

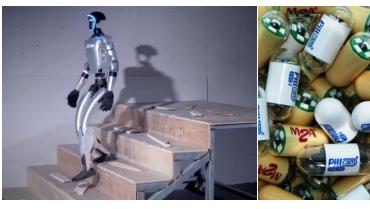
Simplified Online Planning Under Uncertainty with Performance Guarantees

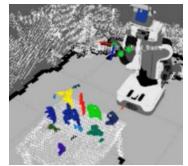
Vadim Indelman

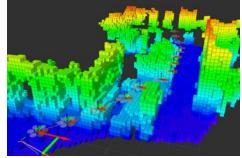
In Cooperation with

Advanced Autonomy

Involves autonomous navigation, active SLAM, informative gathering, active sensing, etc.







Advanced Autonomy

Perception and Inference

Where am I? What is the surrounding environment?

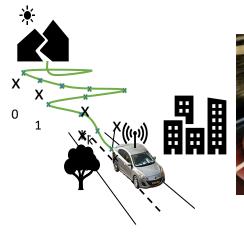
Decision-Making Under Uncertainty

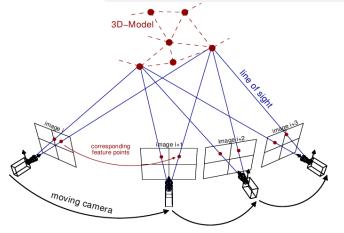
What should I be doing next?

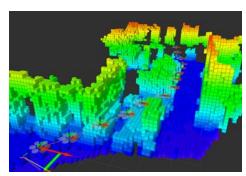
Determine best action(s) to accomplish a task, account for different sources of uncertainty

Perception and Inference

Decision-Making Under Uncertainty







Challenge

Probabilistic Inference

Maintain a distribution over the state given data

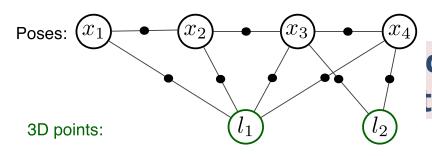
$$b_k \triangleq b[X_k] = \mathbb{P}(X_k \mid a_{0:k-1}, z_{1:k})$$
state actions observations

Decision-making under uncertainty

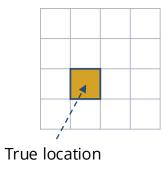
Involves reasoning about the entire observation and action spaces along planning horizon

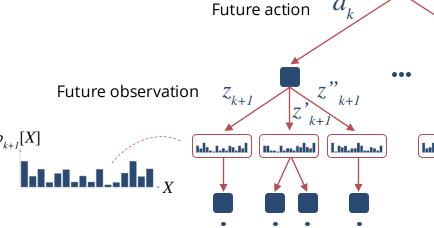
Computationally intractable

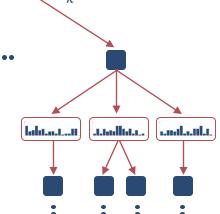
More so, in high dimensional settings



Example - grid world



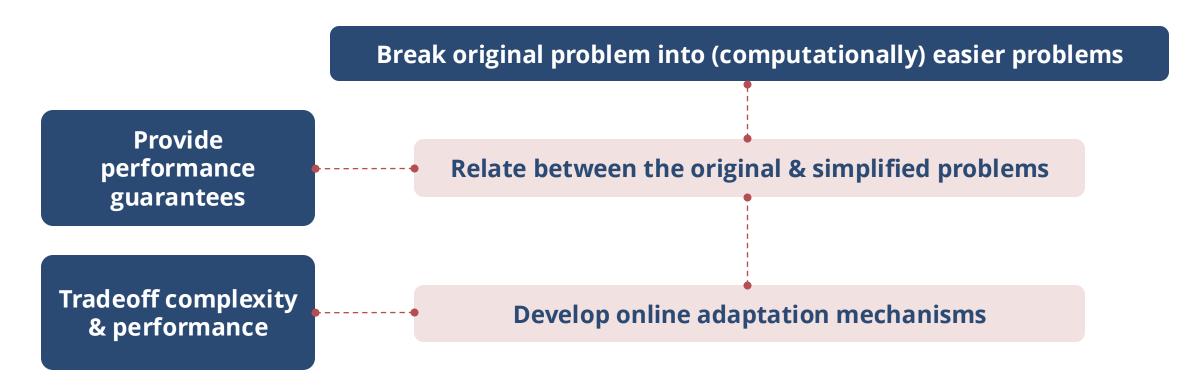




ct autonomously online and efficiently tasks in a safe and reliable fashion??

