=
∑

𝜏0

ℙ𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0)

+
∑

𝑥1∶𝑇 ,𝑧1∶𝑇 ,𝑎1∶𝑇

ℙ𝜋 (𝑥1∶𝑇 , 𝑧1∶𝑇 , 𝑎1∶𝑇 ∣ 𝜏0)

[ 𝑇
∑

𝑡=1
𝑟(𝑥𝑡, 𝑎𝑡)

]]

(A.94)

nullifying instances of the complete probability distribution, ℙ𝜋 (⋅), is 
denoted as a simplified distribution, ℙ̄𝜋 (⋅). We can then split and bound 
from above the value function, such that the simplified value function 
consideres only a subset of the trajectories at time 𝑡 = 0,

≤
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) +
∑

𝑥1∶𝑇 ,𝑧1∶𝑇 ,𝑎1∶𝑇

ℙ𝜋 (𝑥1∶𝑇 , 𝑧1∶𝑇 , 𝑎1∶𝑇 ∣ 𝜏0)

[ 𝑇
∑

𝑡=1
𝑟(𝑥𝑡, 𝑎𝑡)

]]

(A.95)

+

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0 (A.96)

We then apply similar steps on the next time step, 𝑡 = 1,

=
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) +
∑

𝑥1∶𝑇 ,𝑧1∶𝑇 ,𝑎1∶𝑇

ℙ𝜋 (𝑥2∶𝑇 , 𝑧2∶𝑇 , 𝑎2∶𝑇 ∣ 𝜏1)

ℙ𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝜏0)

[ 𝑇
∑

𝑡=1
𝑟(𝑥𝑡, 𝑎𝑡)

]]

(A.97)

+

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0 (A.98)

=
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) (A.99)

+
∑

𝑥1 ,𝑧1 ,𝑎1

ℙ𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝜏0)
∑

𝑥2∶𝑇 ,𝑧2∶𝑇 ,𝑎2∶𝑇

ℙ𝜋 (𝑥2∶𝑇 , 𝑧2∶𝑇 , 𝑎2∶𝑇 ∣ 𝜏1)

[ 𝑇
∑

𝑡=1
𝑟(𝑥𝑡, 𝑎𝑡)

]]

+

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0 (A.100)

=
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) (A.101)

+
∑

𝑥1 ,𝑧1 ,𝑎1

ℙ𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝜏0)

[

𝑟(𝑥1, 𝑎1)

+
∑

𝑥2∶𝑇 ,𝑧2∶𝑇 ,𝑎2∶𝑇

ℙ𝜋 (𝑥2∶𝑇 , 𝑧2∶𝑇 , 𝑎2∶𝑇 ∣ 𝜏1)

[ 𝑇
∑

𝑡=2
𝑟(𝑥𝑡, 𝑎𝑡)

]]]

+

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0

≤
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) (A.102)

+
∑

𝑥1 ,𝑧1 ,𝑎1

ℙ̄𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝜏0)

[

𝑟(𝑥1, 𝑎1)

+
∑

𝑥2∶𝑇 ,𝑧2∶𝑇 ,𝑎2∶𝑇

ℙ𝜋 (𝑥2∶𝑇 , 𝑧2∶𝑇 , 𝑎2∶𝑇 ∣ 𝜏1)

[ 𝑇
∑

𝑡=2
𝑟(𝑥𝑡, 𝑎𝑡)

]]]

+
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

1 −
∑

𝑥1 ,𝑧1 ,𝑎1

ℙ̄𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝜏0)

]

𝑚𝑎𝑥,1 +

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0

(A.103)

which results in,

=
∑

𝜏0

ℙ̄𝜋 (𝜏0)

[

𝑟(𝑥0, 𝑎0) (A.104)

+
∑

𝑥1 ,𝑧1 ,𝑎1

ℙ̄𝜋 (𝑥1, 𝑧1, 𝑎1 ∣ 𝑥0, 𝑎0)

[

𝑟(𝑥1, 𝑎1) +
∑

𝑥2∶𝑇 ,𝑧2∶𝑇 ,𝑎2∶𝑇

ℙ𝜋 (𝑥2∶𝑇 , 𝑧2∶𝑇 , 𝑎2∶𝑇 ∣ 𝜏1)