Simplification Framework

Accelerate decision making by adaptive simplification while providing performance guarantees



$$\mathcal{LB}(b,a) \leq Q(b,a) \leq \mathcal{UB}(b,a)$$
 Computationally cheap(er) bounds

Concept:

- Identify and solve a simplified (computationally) easier decision-making problem
- Provide performance guarantees

Specific simplifications include:

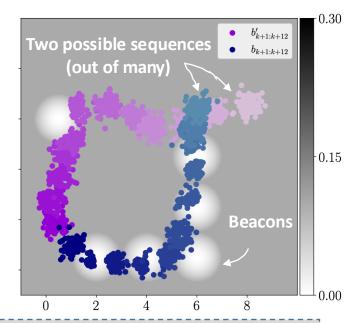
- Sparsification of Gaussian beliefs (high dim. state)
- Topological metric for Gaussian beliefs (high dim. state)
- Utilize a subset of samples (nonparametric beliefs)
- Utilize a subset of hypotheses (hybrid beliefs)

- Simplified models and spaces
- Simplification of Risk-Averse POMDP Planning
- Simplification in a multi-agent setting

Simplification of POMDPs with Nonparametric Beliefs

Value function

$$V^{\pi}(b_0) \triangleq \mathbb{E}\left[\sum_t \gamma^t r_t(b_t, a_t) \mid a_t = \pi_t(b_t)\right]$$



Simplification:

- Utilize a subset of samples for planning
- Information-theoretic reward (entropy)
- Analytical (cheaper) bounds over the reward

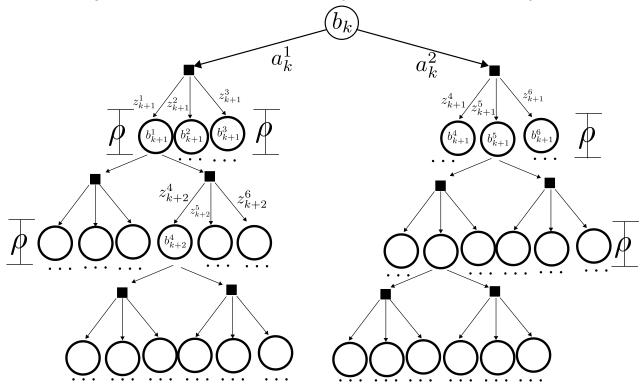
$$b = \left\{x^{i}, w^{i}\right\}_{i=1}^{N}$$

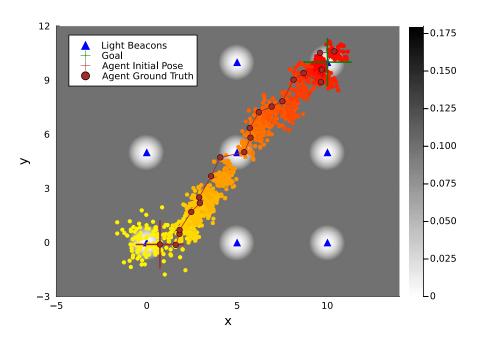
$$b^{s} = \left\{x^{j}, w^{j}\right\}_{j=1}^{N^{s}}$$
Simplifictation

$$lb(b, b^s, a) \le r(b, a) \le ub(b, b^s, a)$$

Simplification of POMDPs with Nonparametric Beliefs

Adaptive multi-level simplification in a Sparse Sampling setting:

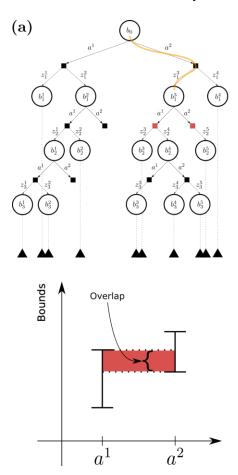




Typical speedup of 20% - 50%, Same performance!

Simplification of POMDPs with Nonparametric Beliefs

Adaptive multi-level simplification in an MCTS setting:



Concept:

- Identify and solve a simplified (computationally) easier decision-making problem
- Provide performance guarantees

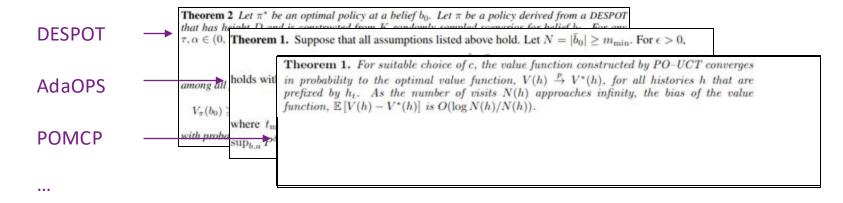
Specific simplifications include:

- Sparsification of Gaussian beliefs (high dim. state)
- Topological metric for Gaussian beliefs (high dim. state)
- Utilize a subset of samples (nonparametric beliefs)
- Utilize a subset of hypotheses (hybrid beliefs)

- Simplified models and spaces
- Simplification of Risk-Averse POMDP Planning
- Simplification in a multi-agent setting

POMDPs with Deterministic Guarantees

SOTA sampling based approaches come with probabilistic theoretical guarantees



Can we get deterministic guarantees?

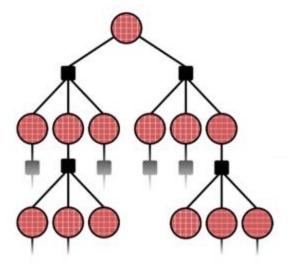
We show that deterministic guarantees are indeed possible!

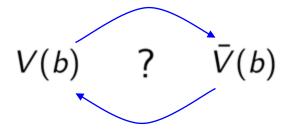
Online POMDP Planning with Anytime Deterministic Guarantees

Concept:

Instead of solving the original POMDP, consider a simplified version of that POMDP.

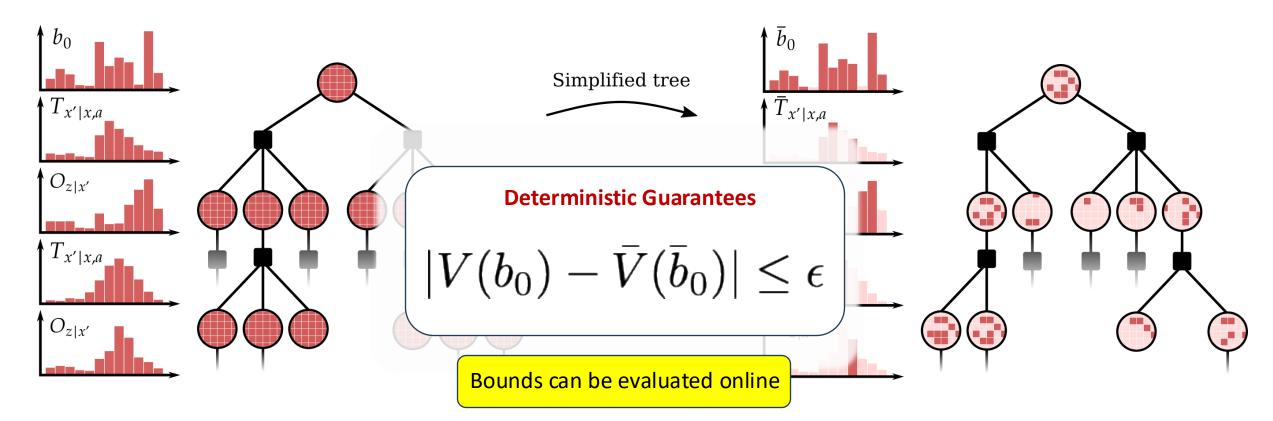
Derive a mathematical relationship between the solution of the simplified, and the theoretical POMDP.





Online POMDP Planning with Anytime Deterministic Guarantees

Deterministic guarantees (assuming discrete spaces)



Online POMDP Planning with Anytime Deterministic Guarantees

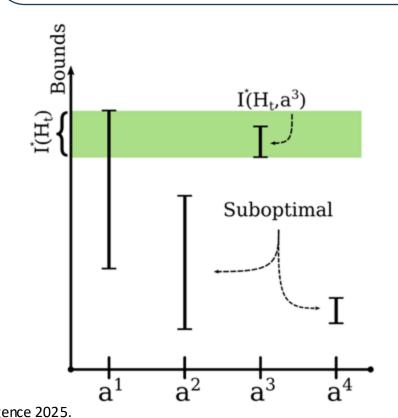
Importantly, the bounds can be calculated during planning.

How can we use them?