[ 𝑇
∑

𝑡=2
𝑟(𝑥𝑡, 𝑎𝑡)

]]]

+

[

∑

𝜏0

ℙ̄𝜋 (𝜏0) −
∑

𝜏1

ℙ̄𝜋 (𝜏1)

]

𝑚𝑎𝑥,1 +

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

𝑚𝑎𝑥,0 (A.105)

Performing the same steps iteratively up to time 𝑡 = 𝑇 , yields the desired 
outcome,

𝑉 𝜋 (𝑏0) ≤
𝑇
∑

𝑡=0

∑

𝜏𝑡

ℙ̄𝜋 (𝜏𝑡)𝑟(𝑥𝑡, 𝑎𝑡) + 𝑚𝑎𝑥,0

[

1 −
∑

𝜏0

ℙ̄𝜋 (𝜏0)

]

+
𝑇−1
∑

𝑡=0
𝑚𝑎𝑥,𝑡+1

[

∑

𝜏𝑡

ℙ̄𝜋 (𝜏𝑡) −
∑

𝜏𝑡+1

ℙ̄𝜋 (𝜏𝑡+1)

]

(A.106)

 ∎

A.1.5.  Lemma
Lemma 1.1 Let  be the set of actions and  ⋆

0 (𝐻𝑡), ⋆
0 (𝐻𝑡) be the 

upper and lower bounds of node 𝐻𝑡 chosen according to,

 ⋆
0 (𝐻𝑡) ≜

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)

[

𝑟(𝑥𝑡, 𝑎𝑡) + max,𝑡
]

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝑎𝑡)

⎡

⎢

⎢

⎣

 ⋆
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)max,𝑡

⎤

⎥

⎥

⎦

(A.107)

⋆
0 (𝐻𝑡) ≜

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡)

[

𝑟(𝑥𝑡, 𝑎𝑡) + min,𝑡
]

+
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝑎𝑡)

⎡

⎢

⎢

⎣

⋆
0 (𝐻𝑡+1) −

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)min,𝑡

⎤

⎥

⎥

⎦

(A.108)
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and, 
 ⋆

0 (𝐻𝑇 ) ≜
∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ), ⋆

0 (𝐻𝑇 ) ≜
∑

𝜏𝑇 ∈ (𝐻𝑇 )
ℙ̄(𝜏𝑇 )𝑟(𝑥𝑇 ).

(A.109)

Then, the optimal root-value is bounded by,
⋆
0 (𝐻0) ≤ 𝑉 𝜋∗ (𝐻0) ≤  ⋆

0 (𝐻0). (A.110)

Proof. We wish to show that ⋆
0 (𝐻0) ≤ 𝑉 𝜋∗ (𝑏0) ≤  ⋆

0 (𝐻0). We derive a 
proof for one side of the inequality, while the other follows similarly. 
First note that,
𝑉 𝜋∗ (𝑏0) ≤  𝜋∗

0 (𝐻0) ≤ max
𝜋∈Π

 𝜋
0 (𝐻0) (A.111)

where the first inequality is due to Theorem 2, and the second inequality 
is true by definition. However, the claim in Corollary 1.1 is a recursive 
claim, while the bound provided in Theorem 2 only holds with respect 
to the root. Thus, for completeness, we also need to show that the best 
action can be chosen recursively, even though the bound is ‘partial‘ in 
different parts of the tree.
max

𝜋0∶𝑇 ∈Π
 𝜋

0 (𝐻0)

= max
𝜋0∶𝑇 ∈Π

∑

𝜏0∈ (𝐻0)
ℙ(𝜏0)[𝑟(𝑥0, 𝜋0)

+ 𝑚𝑎𝑥,0] +
∑

𝑧1∈(𝐻0 ,𝜋0)

⎡

⎢

⎢

⎣

 𝜋
0 (𝐻1) −

∑

𝜏1∈ (𝐻1)
ℙ(𝜏1)𝑚𝑎𝑥,0

⎤

⎥

⎥

⎦

= max
𝜋0∈Π

{

∑

𝜏0∈ (𝐻0)
ℙ(𝜏0)[𝑟(𝑥0, 𝜋0) + 𝑚𝑎𝑥,0]