- Pruning of sub-optimal branches
 - Made possible by the deterministic guarantees
- Stopping criteria for the planning phase
 - Made possible by the deterministic guarantees
- Finding the optimal solution in finite time
 - Without recovering the theoretical tree

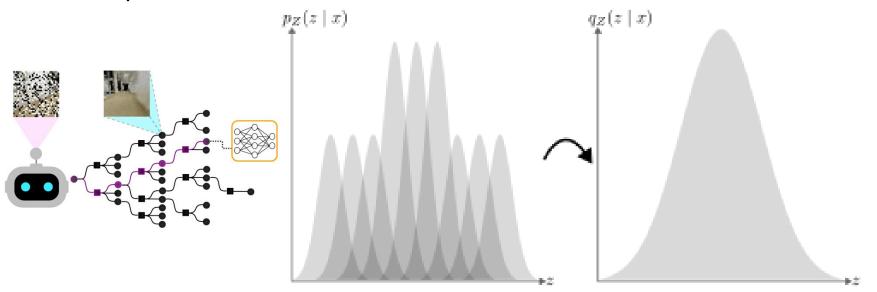
Deterministic Guarantees

$$|V(b_0) - \bar{V}(\bar{b}_0)| \le \epsilon$$



Simplifying Complex Observation Models with Probabilistic Guarantees

- We replace the (learned) observation model p_Z with a cheaper model q_Z
 - Simpler GMM, Shallower Neural Network, etc.
 - Example:



Simplified models $p_{\theta}(z \mid x)$ Original, expensive $q_{\phi}(z \mid x)$ Simplified, cheap

Can we simplify the learned models?
What is the impact on planning performance?

Simplifying Complex Observation Models with Probabilistic Guarantees

- We replace the (learned) observation model p_Z with a cheaper model q_Z
- Simplified action-value function: $Q_{\mathbf{P}}^{q_Z}$

Corollary 3

For arbitrary $\varepsilon, \delta > 0$ there exists a number of particles for which

$$|Q_{\mathbf{P}}^{p_Z}(b_t, a) - \hat{Q}_{\mathbf{M}_{\mathbf{P}}}^{q_Z}(\bar{b}_t, a)| \le \hat{\Phi}_{\mathbf{M}_{\mathbf{P}}}(\bar{b}_t, a) + \varepsilon$$

 $|Q_{\mathbf{P}}^{p_Z}(b_t,a) - \hat{Q}_{\mathbf{M_P}}^{q_Z}(\bar{b}_t,a)| \leq \hat{\Phi}_{\mathbf{M_P}}(\bar{b}_t,a) + \varepsilon$ with probability of at least $1 - \delta$ for any guaranteed planner

Theoretical Q function of the POMDP, with original models

Estimator of the Q function of a particle-belief POMDP, with **simplified** models

Robust Online Planning Under Uncertainty

- So far, models were assumed to be given and perfect
- In practice, models are learned from data
- What happens when the models are uncertain?

How to do online robust planning?

Uncertainty set:

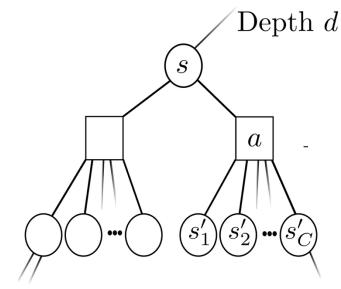
$$P_t(S_{t+1} \mid S_t = s, A_t = a) \in \mathcal{P}_t^{s,a}$$

Robust value function:

$$V^{\pi}(s) = \min_{P \in \mathcal{P}} V^{\pi, P}(s)$$

Robust Sparse Sampling (RSS) Algorithm:

- A sample-based online robust planner
- Applicable to infinite or continuous state spaces
- Finite-sample performance guarantees



Robust Online Planning Under Uncertainty

- So far, models were assumed to be given and perfect
- In practice, models are learned from data
- What happens when the models are uncertain?

How to do online robust planning?