+ max
𝜋1∶𝑇 ∈Π

∑

𝑧1∈(𝐻0 ,𝜋0)

⎡

⎢

⎢

⎣

 𝜋
0 (𝐻1) −

∑

𝜏1∈ (𝐻1)
ℙ(𝜏1)𝑚𝑎𝑥,0

⎤

⎥

⎥

⎦

}

= max
𝑎0

{

∑

𝜏0∈ (𝐻0)
ℙ(𝜏0)[𝑟(𝑥0, 𝑎0) + 𝑚𝑎𝑥,0]

+
∑

𝑧1∈(𝐻0 ,𝑎0)

⎡

⎢

⎢

⎣

max
𝜋1∶𝑇 ∈Π

 𝜋
0 (𝐻1) −

∑

𝜏1∈ (𝐻1)
ℙ(𝜏1)𝑚𝑎𝑥,0

⎤

⎥

⎥

⎦

}

which continues similarly up to time 𝑡 = 𝑇 , which completes the proof,
𝑉 𝜋∗ (𝑏0) ≤  𝜋∗

0 (𝐻0) ≤ max
𝜋∈Π

 𝜋
0 (𝐻0) =  ⋆

0 (𝐻0). ∎ (A.112)

 ∎

A.1.6. Lemma 2.2
Performing exploration based on (29)–(31) ensures that the algo-

rithm converges to the optimal value function within a finite number of 
planning iterations.
Proof. Consider a given policy 𝜋. We claim that following the state and 
observation selection criteria in Eqs. (30) and (31) will lead to visiting 
unexplored trajectories 𝜏𝑇  at every iteration unless all relevant trajecto-
ries have already been explored.

To show this, note that the upper bound  ⋆
0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1)) and the 

lower bound ⋆
0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1)) will converge when the bound interval is 

zero, i.e., 
 ⋆

0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1)) − ⋆
0 ((𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1)) = 0. (A.113)

This convergence occurs when all future trajectories by following pol-
icy 𝜋 from node 𝐻𝑡+1 = (𝐻𝑡, 𝑎𝑡, 𝑜𝑡+1) until the end of the horizon were 
explored,

 𝜋
0 (𝐻𝑡+1) − 𝜋

0 (𝐻𝑡+1) =

=
∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)max,𝑡+1

+
∑

𝑧𝑡+2∈̄(𝐻𝑡+1 ,𝜋𝑡+1)

⎡

⎢

⎢

⎣

 𝜋
0 (𝐻𝑡+2) −

∑

𝜏𝑡+2∈ (𝐻𝑡+2)
ℙ̄(𝜏𝑡+2)max,𝑡+1

⎤

⎥

⎥

⎦

−

[

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1)min,𝑡+1 +

∑

𝑧𝑡+2∈̄(𝐻𝑡+1 ,𝜋𝑡+1)

[

𝜋
0 (𝐻𝑡+2)

−
∑

𝜏𝑡+2∈ (𝐻𝑡+2)
ℙ̄(𝜏𝑡+2)min,𝑡+1

]

𝐵𝑖𝑔𝑔]

=
⎡

⎢

⎢

⎣

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1) −

∑

𝑧𝑡+2∈̄(𝐻𝑡+1 ,𝜋𝑡+1)

∑

𝜏𝑡+2∈ (𝐻𝑡+2)
ℙ̄(𝜏𝑡+2)

⎤

⎥

⎥

⎦

(

max,𝑡+1

− min,𝑡+1

)

+
∑

𝑧𝑡+2∈̄(𝐻𝑡+1 ,𝜋𝑡+1)

[

 𝜋
0 (𝐻𝑡+2) − 𝜋

0 (𝐻𝑡+2)
]

since ∀𝑡 ∈ [0, 𝑇 − 1],max,𝑡+1 − min,𝑡+1 ≠ 0, then  𝜋
0 (𝐻𝑡+1) − 𝜋

0 (𝐻𝑡+1) =
0 only if ,

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1) −

∑

𝑧𝑡+2∈̄(𝐻𝑡+1 ,𝜋𝑡+1)

∑

𝜏𝑡+2∈ (𝐻𝑡+2)
ℙ̄(𝜏𝑡+2) = 0, ∀𝑡 ∈ [0, 𝑇 − 2].

(A.114)

Thus, all the simplified probability terms in the policy tree converge to 
1. Similarly, the probability gap, 
1 −

∑

𝜏𝑇

ℙ̄⋆(𝜏𝑇 ∣ 𝜏𝑡, 𝑎𝑡, 𝑧𝑡+1, 𝑥) = 0 (A.115)

only when all non-zero future trajectories with a prefix (𝜏𝑡, 𝑎𝑡, 𝑧𝑡+1, 𝑥)
have been explored. Finally, we are left to show that selecting actions 
based on the criteria shown in (29), results in the optimal action upon 
convergence. Utilizing Corollary 1.1, the proof follows similarly to the 
one shown in (2.3), which concludes our derivation. ∎

A.1.7.  Gap between the upper and lower bounds.
Define

Δ(𝐻𝑡) ≜  𝜋
0 (𝐻𝑡) − 𝜋

0 (𝐻𝑡), Δ𝑉 (𝐻𝑡) ≜ max(𝐻𝑡) − min(𝐻𝑡).

Step 1: Recursion. Subtract the two expressions in (21):

Δ(𝐻𝑡) =
∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡) Δ𝑉 (𝐻𝑡) +

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

[

Δ(𝐻𝑡+1)

−
∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1) Δ𝑉 (𝐻𝑡)

]

. (A.116)

Because  (𝐻𝑡+1) contains only those trajectories whose next obser-
vation is inside ̄ and whose next state is inside the current simplified 
state set ̄(𝐻𝑡+1), the probability that drops out between the two sums 
in (A.116) is precisely the mass of trajectories that leave either simplified 
space at step 𝑡 + 1.

Step 2: Coverage-gap term. Let
𝛿(𝐻𝑡) ≜

∑

𝜏𝑡∈ (𝐻𝑡)
ℙ̄(𝜏𝑡) −

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

∑

𝜏𝑡+1∈ (𝐻𝑡+1)
ℙ̄(𝜏𝑡+1),

i.e. the probability that either (i) 𝑧𝑡+1 ∉ ̄(𝐻𝑡, 𝜋𝑡) or (ii) 𝑧𝑡+1 ∈ ̄ but 
𝑥𝑡+1 ∉ ̄(𝐻𝑡+1) given 𝜏𝑡. Then (A.116) rewrites as
Δ(𝐻𝑡) = Δ𝑉 (𝐻𝑡) 𝛿(𝐻𝑡) +

∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

Δ(𝐻𝑡+1),

or,

 𝜋
0 (𝐻𝑡) − 𝜋

0 (𝐻𝑡) = Δ𝑉 (𝐻𝑡) 𝛿(𝐻𝑡) +
∑

𝑧𝑡+1∈̄(𝐻𝑡 ,𝜋𝑡)

[

 𝜋
0 (𝐻𝑡+1) − 𝜋

0 (𝐻𝑡+1)
]

.

Hence the upper-lower gap at node 𝐻𝑡 accumulates the local value 
spread Δ𝑉 (𝐻𝑘) only on steps where the trajectory exits either simplified 
space. If all future observations and states remain in ̄ and ̄ , the indi-
cator is zero and the gap collapses; conversely, frequent exits slow down 
the tightening of the bounds. 
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B.  Experiments

B.1.  POMDP scenarios

We begin with a brief description of the Partially Observable Markov 
Decision Process (POMDP) scenarios implemented for the experiments. 
each scenario was bounded by a finite number of time steps used for 
every episode, where each action taken by the agent led to a decrement 
in the number of time steps left. After the allowable time steps ended, 
the simulation was reset to its initial state.

B.1.1.  Tiger POMDP
The Tiger is a classic POMDP problem [16], involves an agent mak-

ing decisions between two doors, one concealing a tiger and the other 
a reward. The agent needs to choose among three actions, either open 
each one of the doors or listen to receive an observation about the tiger 
position. In our experiments, the POMDP was limited horizon of 5 steps. 
The problem consists of 3 actions, 2 observations and 2 states.