Uncertainty set:

$$P_t(S_{t+1} \mid S_t = s, A_t = a) \in \mathcal{P}_t^{s,a}$$

Robust value function:

$$V^{\pi}(s) = \min_{P \in \mathcal{P}} V^{\pi, P}(s)$$

Depth d

Robust Sparse Sampling (RSS) Algorithm:

- A sample-based online robust planner
- Applicable to infinite or continuous state spaces
- Finite-sample performance guarantees

Prob. Guarantees

$$\left| V^{\hat{\pi}^{\star}}(s) - V^{\pi^{\star}}(s) \right| \le \epsilon$$

Concept:

- Identify and solve a simplified (computationally) easier decision-making problem
- Provide performance guarantees

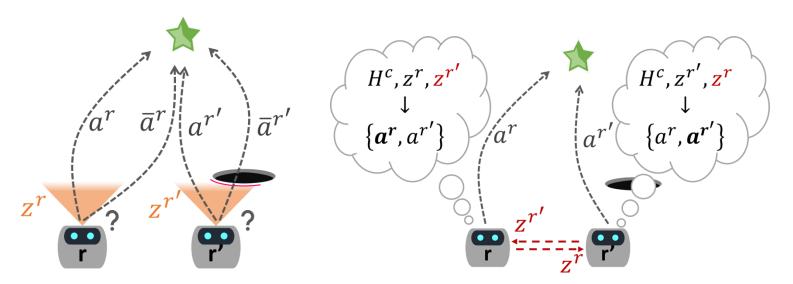
Specific simplifications include:

- Sparsification of Gaussian beliefs (high dim. state)
- Topological metric for Gaussian beliefs (high dim. state)
- Utilize a subset of samples (nonparametric beliefs)
- Utilize a subset of hypotheses (hybrid beliefs)

- Simplified models and spaces
- Simplification of Risk-Averse POMDP Planning
- Simplification in a multi-agent setting

Multi-Robot Belief Space Planning

- A common assumption: Beliefs of different robots are consistent at planning time
- Requires prohibitively frequent data-sharing capabilities!



Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

• Histories & beliefs of the robots may <u>differ</u> due to limited data-sharing capabilities

$$b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r) \qquad \qquad b_k^{r'} = \mathbb{P}(x_k \mid \mathcal{H}_k^{r'}) \qquad \qquad \mathcal{H}_k^r \neq \mathcal{H}_k^{r'}$$
 Available only to robot r Common history, e.g. from the last data-sharing

T. Kundu, M. Rafaeli, and V. Indelman, "Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach," IROS'24.

T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, "Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification Algorithms with Formal Guarantees," Submitted 2025.

M. Rafaeli, and V. Indelman, "Towards Optimal Performance and Action Consistency Guarantees in Dec-POMDPs with Inconsistent Beliefs and Limited Communication," Submitted, 2025.

Multi-Robot Cooperative BSP with Inconsistent Beliefs

What happens when data-sharing capabilities between the robots are limited?

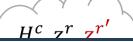
• Histories & beliefs of the robots may <u>differ</u> due to limited data-sharing capabilities

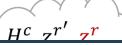
$$b_k^r = \mathbb{P}(x_k \mid \mathcal{H}_k^r)$$

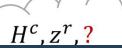
$$b_k^{r'} = \mathbb{P}(x_k \mid \mathcal{H}_k^{r'})$$

$$\mathcal{H}_k^r \neq \mathcal{H}_k^{r'}$$

Can lead to a lack of coordination and unsafe and sub-optimal actions







 $H^c.z^{r'}$,?

Challenge:

- **Guarantee** a consistent joint action selection by individual robots **despite** inconsistent histories
- Otherwise, self-trigger communication

T. Kundu, M. Rafaeli, and V. Indelman, "Multi-Robot Communication-Aware Cooperative Belief Space Planning with Inconsistent Beliefs: An Action-Consistent Approach," IROS'24.

T. Kundu, M. Rafaeli, A. Gulyaev, and V. Indelman, "Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification Algorithms with Formal Guarantees," Submitted 2025.

M. Rafaeli, and V. Indelman, "Towards Optimal Performance and Action Consistency Guarantees in Dec-POMDPs with Inconsistent Beliefs and Limited Communication," Submitted, 2025.

Concept:

- Identify and solve a simplified (computationally) easier decision-making problem
- Provide performance guarantees

Specific simplifications include:

- Sparsification of Gaussian beliefs (high dim. state)
- Topological metric for Gaussian beliefs (high dim. state)
- Utilize a subset of samples (nonparametric beliefs)
- Utilize a subset of hypotheses (hybrid beliefs)

- Simplified models and spaces
- Simplification of Risk-Averse POMDP Planning
- Simplification in a multi-agent setting

See additional research directions on our website!

Feel free to reach out to explore research opportunities!