B.1.2.  Discrete light dark
Is an adaptation from [3]. In this setting the agent needs to travel 

on a 1D grid to reach a target location. The grid is divided into a dark 
region, which offers noisy observations, and a light region, which of-
fers accurate localization observations. The agent receives a penalty for 
every step and a reward for reaching the target location. The key chal-
lenge is to balance between information gathering by traveling towards 
the light area, and moving towards the goal region.

B.1.3.  Laser tag POMDP
In the Laser Tag problem, [2], an agent has to navigate through a 

grid world, shoot and tag opponents by using a laser gun. The main 
goal is to tag as many opponents as possible within a given time frame. 
The grid is segmented into various sections that have varying visibil-
ity, characterized by obstacles that block the line of sight, and open 
areas. There are five possible actions, moving in four cardinal direc-
tions (North, South, East, West) and shooting the laser. The observation 
space cardinality is || ≈ 1.5 × 106, which is described as a discretized 
normal distribution and reflect the distance measured by the laser. The 
states reflect the agent’s current position and the opponents’ positions. 
The agent receives a reward for tagging an opponent and a penalty for 
every movement, encouraging the agent to make strategic moves and 
shots.

B.1.4.  Baby POMDP
The Baby POMDP is a classic problem that represents the scenario 

of a baby and a caregiver. The agent, playing the role of the caregiver, 
needs to infer the baby’s needs based on its state, which can be either 
crying or quiet. The states in this problem represent the baby’s needs, 
which could be hunger, discomfort or no need. The agent has three 
actions to choose from: feeding, changing the diaper, or doing noth-
ing. The observations are binary, either the baby is crying or not. The 
crying observation does not uniquely identify the baby’s state, as the 
baby may cry due to hunger or discomfort, which makes this a par-
tially observable problem. The agent receives a reward when it cor-
rectly addresses the baby’s needs and a penalty when the wrong action is
taken. 

B.1.5.  Rock sample
In the Rock Sample problem [7] a rover explores a 𝑘×𝑘 grid con-

taining 𝑛 rocks whose quality (good / bad) is initially unknown; where 
𝑛 = 15 and 𝑘 = 3 in the experiments section. A state is the rover cell 
together with an 𝑛-bit vector of rock qualities. The agent can move de-
terministically in the four cardinal directions, execute a Sample action at 
its current cell, or invoke one of 𝑛 sensing actions. The sensing action re-
turns the observation 𝗀𝗈𝗈𝖽, 𝖻𝖺𝖽 with an accuracy level whose determined 
as a function of the Manhattan distance to rock 𝑖; all other actions yield 

the null observation. Each step incurs a penalty 𝑟step < 0, sensing adds 
𝑟sensor < 0, sampling yields 𝑟good > 0 if the rock is good and 𝑟bad < 0 oth-
erwise, and reaching the exit column grants 𝑟exit > 0. These dynamics 
create a canonical exploration-exploitation trade-off in which the rover 
must decide whether to spend time and energy gathering information 
or head directly for the exit.

B.1.6.  Navigate to goal
This environment is a 𝑘×𝑛 grid (default 5×5) in which a state is the 

agent’s coordinate pair 𝑠 = (𝑥, 𝑦). Five actions are available, Stay, East, 
West, North, and South. An intended move succeeds with probability 0.7; 
the remaining 0.3 is shared uniformly among the other adjacent cardinal 
neighbors (attempts to leave the grid leave the agent in place). Rewards 
are +10 for entering a goal cell, −10 for stepping on the a trap cell, and 
0 elsewhere. 

B.2.  Hyperparameters

The hyperparameters for both DB-DESPOT and AR-DESPOT al-
gorithms were selected through a grid search. We explored an ar-
ray of parameters for AR-DESPOT, choosing the highest-performing 
configuration. Specifically, the hyperparameter 𝐾 was varied across 
{10, 50, 500, 5000}, while 𝜆 was evaluated at {0, 0.01, 0.1}. Similarly, 
DB-POMCP and POMCP were examined three different values for the 
exploration-exploitation weight, 𝑐 = {0.1, 1.0, 10.0} multiplied by 𝑉max, 
which denotes an upper bound for the value function.

For the initialization of the upper and lower bounds used by the 
algorithms, we used the maximal reward, multiplied by the remaining 
time steps of the episode, max ⋅ ( − 𝑡 − 1).
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